1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/zfs_context.h> 26 #include <sys/spa_impl.h> 27 #include <sys/zio.h> 28 #include <sys/zio_checksum.h> 29 #include <sys/zio_compress.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/zap.h> 33 #include <sys/zil.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/uberblock_impl.h> 37 #include <sys/txg.h> 38 #include <sys/avl.h> 39 #include <sys/unique.h> 40 #include <sys/dsl_pool.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/dsl_prop.h> 43 #include <sys/dsl_scan.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/arc.h> 47 #include <sys/ddt.h> 48 #include "zfs_prop.h" 49 50 /* 51 * SPA locking 52 * 53 * There are four basic locks for managing spa_t structures: 54 * 55 * spa_namespace_lock (global mutex) 56 * 57 * This lock must be acquired to do any of the following: 58 * 59 * - Lookup a spa_t by name 60 * - Add or remove a spa_t from the namespace 61 * - Increase spa_refcount from non-zero 62 * - Check if spa_refcount is zero 63 * - Rename a spa_t 64 * - add/remove/attach/detach devices 65 * - Held for the duration of create/destroy/import/export 66 * 67 * It does not need to handle recursion. A create or destroy may 68 * reference objects (files or zvols) in other pools, but by 69 * definition they must have an existing reference, and will never need 70 * to lookup a spa_t by name. 71 * 72 * spa_refcount (per-spa refcount_t protected by mutex) 73 * 74 * This reference count keep track of any active users of the spa_t. The 75 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 76 * the refcount is never really 'zero' - opening a pool implicitly keeps 77 * some references in the DMU. Internally we check against spa_minref, but 78 * present the image of a zero/non-zero value to consumers. 79 * 80 * spa_config_lock[] (per-spa array of rwlocks) 81 * 82 * This protects the spa_t from config changes, and must be held in 83 * the following circumstances: 84 * 85 * - RW_READER to perform I/O to the spa 86 * - RW_WRITER to change the vdev config 87 * 88 * The locking order is fairly straightforward: 89 * 90 * spa_namespace_lock -> spa_refcount 91 * 92 * The namespace lock must be acquired to increase the refcount from 0 93 * or to check if it is zero. 94 * 95 * spa_refcount -> spa_config_lock[] 96 * 97 * There must be at least one valid reference on the spa_t to acquire 98 * the config lock. 99 * 100 * spa_namespace_lock -> spa_config_lock[] 101 * 102 * The namespace lock must always be taken before the config lock. 103 * 104 * 105 * The spa_namespace_lock can be acquired directly and is globally visible. 106 * 107 * The namespace is manipulated using the following functions, all of which 108 * require the spa_namespace_lock to be held. 109 * 110 * spa_lookup() Lookup a spa_t by name. 111 * 112 * spa_add() Create a new spa_t in the namespace. 113 * 114 * spa_remove() Remove a spa_t from the namespace. This also 115 * frees up any memory associated with the spa_t. 116 * 117 * spa_next() Returns the next spa_t in the system, or the 118 * first if NULL is passed. 119 * 120 * spa_evict_all() Shutdown and remove all spa_t structures in 121 * the system. 122 * 123 * spa_guid_exists() Determine whether a pool/device guid exists. 124 * 125 * The spa_refcount is manipulated using the following functions: 126 * 127 * spa_open_ref() Adds a reference to the given spa_t. Must be 128 * called with spa_namespace_lock held if the 129 * refcount is currently zero. 130 * 131 * spa_close() Remove a reference from the spa_t. This will 132 * not free the spa_t or remove it from the 133 * namespace. No locking is required. 134 * 135 * spa_refcount_zero() Returns true if the refcount is currently 136 * zero. Must be called with spa_namespace_lock 137 * held. 138 * 139 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 140 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 141 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 142 * 143 * To read the configuration, it suffices to hold one of these locks as reader. 