xref: /titanic_41/usr/src/uts/common/fs/zfs/spa_misc.c (revision 6319b0c72e1681f79a5f33dfa976a63eedd4a2a4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_scan.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/arc.h>
48 #include <sys/ddt.h>
49 #include "zfs_prop.h"
50 
51 /*
52  * SPA locking
53  *
54  * There are four basic locks for managing spa_t structures:
55  *
56  * spa_namespace_lock (global mutex)
57  *
58  *	This lock must be acquired to do any of the following:
59  *
60  *		- Lookup a spa_t by name
61  *		- Add or remove a spa_t from the namespace
62  *		- Increase spa_refcount from non-zero
63  *		- Check if spa_refcount is zero
64  *		- Rename a spa_t
65  *		- add/remove/attach/detach devices
66  *		- Held for the duration of create/destroy/import/export
67  *
68  *	It does not need to handle recursion.  A create or destroy may
69  *	reference objects (files or zvols) in other pools, but by
70  *	definition they must have an existing reference, and will never need
71  *	to lookup a spa_t by name.
72  *
73  * spa_refcount (per-spa refcount_t protected by mutex)
74  *
75  *	This reference count keep track of any active users of the spa_t.  The
76  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
77  *	the refcount is never really 'zero' - opening a pool implicitly keeps
78  *	some references in the DMU.  Internally we check against spa_minref, but
79  *	present the image of a zero/non-zero value to consumers.
80  *
81  * spa_config_lock[] (per-spa array of rwlocks)
82  *
83  *	This protects the spa_t from config changes, and must be held in
84  *	the following circumstances:
85  *
86  *		- RW_READER to perform I/O to the spa
87  *		- RW_WRITER to change the vdev config
88  *
89  * The locking order is fairly straightforward:
90  *
91  *		spa_namespace_lock	->	spa_refcount
92  *
93  *	The namespace lock must be acquired to increase the refcount from 0
94  *	or to check if it is zero.
95  *
96  *		spa_refcount		->	spa_config_lock[]
97  *
98  *	There must be at least one valid reference on the spa_t to acquire
99  *	the config lock.
100  *
101  *		spa_namespace_lock	->	spa_config_lock[]
102  *
103  *	The namespace lock must always be taken before the config lock.
104  *
105  *
106  * The spa_namespace_lock can be acquired directly and is globally visible.
107  *
108  * The namespace is manipulated using the following functions, all of which
109  * require the spa_namespace_lock to be held.
110  *
111  *	spa_lookup()		Lookup a spa_t by name.
112  *
113  *	spa_add()		Create a new spa_t in the namespace.
114  *
115  *	spa_remove()		Remove a spa_t from the namespace.  This also
116  *				frees up any memory associated with the spa_t.
117  *
118  *	spa_next()		Returns the next spa_t in the system, or the
119  *				first if NULL is passed.
120  *
121  *	spa_evict_all()		Shutdown and remove all spa_t structures in
122  *				the system.
123  *
124  *	spa_guid_exists()	Determine whether a pool/device guid exists.
125  *
126  * The spa_refcount is manipulated using the following functions:
127  *
128  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
129  *				called with spa_namespace_lock held if the
130  *				refcount is currently zero.
131  *
132  *	spa_close()		Remove a reference from the spa_t.  This will
133  *				not free the spa_t or remove it from the
134  *				namespace.  No locking is required.
135  *
136  *	spa_refcount_zero()	Returns true if the refcount is currently
137  *				zero.  Must be called with spa_namespace_lock
138  *				held.
139  *
140  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
141  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
142  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
143  *
144  * To read the configuration, it suffices to hold one of these locks as reader.
145  * To modify the configuration, you must hold all locks as writer.  To modify
146  * vdev state without altering the vdev tree's topology (e.g. online/offline),
147  * you must hold SCL_STATE and SCL_ZIO as writer.
148  *
149  * We use these distinct config locks to avoid recursive lock entry.
150  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
151  * block allocations (SCL_ALLOC), which may require reading space maps
152  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
153  *
154  * The spa config locks cannot be normal rwlocks because we need the
155  * ability to hand off ownership.  For example, SCL_ZIO is acquired
156  * by the issuing thread and later released by an interrupt thread.
157  * They do, however, obey the usual write-wanted semantics to prevent
158  * writer (i.e. system administrator) starvation.
159  *
160  * The lock acquisition rules are as follows:
161  *
162  * SCL_CONFIG
163  *	Protects changes to the vdev tree topology, such as vdev
164  *	add/remove/attach/detach.  Protects the dirty config list
165  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
166  *
167  * SCL_STATE
168  *	Protects changes to pool state and vdev state, such as vdev
169  *	online/offline/fault/degrade/clear.  Protects the dirty state list
170  *	(spa_state_dirty_list) and global pool state (spa_state).
171  *
172  * SCL_ALLOC
173  *	Protects changes to metaslab groups and classes.
174  *	Held as reader by metaslab_alloc() and metaslab_claim().
175  *
176  * SCL_ZIO
177  *	Held by bp-level zios (those which have no io_vd upon entry)
178  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
179  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
180  *
181  * SCL_FREE
182  *	Protects changes to metaslab groups and classes.
183  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
184  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
185  *	blocks in zio_done() while another i/o that holds either
186  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
187  *
188  * SCL_VDEV
189  *	Held as reader to prevent changes to the vdev tree during trivial
190  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
191  *	other locks, and lower than all of them, to ensure that it's safe
192  *	to acquire regardless of caller context.
193  *
194  * In addition, the following rules apply:
195  *
196  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
197  *	The lock ordering is SCL_CONFIG > spa_props_lock.
198  *
199  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
200  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
201  *	or zio_write_phys() -- the caller must ensure that the config cannot
202  *	cannot change in the interim, and that the vdev cannot be reopened.
203  *	SCL_STATE as reader suffices for both.
204  *
205  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
206  *
207  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
208  *				for writing.
