xref: /titanic_41/usr/src/uts/common/fs/zfs/spa_misc.c (revision 653d2d91a355b2a5df7db09e17c965ddc5d3ea47)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/spa_boot.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/arc.h>
50 #include <sys/ddt.h>
51 #include "zfs_prop.h"
52 #include "zfeature_common.h"
53 
54 /*
55  * SPA locking
56  *
57  * There are four basic locks for managing spa_t structures:
58  *
59  * spa_namespace_lock (global mutex)
60  *
61  *	This lock must be acquired to do any of the following:
62  *
63  *		- Lookup a spa_t by name
64  *		- Add or remove a spa_t from the namespace
65  *		- Increase spa_refcount from non-zero
66  *		- Check if spa_refcount is zero
67  *		- Rename a spa_t
68  *		- add/remove/attach/detach devices
69  *		- Held for the duration of create/destroy/import/export
70  *
71  *	It does not need to handle recursion.  A create or destroy may
72  *	reference objects (files or zvols) in other pools, but by
73  *	definition they must have an existing reference, and will never need
74  *	to lookup a spa_t by name.
75  *
76  * spa_refcount (per-spa refcount_t protected by mutex)
77  *
78  *	This reference count keep track of any active users of the spa_t.  The
79  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
80  *	the refcount is never really 'zero' - opening a pool implicitly keeps
81  *	some references in the DMU.  Internally we check against spa_minref, but
82  *	present the image of a zero/non-zero value to consumers.
83  *
84  * spa_config_lock[] (per-spa array of rwlocks)
85  *
86  *	This protects the spa_t from config changes, and must be held in
87  *	the following circumstances:
88  *
89  *		- RW_READER to perform I/O to the spa
90  *		- RW_WRITER to change the vdev config
91  *
92  * The locking order is fairly straightforward:
93  *
94  *		spa_namespace_lock	->	spa_refcount
95  *
96  *	The namespace lock must be acquired to increase the refcount from 0
97  *	or to check if it is zero.
98  *
99  *		spa_refcount		->	spa_config_lock[]
100  *
101  *	There must be at least one valid reference on the spa_t to acquire
102  *	the config lock.
103  *
104  *		spa_namespace_lock	->	spa_config_lock[]
105  *
106  *	The namespace lock must always be taken before the config lock.
107  *
108  *
109  * The spa_namespace_lock can be acquired directly and is globally visible.
110  *
111  * The namespace is manipulated using the following functions, all of which
112  * require the spa_namespace_lock to be held.
113  *
114  *	spa_lookup()		Lookup a spa_t by name.
115  *
116  *	spa_add()		Create a new spa_t in the namespace.
117  *
118  *	spa_remove()		Remove a spa_t from the namespace.  This also
119  *				frees up any memory associated with the spa_t.
120  *
121  *	spa_next()		Returns the next spa_t in the system, or the
122  *				first if NULL is passed.
123  *
124  *	spa_evict_all()		Shutdown and remove all spa_t structures in
125  *				the system.
126  *
127  *	spa_guid_exists()	Determine whether a pool/device guid exists.
128  *
129  * The spa_refcount is manipulated using the following functions:
130  *
131  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
132  *				called with spa_namespace_lock held if the
133  *				refcount is currently zero.
134  *
135  *	spa_close()		Remove a reference from the spa_t.  This will
136  *				not free the spa_t or remove it from the
137  *				namespace.  No locking is required.
138  *
139  *	spa_refcount_zero()	Returns true if the refcount is currently
140  *				zero.  Must be called with spa_namespace_lock
141  *				held.
142  *
143  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
144  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
145  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
146  *
147  * To read the configuration, it suffices to hold one of these locks as reader.
148  * To modify the configuration, you must hold all locks as writer.  To modify
149  * vdev state without altering the vdev tree's topology (e.g. online/offline),
150  * you must hold SCL_STATE and SCL_ZIO as writer.
151  *
152  * We use these distinct config locks to avoid recursive lock entry.
153  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
154  * block allocations (SCL_ALLOC), which may require reading space maps
155  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
156  *
157  * The spa config locks cannot be normal rwlocks because we need the
158  * ability to hand off ownership.  For example, SCL_ZIO is acquired
159  * by the issuing thread and later released by an interrupt thread.
160  * They do, however, obey the usual write-wanted semantics to prevent
161  * writer (i.e. system administrator) starvation.
162  *
163  * The lock acquisition rules are as follows:
164  *
165  * SCL_CONFIG
166  *	Protects changes to the vdev tree topology, such as vdev
167  *	add/remove/attach/detach.  Protects the dirty config list
168  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
169  *
170  * SCL_STATE
171  *	Protects changes to pool state and vdev state, such as vdev
172  *	online/offline/fault/degrade/clear.  Protects the dirty state list
173  *	(spa_state_dirty_list) and global pool state (spa_state).
174  *
175  * SCL_ALLOC
176  *	Protects changes to metaslab groups and classes.
177  *	Held as reader by metaslab_alloc() and metaslab_claim().
178  *
179  * SCL_ZIO
180  *	Held by bp-level zios (those which have no io_vd upon entry)
181  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
182  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
183  *
184  * SCL_FREE
185  *	Protects changes to metaslab groups and classes.
186  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
187  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
188  *	blocks in zio_done() while another i/o that holds either
189  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
190  *
191  * SCL_VDEV
192  *	Held as reader to prevent changes to the vdev tree during trivial
193  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
194  *	other locks, and lower than all of them, to ensure that it's safe
195  *	to acquire regardless of caller context.
196  *
197  * In addition, the following rules apply:
198  *
199  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
200  *	The lock ordering is SCL_CONFIG > spa_props_lock.
201  *
202  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
203  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
204  *	or zio_write_phys() -- the caller must ensure that the config cannot
205  *	cannot change in the interim, and that the vdev cannot be reopened.
206  *	SCL_STATE as reader suffices for both.
207  *
208  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
209  *
210  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
211  *				for writing.
212  *
213  *	spa_vdev_exit()		Release the config lock, wait for all I/O
214  *				to complete, sync the updated configs to the
215  *				cache, and release the namespace lock.
216  *
217  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
218  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
219  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
220  *
221  * spa_rename() is also implemented within this file since it requires
222  * manipulation of the namespace.