144 * To modify the configuration, you must hold all locks as writer. To modify 145 * vdev state without altering the vdev tree's topology (e.g. online/offline), 146 * you must hold SCL_STATE and SCL_ZIO as writer. 147 * 148 * We use these distinct config locks to avoid recursive lock entry. 149 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 150 * block allocations (SCL_ALLOC), which may require reading space maps 151 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 152 * 153 * The spa config locks cannot be normal rwlocks because we need the 154 * ability to hand off ownership. For example, SCL_ZIO is acquired 155 * by the issuing thread and later released by an interrupt thread. 156 * They do, however, obey the usual write-wanted semantics to prevent 157 * writer (i.e. system administrator) starvation. 158 * 159 * The lock acquisition rules are as follows: 160 * 161 * SCL_CONFIG 162 * Protects changes to the vdev tree topology, such as vdev 163 * add/remove/attach/detach. Protects the dirty config list 164 * (spa_config_dirty_list) and the set of spares and l2arc devices. 165 * 166 * SCL_STATE 167 * Protects changes to pool state and vdev state, such as vdev 168 * online/offline/fault/degrade/clear. Protects the dirty state list 169 * (spa_state_dirty_list) and global pool state (spa_state). 170 * 171 * SCL_ALLOC 172 * Protects changes to metaslab groups and classes. 173 * Held as reader by metaslab_alloc() and metaslab_claim(). 174 * 175 * SCL_ZIO 176 * Held by bp-level zios (those which have no io_vd upon entry) 177 * to prevent changes to the vdev tree. The bp-level zio implicitly 178 * protects all of its vdev child zios, which do not hold SCL_ZIO. 179 * 180 * SCL_FREE 181 * Protects changes to metaslab groups and classes. 182 * Held as reader by metaslab_free(). SCL_FREE is distinct from 183 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 184 * blocks in zio_done() while another i/o that holds either 185 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 186 * 187 * SCL_VDEV 188 * Held as reader to prevent changes to the vdev tree during trivial 189 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 190 * other locks, and lower than all of them, to ensure that it's safe 191 * to acquire regardless of caller context. 192 * 193 * In addition, the following rules apply: 194 * 195 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 196 * The lock ordering is SCL_CONFIG > spa_props_lock. 197 * 198 * (b) I/O operations on leaf vdevs. For any zio operation that takes 199 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 200 * or zio_write_phys() -- the caller must ensure that the config cannot 201 * cannot change in the interim, and that the vdev cannot be reopened. 202 * SCL_STATE as reader suffices for both. 203 * 204 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 205 * 206 * spa_vdev_enter() Acquire the namespace lock and the config lock 207 * for writing. 208 * 209 * spa_vdev_exit() Release the config lock, wait for all I/O 210 * to complete, sync the updated configs to the 211 * cache, and release the namespace lock. 212 * 213 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 214 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 215 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 216 * 217 * spa_rename() is also implemented within this file since is requires 218 * manipulation of the namespace. 219 */ 220 221 static avl_tree_t spa_namespace_avl; 222 kmutex_t spa_namespace_lock; 223 static kcondvar_t spa_namespace_cv; 224 static int spa_active_count; 225 int spa_max_replication_override = SPA_DVAS_PER_BP; 226 227 static kmutex_t spa_spare_lock; 228 static avl_tree_t spa_spare_avl; 229 static kmutex_t spa_l2cache_lock; 230 static avl_tree_t spa_l2cache_avl; 231 232 kmem_cache_t *spa_buffer_pool; 233 int spa_mode_global; 234 235 #ifdef ZFS_DEBUG 236 /* Everything except dprintf is on by default in debug builds */ 237 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 238 #else 239 int zfs_flags = 0; 240 #endif 241 242 /* 243 * zfs_recover can be set to nonzero to attempt to recover from 244 * otherwise-fatal errors, typically caused by on-disk corruption. When 245 * set, calls to zfs_panic_recover() will turn into warning messages. 