209  *
210  *	spa_vdev_exit()		Release the config lock, wait for all I/O
211  *				to complete, sync the updated configs to the
212  *				cache, and release the namespace lock.
213  *
214  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
215  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
216  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
217  *
218  * spa_rename() is also implemented within this file since is requires
219  * manipulation of the namespace.
220  */
221 
222 static avl_tree_t spa_namespace_avl;
223 kmutex_t spa_namespace_lock;
224 static kcondvar_t spa_namespace_cv;
225 static int spa_active_count;
226 int spa_max_replication_override = SPA_DVAS_PER_BP;
227 
228 static kmutex_t spa_spare_lock;
229 static avl_tree_t spa_spare_avl;
230 static kmutex_t spa_l2cache_lock;
231 static avl_tree_t spa_l2cache_avl;
232 
233 kmem_cache_t *spa_buffer_pool;
234 int spa_mode_global;
235 
236 #ifdef ZFS_DEBUG
237 /* Everything except dprintf is on by default in debug builds */
238 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
239 #else
240 int zfs_flags = 0;
241 #endif
242 
243 /*
244  * zfs_recover can be set to nonzero to attempt to recover from
245  * otherwise-fatal errors, typically caused by on-disk corruption.  When
246  * set, calls to zfs_panic_recover() will turn into warning messages.
247  */
248 int zfs_recover = 0;
249 
250 
251 /*
252  * ==========================================================================
253  * SPA config locking
254  * ==========================================================================
255  */
256 static void
257 spa_config_lock_init(spa_t *spa)
258 {
259 	for (int i = 0; i < SCL_LOCKS; i++) {
260 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
261 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
262 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
263 		refcount_create(&scl->scl_count);
264 		scl->scl_writer = NULL;
265 		scl->scl_write_wanted = 0;
266 	}
267 }
268 
269 static void
270 spa_config_lock_destroy(spa_t *spa)
271 {
272 	for (int i = 0; i < SCL_LOCKS; i++) {
273 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
274 		mutex_destroy(&scl->scl_lock);
275 		cv_destroy(&scl->scl_cv);
276 		refcount_destroy(&scl->scl_count);
277 		ASSERT(scl->scl_writer == NULL);
278 		ASSERT(scl->scl_write_wanted == 0);
279 	}
280 }
281 
282 int
283 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
284 {
285 	for (int i = 0; i < SCL_LOCKS; i++) {
286 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
287 		if (!(locks & (1 << i)))
288 			continue;
289 		mutex_enter(&scl->scl_lock);
290 		if (rw == RW_READER) {
291 			if (scl->scl_writer || scl->scl_write_wanted) {
292 				mutex_exit(&scl->scl_lock);
293 				spa_config_exit(spa, locks ^ (1 << i), tag);
294 				return (0);
295 			}
296 		} else {
297 			ASSERT(scl->scl_writer != curthread);
298 			if (!refcount_is_zero(&scl->scl_count)) {
299 				mutex_exit(&scl->scl_lock);
300 				spa_config_exit(spa, locks ^ (1 << i), tag);
301 				return (0);
302 			}
303 			scl->scl_writer = curthread;
304 		}
305 		(void) refcount_add(&scl->scl_count, tag);
306 		mutex_exit(&scl->scl_lock);
307 	}
308 	return (1);
309 }
310 
311 void
312 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
313 {
314 	int wlocks_held = 0;
315 
316 	for (int i = 0; i < SCL_LOCKS; i++) {
317 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
318 		if (scl->scl_writer == curthread)
319 			wlocks_held |= (1 << i);
320 		if (!(locks & (1 << i)))
321 			continue;
322 		mutex_enter(&scl->scl_lock);
323 		if (rw == RW_READER) {
324 			while (scl->scl_writer || scl->scl_write_wanted) {
325 				cv_wait(&scl->scl_cv, &scl->scl_lock);
326 			}
327 		} else {
328 			ASSERT(scl->scl_writer != curthread);
329 			while (!refcount_is_zero(&scl->scl_count)) {
330 				scl->scl_write_wanted++;
331 				cv_wait(&scl->scl_cv, &scl->scl_lock);
332 				scl->scl_write_wanted--;
333 			}
334 			scl->scl_writer = curthread;
335 		}
336 		(void) refcount_add(&scl->scl_count, tag);
337 		mutex_exit(&scl->scl_lock);
338 	}
339 	ASSERT(wlocks_held <= locks);
340 }
341 
342 void
343 spa_config_exit(spa_t *spa, int locks, void *tag)
344 {
345 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
346 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
347 		if (!(locks & (1 << i)))
348 			continue;
349 		mutex_enter(&scl->scl_lock);
350 		ASSERT(!refcount_is_zero(&scl->scl_count));
351 		if (refcount_remove(&scl->scl_count, tag) == 0) {
352 			ASSERT(scl->scl_writer == NULL ||
353 			    scl->scl_writer == curthread);
354 			scl->scl_writer = NULL;	/* OK in either case */
355 			cv_broadcast(&scl->scl_cv);
356 		}
357 		mutex_exit(&scl->scl_lock);
358 	}
359 }
360 
361 int
362 spa_config_held(spa_t *spa, int locks, krw_t rw)
363 {
364 	int locks_held = 0;
365 
366 	for (int i = 0; i < SCL_LOCKS; i++) {
367 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
368 		if (!(locks & (1 << i)))
369 			continue;
370 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
371 		    (rw == RW_WRITER && scl->scl_writer == curthread))
372 			locks_held |= 1 << i;
373 	}
374 
375 	return (locks_held);
376 }
377 
378 /*
379  * ==========================================================================
380  * SPA namespace functions
381  * ==========================================================================
382  */
383 
384 /*
385  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
386  * Returns NULL if no matching spa_t is found.
387  */
388 spa_t *
389 spa_lookup(const char *name)
390 {
391 	static spa_t search;	/* spa_t is large; don't allocate on stack */
392 	spa_t *spa;
393 	avl_index_t where;
394 	char c;
395 	char *cp;
396 
397 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
398 
399 	/*
400 	 * If it's a full dataset name, figure out the pool name and
401 	 * just use that.
