1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/metaslab_impl.h> 48 #include "zfs_prop.h" 49 50 /* 51 * SPA locking 52 * 53 * There are four basic locks for managing spa_t structures: 54 * 55 * spa_namespace_lock (global mutex) 56 * 57 * This lock must be acquired to do any of the following: 58 * 59 * - Lookup a spa_t by name 60 * - Add or remove a spa_t from the namespace 61 * - Increase spa_refcount from non-zero 62 * - Check if spa_refcount is zero 63 * - Rename a spa_t 64 * - add/remove/attach/detach devices 65 * - Held for the duration of create/destroy/import/export 66 * 67 * It does not need to handle recursion. A create or destroy may 68 * reference objects (files or zvols) in other pools, but by 69 * definition they must have an existing reference, and will never need 70 * to lookup a spa_t by name. 71 * 72 * spa_refcount (per-spa refcount_t protected by mutex) 73 * 74 * This reference count keep track of any active users of the spa_t. The 75 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 76 * the refcount is never really 'zero' - opening a pool implicitly keeps 77 * some references in the DMU. Internally we check against SPA_MINREF, but 78 * present the image of a zero/non-zero value to consumers. 79 * 80 * spa_config_lock (per-spa read-priority rwlock) 81 * 82 * This protects the spa_t from config changes, and must be held in 83 * the following circumstances: 84 * 85 * - RW_READER to perform I/O to the spa 86 * - RW_WRITER to change the vdev config 87 * 88 * spa_config_cache_lock (per-spa mutex) 89 * 90 * This mutex prevents the spa_config nvlist from being updated. No 91 * other locks are required to obtain this lock, although implicitly you 92 * must have the namespace lock or non-zero refcount to have any kind 93 * of spa_t pointer at all. 94 * 95 * The locking order is fairly straightforward: 96 * 97 * spa_namespace_lock -> spa_refcount 98 * 99 * The namespace lock must be acquired to increase the refcount from 0 100 * or to check if it is zero. 101 * 102 * spa_refcount -> spa_config_lock 103 * 104 * There must be at least one valid reference on the spa_t to acquire 105 * the config lock. 106 * 107 * spa_namespace_lock -> spa_config_lock 108 * 109 * The namespace lock must always be taken before the config lock. 110 * 111 * 112 * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and 113 * are globally visible. 114 * 115 * The namespace is manipulated using the following functions, all which require 116 * the spa_namespace_lock to be held. 117 * 118 * spa_lookup() Lookup a spa_t by name. 119 * 120 * spa_add() Create a new spa_t in the namespace. 121 * 122 * spa_remove() Remove a spa_t from the namespace. This also 123 * frees up any memory associated with the spa_t. 124 * 125 * spa_next() Returns the next spa_t in the system, or the 126 * first if NULL is passed. 127 * 128 * spa_evict_all() Shutdown and remove all spa_t structures in 129 * the system. 130 * 131 * spa_guid_exists() Determine whether a pool/device guid exists. 132 * 133 * The spa_refcount is manipulated using the following functions: 134 * 135 * spa_open_ref() Adds a reference to the given spa_t. Must be 136 * called with spa_namespace_lock held if the 137 * refcount is currently zero. 138 * 139 * spa_close() Remove a reference from the spa_t. This will 140 * not free the spa_t or remove it from the 141 * namespace. No locking is required. 142 * 143 * spa_refcount_zero() Returns true if the refcount is currently 144 * zero. Must be called with spa_namespace_lock 145 * held. 146 * 147 * The spa_config_lock is manipulated using the following functions: 148 * 149 * spa_config_enter() Acquire the config lock as RW_READER or 150 * RW_WRITER. At least one reference on the spa_t 151 * must exist. 152 * 153 * spa_config_exit() Release the config lock. 154 * 155 * spa_config_held() Returns true if the config lock is currently 156 * held in the given state. 157 * 158 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 159 * 160 * spa_vdev_enter() Acquire the namespace lock and the config lock 161 * for writing. 