223  */
224 
225 static avl_tree_t spa_namespace_avl;
226 kmutex_t spa_namespace_lock;
227 static kcondvar_t spa_namespace_cv;
228 static int spa_active_count;
229 int spa_max_replication_override = SPA_DVAS_PER_BP;
230 
231 static kmutex_t spa_spare_lock;
232 static avl_tree_t spa_spare_avl;
233 static kmutex_t spa_l2cache_lock;
234 static avl_tree_t spa_l2cache_avl;
235 
236 kmem_cache_t *spa_buffer_pool;
237 int spa_mode_global;
238 
239 #ifdef ZFS_DEBUG
240 /* Everything except dprintf and spa is on by default in debug builds */
241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
242 #else
243 int zfs_flags = 0;
244 #endif
245 
246 /*
247  * zfs_recover can be set to nonzero to attempt to recover from
248  * otherwise-fatal errors, typically caused by on-disk corruption.  When
249  * set, calls to zfs_panic_recover() will turn into warning messages.
250  * This should only be used as a last resort, as it typically results
251  * in leaked space, or worse.
252  */
253 int zfs_recover = 0;
254 
255 /*
256  * Expiration time in milliseconds. This value has two meanings. First it is
257  * used to determine when the spa_deadman() logic should fire. By default the
258  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
259  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
260  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
261  * in a system panic.
262  */
263 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
264 
265 /*
266  * Check time in milliseconds. This defines the frequency at which we check
267  * for hung I/O.
268  */
269 uint64_t zfs_deadman_checktime_ms = 5000ULL;
270 
271 /*
272  * Override the zfs deadman behavior via /etc/system. By default the
273  * deadman is enabled except on VMware and sparc deployments.
274  */
275 int zfs_deadman_enabled = -1;
276 
277 /*
278  * The worst case is single-sector max-parity RAID-Z blocks, in which
279  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
280  * times the size; so just assume that.  Add to this the fact that
281  * we can have up to 3 DVAs per bp, and one more factor of 2 because
282  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
283  * the worst case is:
284  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
285  */
286 int spa_asize_inflation = 24;
287 
288 /*
289  * ==========================================================================
290  * SPA config locking
291  * ==========================================================================
292  */
293 static void
294 spa_config_lock_init(spa_t *spa)
295 {
296 	for (int i = 0; i < SCL_LOCKS; i++) {
297 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
298 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
299 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
300 		refcount_create_untracked(&scl->scl_count);
301 		scl->scl_writer = NULL;
302 		scl->scl_write_wanted = 0;
303 	}
304 }
305 
306 static void
307 spa_config_lock_destroy(spa_t *spa)
308 {
309 	for (int i = 0; i < SCL_LOCKS; i++) {
310 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
311 		mutex_destroy(&scl->scl_lock);
312 		cv_destroy(&scl->scl_cv);
313 		refcount_destroy(&scl->scl_count);
314 		ASSERT(scl->scl_writer == NULL);
315 		ASSERT(scl->scl_write_wanted == 0);
316 	}
317 }
318 
319 int
320 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
321 {
322 	for (int i = 0; i < SCL_LOCKS; i++) {
323 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
324 		if (!(locks & (1 << i)))
325 			continue;
326 		mutex_enter(&scl->scl_lock);
327 		if (rw == RW_READER) {
328 			if (scl->scl_writer || scl->scl_write_wanted) {
329 				mutex_exit(&scl->scl_lock);
330 				spa_config_exit(spa, locks ^ (1 << i), tag);
331 				return (0);
332 			}
333 		} else {
334 			ASSERT(scl->scl_writer != curthread);
335 			if (!refcount_is_zero(&scl->scl_count)) {
336 				mutex_exit(&scl->scl_lock);
337 				spa_config_exit(spa, locks ^ (1 << i), tag);
338 				return (0);
339 			}
340 			scl->scl_writer = curthread;
341 		}
342 		(void) refcount_add(&scl->scl_count, tag);
343 		mutex_exit(&scl->scl_lock);
344 	}
345 	return (1);
346 }
347 
348 void
349 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
350 {
351 	int wlocks_held = 0;
352 
353 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
354 
355 	for (int i = 0; i < SCL_LOCKS; i++) {
356 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
357 		if (scl->scl_writer == curthread)
358 			wlocks_held |= (1 << i);
359 		if (!(locks & (1 << i)))
360 			continue;
361 		mutex_enter(&scl->scl_lock);
362 		if (rw == RW_READER) {
363 			while (scl->scl_writer || scl->scl_write_wanted) {
364 				cv_wait(&scl->scl_cv, &scl->scl_lock);
365 			}
366 		} else {
367 			ASSERT(scl->scl_writer != curthread);
368 			while (!refcount_is_zero(&scl->scl_count)) {
369 				scl->scl_write_wanted++;
370 				cv_wait(&scl->scl_cv, &scl->scl_lock);
371 				scl->scl_write_wanted--;
372 			}
373 			scl->scl_writer = curthread;
374 		}
375 		(void) refcount_add(&scl->scl_count, tag);
376 		mutex_exit(&scl->scl_lock);
377 	}
378 	ASSERT(wlocks_held <= locks);
379 }
380 
381 void
382 spa_config_exit(spa_t *spa, int locks, void *tag)
383 {
384 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
385 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
386 		if (!(locks & (1 << i)))
387 			continue;
388 		mutex_enter(&scl->scl_lock);
389 		ASSERT(!refcount_is_zero(&scl->scl_count));
390 		if (refcount_remove(&scl->scl_count, tag) == 0) {
391 			ASSERT(scl->scl_writer == NULL ||
392 			    scl->scl_writer == curthread);
393 			scl->scl_writer = NULL;	/* OK in either case */
394 			cv_broadcast(&scl->scl_cv);
395 		}
396 		mutex_exit(&scl->scl_lock);
397 	}
398 }
399 
400 int
401 spa_config_held(spa_t *spa, int locks, krw_t rw)
402 {
403 	int locks_held = 0;
404 
405 	for (int i = 0; i < SCL_LOCKS; i++) {
406 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
407 		if (!(locks & (1 << i)))
408 			continue;
409 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
410 		    (rw == RW_WRITER && scl->scl_writer == curthread))
411 			locks_held |= 1 << i;
412 	}
413 
414 	return (locks_held);
415 }
416 
417 /*
418  * ==========================================================================
419  * SPA namespace functions
420  * ==========================================================================
421  */
422 
423 /*
424  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
425  * Returns NULL if no matching spa_t is found.
426  */
427 spa_t *
428 spa_lookup(const char *name)
429 {
430 	static spa_t search;	/* spa_t is large; don't allocate on stack */
431 	spa_t *spa;
432 	avl_index_t where;
433 	char *cp;
434 
435 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
436 
437 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
438 
439 	/*
440 	 * If it's a full dataset name, figure out the pool name and
441 	 * just use that.
442 	 */
443 	cp = strpbrk(search.spa_name, "/@#");
444 	if (cp != NULL)
445 		*cp = '\0';
446 
447 	spa = avl_find(&spa_namespace_avl, &search, &where);
448 
449 	return (spa);
450 }
451 
452 /*
453  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
454  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
455  * looking for potentially hung I/Os.