402 	 */
403 	cp = strpbrk(name, "/@");
404 	if (cp) {
405 		c = *cp;
406 		*cp = '\0';
407 	}
408 
409 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
410 	spa = avl_find(&spa_namespace_avl, &search, &where);
411 
412 	if (cp)
413 		*cp = c;
414 
415 	return (spa);
416 }
417 
418 /*
419  * Create an uninitialized spa_t with the given name.  Requires
420  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
421  * exist by calling spa_lookup() first.
422  */
423 spa_t *
424 spa_add(const char *name, nvlist_t *config, const char *altroot)
425 {
426 	spa_t *spa;
427 	spa_config_dirent_t *dp;
428 
429 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
430 
431 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
432 
433 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
434 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
435 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
436 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
437 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
438 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
439 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
440 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
441 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
442 
443 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
444 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
445 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
446 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
447 
448 	for (int t = 0; t < TXG_SIZE; t++)
449 		bplist_create(&spa->spa_free_bplist[t]);
450 
451 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
452 	spa->spa_state = POOL_STATE_UNINITIALIZED;
453 	spa->spa_freeze_txg = UINT64_MAX;
454 	spa->spa_final_txg = UINT64_MAX;
455 	spa->spa_load_max_txg = UINT64_MAX;
456 	spa->spa_proc = &p0;
457 	spa->spa_proc_state = SPA_PROC_NONE;
458 
459 	refcount_create(&spa->spa_refcount);
460 	spa_config_lock_init(spa);
461 
462 	avl_add(&spa_namespace_avl, spa);
463 
464 	/*
465 	 * Set the alternate root, if there is one.
466 	 */
467 	if (altroot) {
468 		spa->spa_root = spa_strdup(altroot);
469 		spa_active_count++;
470 	}
471 
472 	/*
473 	 * Every pool starts with the default cachefile
474 	 */
475 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
476 	    offsetof(spa_config_dirent_t, scd_link));
477 
478 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
479 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
480 	list_insert_head(&spa->spa_config_list, dp);
481 
482 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
483 	    KM_SLEEP) == 0);
484 
485 	if (config != NULL)
486 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
487 
488 	return (spa);
489 }
490 
491 /*
492  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
493  * spa_namespace_lock.  This is called only after the spa_t has been closed and
494  * deactivated.
495  */
496 void
497 spa_remove(spa_t *spa)
498 {
499 	spa_config_dirent_t *dp;
500 
501 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
502 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
503 
504 	nvlist_free(spa->spa_config_splitting);
505 
506 	avl_remove(&spa_namespace_avl, spa);
507 	cv_broadcast(&spa_namespace_cv);
508 
509 	if (spa->spa_root) {
510 		spa_strfree(spa->spa_root);
511 		spa_active_count--;
512 	}
513 
514 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
515 		list_remove(&spa->spa_config_list, dp);
516 		if (dp->scd_path != NULL)
517 			spa_strfree(dp->scd_path);
518 		kmem_free(dp, sizeof (spa_config_dirent_t));
519 	}
520 
521 	list_destroy(&spa->spa_config_list);
522 
523 	nvlist_free(spa->spa_load_info);
524 	spa_config_set(spa, NULL);
525 
526 	refcount_destroy(&spa->spa_refcount);
527 
528 	spa_config_lock_destroy(spa);
529 
530 	for (int t = 0; t < TXG_SIZE; t++)
531 		bplist_destroy(&spa->spa_free_bplist[t]);
532 
533 	cv_destroy(&spa->spa_async_cv);
534 	cv_destroy(&spa->spa_proc_cv);
535 	cv_destroy(&spa->spa_scrub_io_cv);
536 	cv_destroy(&spa->spa_suspend_cv);
537 
538 	mutex_destroy(&spa->spa_async_lock);
539 	mutex_destroy(&spa->spa_errlist_lock);
540 	mutex_destroy(&spa->spa_errlog_lock);
541 	mutex_destroy(&spa->spa_history_lock);
542 	mutex_destroy(&spa->spa_proc_lock);
543 	mutex_destroy(&spa->spa_props_lock);
544 	mutex_destroy(&spa->spa_scrub_lock);
545 	mutex_destroy(&spa->spa_suspend_lock);
546 	mutex_destroy(&spa->spa_vdev_top_lock);
547 
548 	kmem_free(spa, sizeof (spa_t));
549 }
550 
551 /*
552  * Given a pool, return the next pool in the namespace, or NULL if there is
553  * none.  If 'prev' is NULL, return the first pool.
554  */
555 spa_t *
556 spa_next(spa_t *prev)
557 {
558 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
559 
560 	if (prev)
561 		return (AVL_NEXT(&spa_namespace_avl, prev));
562 	else
563 		return (avl_first(&spa_namespace_avl));
564 }
565 
566 /*
567  * ==========================================================================
568  * SPA refcount functions
569  * ==========================================================================
570  */
571 
572 /*
573  * Add a reference to the given spa_t.  Must have at least one reference, or
574  * have the namespace lock held.
575  */
576 void
577 spa_open_ref(spa_t *spa, void *tag)
578 {
579 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
580 	    MUTEX_HELD(&spa_namespace_lock));
581 	(void) refcount_add(&spa->spa_refcount, tag);
582 }
583 
584 /*
585  * Remove a reference to the given spa_t.  Must have at least one reference, or
586  * have the namespace lock held.
587  */
588 void
589 spa_close(spa_t *spa, void *tag)
590 {
591 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
592 	    MUTEX_HELD(&spa_namespace_lock));
593 	(void) refcount_remove(&spa->spa_refcount, tag);
594 }
595 
596 /*
597  * Check to see if the spa refcount is zero.  Must be called with
598  * spa_namespace_lock held.  We really compare against spa_minref, which is the
599  * number of references acquired when opening a pool
600  */
601 boolean_t
602 spa_refcount_zero(spa_t *spa)
603 {
604 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
605 
606 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
607 }
608 
609 /*
610  * ==========================================================================
611  * SPA spare and l2cache tracking
612  * ==========================================================================
613  */
614 
615 /*
616  * Hot spares and cache devices are tracked using the same code below,
617  * for 'auxiliary' devices.