162 * 163 * spa_vdev_exit() Release the config lock, wait for all I/O 164 * to complete, sync the updated configs to the 165 * cache, and release the namespace lock. 166 * 167 * The spa_name() function also requires either the spa_namespace_lock 168 * or the spa_config_lock, as both are needed to do a rename. spa_rename() is 169 * also implemented within this file since is requires manipulation of the 170 * namespace. 171 */ 172 173 static avl_tree_t spa_namespace_avl; 174 kmutex_t spa_namespace_lock; 175 static kcondvar_t spa_namespace_cv; 176 static int spa_active_count; 177 int spa_max_replication_override = SPA_DVAS_PER_BP; 178 179 static kmutex_t spa_spare_lock; 180 static avl_tree_t spa_spare_avl; 181 182 kmem_cache_t *spa_buffer_pool; 183 int spa_mode; 184 185 #ifdef ZFS_DEBUG 186 /* Everything except dprintf is on by default in debug builds */ 187 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 188 #else 189 int zfs_flags = 0; 190 #endif 191 192 /* 193 * zfs_recover can be set to nonzero to attempt to recover from 194 * otherwise-fatal errors, typically caused by on-disk corruption. When 195 * set, calls to zfs_panic_recover() will turn into warning messages. 196 */ 197 int zfs_recover = 0; 198 199 #define SPA_MINREF 5 /* spa_refcnt for an open-but-idle pool */ 200 201 /* 202 * ========================================================================== 203 * SPA namespace functions 204 * ========================================================================== 205 */ 206 207 /* 208 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 209 * Returns NULL if no matching spa_t is found. 210 */ 211 spa_t * 212 spa_lookup(const char *name) 213 { 214 spa_t search, *spa; 215 avl_index_t where; 216 char c; 217 char *cp; 218 219 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 220 221 /* 222 * If it's a full dataset name, figure out the pool name and 223 * just use that. 224 */ 225 cp = strpbrk(name, "/@"); 226 if (cp) { 227 c = *cp; 228 *cp = '\0'; 229 } 230 231 search.spa_name = (char *)name; 232 spa = avl_find(&spa_namespace_avl, &search, &where); 233 234 if (cp) 235 *cp = c; 236 237 return (spa); 238 } 239 240 /* 241 * Create an uninitialized spa_t with the given name. Requires 242 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 243 * exist by calling spa_lookup() first. 244 */ 245 spa_t * 246 spa_add(const char *name, const char *altroot) 247 { 248 spa_t *spa; 249 250 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 251 252 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 253 254 rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL); 255 256 mutex_init(&spa->spa_uberblock_lock, NULL, MUTEX_DEFAULT, NULL); 257 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 258 mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL); 259 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 260 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 261 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 262 mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL); 263 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 264 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 265 266 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 267 cv_init(&spa->spa_scrub_cv, NULL, CV_DEFAULT, NULL); 268 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 269 270 spa->spa_name = spa_strdup(name); 271 spa->spa_state = POOL_STATE_UNINITIALIZED; 272 spa->spa_freeze_txg = UINT64_MAX; 273 spa->spa_final_txg = UINT64_MAX; 274 275 refcount_create(&spa->spa_refcount); 276 rprw_init(&spa->spa_config_lock); 277 278 avl_add(&spa_namespace_avl, spa); 279 280 /* 281 * Set the alternate root, if there is one. 282 */ 283 if (altroot) { 284 spa->spa_root = spa_strdup(altroot); 285 spa_active_count++; 286 } 287 288 return (spa); 289 } 290 291 /* 292 * Removes a spa_t from the namespace, freeing up any memory used. Requires 293 * spa_namespace_lock. This is called only after the spa_t has been closed and 294 * deactivated. 