456  */
457 void
458 spa_deadman(void *arg)
459 {
460 	spa_t *spa = arg;
461 
462 	/*
463 	 * Disable the deadman timer if the pool is suspended.
464 	 */
465 	if (spa_suspended(spa)) {
466 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
467 		return;
468 	}
469 
470 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
471 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
472 	    ++spa->spa_deadman_calls);
473 	if (zfs_deadman_enabled)
474 		vdev_deadman(spa->spa_root_vdev);
475 }
476 
477 /*
478  * Create an uninitialized spa_t with the given name.  Requires
479  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
480  * exist by calling spa_lookup() first.
481  */
482 spa_t *
483 spa_add(const char *name, nvlist_t *config, const char *altroot)
484 {
485 	spa_t *spa;
486 	spa_config_dirent_t *dp;
487 	cyc_handler_t hdlr;
488 	cyc_time_t when;
489 
490 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
491 
492 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
493 
494 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
495 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
496 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
497 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
498 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
499 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
500 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
501 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
502 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
503 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
504 
505 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
506 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
507 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
508 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
509 
510 	for (int t = 0; t < TXG_SIZE; t++)
511 		bplist_create(&spa->spa_free_bplist[t]);
512 
513 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
514 	spa->spa_state = POOL_STATE_UNINITIALIZED;
515 	spa->spa_freeze_txg = UINT64_MAX;
516 	spa->spa_final_txg = UINT64_MAX;
517 	spa->spa_load_max_txg = UINT64_MAX;
518 	spa->spa_proc = &p0;
519 	spa->spa_proc_state = SPA_PROC_NONE;
520 
521 	hdlr.cyh_func = spa_deadman;
522 	hdlr.cyh_arg = spa;
523 	hdlr.cyh_level = CY_LOW_LEVEL;
524 
525 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
526 
527 	/*
528 	 * This determines how often we need to check for hung I/Os after
529 	 * the cyclic has already fired. Since checking for hung I/Os is
530 	 * an expensive operation we don't want to check too frequently.
531 	 * Instead wait for 5 seconds before checking again.
532 	 */
533 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
534 	when.cyt_when = CY_INFINITY;
535 	mutex_enter(&cpu_lock);
536 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
537 	mutex_exit(&cpu_lock);
538 
539 	refcount_create(&spa->spa_refcount);
540 	spa_config_lock_init(spa);
541 
542 	avl_add(&spa_namespace_avl, spa);
543 
544 	/*
545 	 * Set the alternate root, if there is one.
546 	 */
547 	if (altroot) {
548 		spa->spa_root = spa_strdup(altroot);
549 		spa_active_count++;
550 	}
551 
552 	/*
553 	 * Every pool starts with the default cachefile
554 	 */
555 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
556 	    offsetof(spa_config_dirent_t, scd_link));
557 
558 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
559 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
560 	list_insert_head(&spa->spa_config_list, dp);
561 
562 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
563 	    KM_SLEEP) == 0);
564 
565 	if (config != NULL) {
566 		nvlist_t *features;
567 
568 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
569 		    &features) == 0) {
570 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
571 			    0) == 0);
572 		}
573 
574 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
575 	}
576 
577 	if (spa->spa_label_features == NULL) {
578 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
579 		    KM_SLEEP) == 0);
580 	}
581 
582 	spa->spa_iokstat = kstat_create("zfs", 0, name,
583 	    "disk", KSTAT_TYPE_IO, 1, 0);
584 	if (spa->spa_iokstat) {
585 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
586 		kstat_install(spa->spa_iokstat);
587 	}
588 
589 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
590 
591 	/*
592 	 * As a pool is being created, treat all features as disabled by
593 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
594 	 * refcount cache.
595 	 */
596 	for (int i = 0; i < SPA_FEATURES; i++) {
597 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
598 	}
599 
600 	return (spa);
601 }
602 
603 /*
604  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
605  * spa_namespace_lock.  This is called only after the spa_t has been closed and
606  * deactivated.
607  */
608 void
609 spa_remove(spa_t *spa)
610 {
611 	spa_config_dirent_t *dp;
612 
613 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
614 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
615 
616 	nvlist_free(spa->spa_config_splitting);
617 
618 	avl_remove(&spa_namespace_avl, spa);
619 	cv_broadcast(&spa_namespace_cv);
620 
621 	if (spa->spa_root) {
622 		spa_strfree(spa->spa_root);
623 		spa_active_count--;
624 	}
625 
626 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
627 		list_remove(&spa->spa_config_list, dp);
628 		if (dp->scd_path != NULL)
629 			spa_strfree(dp->scd_path);
630 		kmem_free(dp, sizeof (spa_config_dirent_t));
631 	}
632 
633 	list_destroy(&spa->spa_config_list);
634 
635 	nvlist_free(spa->spa_label_features);
636 	nvlist_free(spa->spa_load_info);
637 	spa_config_set(spa, NULL);
638 
639 	mutex_enter(&cpu_lock);
640 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
641 		cyclic_remove(spa->spa_deadman_cycid);
642 	mutex_exit(&cpu_lock);
643 	spa->spa_deadman_cycid = CYCLIC_NONE;
644 
645 	refcount_destroy(&spa->spa_refcount);
646 
647 	spa_config_lock_destroy(spa);
648 
649 	kstat_delete(spa->spa_iokstat);
650 	spa->spa_iokstat = NULL;
651 
652 	for (int t = 0; t < TXG_SIZE; t++)
653 		bplist_destroy(&spa->spa_free_bplist[t]);
654 
655 	cv_destroy(&spa->spa_async_cv);
656 	cv_destroy(&spa->spa_proc_cv);
657 	cv_destroy(&spa->spa_scrub_io_cv);
658 	cv_destroy(&spa->spa_suspend_cv);
659 
660 	mutex_destroy(&spa->spa_async_lock);
661 	mutex_destroy(&spa->spa_errlist_lock);
662 	mutex_destroy(&spa->spa_errlog_lock);
663 	mutex_destroy(&spa->spa_history_lock);
664 	mutex_destroy(&spa->spa_proc_lock);
665 	mutex_destroy(&spa->spa_props_lock);
666 	mutex_destroy(&spa->spa_scrub_lock);
667 	mutex_destroy(&spa->spa_suspend_lock);
668 	mutex_destroy(&spa->spa_vdev_top_lock);
669 	mutex_destroy(&spa->spa_iokstat_lock);
670 
671 	kmem_free(spa, sizeof (spa_t));
672 }
673 
674 /*
675  * Given a pool, return the next pool in the namespace, or NULL if there is
676  * none.  If 'prev' is NULL, return the first pool.