618  */
619 
620 typedef struct spa_aux {
621 	uint64_t	aux_guid;
622 	uint64_t	aux_pool;
623 	avl_node_t	aux_avl;
624 	int		aux_count;
625 } spa_aux_t;
626 
627 static int
628 spa_aux_compare(const void *a, const void *b)
629 {
630 	const spa_aux_t *sa = a;
631 	const spa_aux_t *sb = b;
632 
633 	if (sa->aux_guid < sb->aux_guid)
634 		return (-1);
635 	else if (sa->aux_guid > sb->aux_guid)
636 		return (1);
637 	else
638 		return (0);
639 }
640 
641 void
642 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
643 {
644 	avl_index_t where;
645 	spa_aux_t search;
646 	spa_aux_t *aux;
647 
648 	search.aux_guid = vd->vdev_guid;
649 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
650 		aux->aux_count++;
651 	} else {
652 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
653 		aux->aux_guid = vd->vdev_guid;
654 		aux->aux_count = 1;
655 		avl_insert(avl, aux, where);
656 	}
657 }
658 
659 void
660 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
661 {
662 	spa_aux_t search;
663 	spa_aux_t *aux;
664 	avl_index_t where;
665 
666 	search.aux_guid = vd->vdev_guid;
667 	aux = avl_find(avl, &search, &where);
668 
669 	ASSERT(aux != NULL);
670 
671 	if (--aux->aux_count == 0) {
672 		avl_remove(avl, aux);
673 		kmem_free(aux, sizeof (spa_aux_t));
674 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
675 		aux->aux_pool = 0ULL;
676 	}
677 }
678 
679 boolean_t
680 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
681 {
682 	spa_aux_t search, *found;
683 
684 	search.aux_guid = guid;
685 	found = avl_find(avl, &search, NULL);
686 
687 	if (pool) {
688 		if (found)
689 			*pool = found->aux_pool;
690 		else
691 			*pool = 0ULL;
692 	}
693 
694 	if (refcnt) {
695 		if (found)
696 			*refcnt = found->aux_count;
697 		else
698 			*refcnt = 0;
699 	}
700 
701 	return (found != NULL);
702 }
703 
704 void
705 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
706 {
707 	spa_aux_t search, *found;
708 	avl_index_t where;
709 
710 	search.aux_guid = vd->vdev_guid;
711 	found = avl_find(avl, &search, &where);
712 	ASSERT(found != NULL);
713 	ASSERT(found->aux_pool == 0ULL);
714 
715 	found->aux_pool = spa_guid(vd->vdev_spa);
716 }
717 
718 /*
719  * Spares are tracked globally due to the following constraints:
720  *
721  * 	- A spare may be part of multiple pools.
722  * 	- A spare may be added to a pool even if it's actively in use within
723  *	  another pool.
724  * 	- A spare in use in any pool can only be the source of a replacement if
725  *	  the target is a spare in the same pool.
726  *
727  * We keep track of all spares on the system through the use of a reference
728  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
729  * spare, then we bump the reference count in the AVL tree.  In addition, we set
730  * the 'vdev_isspare' member to indicate that the device is a spare (active or
731  * inactive).  When a spare is made active (used to replace a device in the
732  * pool), we also keep track of which pool its been made a part of.
733  *
734  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
735  * called under the spa_namespace lock as part of vdev reconfiguration.  The
736  * separate spare lock exists for the status query path, which does not need to
737  * be completely consistent with respect to other vdev configuration changes.
738  */
739 
740 static int
741 spa_spare_compare(const void *a, const void *b)
742 {
743 	return (spa_aux_compare(a, b));
744 }
745 
746 void
747 spa_spare_add(vdev_t *vd)
748 {
749 	mutex_enter(&spa_spare_lock);
750 	ASSERT(!vd->vdev_isspare);
751 	spa_aux_add(vd, &spa_spare_avl);
752 	vd->vdev_isspare = B_TRUE;
753 	mutex_exit(&spa_spare_lock);
754 }
755 
756 void
757 spa_spare_remove(vdev_t *vd)
758 {
759 	mutex_enter(&spa_spare_lock);
760 	ASSERT(vd->vdev_isspare);
761 	spa_aux_remove(vd, &spa_spare_avl);
762 	vd->vdev_isspare = B_FALSE;
763 	mutex_exit(&spa_spare_lock);
764 }
765 
766 boolean_t
767 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
768 {
769 	boolean_t found;
770 
771 	mutex_enter(&spa_spare_lock);
772 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
773 	mutex_exit(&spa_spare_lock);
774 
775 	return (found);
776 }
777 
778 void
779 spa_spare_activate(vdev_t *vd)
780 {
781 	mutex_enter(&spa_spare_lock);
782 	ASSERT(vd->vdev_isspare);
783 	spa_aux_activate(vd, &spa_spare_avl);
784 	mutex_exit(&spa_spare_lock);
785 }
786 
787 /*
788  * Level 2 ARC devices are tracked globally for the same reasons as spares.
789  * Cache devices currently only support one pool per cache device, and so
790  * for these devices the aux reference count is currently unused beyond 1.