295 */ 296 void 297 spa_remove(spa_t *spa) 298 { 299 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 300 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 301 ASSERT(spa->spa_scrub_thread == NULL); 302 303 avl_remove(&spa_namespace_avl, spa); 304 cv_broadcast(&spa_namespace_cv); 305 306 if (spa->spa_root) { 307 spa_strfree(spa->spa_root); 308 spa_active_count--; 309 } 310 311 if (spa->spa_name) 312 spa_strfree(spa->spa_name); 313 314 spa_config_set(spa, NULL); 315 316 refcount_destroy(&spa->spa_refcount); 317 318 rprw_destroy(&spa->spa_config_lock); 319 320 rw_destroy(&spa->spa_traverse_lock); 321 322 cv_destroy(&spa->spa_async_cv); 323 cv_destroy(&spa->spa_scrub_cv); 324 cv_destroy(&spa->spa_scrub_io_cv); 325 326 mutex_destroy(&spa->spa_uberblock_lock); 327 mutex_destroy(&spa->spa_async_lock); 328 mutex_destroy(&spa->spa_config_cache_lock); 329 mutex_destroy(&spa->spa_scrub_lock); 330 mutex_destroy(&spa->spa_errlog_lock); 331 mutex_destroy(&spa->spa_errlist_lock); 332 mutex_destroy(&spa->spa_sync_bplist.bpl_lock); 333 mutex_destroy(&spa->spa_history_lock); 334 mutex_destroy(&spa->spa_props_lock); 335 336 kmem_free(spa, sizeof (spa_t)); 337 } 338 339 /* 340 * Given a pool, return the next pool in the namespace, or NULL if there is 341 * none. If 'prev' is NULL, return the first pool. 342 */ 343 spa_t * 344 spa_next(spa_t *prev) 345 { 346 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 347 348 if (prev) 349 return (AVL_NEXT(&spa_namespace_avl, prev)); 350 else 351 return (avl_first(&spa_namespace_avl)); 352 } 353 354 /* 355 * ========================================================================== 356 * SPA refcount functions 357 * ========================================================================== 358 */ 359 360 /* 361 * Add a reference to the given spa_t. Must have at least one reference, or 362 * have the namespace lock held. 363 */ 364 void 365 spa_open_ref(spa_t *spa, void *tag) 366 { 367 ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF || 368 MUTEX_HELD(&spa_namespace_lock)); 369 370 (void) refcount_add(&spa->spa_refcount, tag); 371 } 372 373 /* 374 * Remove a reference to the given spa_t. Must have at least one reference, or 375 * have the namespace lock held. 376 */ 377 void 378 spa_close(spa_t *spa, void *tag) 379 { 380 ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF || 381 MUTEX_HELD(&spa_namespace_lock)); 382 383 (void) refcount_remove(&spa->spa_refcount, tag); 384 } 385 386 /* 387 * Check to see if the spa refcount is zero. Must be called with 388 * spa_namespace_lock held. We really compare against SPA_MINREF, which is the 389 * number of references acquired when opening a pool 390 */ 391 boolean_t 392 spa_refcount_zero(spa_t *spa) 393 { 394 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 395 396 return (refcount_count(&spa->spa_refcount) == SPA_MINREF); 397 } 398 399 /* 400 * ========================================================================== 401 * SPA spare tracking 402 * ========================================================================== 403 */ 404 405 /* 406 * Spares are tracked globally due to the following constraints: 407 * 408 * - A spare may be part of multiple pools. 409 * - A spare may be added to a pool even if it's actively in use within 410 * another pool. 411 * - A spare in use in any pool can only be the source of a replacement if 412 * the target is a spare in the same pool. 413 * 414 * We keep track of all spares on the system through the use of a reference 415 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 416 * spare, then we bump the reference count in the AVL tree. In addition, we set 417 * the 'vdev_isspare' member to indicate that the device is a spare (active or 418 * inactive). When a spare is made active (used to replace a device in the 419 * pool), we also keep track of which pool its been made a part of. 420 * 421 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 422 * called under the spa_namespace lock as part of vdev reconfiguration. The 423 * separate spare lock exists for the status query path, which does not need to 424 * be completely consistent with respect to other vdev configuration changes. 