246 */ 247 int zfs_recover = 0; 248 249 250 /* 251 * ========================================================================== 252 * SPA config locking 253 * ========================================================================== 254 */ 255 static void 256 spa_config_lock_init(spa_t *spa) 257 { 258 for (int i = 0; i < SCL_LOCKS; i++) { 259 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 260 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 261 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 262 refcount_create(&scl->scl_count); 263 scl->scl_writer = NULL; 264 scl->scl_write_wanted = 0; 265 } 266 } 267 268 static void 269 spa_config_lock_destroy(spa_t *spa) 270 { 271 for (int i = 0; i < SCL_LOCKS; i++) { 272 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 273 mutex_destroy(&scl->scl_lock); 274 cv_destroy(&scl->scl_cv); 275 refcount_destroy(&scl->scl_count); 276 ASSERT(scl->scl_writer == NULL); 277 ASSERT(scl->scl_write_wanted == 0); 278 } 279 } 280 281 int 282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 283 { 284 for (int i = 0; i < SCL_LOCKS; i++) { 285 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 286 if (!(locks & (1 << i))) 287 continue; 288 mutex_enter(&scl->scl_lock); 289 if (rw == RW_READER) { 290 if (scl->scl_writer || scl->scl_write_wanted) { 291 mutex_exit(&scl->scl_lock); 292 spa_config_exit(spa, locks ^ (1 << i), tag); 293 return (0); 294 } 295 } else { 296 ASSERT(scl->scl_writer != curthread); 297 if (!refcount_is_zero(&scl->scl_count)) { 298 mutex_exit(&scl->scl_lock); 299 spa_config_exit(spa, locks ^ (1 << i), tag); 300 return (0); 301 } 302 scl->scl_writer = curthread; 303 } 304 (void) refcount_add(&scl->scl_count, tag); 305 mutex_exit(&scl->scl_lock); 306 } 307 return (1); 308 } 309 310 void 311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 312 { 313 int wlocks_held = 0; 314 315 for (int i = 0; i < SCL_LOCKS; i++) { 316 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 317 if (scl->scl_writer == curthread) 318 wlocks_held |= (1 << i); 319 if (!(locks & (1 << i))) 320 continue; 321 mutex_enter(&scl->scl_lock); 322 if (rw == RW_READER) { 323 while (scl->scl_writer || scl->scl_write_wanted) { 324 cv_wait(&scl->scl_cv, &scl->scl_lock); 325 } 326 } else { 327 ASSERT(scl->scl_writer != curthread); 328 while (!refcount_is_zero(&scl->scl_count)) { 329 scl->scl_write_wanted++; 330 cv_wait(&scl->scl_cv, &scl->scl_lock); 331 scl->scl_write_wanted--; 332 } 333 scl->scl_writer = curthread; 334 } 335 (void) refcount_add(&scl->scl_count, tag); 336 mutex_exit(&scl->scl_lock); 337 } 338 ASSERT(wlocks_held <= locks); 339 } 340 341 void 342 spa_config_exit(spa_t *spa, int locks, void *tag) 343 { 344 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 345 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 346 if (!(locks & (1 << i))) 347 continue; 348 mutex_enter(&scl->scl_lock); 349 ASSERT(!refcount_is_zero(&scl->scl_count)); 350 if (refcount_remove(&scl->scl_count, tag) == 0) { 351 ASSERT(scl->scl_writer == NULL || 352 scl->scl_writer == curthread); 353 scl->scl_writer = NULL; /* OK in either case */ 354 cv_broadcast(&scl->scl_cv); 355 } 356 mutex_exit(&scl->scl_lock); 357 } 358 } 359 360 int 361 spa_config_held(spa_t *spa, int locks, krw_t rw) 362 { 363 int locks_held = 0; 364 365 for (int i = 0; i < SCL_LOCKS; i++) { 366 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 367 if (!