791  */
792 
793 static int
794 spa_l2cache_compare(const void *a, const void *b)
795 {
796 	return (spa_aux_compare(a, b));
797 }
798 
799 void
800 spa_l2cache_add(vdev_t *vd)
801 {
802 	mutex_enter(&spa_l2cache_lock);
803 	ASSERT(!vd->vdev_isl2cache);
804 	spa_aux_add(vd, &spa_l2cache_avl);
805 	vd->vdev_isl2cache = B_TRUE;
806 	mutex_exit(&spa_l2cache_lock);
807 }
808 
809 void
810 spa_l2cache_remove(vdev_t *vd)
811 {
812 	mutex_enter(&spa_l2cache_lock);
813 	ASSERT(vd->vdev_isl2cache);
814 	spa_aux_remove(vd, &spa_l2cache_avl);
815 	vd->vdev_isl2cache = B_FALSE;
816 	mutex_exit(&spa_l2cache_lock);
817 }
818 
819 boolean_t
820 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
821 {
822 	boolean_t found;
823 
824 	mutex_enter(&spa_l2cache_lock);
825 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
826 	mutex_exit(&spa_l2cache_lock);
827 
828 	return (found);
829 }
830 
831 void
832 spa_l2cache_activate(vdev_t *vd)
833 {
834 	mutex_enter(&spa_l2cache_lock);
835 	ASSERT(vd->vdev_isl2cache);
836 	spa_aux_activate(vd, &spa_l2cache_avl);
837 	mutex_exit(&spa_l2cache_lock);
838 }
839 
840 /*
841  * ==========================================================================
842  * SPA vdev locking
843  * ==========================================================================
844  */
845 
846 /*
847  * Lock the given spa_t for the purpose of adding or removing a vdev.
848  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
849  * It returns the next transaction group for the spa_t.
850  */
851 uint64_t
852 spa_vdev_enter(spa_t *spa)
853 {
854 	mutex_enter(&spa->spa_vdev_top_lock);
855 	mutex_enter(&spa_namespace_lock);
856 	return (spa_vdev_config_enter(spa));
857 }
858 
859 /*
860  * Internal implementation for spa_vdev_enter().  Used when a vdev
861  * operation requires multiple syncs (i.e. removing a device) while
862  * keeping the spa_namespace_lock held.
863  */
864 uint64_t
865 spa_vdev_config_enter(spa_t *spa)
866 {
867 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
868 
869 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
870 
871 	return (spa_last_synced_txg(spa) + 1);
872 }
873 
874 /*
875  * Used in combination with spa_vdev_config_enter() to allow the syncing
876  * of multiple transactions without releasing the spa_namespace_lock.
877  */
878 void
879 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
880 {
881 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
882 
883 	int config_changed = B_FALSE;
884 
885 	ASSERT(txg > spa_last_synced_txg(spa));
886 
887 	spa->spa_pending_vdev = NULL;
888 
889 	/*
890 	 * Reassess the DTLs.
891 	 */
892 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
893 
894 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
895 		config_changed = B_TRUE;
896 		spa->spa_config_generation++;
897 	}
898 
899 	/*
900 	 * Verify the metaslab classes.
901 	 */
902 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
903 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
904 
905 	spa_config_exit(spa, SCL_ALL, spa);
906 
907 	/*
908 	 * Panic the system if the specified tag requires it.  This
909 	 * is useful for ensuring that configurations are updated
910 	 * transactionally.
911 	 */
912 	if (zio_injection_enabled)
913 		zio_handle_panic_injection(spa, tag, 0);
914 
915 	/*
916 	 * Note: this txg_wait_synced() is important because it ensures
917 	 * that there won't be more than one config change per txg.
918 	 * This allows us to use the txg as the generation number.
919 	 */
920 	if (error == 0)
921 		txg_wait_synced(spa->spa_dsl_pool, txg);
922 
923 	if (vd != NULL) {
924 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
925 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
926 		vdev_free(vd);
927 		spa_config_exit(spa, SCL_ALL, spa);
928 	}
929 
930 	/*
931 	 * If the config changed, update the config cache.
932 	 */
933 	if (config_changed)
934 		spa_config_sync(spa, B_FALSE, B_TRUE);
935 }
936 
937 /*
938  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
939  * locking of spa_vdev_enter(), we also want make sure the transactions have
940  * synced to disk, and then update the global configuration cache with the new
941  * information.
942  */
943 int
944 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
945 {
946 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
947 	mutex_exit(&spa_namespace_lock);
948 	mutex_exit(&spa->spa_vdev_top_lock);
949 
950 	return (error);
951 }
952 
953 /*
954  * Lock the given spa_t for the purpose of changing vdev state.
955  */
956 void
957 spa_vdev_state_enter(spa_t *spa, int oplocks)
958 {
959 	int locks = SCL_STATE_ALL | oplocks;
960 
961 	/*
962 	 * Root pools may need to read of the underlying devfs filesystem
963 	 * when opening up a vdev.  Unfortunately if we're holding the
964 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
965 	 * the read from the root filesystem.  Instead we "prefetch"
966 	 * the associated vnodes that we need prior to opening the
967 	 * underlying devices and cache them so that we can prevent
968 	 * any I/O when we are doing the actual open.
969 	 */
970 	if (spa_is_root(spa)) {
971 		int low = locks & ~(SCL_ZIO - 1);
972 		int high = locks & ~low;
973 
974 		spa_config_enter(spa, high, spa, RW_WRITER);
975 		vdev_hold(spa->spa_root_vdev);
976 		spa_config_enter(spa, low, spa, RW_WRITER);
977 	} else {
978 		spa_config_enter(spa, locks, spa, RW_WRITER);
979 	}
980 	spa->spa_vdev_locks = locks;
981 }
982 
983 int
984 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
985 {
986 	boolean_t config_changed = B_FALSE;
987 
988 	if (vd != NULL || error == 0)
989 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
990 		    0, 0, B_FALSE);
991 
992 	if (vd != NULL) {
993 		vdev_state_dirty(vd->vdev_top);
994 		config_changed = B_TRUE;
995 		spa->spa_config_generation++;
996 	}
997 
998 	if (spa_is_root(spa))
999 		vdev_rele(spa->spa_root_vdev);
1000 
1001 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1002 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1003 
1004 	/*
1005 	 * If anything changed, wait for it to sync.  This ensures that,
1006 	 * from the system administrator's perspective, zpool(1M) commands
1007 	 * are synchronous.  This is important for things like zpool offline:
1008 	 * when the command completes, you expect no further I/O from ZFS.