425 */ 426 427 typedef struct spa_spare { 428 uint64_t spare_guid; 429 uint64_t spare_pool; 430 avl_node_t spare_avl; 431 int spare_count; 432 } spa_spare_t; 433 434 static int 435 spa_spare_compare(const void *a, const void *b) 436 { 437 const spa_spare_t *sa = a; 438 const spa_spare_t *sb = b; 439 440 if (sa->spare_guid < sb->spare_guid) 441 return (-1); 442 else if (sa->spare_guid > sb->spare_guid) 443 return (1); 444 else 445 return (0); 446 } 447 448 void 449 spa_spare_add(vdev_t *vd) 450 { 451 avl_index_t where; 452 spa_spare_t search; 453 spa_spare_t *spare; 454 455 mutex_enter(&spa_spare_lock); 456 ASSERT(!vd->vdev_isspare); 457 458 search.spare_guid = vd->vdev_guid; 459 if ((spare = avl_find(&spa_spare_avl, &search, &where)) != NULL) { 460 spare->spare_count++; 461 } else { 462 spare = kmem_zalloc(sizeof (spa_spare_t), KM_SLEEP); 463 spare->spare_guid = vd->vdev_guid; 464 spare->spare_count = 1; 465 avl_insert(&spa_spare_avl, spare, where); 466 } 467 vd->vdev_isspare = B_TRUE; 468 469 mutex_exit(&spa_spare_lock); 470 } 471 472 void 473 spa_spare_remove(vdev_t *vd) 474 { 475 spa_spare_t search; 476 spa_spare_t *spare; 477 avl_index_t where; 478 479 mutex_enter(&spa_spare_lock); 480 481 search.spare_guid = vd->vdev_guid; 482 spare = avl_find(&spa_spare_avl, &search, &where); 483 484 ASSERT(vd->vdev_isspare); 485 ASSERT(spare != NULL); 486 487 if (--spare->spare_count == 0) { 488 avl_remove(&spa_spare_avl, spare); 489 kmem_free(spare, sizeof (spa_spare_t)); 490 } else if (spare->spare_pool == spa_guid(vd->vdev_spa)) { 491 spare->spare_pool = 0ULL; 492 } 493 494 vd->vdev_isspare = B_FALSE; 495 mutex_exit(&spa_spare_lock); 496 } 497 498 boolean_t 499 spa_spare_exists(uint64_t guid, uint64_t *pool) 500 { 501 spa_spare_t search, *found; 502 avl_index_t where; 503 504 mutex_enter(&spa_spare_lock); 505 506 search.spare_guid = guid; 507 found = avl_find(&spa_spare_avl, &search, &where); 508 509 if (pool) { 510 if (found) 511 *pool = found->spare_pool; 512 else 513 *pool = 0ULL; 514 } 515 516 mutex_exit(&spa_spare_lock); 517 518 return (found != NULL); 519 } 520 521 void 522 spa_spare_activate(vdev_t *vd) 523 { 524 spa_spare_t search, *found; 525 avl_index_t where; 526 527 mutex_enter(&spa_spare_lock); 528 ASSERT(vd->vdev_isspare); 529 530 search.spare_guid = vd->vdev_guid; 531 found = avl_find(&spa_spare_avl, &search, &where); 532 ASSERT(found != NULL); 533 ASSERT(found->spare_pool == 0ULL); 534 535 found->spare_pool = spa_guid(vd->vdev_spa); 536 mutex_exit(&spa_spare_lock); 537 } 538 539 /* 540 * ========================================================================== 541 * SPA config locking 542 * ========================================================================== 543 */ 544 void 545 spa_config_enter(spa_t *spa, krw_t rw, void *tag) 546 { 547 rprw_enter(&spa->spa_config_lock, rw, tag); 548 } 549 550 void 551 spa_config_exit(spa_t *spa, void *tag) 552 { 553 rprw_exit(&spa->spa_config_lock, tag); 554 } 555 556 boolean_t 557 spa_config_held(spa_t *spa, krw_t rw) 558 { 559 return (rprw_held(&spa->spa_config_lock, rw)); 560 } 561 562 /* 563 * ========================================================================== 564 * SPA vdev locking 565 * ========================================================================== 566 */ 567 568 /* 569 * Lock the given spa_t for the purpose of adding or removing a vdev. 570 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 571 * It returns the next transaction group for the spa_t. 572 */ 573 uint64_t 574 spa_vdev_enter(spa_t *spa) 575 { 576 mutex_enter(&spa_namespace_lock); 577 578 /* 579 * Suspend scrub activity while we mess with the config. We must do 580 * this after acquiring the namespace lock to avoid a 3-way deadlock 581 * with spa_scrub_stop() and the scrub thread. 582 */ 583 spa_scrub_suspend(spa); 584 585 spa_config_enter(spa, RW_WRITER, spa); 586 587 return (spa_last_synced_txg(spa) + 1); 588 } 589 590 /* 591 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 592 * locking of spa_vdev_enter(), we also want make sure the transactions have 593 * synced to disk, and then update the global configuration cache with the new 594 * information. 