677  */
678 spa_t *
679 spa_next(spa_t *prev)
680 {
681 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
682 
683 	if (prev)
684 		return (AVL_NEXT(&spa_namespace_avl, prev));
685 	else
686 		return (avl_first(&spa_namespace_avl));
687 }
688 
689 /*
690  * ==========================================================================
691  * SPA refcount functions
692  * ==========================================================================
693  */
694 
695 /*
696  * Add a reference to the given spa_t.  Must have at least one reference, or
697  * have the namespace lock held.
698  */
699 void
700 spa_open_ref(spa_t *spa, void *tag)
701 {
702 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
703 	    MUTEX_HELD(&spa_namespace_lock));
704 	(void) refcount_add(&spa->spa_refcount, tag);
705 }
706 
707 /*
708  * Remove a reference to the given spa_t.  Must have at least one reference, or
709  * have the namespace lock held.
710  */
711 void
712 spa_close(spa_t *spa, void *tag)
713 {
714 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
715 	    MUTEX_HELD(&spa_namespace_lock));
716 	(void) refcount_remove(&spa->spa_refcount, tag);
717 }
718 
719 /*
720  * Check to see if the spa refcount is zero.  Must be called with
721  * spa_namespace_lock held.  We really compare against spa_minref, which is the
722  * number of references acquired when opening a pool
723  */
724 boolean_t
725 spa_refcount_zero(spa_t *spa)
726 {
727 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
728 
729 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
730 }
731 
732 /*
733  * ==========================================================================
734  * SPA spare and l2cache tracking
735  * ==========================================================================
736  */
737 
738 /*
739  * Hot spares and cache devices are tracked using the same code below,
740  * for 'auxiliary' devices.
741  */
742 
743 typedef struct spa_aux {
744 	uint64_t	aux_guid;
745 	uint64_t	aux_pool;
746 	avl_node_t	aux_avl;
747 	int		aux_count;
748 } spa_aux_t;
749 
750 static int
751 spa_aux_compare(const void *a, const void *b)
752 {
753 	const spa_aux_t *sa = a;
754 	const spa_aux_t *sb = b;
755 
756 	if (sa->aux_guid < sb->aux_guid)
757 		return (-1);
758 	else if (sa->aux_guid > sb->aux_guid)
759 		return (1);
760 	else
761 		return (0);
762 }
763 
764 void
765 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
766 {
767 	avl_index_t where;
768 	spa_aux_t search;
769 	spa_aux_t *aux;
770 
771 	search.aux_guid = vd->vdev_guid;
772 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
773 		aux->aux_count++;
774 	} else {
775 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
776 		aux->aux_guid = vd->vdev_guid;
777 		aux->aux_count = 1;
778 		avl_insert(avl, aux, where);
779 	}
780 }
781 
782 void
783 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
784 {
785 	spa_aux_t search;
786 	spa_aux_t *aux;
787 	avl_index_t where;
788 
789 	search.aux_guid = vd->vdev_guid;
790 	aux = avl_find(avl, &search, &where);
791 
792 	ASSERT(aux != NULL);
793 
794 	if (--aux->aux_count == 0) {
795 		avl_remove(avl, aux);
796 		kmem_free(aux, sizeof (spa_aux_t));
797 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
798 		aux->aux_pool = 0ULL;
799 	}
800 }
801 
802 boolean_t
803 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
804 {
805 	spa_aux_t search, *found;
806 
807 	search.aux_guid = guid;
808 	found = avl_find(avl, &search, NULL);
809 
810 	if (pool) {
811 		if (found)
812 			*pool = found->aux_pool;
813 		else
814 			*pool = 0ULL;
815 	}
816 
817 	if (refcnt) {
818 		if (found)
819 			*refcnt = found->aux_count;
820 		else
821 			*refcnt = 0;
822 	}
823 
824 	return (found != NULL);
825 }
826 
827 void
828 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
829 {
830 	spa_aux_t search, *found;
831 	avl_index_t where;
832 
833 	search.aux_guid = vd->vdev_guid;
834 	found = avl_find(avl, &search, &where);
835 	ASSERT(found != NULL);
836 	ASSERT(found->aux_pool == 0ULL);
837 
838 	found->aux_pool = spa_guid(vd->vdev_spa);
839 }
840 
841 /*
842  * Spares are tracked globally due to the following constraints:
843  *
844  * 	- A spare may be part of multiple pools.
845  * 	- A spare may be added to a pool even if it's actively in use within
846  *	  another pool.
847  * 	- A spare in use in any pool can only be the source of a replacement if
848  *	  the target is a spare in the same pool.
849  *
850  * We keep track of all spares on the system through the use of a reference
851  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
852  * spare, then we bump the reference count in the AVL tree.  In addition, we set
853  * the 'vdev_isspare' member to indicate that the device is a spare (active or
854  * inactive).  When a spare is made active (used to replace a device in the
855  * pool), we also keep track of which pool its been made a part of.
856  *
857  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
858  * called under the spa_namespace lock as part of vdev reconfiguration.  The
859  * separate spare lock exists for the status query path, which does not need to
860  * be completely consistent with respect to other vdev configuration changes.
861  */
862 
863 static int
864 spa_spare_compare(const void *a, const void *b)
865 {
866 	return (spa_aux_compare(a, b));
867 }
868 
869 void
870 spa_spare_add(vdev_t *vd)
871 {
872 	mutex_enter(&spa_spare_lock);
873 	ASSERT(!vd->vdev_isspare);
874 	spa_aux_add(vd, &spa_spare_avl);
875 	vd->vdev_isspare = B_TRUE;
876 	mutex_exit(&spa_spare_lock);
877 }
878 
879 void
880 spa_spare_remove(vdev_t *vd)
881 {
882 	mutex_enter(&spa_spare_lock);
883 	ASSERT(vd->vdev_isspare);
884 	spa_aux_remove(vd, &spa_spare_avl);
885 	vd->vdev_isspare = B_FALSE;
886 	mutex_exit(&spa_spare_lock);
887 }
888 
889 boolean_t
890 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
891 {
892 	boolean_t found;
893 
894 	mutex_enter(&spa_spare_lock);
895 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
896 	mutex_exit(&spa_spare_lock);
897 
898 	return (found);
899 }
900 
901 void
902 spa_spare_activate(vdev_t *vd)
903 {
904 	mutex_enter(&spa_spare_lock);
905 	ASSERT(vd->vdev_isspare);
906 	spa_aux_activate(vd, &spa_spare_avl);
907 	mutex_exit(&spa_spare_lock);
908 }
909 
910 /*
911  * Level 2 ARC devices are tracked globally for the same reasons as spares.
912  * Cache devices currently only support one pool per cache device, and so
913  * for these devices the aux reference count is currently unused beyond 1.