(locks & (1 << i))) 368 continue; 369 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 370 (rw == RW_WRITER && scl->scl_writer == curthread)) 371 locks_held |= 1 << i; 372 } 373 374 return (locks_held); 375 } 376 377 /* 378 * ========================================================================== 379 * SPA namespace functions 380 * ========================================================================== 381 */ 382 383 /* 384 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 385 * Returns NULL if no matching spa_t is found. 386 */ 387 spa_t * 388 spa_lookup(const char *name) 389 { 390 static spa_t search; /* spa_t is large; don't allocate on stack */ 391 spa_t *spa; 392 avl_index_t where; 393 char c; 394 char *cp; 395 396 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 397 398 /* 399 * If it's a full dataset name, figure out the pool name and 400 * just use that. 401 */ 402 cp = strpbrk(name, "/@"); 403 if (cp) { 404 c = *cp; 405 *cp = '\0'; 406 } 407 408 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 409 spa = avl_find(&spa_namespace_avl, &search, &where); 410 411 if (cp) 412 *cp = c; 413 414 return (spa); 415 } 416 417 /* 418 * Create an uninitialized spa_t with the given name. Requires 419 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 420 * exist by calling spa_lookup() first. 421 */ 422 spa_t * 423 spa_add(const char *name, nvlist_t *config, const char *altroot) 424 { 425 spa_t *spa; 426 spa_config_dirent_t *dp; 427 428 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 429 430 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 431 432 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 433 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 434 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 435 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 436 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 437 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 438 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 439 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 440 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 441 442 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 443 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 444 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 445 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 446 447 for (int t = 0; t < TXG_SIZE; t++) 448 bplist_create(&spa->spa_free_bplist[t]); 449 450 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 451 spa->spa_state = POOL_STATE_UNINITIALIZED; 452 spa->spa_freeze_txg = UINT64_MAX; 453 spa->spa_final_txg = UINT64_MAX; 454 spa->spa_load_max_txg = UINT64_MAX; 455 spa->spa_proc = &p0; 456 spa->spa_proc_state = SPA_PROC_NONE; 457 458 refcount_create(&spa->spa_refcount); 459 spa_config_lock_init(spa); 460 461 avl_add(&spa_namespace_avl, spa); 462 463 /* 464 * Set the alternate root, if there is one. 465 */ 466 if (altroot) { 467 spa->spa_root = spa_strdup(altroot); 468 spa_active_count++; 469 } 470 471 /* 472 * Every pool starts with the default cachefile 473 */ 474 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 475 offsetof(spa_config_dirent_t, scd_link)); 476 477 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 478 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 479 list_insert_head(&spa->spa_config_list, dp); 480 481 if (config != NULL) 482 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 483 484 return (spa); 485 } 486 487 /* 488 * Removes a spa_t from the namespace, freeing up any memory used. Requires 489 * spa_namespace_lock. This is called only after the spa_t has been closed and 490 * deactivated. 