595 */ 596 int 597 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 598 { 599 int config_changed = B_FALSE; 600 601 ASSERT(txg > spa_last_synced_txg(spa)); 602 603 /* 604 * Reassess the DTLs. 605 */ 606 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 607 608 /* 609 * If the config changed, notify the scrub thread that it must restart. 610 */ 611 if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) { 612 config_changed = B_TRUE; 613 spa_scrub_restart(spa, txg); 614 } 615 616 spa_config_exit(spa, spa); 617 618 /* 619 * Allow scrubbing to resume. 620 */ 621 spa_scrub_resume(spa); 622 623 /* 624 * Note: this txg_wait_synced() is important because it ensures 625 * that there won't be more than one config change per txg. 626 * This allows us to use the txg as the generation number. 627 */ 628 if (error == 0) 629 txg_wait_synced(spa->spa_dsl_pool, txg); 630 631 if (vd != NULL) { 632 ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0); 633 vdev_free(vd); 634 } 635 636 /* 637 * If the config changed, update the config cache. 638 */ 639 if (config_changed) 640 spa_config_sync(); 641 642 mutex_exit(&spa_namespace_lock); 643 644 return (error); 645 } 646 647 /* 648 * ========================================================================== 649 * Miscellaneous functions 650 * ========================================================================== 651 */ 652 653 /* 654 * Rename a spa_t. 655 */ 656 int 657 spa_rename(const char *name, const char *newname) 658 { 659 spa_t *spa; 660 int err; 661 662 /* 663 * Lookup the spa_t and grab the config lock for writing. We need to 664 * actually open the pool so that we can sync out the necessary labels. 665 * It's OK to call spa_open() with the namespace lock held because we 666 * allow recursive calls for other reasons. 667 */ 668 mutex_enter(&spa_namespace_lock); 669 if ((err = spa_open(name, &spa, FTAG)) != 0) { 670 mutex_exit(&spa_namespace_lock); 671 return (err); 672 } 673 674 spa_config_enter(spa, RW_WRITER, FTAG); 675 676 avl_remove(&spa_namespace_avl, spa); 677 spa_strfree(spa->spa_name); 678 spa->spa_name = spa_strdup(newname); 679 avl_add(&spa_namespace_avl, spa); 680 681 /* 682 * Sync all labels to disk with the new names by marking the root vdev 683 * dirty and waiting for it to sync. It will pick up the new pool name 684 * during the sync. 685 */ 686 vdev_config_dirty(spa->spa_root_vdev); 687 688 spa_config_exit(spa, FTAG); 689 690 txg_wait_synced(spa->spa_dsl_pool, 0); 691 692 /* 693 * Sync the updated config cache. 694 */ 695 spa_config_sync(); 696 697 spa_close(spa, FTAG); 698 699 mutex_exit(&spa_namespace_lock); 700 701 return (0); 702 } 703 704 705 /* 706 * Determine whether a pool with given pool_guid exists. If device_guid is 707 * non-zero, determine whether the pool exists *and* contains a device with the 708 * specified device_guid. 709 */ 710 boolean_t 711 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 712 { 713 spa_t *spa; 714 avl_tree_t *t = &spa_namespace_avl; 715 716 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 717 718 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 719 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 720 continue; 721 if (spa->spa_root_vdev == NULL) 722 continue; 723 if (spa_guid(spa) == pool_guid) { 724 if (device_guid == 0) 725 break; 726 727 if (vdev_lookup_by_guid(spa->spa_root_vdev, 728 device_guid) != NULL) 729 break; 730 731 /* 732 * Check any devices we may be in the process of adding. 