914  */
915 
916 static int
917 spa_l2cache_compare(const void *a, const void *b)
918 {
919 	return (spa_aux_compare(a, b));
920 }
921 
922 void
923 spa_l2cache_add(vdev_t *vd)
924 {
925 	mutex_enter(&spa_l2cache_lock);
926 	ASSERT(!vd->vdev_isl2cache);
927 	spa_aux_add(vd, &spa_l2cache_avl);
928 	vd->vdev_isl2cache = B_TRUE;
929 	mutex_exit(&spa_l2cache_lock);
930 }
931 
932 void
933 spa_l2cache_remove(vdev_t *vd)
934 {
935 	mutex_enter(&spa_l2cache_lock);
936 	ASSERT(vd->vdev_isl2cache);
937 	spa_aux_remove(vd, &spa_l2cache_avl);
938 	vd->vdev_isl2cache = B_FALSE;
939 	mutex_exit(&spa_l2cache_lock);
940 }
941 
942 boolean_t
943 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
944 {
945 	boolean_t found;
946 
947 	mutex_enter(&spa_l2cache_lock);
948 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
949 	mutex_exit(&spa_l2cache_lock);
950 
951 	return (found);
952 }
953 
954 void
955 spa_l2cache_activate(vdev_t *vd)
956 {
957 	mutex_enter(&spa_l2cache_lock);
958 	ASSERT(vd->vdev_isl2cache);
959 	spa_aux_activate(vd, &spa_l2cache_avl);
960 	mutex_exit(&spa_l2cache_lock);
961 }
962 
963 /*
964  * ==========================================================================
965  * SPA vdev locking
966  * ==========================================================================
967  */
968 
969 /*
970  * Lock the given spa_t for the purpose of adding or removing a vdev.
971  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
972  * It returns the next transaction group for the spa_t.
973  */
974 uint64_t
975 spa_vdev_enter(spa_t *spa)
976 {
977 	mutex_enter(&spa->spa_vdev_top_lock);
978 	mutex_enter(&spa_namespace_lock);
979 	return (spa_vdev_config_enter(spa));
980 }
981 
982 /*
983  * Internal implementation for spa_vdev_enter().  Used when a vdev
984  * operation requires multiple syncs (i.e. removing a device) while
985  * keeping the spa_namespace_lock held.
986  */
987 uint64_t
988 spa_vdev_config_enter(spa_t *spa)
989 {
990 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
991 
992 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
993 
994 	return (spa_last_synced_txg(spa) + 1);
995 }
996 
997 /*
998  * Used in combination with spa_vdev_config_enter() to allow the syncing
999  * of multiple transactions without releasing the spa_namespace_lock.
1000  */
1001 void
1002 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1003 {
1004 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1005 
1006 	int config_changed = B_FALSE;
1007 
1008 	ASSERT(txg > spa_last_synced_txg(spa));
1009 
1010 	spa->spa_pending_vdev = NULL;
1011 
1012 	/*
1013 	 * Reassess the DTLs.
1014 	 */
1015 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1016 
1017 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1018 		config_changed = B_TRUE;
1019 		spa->spa_config_generation++;
1020 	}
1021 
1022 	/*
1023 	 * Verify the metaslab classes.
1024 	 */
1025 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1026 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1027 
1028 	spa_config_exit(spa, SCL_ALL, spa);
1029 
1030 	/*
1031 	 * Panic the system if the specified tag requires it.  This
1032 	 * is useful for ensuring that configurations are updated
1033 	 * transactionally.
1034 	 */
1035 	if (zio_injection_enabled)
1036 		zio_handle_panic_injection(spa, tag, 0);
1037 
1038 	/*
1039 	 * Note: this txg_wait_synced() is important because it ensures
1040 	 * that there won't be more than one config change per txg.
1041 	 * This allows us to use the txg as the generation number.
1042 	 */
1043 	if (error == 0)
1044 		txg_wait_synced(spa->spa_dsl_pool, txg);
1045 
1046 	if (vd != NULL) {
1047 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1048 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1049 		vdev_free(vd);
1050 		spa_config_exit(spa, SCL_ALL, spa);
1051 	}
1052 
1053 	/*
1054 	 * If the config changed, update the config cache.
1055 	 */
1056 	if (config_changed)
1057 		spa_config_sync(spa, B_FALSE, B_TRUE);
1058 }
1059 
1060 /*
1061  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1062  * locking of spa_vdev_enter(), we also want make sure the transactions have
1063  * synced to disk, and then update the global configuration cache with the new
1064  * information.
1065  */
1066 int
1067 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1068 {
1069 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1070 	mutex_exit(&spa_namespace_lock);
1071 	mutex_exit(&spa->spa_vdev_top_lock);
1072 
1073 	return (error);
1074 }
1075 
1076 /*
1077  * Lock the given spa_t for the purpose of changing vdev state.
1078  */
1079 void
1080 spa_vdev_state_enter(spa_t *spa, int oplocks)
1081 {
1082 	int locks = SCL_STATE_ALL | oplocks;
1083 
1084 	/*
1085 	 * Root pools may need to read of the underlying devfs filesystem
1086 	 * when opening up a vdev.  Unfortunately if we're holding the
1087 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1088 	 * the read from the root filesystem.  Instead we "prefetch"
1089 	 * the associated vnodes that we need prior to opening the
1090 	 * underlying devices and cache them so that we can prevent
1091 	 * any I/O when we are doing the actual open.
1092 	 */
1093 	if (spa_is_root(spa)) {
1094 		int low = locks & ~(SCL_ZIO - 1);
1095 		int high = locks & ~low;
1096 
1097 		spa_config_enter(spa, high, spa, RW_WRITER);
1098 		vdev_hold(spa->spa_root_vdev);
1099 		spa_config_enter(spa, low, spa, RW_WRITER);
1100 	} else {
1101 		spa_config_enter(spa, locks, spa, RW_WRITER);
1102 	}
1103 	spa->spa_vdev_locks = locks;
1104 }
1105 
1106 int
1107 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1108 {
1109 	boolean_t config_changed = B_FALSE;
1110 
1111 	if (vd != NULL || error == 0)
1112 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1113 		    0, 0, B_FALSE);
1114 
1115 	if (vd != NULL) {
1116 		vdev_state_dirty(vd->vdev_top);
1117 		config_changed = B_TRUE;
1118 		spa->spa_config_generation++;
1119 	}
1120 
1121 	if (spa_is_root(spa))
1122 		vdev_rele(spa->spa_root_vdev);
1123 
1124 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1125 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1126 
1127 	/*
1128 	 * If anything changed, wait for it to sync.  This ensures that,
1129 	 * from the system administrator's perspective, zpool(1M) commands
1130 	 * are synchronous.  This is important for things like zpool offline:
1131 	 * when the command completes, you expect no further I/O from ZFS.