1009 	 */
1010 	if (vd != NULL)
1011 		txg_wait_synced(spa->spa_dsl_pool, 0);
1012 
1013 	/*
1014 	 * If the config changed, update the config cache.
1015 	 */
1016 	if (config_changed) {
1017 		mutex_enter(&spa_namespace_lock);
1018 		spa_config_sync(spa, B_FALSE, B_TRUE);
1019 		mutex_exit(&spa_namespace_lock);
1020 	}
1021 
1022 	return (error);
1023 }
1024 
1025 /*
1026  * ==========================================================================
1027  * Miscellaneous functions
1028  * ==========================================================================
1029  */
1030 
1031 /*
1032  * Rename a spa_t.
1033  */
1034 int
1035 spa_rename(const char *name, const char *newname)
1036 {
1037 	spa_t *spa;
1038 	int err;
1039 
1040 	/*
1041 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1042 	 * actually open the pool so that we can sync out the necessary labels.
1043 	 * It's OK to call spa_open() with the namespace lock held because we
1044 	 * allow recursive calls for other reasons.
1045 	 */
1046 	mutex_enter(&spa_namespace_lock);
1047 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1048 		mutex_exit(&spa_namespace_lock);
1049 		return (err);
1050 	}
1051 
1052 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1053 
1054 	avl_remove(&spa_namespace_avl, spa);
1055 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1056 	avl_add(&spa_namespace_avl, spa);
1057 
1058 	/*
1059 	 * Sync all labels to disk with the new names by marking the root vdev
1060 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1061 	 * during the sync.
1062 	 */
1063 	vdev_config_dirty(spa->spa_root_vdev);
1064 
1065 	spa_config_exit(spa, SCL_ALL, FTAG);
1066 
1067 	txg_wait_synced(spa->spa_dsl_pool, 0);
1068 
1069 	/*
1070 	 * Sync the updated config cache.
1071 	 */
1072 	spa_config_sync(spa, B_FALSE, B_TRUE);
1073 
1074 	spa_close(spa, FTAG);
1075 
1076 	mutex_exit(&spa_namespace_lock);
1077 
1078 	return (0);
1079 }
1080 
1081 /*
1082  * Return the spa_t associated with given pool_guid, if it exists.  If
1083  * device_guid is non-zero, determine whether the pool exists *and* contains
1084  * a device with the specified device_guid.
1085  */
1086 spa_t *
1087 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1088 {
1089 	spa_t *spa;
1090 	avl_tree_t *t = &spa_namespace_avl;
1091 
1092 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1093 
1094 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1095 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1096 			continue;
1097 		if (spa->spa_root_vdev == NULL)
1098 			continue;
1099 		if (spa_guid(spa) == pool_guid) {
1100 			if (device_guid == 0)
1101 				break;
1102 
1103 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1104 			    device_guid) != NULL)
1105 				break;
1106 
1107 			/*
1108 			 * Check any devices we may be in the process of adding.
1109 			 */
1110 			if (spa->spa_pending_vdev) {
1111 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1112 				    device_guid) != NULL)
1113 					break;
1114 			}
1115 		}
1116 	}
1117 
1118 	return (spa);
1119 }
1120 
1121 /*
1122  * Determine whether a pool with the given pool_guid exists.
1123  */
1124 boolean_t
1125 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1126 {
1127 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1128 }
1129 
1130 char *
1131 spa_strdup(const char *s)
1132 {
1133 	size_t len;
1134 	char *new;
1135 
1136 	len = strlen(s);
1137 	new = kmem_alloc(len + 1, KM_SLEEP);
1138 	bcopy(s, new, len);
1139 	new[len] = '\0';
1140 
1141 	return (new);
1142 }
1143 
1144 void
1145 spa_strfree(char *s)
1146 {
1147 	kmem_free(s, strlen(s) + 1);
1148 }
1149 
1150 uint64_t
1151 spa_get_random(uint64_t range)
1152 {
1153 	uint64_t r;
1154 
1155 	ASSERT(range != 0);
1156 
1157 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1158 
1159 	return (r % range);
1160 }
1161 
1162 uint64_t
1163 spa_generate_guid(spa_t *spa)
1164 {
1165 	uint64_t guid = spa_get_random(-1ULL);
1166 
1167 	if (spa != NULL) {
1168 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1169 			guid = spa_get_random(-1ULL);
1170 	} else {
1171 		while (guid == 0 || spa_guid_exists(guid, 0))
1172 			guid = spa_get_random(-1ULL);
1173 	}
1174 
1175 	return (guid);
1176 }
1177 
1178 void
1179 sprintf_blkptr(char *buf, const blkptr_t *bp)
1180 {
1181 	char *type = NULL;
1182 	char *checksum = NULL;
1183 	char *compress = NULL;
1184 
1185 	if (bp != NULL) {
1186 		type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1187 		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1188 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1189 	}
1190 
1191 	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1192 }
1193 
1194 void
1195 spa_freeze(spa_t *spa)
1196 {
1197 	uint64_t freeze_txg = 0;
1198 
1199 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1200 	if (spa->spa_freeze_txg == UINT64_MAX) {
1201 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1202 		spa->spa_freeze_txg = freeze_txg;
1203 	}
1204 	spa_config_exit(spa, SCL_ALL, FTAG);
1205 	if (freeze_txg != 0)
1206 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1207 }
1208 
1209 void
1210 zfs_panic_recover(const char *fmt, ...)
1211 {
1212 	va_list adx;
1213 
1214 	va_start(adx, fmt);
1215 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1216 	va_end(adx);
1217 }
1218 
1219 /*
1220  * This is a stripped-down version of strtoull, suitable only for converting
1221  * lowercase hexidecimal numbers that don't overflow.