733 */ 734 if (spa->spa_pending_vdev) { 735 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 736 device_guid) != NULL) 737 break; 738 } 739 } 740 } 741 742 return (spa != NULL); 743 } 744 745 char * 746 spa_strdup(const char *s) 747 { 748 size_t len; 749 char *new; 750 751 len = strlen(s); 752 new = kmem_alloc(len + 1, KM_SLEEP); 753 bcopy(s, new, len); 754 new[len] = '\0'; 755 756 return (new); 757 } 758 759 void 760 spa_strfree(char *s) 761 { 762 kmem_free(s, strlen(s) + 1); 763 } 764 765 uint64_t 766 spa_get_random(uint64_t range) 767 { 768 uint64_t r; 769 770 ASSERT(range != 0); 771 772 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 773 774 return (r % range); 775 } 776 777 void 778 sprintf_blkptr(char *buf, int len, const blkptr_t *bp) 779 { 780 int d; 781 782 if (bp == NULL) { 783 (void) snprintf(buf, len, "<NULL>"); 784 return; 785 } 786 787 if (BP_IS_HOLE(bp)) { 788 (void) snprintf(buf, len, "<hole>"); 789 return; 790 } 791 792 (void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ", 793 (u_longlong_t)BP_GET_LEVEL(bp), 794 dmu_ot[BP_GET_TYPE(bp)].ot_name, 795 (u_longlong_t)BP_GET_LSIZE(bp), 796 (u_longlong_t)BP_GET_PSIZE(bp)); 797 798 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 799 const dva_t *dva = &bp->blk_dva[d]; 800 (void) snprintf(buf + strlen(buf), len - strlen(buf), 801 "DVA[%d]=<%llu:%llx:%llx> ", d, 802 (u_longlong_t)DVA_GET_VDEV(dva), 803 (u_longlong_t)DVA_GET_OFFSET(dva), 804 (u_longlong_t)DVA_GET_ASIZE(dva)); 805 } 806 807 (void) snprintf(buf + strlen(buf), len - strlen(buf), 808 "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx", 809 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name, 810 zio_compress_table[BP_GET_COMPRESS(bp)].ci_name, 811 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", 812 BP_IS_GANG(bp) ? "gang" : "contiguous", 813 (u_longlong_t)bp->blk_birth, 814 (u_longlong_t)bp->blk_fill, 815 (u_longlong_t)bp->blk_cksum.zc_word[0], 816 (u_longlong_t)bp->blk_cksum.zc_word[1], 817 (u_longlong_t)bp->blk_cksum.zc_word[2], 818 (u_longlong_t)bp->blk_cksum.zc_word[3]); 819 } 820 821 void 822 spa_freeze(spa_t *spa) 823 { 824 uint64_t freeze_txg = 0; 825 826 spa_config_enter(spa, RW_WRITER, FTAG); 827 if (spa->spa_freeze_txg == UINT64_MAX) { 828 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 829 spa->spa_freeze_txg = freeze_txg; 830 } 831 spa_config_exit(spa, FTAG); 832 if (freeze_txg != 0) 833 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 834 } 835 836 void 837 zfs_panic_recover(const char *fmt, ...) 838 { 839 va_list adx; 840 841 va_start(adx, fmt); 842 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 843 va_end(adx); 844 } 845 846 /* 847 * ========================================================================== 848 * Accessor functions 849 * ========================================================================== 850 */ 851 852 krwlock_t * 853 spa_traverse_rwlock(spa_t *spa) 854 { 855 return (&spa->spa_traverse_lock); 856 } 857 858 int 859 spa_traverse_wanted(spa_t *spa) 860 { 861 return (spa->spa_traverse_wanted); 862 } 863 864 dsl_pool_t * 865 spa_get_dsl(spa_t *spa) 866 { 867 return (spa->spa_dsl_pool); 868 } 869 870 blkptr_t * 871 spa_get_rootblkptr(spa_t *spa) 872 { 873 return (&spa->spa_ubsync.ub_rootbp); 874 } 875 876 void 877 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 878 { 879 spa->spa_uberblock.ub_rootbp = *bp; 880 } 881 882 void 883 spa_altroot(spa_t *spa, char *buf, size_t buflen) 884 { 885 if (spa->spa_root == NULL) 886 buf[0] = '\0'; 887 else 888 (void) strncpy(buf, spa->spa_root, buflen); 889 } 890 891 int 892 spa_sync_pass(spa_t *spa) 893 { 894 return (spa->spa_sync_pass); 895 } 896 897 char * 898 spa_name(spa_t *spa) 899 { 900 /* 901 * Accessing the name requires holding either the namespace lock or the 902 * config lock, both of which are required to do a rename. 903 */ 904 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 905 spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER)); 906 907 return (spa->spa_name); 908 } 909 910 uint64_t 911 spa_guid(spa_t *spa) 912 { 913 /* 914 * If we fail to parse the config during spa_load(), we can go through 915 * the error path (which posts an ereport) and end up here with no root 916 * vdev. We stash the original pool guid in 'spa_load_guid' to handle 917 * this case. 918 */ 919 if (spa->spa_root_vdev != NULL) 920 return (spa->spa_root_vdev->vdev_guid); 921 else 922 return (spa->spa_load_guid); 923 } 924 925 uint64_t 926 spa_last_synced_txg(spa_t *spa) 927 { 928 return (spa->spa_ubsync.ub_txg); 929 } 930 931 uint64_t 932 spa_first_txg(spa_t *spa) 933 { 934 return (spa->spa_first_txg); 935 } 936 937 int 938 spa_state(spa_t *spa) 939 { 940 