1132 	 */
1133 	if (vd != NULL)
1134 		txg_wait_synced(spa->spa_dsl_pool, 0);
1135 
1136 	/*
1137 	 * If the config changed, update the config cache.
1138 	 */
1139 	if (config_changed) {
1140 		mutex_enter(&spa_namespace_lock);
1141 		spa_config_sync(spa, B_FALSE, B_TRUE);
1142 		mutex_exit(&spa_namespace_lock);
1143 	}
1144 
1145 	return (error);
1146 }
1147 
1148 /*
1149  * ==========================================================================
1150  * Miscellaneous functions
1151  * ==========================================================================
1152  */
1153 
1154 void
1155 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1156 {
1157 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1158 		fnvlist_add_boolean(spa->spa_label_features, feature);
1159 		/*
1160 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1161 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1162 		 * Thankfully, in this case we don't need to dirty the config
1163 		 * because it will be written out anyway when we finish
1164 		 * creating the pool.
1165 		 */
1166 		if (tx->tx_txg != TXG_INITIAL)
1167 			vdev_config_dirty(spa->spa_root_vdev);
1168 	}
1169 }
1170 
1171 void
1172 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1173 {
1174 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1175 		vdev_config_dirty(spa->spa_root_vdev);
1176 }
1177 
1178 /*
1179  * Rename a spa_t.
1180  */
1181 int
1182 spa_rename(const char *name, const char *newname)
1183 {
1184 	spa_t *spa;
1185 	int err;
1186 
1187 	/*
1188 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1189 	 * actually open the pool so that we can sync out the necessary labels.
1190 	 * It's OK to call spa_open() with the namespace lock held because we
1191 	 * allow recursive calls for other reasons.
1192 	 */
1193 	mutex_enter(&spa_namespace_lock);
1194 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1195 		mutex_exit(&spa_namespace_lock);
1196 		return (err);
1197 	}
1198 
1199 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1200 
1201 	avl_remove(&spa_namespace_avl, spa);
1202 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1203 	avl_add(&spa_namespace_avl, spa);
1204 
1205 	/*
1206 	 * Sync all labels to disk with the new names by marking the root vdev
1207 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1208 	 * during the sync.
1209 	 */
1210 	vdev_config_dirty(spa->spa_root_vdev);
1211 
1212 	spa_config_exit(spa, SCL_ALL, FTAG);
1213 
1214 	txg_wait_synced(spa->spa_dsl_pool, 0);
1215 
1216 	/*
1217 	 * Sync the updated config cache.
1218 	 */
1219 	spa_config_sync(spa, B_FALSE, B_TRUE);
1220 
1221 	spa_close(spa, FTAG);
1222 
1223 	mutex_exit(&spa_namespace_lock);
1224 
1225 	return (0);
1226 }
1227 
1228 /*
1229  * Return the spa_t associated with given pool_guid, if it exists.  If
1230  * device_guid is non-zero, determine whether the pool exists *and* contains
1231  * a device with the specified device_guid.
1232  */
1233 spa_t *
1234 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1235 {
1236 	spa_t *spa;
1237 	avl_tree_t *t = &spa_namespace_avl;
1238 
1239 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1240 
1241 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1242 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1243 			continue;
1244 		if (spa->spa_root_vdev == NULL)
1245 			continue;
1246 		if (spa_guid(spa) == pool_guid) {
1247 			if (device_guid == 0)
1248 				break;
1249 
1250 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1251 			    device_guid) != NULL)
1252 				break;
1253 
1254 			/*
1255 			 * Check any devices we may be in the process of adding.
1256 			 */
1257 			if (spa->spa_pending_vdev) {
1258 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1259 				    device_guid) != NULL)
1260 					break;
1261 			}
1262 		}
1263 	}
1264 
1265 	return (spa);
1266 }
1267 
1268 /*
1269  * Determine whether a pool with the given pool_guid exists.
1270  */
1271 boolean_t
1272 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1273 {
1274 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1275 }
1276 
1277 char *
1278 spa_strdup(const char *s)
1279 {
1280 	size_t len;
1281 	char *new;
1282 
1283 	len = strlen(s);
1284 	new = kmem_alloc(len + 1, KM_SLEEP);
1285 	bcopy(s, new, len);
1286 	new[len] = '\0';
1287 
1288 	return (new);
1289 }
1290 
1291 void
1292 spa_strfree(char *s)
1293 {
1294 	kmem_free(s, strlen(s) + 1);
1295 }
1296 
1297 uint64_t
1298 spa_get_random(uint64_t range)
1299 {
1300 	uint64_t r;
1301 
1302 	ASSERT(range != 0);
1303 
1304 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1305 
1306 	return (r % range);
1307 }
1308 
1309 uint64_t
1310 spa_generate_guid(spa_t *spa)
1311 {
1312 	uint64_t guid = spa_get_random(-1ULL);
1313 
1314 	if (spa != NULL) {
1315 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1316 			guid = spa_get_random(-1ULL);
1317 	} else {
1318 		while (guid == 0 || spa_guid_exists(guid, 0))
1319 			guid = spa_get_random(-1ULL);
1320 	}
1321 
1322 	return (guid);
1323 }
1324 
1325 void
1326 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1327 {
1328 	char type[256];
1329 	char *checksum = NULL;
1330 	char *compress = NULL;
1331 
1332 	if (bp != NULL) {
1333 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1334 			dmu_object_byteswap_t bswap =
1335 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1336 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1337 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1338 			    "metadata" : "data",
1339 			    dmu_ot_byteswap[bswap].ob_name);
1340 		} else {
1341 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1342 			    sizeof (type));
1343 		}
1344 		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1345 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1346 	}
1347 
1348 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1349 	    compress);
1350 }
1351 
1352 void
1353 spa_freeze(spa_t *spa)
1354 {
1355 	uint64_t freeze_txg = 0;
1356 
1357 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1358 	if (spa->spa_freeze_txg == UINT64_MAX) {
1359 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1360 		spa->spa_freeze_txg = freeze_txg;
1361 	}
1362 	spa_config_exit(spa, SCL_ALL, FTAG);
1363 	if (freeze_txg != 0)
1364 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1365 }
1366 
1367 void
1368 zfs_panic_recover(const char *fmt, ...)
1369 {
1370 	va_list adx;
1371 
1372 	va_start(adx, fmt);
1373 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1374 	va_end(adx);
1375 }
1376 
1377 /*
1378  * This is a stripped-down version of strtoull, suitable only for converting
1379  * lowercase hexadecimal numbers that don't overflow.