491 */ 492 void 493 spa_remove(spa_t *spa) 494 { 495 spa_config_dirent_t *dp; 496 497 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 498 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 499 500 nvlist_free(spa->spa_config_splitting); 501 502 avl_remove(&spa_namespace_avl, spa); 503 cv_broadcast(&spa_namespace_cv); 504 505 if (spa->spa_root) { 506 spa_strfree(spa->spa_root); 507 spa_active_count--; 508 } 509 510 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 511 list_remove(&spa->spa_config_list, dp); 512 if (dp->scd_path != NULL) 513 spa_strfree(dp->scd_path); 514 kmem_free(dp, sizeof (spa_config_dirent_t)); 515 } 516 517 list_destroy(&spa->spa_config_list); 518 519 spa_config_set(spa, NULL); 520 521 refcount_destroy(&spa->spa_refcount); 522 523 spa_config_lock_destroy(spa); 524 525 for (int t = 0; t < TXG_SIZE; t++) 526 bplist_destroy(&spa->spa_free_bplist[t]); 527 528 cv_destroy(&spa->spa_async_cv); 529 cv_destroy(&spa->spa_proc_cv); 530 cv_destroy(&spa->spa_scrub_io_cv); 531 cv_destroy(&spa->spa_suspend_cv); 532 533 mutex_destroy(&spa->spa_async_lock); 534 mutex_destroy(&spa->spa_errlist_lock); 535 mutex_destroy(&spa->spa_errlog_lock); 536 mutex_destroy(&spa->spa_history_lock); 537 mutex_destroy(&spa->spa_proc_lock); 538 mutex_destroy(&spa->spa_props_lock); 539 mutex_destroy(&spa->spa_scrub_lock); 540 mutex_destroy(&spa->spa_suspend_lock); 541 mutex_destroy(&spa->spa_vdev_top_lock); 542 543 kmem_free(spa, sizeof (spa_t)); 544 } 545 546 /* 547 * Given a pool, return the next pool in the namespace, or NULL if there is 548 * none. If 'prev' is NULL, return the first pool. 549 */ 550 spa_t * 551 spa_next(spa_t *prev) 552 { 553 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 554 555 if (prev) 556 return (AVL_NEXT(&spa_namespace_avl, prev)); 557 else 558 return (avl_first(&spa_namespace_avl)); 559 } 560 561 /* 562 * ========================================================================== 563 * SPA refcount functions 564 * ========================================================================== 565 */ 566 567 /* 568 * Add a reference to the given spa_t. Must have at least one reference, or 569 * have the namespace lock held. 570 */ 571 void 572 spa_open_ref(spa_t *spa, void *tag) 573 { 574 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 575 MUTEX_HELD(&spa_namespace_lock)); 576 (void) refcount_add(&spa->spa_refcount, tag); 577 } 578 579 /* 580 * Remove a reference to the given spa_t. Must have at least one reference, or 581 * have the namespace lock held. 582 */ 583 void 584 spa_close(spa_t *spa, void *tag) 585 { 586 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 587 MUTEX_HELD(&spa_namespace_lock)); 588 (void) refcount_remove(&spa->spa_refcount, tag); 589 } 590 591 /* 592 * Check to see if the spa refcount is zero. Must be called with 593 * spa_namespace_lock held. We really compare against spa_minref, which is the 594 * number of references acquired when opening a pool 595 */ 596 boolean_t 597 spa_refcount_zero(spa_t *spa) 598 { 599 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 600 601 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 602 } 603 604 /* 605 * ========================================================================== 606 * SPA spare and l2cache tracking 607 * ========================================================================== 608 */ 609 610 /* 611 * Hot spares and cache devices are tracked using the same code below, 612 * for 'auxiliary' devices. 613 */ 614 615 typedef struct spa_aux { 616 uint64_t aux_guid; 617 uint64_t aux_pool; 618 avl_node_t aux_avl; 619 int aux_count; 620 } spa_aux_t; 621 622 static int 623 spa_aux_compare(const void *a, const void *b) 624 { 625 const spa_aux_t *sa = a; 626 const spa_aux_t *sb = b; 627 628 if (sa->aux_guid < sb->aux_guid) 629 return (-1); 630 else if (sa->aux_guid > sb->aux_guid) 631 return (1); 632 else 633 return (0); 634 } 635 636 void 637 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 638 { 639 avl_index_t where; 640 spa_aux_t search; 641 spa_aux_t *aux; 642 643 search.aux_guid = vd->vdev_guid; 644 if ((aux = avl_find(avl, &search, &where)) != NULL) { 645 aux->aux_count++; 646 } else { 647 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 648 aux->aux_guid = vd->vdev_guid; 649 aux->aux_count = 1; 650 avl_insert(avl, aux, where); 651 } 652 } 653 654 void 