return (spa->spa_state); 941 } 942 943 uint64_t 944 spa_freeze_txg(spa_t *spa) 945 { 946 return (spa->spa_freeze_txg); 947 } 948 949 /* 950 * Return how much space is allocated in the pool (ie. sum of all asize) 951 */ 952 uint64_t 953 spa_get_alloc(spa_t *spa) 954 { 955 return (spa->spa_root_vdev->vdev_stat.vs_alloc); 956 } 957 958 /* 959 * Return how much (raid-z inflated) space there is in the pool. 960 */ 961 uint64_t 962 spa_get_space(spa_t *spa) 963 { 964 return (spa->spa_root_vdev->vdev_stat.vs_space); 965 } 966 967 /* 968 * Return the amount of raid-z-deflated space in the pool. 969 */ 970 uint64_t 971 spa_get_dspace(spa_t *spa) 972 { 973 if (spa->spa_deflate) 974 return (spa->spa_root_vdev->vdev_stat.vs_dspace); 975 else 976 return (spa->spa_root_vdev->vdev_stat.vs_space); 977 } 978 979 /* ARGSUSED */ 980 uint64_t 981 spa_get_asize(spa_t *spa, uint64_t lsize) 982 { 983 /* 984 * For now, the worst case is 512-byte RAID-Z blocks, in which 985 * case the space requirement is exactly 2x; so just assume that. 986 * Add to this the fact that we can have up to 3 DVAs per bp, and 987 * we have to multiply by a total of 6x. 988 */ 989 return (lsize * 6); 990 } 991 992 uint64_t 993 spa_version(spa_t *spa) 994 { 995 return (spa->spa_ubsync.ub_version); 996 } 997 998 int 999 spa_max_replication(spa_t *spa) 1000 { 1001 /* 1002 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1003 * handle BPs with more than one DVA allocated. Set our max 1004 * replication level accordingly. 1005 */ 1006 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1007 return (1); 1008 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1009 } 1010 1011 uint64_t 1012 bp_get_dasize(spa_t *spa, const blkptr_t *bp) 1013 { 1014 int sz = 0, i; 1015 1016 if (!spa->spa_deflate) 1017 return (BP_GET_ASIZE(bp)); 1018 1019 spa_config_enter(spa, RW_READER, FTAG); 1020 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1021 vdev_t *vd = 1022 vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i])); 1023 if (vd) 1024 sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> 1025 SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1026 } 1027 spa_config_exit(spa, FTAG); 1028 return (sz); 1029 } 1030 1031 /* 1032 * ========================================================================== 1033 * Initialization and Termination 1034 * ========================================================================== 1035 */ 1036 1037 static int 1038 spa_name_compare(const void *a1, const void *a2) 1039 { 1040 const spa_t *s1 = a1; 1041 const spa_t *s2 = a2; 1042 int s; 1043 1044 s = strcmp(s1->spa_name, s2->spa_name); 1045 if (s > 0) 1046 return (1); 1047 if (s < 0) 1048 return (-1); 1049 return (0); 1050 } 1051 1052 int 1053 spa_busy(void) 1054 { 1055 return (spa_active_count); 1056 } 1057 1058 void 1059 spa_init(int mode) 1060 { 1061 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1062 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1063 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1064 1065 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1066 offsetof(spa_t, spa_avl)); 1067 1068 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_spare_t), 1069 offsetof(spa_spare_t, spare_avl)); 1070 1071 spa_mode = mode; 1072 1073 refcount_init(); 1074 unique_init(); 1075 zio_init(); 1076 dmu_init(); 1077 zil_init(); 1078 zfs_prop_init(); 1079 zpool_prop_init(); 1080 spa_config_load(); 1081 } 1082 1083 void 1084 spa_fini(void) 1085 { 1086 spa_evict_all(); 1087 1088 zil_fini(); 1089 dmu_fini(); 1090 zio_fini(); 1091 unique_fini(); 1092 refcount_fini(); 1093 1094 avl_destroy(&spa_namespace_avl); 1095 avl_destroy(&spa_spare_avl); 1096 1097 cv_destroy(&spa_namespace_cv); 1098 mutex_destroy(&spa_namespace_lock); 1099 mutex_destroy(&spa_spare_lock); 1100 } 1101 1102 /* 1103 * Return whether this pool has slogs. No locking needed. 1104 * It's not a problem if the wrong answer is returned as it's only for 1105 * performance and not correctness 1106 */ 1107 boolean_t 1108 spa_has_slogs(spa_t *spa) 1109 { 1110 return (spa->spa_log_class->mc_rotor != NULL); 1111 } 1112