1380  */
1381 uint64_t
1382 strtonum(const char *str, char **nptr)
1383 {
1384 	uint64_t val = 0;
1385 	char c;
1386 	int digit;
1387 
1388 	while ((c = *str) != '\0') {
1389 		if (c >= '0' && c <= '9')
1390 			digit = c - '0';
1391 		else if (c >= 'a' && c <= 'f')
1392 			digit = 10 + c - 'a';
1393 		else
1394 			break;
1395 
1396 		val *= 16;
1397 		val += digit;
1398 
1399 		str++;
1400 	}
1401 
1402 	if (nptr)
1403 		*nptr = (char *)str;
1404 
1405 	return (val);
1406 }
1407 
1408 /*
1409  * ==========================================================================
1410  * Accessor functions
1411  * ==========================================================================
1412  */
1413 
1414 boolean_t
1415 spa_shutting_down(spa_t *spa)
1416 {
1417 	return (spa->spa_async_suspended);
1418 }
1419 
1420 dsl_pool_t *
1421 spa_get_dsl(spa_t *spa)
1422 {
1423 	return (spa->spa_dsl_pool);
1424 }
1425 
1426 boolean_t
1427 spa_is_initializing(spa_t *spa)
1428 {
1429 	return (spa->spa_is_initializing);
1430 }
1431 
1432 blkptr_t *
1433 spa_get_rootblkptr(spa_t *spa)
1434 {
1435 	return (&spa->spa_ubsync.ub_rootbp);
1436 }
1437 
1438 void
1439 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1440 {
1441 	spa->spa_uberblock.ub_rootbp = *bp;
1442 }
1443 
1444 void
1445 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1446 {
1447 	if (spa->spa_root == NULL)
1448 		buf[0] = '\0';
1449 	else
1450 		(void) strncpy(buf, spa->spa_root, buflen);
1451 }
1452 
1453 int
1454 spa_sync_pass(spa_t *spa)
1455 {
1456 	return (spa->spa_sync_pass);
1457 }
1458 
1459 char *
1460 spa_name(spa_t *spa)
1461 {
1462 	return (spa->spa_name);
1463 }
1464 
1465 uint64_t
1466 spa_guid(spa_t *spa)
1467 {
1468 	dsl_pool_t *dp = spa_get_dsl(spa);
1469 	uint64_t guid;
1470 
1471 	/*
1472 	 * If we fail to parse the config during spa_load(), we can go through
1473 	 * the error path (which posts an ereport) and end up here with no root
1474 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1475 	 * this case.
1476 	 */
1477 	if (spa->spa_root_vdev == NULL)
1478 		return (spa->spa_config_guid);
1479 
1480 	guid = spa->spa_last_synced_guid != 0 ?
1481 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1482 
1483 	/*
1484 	 * Return the most recently synced out guid unless we're
1485 	 * in syncing context.
1486 	 */
1487 	if (dp && dsl_pool_sync_context(dp))
1488 		return (spa->spa_root_vdev->vdev_guid);
1489 	else
1490 		return (guid);
1491 }
1492 
1493 uint64_t
1494 spa_load_guid(spa_t *spa)
1495 {
1496 	/*
1497 	 * This is a GUID that exists solely as a reference for the
1498 	 * purposes of the arc.  It is generated at load time, and
1499 	 * is never written to persistent storage.
1500 	 */
1501 	return (spa->spa_load_guid);
1502 }
1503 
1504 uint64_t
1505 spa_last_synced_txg(spa_t *spa)
1506 {
1507 	return (spa->spa_ubsync.ub_txg);
1508 }
1509 
1510 uint64_t
1511 spa_first_txg(spa_t *spa)
1512 {
1513 	return (spa->spa_first_txg);
1514 }
1515 
1516 uint64_t
1517 spa_syncing_txg(spa_t *spa)
1518 {
1519 	return (spa->spa_syncing_txg);
1520 }
1521 
1522 pool_state_t
1523 spa_state(spa_t *spa)
1524 {
1525 	return (spa->spa_state);
1526 }
1527 
1528 spa_load_state_t
1529 spa_load_state(spa_t *spa)
1530 {
1531 	return (spa->spa_load_state);
1532 }
1533 
1534 uint64_t
1535 spa_freeze_txg(spa_t *spa)
1536 {
1537 	return (spa->spa_freeze_txg);
1538 }
1539 
1540 /* ARGSUSED */
1541 uint64_t
1542 spa_get_asize(spa_t *spa, uint64_t lsize)
1543 {
1544 	return (lsize * spa_asize_inflation);
1545 }
1546 
1547 uint64_t
1548 spa_get_dspace(spa_t *spa)
1549 {
1550 	return (spa->spa_dspace);
1551 }
1552 
1553 void
1554 spa_update_dspace(spa_t *spa)
1555 {
1556 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1557 	    ddt_get_dedup_dspace(spa);
1558 }
1559 
1560 /*
1561  * Return the failure mode that has been set to this pool. The default
1562  * behavior will be to block all I/Os when a complete failure occurs.
1563  */
1564 uint8_t
1565 spa_get_failmode(spa_t *spa)
1566 {
1567 	return (spa->spa_failmode);
1568 }
1569 
1570 boolean_t
1571 spa_suspended(spa_t *spa)
1572 {
1573 	return (spa->spa_suspended);
1574 }
1575 
1576 uint64_t
1577 spa_version(spa_t *spa)
1578 {
1579 	return (spa->spa_ubsync.ub_version);
1580 }
1581 
1582 boolean_t
1583 spa_deflate(spa_t *spa)
1584 {
1585 	return (spa->spa_deflate);
1586 }
1587 
1588 metaslab_class_t *
1589 spa_normal_class(spa_t *spa)
1590 {
1591 	return (spa->spa_normal_class);
1592 }
1593 
1594 metaslab_class_t *
1595 spa_log_class(spa_t *spa)
1596 {
1597 	return (spa->spa_log_class);
1598 }
1599 
1600 int
1601 spa_max_replication(spa_t *spa)
1602 {
1603 	/*
1604 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1605 	 * handle BPs with more than one DVA allocated.  Set our max
1606 	 * replication level accordingly.