655 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 656 { 657 spa_aux_t search; 658 spa_aux_t *aux; 659 avl_index_t where; 660 661 search.aux_guid = vd->vdev_guid; 662 aux = avl_find(avl, &search, &where); 663 664 ASSERT(aux != NULL); 665 666 if (--aux->aux_count == 0) { 667 avl_remove(avl, aux); 668 kmem_free(aux, sizeof (spa_aux_t)); 669 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 670 aux->aux_pool = 0ULL; 671 } 672 } 673 674 boolean_t 675 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 676 { 677 spa_aux_t search, *found; 678 679 search.aux_guid = guid; 680 found = avl_find(avl, &search, NULL); 681 682 if (pool) { 683 if (found) 684 *pool = found->aux_pool; 685 else 686 *pool = 0ULL; 687 } 688 689 if (refcnt) { 690 if (found) 691 *refcnt = found->aux_count; 692 else 693 *refcnt = 0; 694 } 695 696 return (found != NULL); 697 } 698 699 void 700 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 701 { 702 spa_aux_t search, *found; 703 avl_index_t where; 704 705 search.aux_guid = vd->vdev_guid; 706 found = avl_find(avl, &search, &where); 707 ASSERT(found != NULL); 708 ASSERT(found->aux_pool == 0ULL); 709 710 found->aux_pool = spa_guid(vd->vdev_spa); 711 } 712 713 /* 714 * Spares are tracked globally due to the following constraints: 715 * 716 * - A spare may be part of multiple pools. 717 * - A spare may be added to a pool even if it's actively in use within 718 * another pool. 719 * - A spare in use in any pool can only be the source of a replacement if 720 * the target is a spare in the same pool. 721 * 722 * We keep track of all spares on the system through the use of a reference 723 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 724 * spare, then we bump the reference count in the AVL tree. In addition, we set 725 * the 'vdev_isspare' member to indicate that the device is a spare (active or 726 * inactive). When a spare is made active (used to replace a device in the 727 * pool), we also keep track of which pool its been made a part of. 728 * 729 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 730 * called under the spa_namespace lock as part of vdev reconfiguration. The 731 * separate spare lock exists for the status query path, which does not need to 732 * be completely consistent with respect to other vdev configuration changes. 733 */ 734 735 static int 736 spa_spare_compare(const void *a, const void *b) 737 { 738 return (spa_aux_compare(a, b)); 739 } 740 741 void 742 spa_spare_add(vdev_t *vd) 743 { 744 mutex_enter(&spa_spare_lock); 745 ASSERT(!vd->vdev_isspare); 746 spa_aux_add(vd, &spa_spare_avl); 747 vd->vdev_isspare = B_TRUE; 748 mutex_exit(&spa_spare_lock); 749 } 750 751 void 752 spa_spare_remove(vdev_t *vd) 753 { 754 mutex_enter(&spa_spare_lock); 755 ASSERT(vd->vdev_isspare); 756 spa_aux_remove(vd, &spa_spare_avl); 757 vd->vdev_isspare = B_FALSE; 758 mutex_exit(&spa_spare_lock); 759 } 760 761 boolean_t 762 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 763 { 764 boolean_t found; 765 766 mutex_enter(&spa_spare_lock); 767 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 768 mutex_exit(&spa_spare_lock); 769 770 return (found); 771 } 772 773 void 774 spa_spare_activate(vdev_t *vd) 775 { 776 mutex_enter(&spa_spare_lock); 777 ASSERT(vd->vdev_isspare); 778 spa_aux_activate(vd, &spa_spare_avl); 779 mutex_exit(&spa_spare_lock); 780 } 781 782 /* 783 * Level 2 ARC devices are tracked globally for the same reasons as spares. 784 * Cache devices currently only support one pool per cache device, and so 785 * for these devices the aux reference count is currently unused beyond 1. 