1222  */
1223 uint64_t
1224 strtonum(const char *str, char **nptr)
1225 {
1226 	uint64_t val = 0;
1227 	char c;
1228 	int digit;
1229 
1230 	while ((c = *str) != '\0') {
1231 		if (c >= '0' && c <= '9')
1232 			digit = c - '0';
1233 		else if (c >= 'a' && c <= 'f')
1234 			digit = 10 + c - 'a';
1235 		else
1236 			break;
1237 
1238 		val *= 16;
1239 		val += digit;
1240 
1241 		str++;
1242 	}
1243 
1244 	if (nptr)
1245 		*nptr = (char *)str;
1246 
1247 	return (val);
1248 }
1249 
1250 /*
1251  * ==========================================================================
1252  * Accessor functions
1253  * ==========================================================================
1254  */
1255 
1256 boolean_t
1257 spa_shutting_down(spa_t *spa)
1258 {
1259 	return (spa->spa_async_suspended);
1260 }
1261 
1262 dsl_pool_t *
1263 spa_get_dsl(spa_t *spa)
1264 {
1265 	return (spa->spa_dsl_pool);
1266 }
1267 
1268 blkptr_t *
1269 spa_get_rootblkptr(spa_t *spa)
1270 {
1271 	return (&spa->spa_ubsync.ub_rootbp);
1272 }
1273 
1274 void
1275 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1276 {
1277 	spa->spa_uberblock.ub_rootbp = *bp;
1278 }
1279 
1280 void
1281 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1282 {
1283 	if (spa->spa_root == NULL)
1284 		buf[0] = '\0';
1285 	else
1286 		(void) strncpy(buf, spa->spa_root, buflen);
1287 }
1288 
1289 int
1290 spa_sync_pass(spa_t *spa)
1291 {
1292 	return (spa->spa_sync_pass);
1293 }
1294 
1295 char *
1296 spa_name(spa_t *spa)
1297 {
1298 	return (spa->spa_name);
1299 }
1300 
1301 uint64_t
1302 spa_guid(spa_t *spa)
1303 {
1304 	/*
1305 	 * If we fail to parse the config during spa_load(), we can go through
1306 	 * the error path (which posts an ereport) and end up here with no root
1307 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1308 	 * this case.
1309 	 */
1310 	if (spa->spa_root_vdev != NULL)
1311 		return (spa->spa_root_vdev->vdev_guid);
1312 	else
1313 		return (spa->spa_load_guid);
1314 }
1315 
1316 uint64_t
1317 spa_last_synced_txg(spa_t *spa)
1318 {
1319 	return (spa->spa_ubsync.ub_txg);
1320 }
1321 
1322 uint64_t
1323 spa_first_txg(spa_t *spa)
1324 {
1325 	return (spa->spa_first_txg);
1326 }
1327 
1328 uint64_t
1329 spa_syncing_txg(spa_t *spa)
1330 {
1331 	return (spa->spa_syncing_txg);
1332 }
1333 
1334 pool_state_t
1335 spa_state(spa_t *spa)
1336 {
1337 	return (spa->spa_state);
1338 }
1339 
1340 spa_load_state_t
1341 spa_load_state(spa_t *spa)
1342 {
1343 	return (spa->spa_load_state);
1344 }
1345 
1346 uint64_t
1347 spa_freeze_txg(spa_t *spa)
1348 {
1349 	return (spa->spa_freeze_txg);
1350 }
1351 
1352 /* ARGSUSED */
1353 uint64_t
1354 spa_get_asize(spa_t *spa, uint64_t lsize)
1355 {
1356 	/*
1357 	 * The worst case is single-sector max-parity RAID-Z blocks, in which
1358 	 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1359 	 * times the size; so just assume that.  Add to this the fact that
1360 	 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1361 	 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1362 	 */
1363 	return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1364 }
1365 
1366 uint64_t
1367 spa_get_dspace(spa_t *spa)
1368 {
1369 	return (spa->spa_dspace);
1370 }
1371 
1372 void
1373 spa_update_dspace(spa_t *spa)
1374 {
1375 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1376 	    ddt_get_dedup_dspace(spa);
1377 }
1378 
1379 /*
1380  * Return the failure mode that has been set to this pool. The default
1381  * behavior will be to block all I/Os when a complete failure occurs.
1382  */
1383 uint8_t
1384 spa_get_failmode(spa_t *spa)
1385 {
1386 	return (spa->spa_failmode);
1387 }
1388 
1389 boolean_t
1390 spa_suspended(spa_t *spa)
1391 {
1392 	return (spa->spa_suspended);
1393 }
1394 
1395 uint64_t
1396 spa_version(spa_t *spa)
1397 {
1398 	return (spa->spa_ubsync.ub_version);
1399 }
1400 
1401 boolean_t
1402 spa_deflate(spa_t *spa)
1403 {
1404 	return (spa->spa_deflate);
1405 }
1406 
1407 metaslab_class_t *
1408 spa_normal_class(spa_t *spa)
1409 {
1410 	return (spa->spa_normal_class);
1411 }
1412 
1413 metaslab_class_t *
1414 spa_log_class(spa_t *spa)
1415 {
1416 	return (spa->spa_log_class);
1417 }
1418 
1419 int
1420 spa_max_replication(spa_t *spa)
1421 {
1422 	/*
1423 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1424 	 * handle BPs with more than one DVA allocated.  Set our max
1425 	 * replication level accordingly.