1607 	 */
1608 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1609 		return (1);
1610 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1611 }
1612 
1613 int
1614 spa_prev_software_version(spa_t *spa)
1615 {
1616 	return (spa->spa_prev_software_version);
1617 }
1618 
1619 uint64_t
1620 spa_deadman_synctime(spa_t *spa)
1621 {
1622 	return (spa->spa_deadman_synctime);
1623 }
1624 
1625 uint64_t
1626 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1627 {
1628 	uint64_t asize = DVA_GET_ASIZE(dva);
1629 	uint64_t dsize = asize;
1630 
1631 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1632 
1633 	if (asize != 0 && spa->spa_deflate) {
1634 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1635 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1636 	}
1637 
1638 	return (dsize);
1639 }
1640 
1641 uint64_t
1642 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1643 {
1644 	uint64_t dsize = 0;
1645 
1646 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1647 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1648 
1649 	return (dsize);
1650 }
1651 
1652 uint64_t
1653 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1654 {
1655 	uint64_t dsize = 0;
1656 
1657 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1658 
1659 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1660 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1661 
1662 	spa_config_exit(spa, SCL_VDEV, FTAG);
1663 
1664 	return (dsize);
1665 }
1666 
1667 /*
1668  * ==========================================================================
1669  * Initialization and Termination
1670  * ==========================================================================
1671  */
1672 
1673 static int
1674 spa_name_compare(const void *a1, const void *a2)
1675 {
1676 	const spa_t *s1 = a1;
1677 	const spa_t *s2 = a2;
1678 	int s;
1679 
1680 	s = strcmp(s1->spa_name, s2->spa_name);
1681 	if (s > 0)
1682 		return (1);
1683 	if (s < 0)
1684 		return (-1);
1685 	return (0);
1686 }
1687 
1688 int
1689 spa_busy(void)
1690 {
1691 	return (spa_active_count);
1692 }
1693 
1694 void
1695 spa_boot_init()
1696 {
1697 	spa_config_load();
1698 }
1699 
1700 void
1701 spa_init(int mode)
1702 {
1703 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1704 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1705 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1706 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1707 
1708 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1709 	    offsetof(spa_t, spa_avl));
1710 
1711 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1712 	    offsetof(spa_aux_t, aux_avl));
1713 
1714 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1715 	    offsetof(spa_aux_t, aux_avl));
1716 
1717 	spa_mode_global = mode;
1718 
1719 #ifdef _KERNEL
1720 	spa_arch_init();
1721 #else
1722 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1723 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1724 		if (arc_procfd == -1) {
1725 			perror("could not enable watchpoints: "
1726 			    "opening /proc/self/ctl failed: ");
1727 		} else {
1728 			arc_watch = B_TRUE;
1729 		}
1730 	}
1731 #endif
1732 
1733 	refcount_init();
1734 	unique_init();
1735 	range_tree_init();
1736 	zio_init();
1737 	dmu_init();
1738 	zil_init();
1739 	vdev_cache_stat_init();
1740 	zfs_prop_init();
1741 	zpool_prop_init();
1742 	zpool_feature_init();
1743 	spa_config_load();
1744 	l2arc_start();
1745 }
1746 
1747 void
1748 spa_fini(void)
1749 {
1750 	l2arc_stop();
1751 
1752 	spa_evict_all();
1753 
1754 	vdev_cache_stat_fini();
1755 	zil_fini();
1756 	dmu_fini();
1757 	zio_fini();
1758 	range_tree_fini();
1759 	unique_fini();
1760 	refcount_fini();
1761 
1762 	avl_destroy(&spa_namespace_avl);
1763 	avl_destroy(&spa_spare_avl);
1764 	avl_destroy(&spa_l2cache_avl);
1765 
1766 	cv_destroy(&spa_namespace_cv);
1767 	mutex_destroy(&spa_namespace_lock);
1768 	mutex_destroy(&spa_spare_lock);
1769 	mutex_destroy(&spa_l2cache_lock);
1770 }
1771 
1772 /*
1773  * Return whether this pool has slogs. No locking needed.
1774  * It's not a problem if the wrong answer is returned as it's only for
1775  * performance and not correctness
1776  */
1777 boolean_t
1778 spa_has_slogs(spa_t *spa)
1779 {
1780 	return (spa->spa_log_class->mc_rotor != NULL);
1781 }
1782 
1783 spa_log_state_t
1784 spa_get_log_state(spa_t *spa)
1785 {
1786 	return (spa->spa_log_state);
1787 }
1788 
1789 void
1790 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1791 {
1792 	spa->spa_log_state = state;
1793 }
1794 
1795 boolean_t
1796 spa_is_root(spa_t *spa)
1797 {
1798 	return (spa->spa_is_root);
1799 }
1800 
1801 boolean_t
1802 spa_writeable(spa_t *spa)
1803 {
1804 	return (!!(spa->spa_mode & FWRITE));
1805 }
1806 
1807 int
1808 spa_mode(spa_t *spa)
1809 {
1810 	return (spa->spa_mode);
1811 }
1812 
1813 uint64_t
1814 spa_bootfs(spa_t *spa)
1815 {
1816 	return (spa->spa_bootfs);
1817 }
1818 
1819 uint64_t
1820 spa_delegation(spa_t *spa)
1821 {
1822 	return (spa->spa_delegation);
1823 }
1824 
1825 objset_t *
1826 spa_meta_objset(spa_t *spa)
1827 {
1828 	return (spa->spa_meta_objset);
1829 }
1830 
1831 enum zio_checksum
1832 spa_dedup_checksum(spa_t *spa)
1833 {
1834 	return (spa->spa_dedup_checksum);
1835 }
1836 
1837 /*
1838  * Reset pool scan stat per scan pass (or reboot).
1839  */
1840 void
1841 spa_scan_stat_init(spa_t *spa)
1842 {
1843 	/* data not stored on disk */
1844 	spa->spa_scan_pass_start = gethrestime_sec();
1845 	spa->spa_scan_pass_exam = 0;
1846 	vdev_scan_stat_init(spa->spa_root_vdev);
1847 }
1848 
1849 /*
1850  * Get scan stats for zpool status reports
1851  */
1852 int
1853 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1854 {
1855 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1856 
1857 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1858 		return (SET_ERROR(ENOENT));
1859 	bzero(ps, sizeof (pool_scan_stat_t));
1860 
1861 	/* data stored on disk */
1862 	ps->pss_func = scn->scn_phys.scn_func;
1863 	ps->pss_start_time = scn->scn_phys.scn_start_time;
1864 	ps->pss_end_time = scn->scn_phys.scn_end_time;
1865 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1866 	ps->pss_examined = scn->scn_phys.scn_examined;
1867 	ps->pss_to_process = scn->scn_phys.scn_to_process;
1868 	ps->pss_processed = scn->scn_phys.scn_processed;
1869 	ps->pss_errors = scn->scn_phys.scn_errors;
1870 	ps->pss_state = scn->scn_phys.scn_state;
1871 
1872 	/* data not stored on disk */
1873 	ps->pss_pass_start = spa->spa_scan_pass_start;
1874 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1875 
1876 	return (0);
1877 }
1878 
1879 boolean_t
1880 spa_debug_enabled(spa_t *spa)
1881 {
1882 	return (spa->spa_debug);
1883 }
1884