786 */ 787 788 static int 789 spa_l2cache_compare(const void *a, const void *b) 790 { 791 return (spa_aux_compare(a, b)); 792 } 793 794 void 795 spa_l2cache_add(vdev_t *vd) 796 { 797 mutex_enter(&spa_l2cache_lock); 798 ASSERT(!vd->vdev_isl2cache); 799 spa_aux_add(vd, &spa_l2cache_avl); 800 vd->vdev_isl2cache = B_TRUE; 801 mutex_exit(&spa_l2cache_lock); 802 } 803 804 void 805 spa_l2cache_remove(vdev_t *vd) 806 { 807 mutex_enter(&spa_l2cache_lock); 808 ASSERT(vd->vdev_isl2cache); 809 spa_aux_remove(vd, &spa_l2cache_avl); 810 vd->vdev_isl2cache = B_FALSE; 811 mutex_exit(&spa_l2cache_lock); 812 } 813 814 boolean_t 815 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 816 { 817 boolean_t found; 818 819 mutex_enter(&spa_l2cache_lock); 820 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 821 mutex_exit(&spa_l2cache_lock); 822 823 return (found); 824 } 825 826 void 827 spa_l2cache_activate(vdev_t *vd) 828 { 829 mutex_enter(&spa_l2cache_lock); 830 ASSERT(vd->vdev_isl2cache); 831 spa_aux_activate(vd, &spa_l2cache_avl); 832 mutex_exit(&spa_l2cache_lock); 833 } 834 835 /* 836 * ========================================================================== 837 * SPA vdev locking 838 * ========================================================================== 839 */ 840 841 /* 842 * Lock the given spa_t for the purpose of adding or removing a vdev. 843 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 844 * It returns the next transaction group for the spa_t. 845 */ 846 uint64_t 847 spa_vdev_enter(spa_t *spa) 848 { 849 mutex_enter(&spa->spa_vdev_top_lock); 850 mutex_enter(&spa_namespace_lock); 851 return (spa_vdev_config_enter(spa)); 852 } 853 854 /* 855 * Internal implementation for spa_vdev_enter(). Used when a vdev 856 * operation requires multiple syncs (i.e. removing a device) while 857 * keeping the spa_namespace_lock held. 858 */ 859 uint64_t 860 spa_vdev_config_enter(spa_t *spa) 861 { 862 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 863 864 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 865 866 return (spa_last_synced_txg(spa) + 1); 867 } 868 869 /* 870 * Used in combination with spa_vdev_config_enter() to allow the syncing 871 * of multiple transactions without releasing the spa_namespace_lock. 872 */ 873 void 874 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 875 { 876 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 877 878 int config_changed = B_FALSE; 879 880 ASSERT(txg > spa_last_synced_txg(spa)); 881 882 spa->spa_pending_vdev = NULL; 883 884 /* 885 * Reassess the DTLs. 886 */ 887 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 888 889 /* 890 * If the config changed, notify the scrub that it must restart. 891 * This will initiate a resilver if needed. 892 */ 893 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 894 config_changed = B_TRUE; 895 spa->spa_config_generation++; 896 } 897 898 /* 899 * Verify the metaslab classes. 900 */ 901 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 902 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 903 904 spa_config_exit(spa, SCL_ALL, spa); 905 906 /* 907 * Panic the system if the specified tag requires it. This 908 * is useful for ensuring that configurations are updated 909 * transactionally. 910 */ 911 if (zio_injection_enabled) 912 zio_handle_panic_injection(spa, tag, 0); 913 914 /* 915 * Note: this txg_wait_synced() is important because it ensures 916 * that there won't be more than one config change per txg. 917 * This allows us to use the txg as the generation number. 918 */ 919 if (error == 0) 920 txg_wait_synced(spa->spa_dsl_pool, txg); 921 922 if (vd != NULL) { 923 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0); 924 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 925 vdev_free(vd); 926 spa_config_exit(spa, SCL_ALL, spa); 927 } 928 929 /* 930 * If the config changed, update the config cache. 931 */ 932 if (config_changed) 933 spa_config_sync(spa, B_FALSE, B_TRUE); 934 } 935 936 /* 937 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 938 * locking of spa_vdev_enter(), we also want make sure the transactions have 939 * synced to disk, and then update the global configuration cache with the new 940 * information. 