1426 	 */
1427 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1428 		return (1);
1429 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1430 }
1431 
1432 int
1433 spa_prev_software_version(spa_t *spa)
1434 {
1435 	return (spa->spa_prev_software_version);
1436 }
1437 
1438 uint64_t
1439 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1440 {
1441 	uint64_t asize = DVA_GET_ASIZE(dva);
1442 	uint64_t dsize = asize;
1443 
1444 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1445 
1446 	if (asize != 0 && spa->spa_deflate) {
1447 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1448 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1449 	}
1450 
1451 	return (dsize);
1452 }
1453 
1454 uint64_t
1455 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1456 {
1457 	uint64_t dsize = 0;
1458 
1459 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1460 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1461 
1462 	return (dsize);
1463 }
1464 
1465 uint64_t
1466 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1467 {
1468 	uint64_t dsize = 0;
1469 
1470 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1471 
1472 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1473 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1474 
1475 	spa_config_exit(spa, SCL_VDEV, FTAG);
1476 
1477 	return (dsize);
1478 }
1479 
1480 /*
1481  * ==========================================================================
1482  * Initialization and Termination
1483  * ==========================================================================
1484  */
1485 
1486 static int
1487 spa_name_compare(const void *a1, const void *a2)
1488 {
1489 	const spa_t *s1 = a1;
1490 	const spa_t *s2 = a2;
1491 	int s;
1492 
1493 	s = strcmp(s1->spa_name, s2->spa_name);
1494 	if (s > 0)
1495 		return (1);
1496 	if (s < 0)
1497 		return (-1);
1498 	return (0);
1499 }
1500 
1501 int
1502 spa_busy(void)
1503 {
1504 	return (spa_active_count);
1505 }
1506 
1507 void
1508 spa_boot_init()
1509 {
1510 	spa_config_load();
1511 }
1512 
1513 void
1514 spa_init(int mode)
1515 {
1516 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1517 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1518 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1519 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1520 
1521 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1522 	    offsetof(spa_t, spa_avl));
1523 
1524 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1525 	    offsetof(spa_aux_t, aux_avl));
1526 
1527 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1528 	    offsetof(spa_aux_t, aux_avl));
1529 
1530 	spa_mode_global = mode;
1531 
1532 	refcount_init();
1533 	unique_init();
1534 	zio_init();
1535 	dmu_init();
1536 	zil_init();
1537 	vdev_cache_stat_init();
1538 	zfs_prop_init();
1539 	zpool_prop_init();
1540 	spa_config_load();
1541 	l2arc_start();
1542 }
1543 
1544 void
1545 spa_fini(void)
1546 {
1547 	l2arc_stop();
1548 
1549 	spa_evict_all();
1550 
1551 	vdev_cache_stat_fini();
1552 	zil_fini();
1553 	dmu_fini();
1554 	zio_fini();
1555 	unique_fini();
1556 	refcount_fini();
1557 
1558 	avl_destroy(&spa_namespace_avl);
1559 	avl_destroy(&spa_spare_avl);
1560 	avl_destroy(&spa_l2cache_avl);
1561 
1562 	cv_destroy(&spa_namespace_cv);
1563 	mutex_destroy(&spa_namespace_lock);
1564 	mutex_destroy(&spa_spare_lock);
1565 	mutex_destroy(&spa_l2cache_lock);
1566 }
1567 
1568 /*
1569  * Return whether this pool has slogs. No locking needed.
1570  * It's not a problem if the wrong answer is returned as it's only for
1571  * performance and not correctness
1572  */
1573 boolean_t
1574 spa_has_slogs(spa_t *spa)
1575 {
1576 	return (spa->spa_log_class->mc_rotor != NULL);
1577 }
1578 
1579 spa_log_state_t
1580 spa_get_log_state(spa_t *spa)
1581 {
1582 	return (spa->spa_log_state);
1583 }
1584 
1585 void
1586 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1587 {
1588 	spa->spa_log_state = state;
1589 }
1590 
1591 boolean_t
1592 spa_is_root(spa_t *spa)
1593 {
1594 	return (spa->spa_is_root);
1595 }
1596 
1597 boolean_t
1598 spa_writeable(spa_t *spa)
1599 {
1600 	return (!!(spa->spa_mode & FWRITE));
1601 }
1602 
1603 int
1604 spa_mode(spa_t *spa)
1605 {
1606 	return (spa->spa_mode);
1607 }
1608 
1609 uint64_t
1610 spa_bootfs(spa_t *spa)
1611 {
1612 	return (spa->spa_bootfs);
1613 }
1614 
1615 uint64_t
1616 spa_delegation(spa_t *spa)
1617 {
1618 	return (spa->spa_delegation);
1619 }
1620 
1621 objset_t *
1622 spa_meta_objset(spa_t *spa)
1623 {
1624 	return (spa->spa_meta_objset);
1625 }
1626 
1627 enum zio_checksum
1628 spa_dedup_checksum(spa_t *spa)
1629 {
1630 	return (spa->spa_dedup_checksum);
1631 }
1632 
1633 /*
1634  * Reset pool scan stat per scan pass (or reboot).
1635  */
1636 void
1637 spa_scan_stat_init(spa_t *spa)
1638 {
1639 	/* data not stored on disk */
1640 	spa->spa_scan_pass_start = gethrestime_sec();
1641 	spa->spa_scan_pass_exam = 0;
1642 	vdev_scan_stat_init(spa->spa_root_vdev);
1643 }
1644 
1645 /*
1646  * Get scan stats for zpool status reports
1647  */
1648 int
1649 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1650 {
1651 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1652 
1653 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1654 		return (ENOENT);
1655 	bzero(ps, sizeof (pool_scan_stat_t));
1656 
1657 	/* data stored on disk */
1658 	ps->pss_func = scn->scn_phys.scn_func;
1659 	ps->pss_start_time = scn->scn_phys.scn_start_time;
1660 	ps->pss_end_time = scn->scn_phys.scn_end_time;
1661 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1662 	ps->pss_examined = scn->scn_phys.scn_examined;
1663 	ps->pss_to_process = scn->scn_phys.scn_to_process;
1664 	ps->pss_processed = scn->scn_phys.scn_processed;
1665 	ps->pss_errors = scn->scn_phys.scn_errors;
1666 	ps->pss_state = scn->scn_phys.scn_state;
1667 
1668 	/* data not stored on disk */
1669 	ps->pss_pass_start = spa->spa_scan_pass_start;
1670 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1671 
1672 	return (0);
1673 }
1674 
1675 boolean_t
1676 spa_debug_enabled(spa_t *spa)
1677 {
1678 	return (spa->spa_debug);
1679 }
1680