941 */ 942 int 943 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 944 { 945 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 946 mutex_exit(&spa_namespace_lock); 947 mutex_exit(&spa->spa_vdev_top_lock); 948 949 return (error); 950 } 951 952 /* 953 * Lock the given spa_t for the purpose of changing vdev state. 954 */ 955 void 956 spa_vdev_state_enter(spa_t *spa, int oplocks) 957 { 958 int locks = SCL_STATE_ALL | oplocks; 959 960 /* 961 * Root pools may need to read of the underlying devfs filesystem 962 * when opening up a vdev. Unfortunately if we're holding the 963 * SCL_ZIO lock it will result in a deadlock when we try to issue 964 * the read from the root filesystem. Instead we "prefetch" 965 * the associated vnodes that we need prior to opening the 966 * underlying devices and cache them so that we can prevent 967 * any I/O when we are doing the actual open. 968 */ 969 if (spa_is_root(spa)) { 970 int low = locks & ~(SCL_ZIO - 1); 971 int high = locks & ~low; 972 973 spa_config_enter(spa, high, spa, RW_WRITER); 974 vdev_hold(spa->spa_root_vdev); 975 spa_config_enter(spa, low, spa, RW_WRITER); 976 } else { 977 spa_config_enter(spa, locks, spa, RW_WRITER); 978 } 979 spa->spa_vdev_locks = locks; 980 } 981 982 int 983 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 984 { 985 boolean_t config_changed = B_FALSE; 986 987 if (vd != NULL || error == 0) 988 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 989 0, 0, B_FALSE); 990 991 if (vd != NULL) { 992 vdev_state_dirty(vd->vdev_top); 993 config_changed = B_TRUE; 994 spa->spa_config_generation++; 995 } 996 997 if (spa_is_root(spa)) 998 vdev_rele(spa->spa_root_vdev); 999 1000 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1001 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1002 1003 /* 1004 * If anything changed, wait for it to sync. This ensures that, 1005 * from the system administrator's perspective, zpool(1M) commands 1006 * are synchronous. This is important for things like zpool offline: 1007 * when the command completes, you expect no further I/O from ZFS. 1008 */ 1009 if (vd != NULL) 1010 txg_wait_synced(spa->spa_dsl_pool, 0); 1011 1012 /* 1013 * If the config changed, update the config cache. 1014 */ 1015 if (config_changed) { 1016 mutex_enter(&spa_namespace_lock); 1017 spa_config_sync(spa, B_FALSE, B_TRUE); 1018 mutex_exit(&spa_namespace_lock); 1019 } 1020 1021 return (error); 1022 } 1023 1024 /* 1025 * ========================================================================== 1026 * Miscellaneous functions 1027 * ========================================================================== 1028 */ 1029 1030 /* 1031 * Rename a spa_t. 1032 */ 1033 int 1034 spa_rename(const char *name, const char *newname) 1035 { 1036 spa_t *spa; 1037 int err; 1038 1039 /* 1040 * Lookup the spa_t and grab the config lock for writing. We need to 1041 * actually open the pool so that we can sync out the necessary labels. 1042 * It's OK to call spa_open() with the namespace lock held because we 1043 * allow recursive calls for other reasons. 1044 */ 1045 mutex_enter(&spa_namespace_lock); 1046 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1047 mutex_exit(&spa_namespace_lock); 1048 return (err); 1049 } 1050 1051 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1052 1053 avl_remove(&spa_namespace_avl, spa); 1054 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1055 avl_add(&spa_namespace_avl, spa); 1056 1057 /* 1058 * Sync all labels to disk with the new names by marking the root vdev 1059 * dirty and waiting for it to sync. It will pick up the new pool name 1060 * during the sync. 1061 */ 1062 vdev_config_dirty(spa->spa_root_vdev); 1063 1064 spa_config_exit(spa, SCL_ALL, FTAG); 1065 1066 txg_wait_synced(spa->spa_dsl_pool, 0); 1067 1068 /* 1069 * Sync the updated config cache. 1070 */ 1071 spa_config_sync(spa, B_FALSE, B_TRUE); 1072 1073 spa_close(spa, FTAG); 1074 1075 mutex_exit(&spa_namespace_lock); 1076 1077 return (0); 1078 } 1079 1080 /* 1081 * Determine whether a pool with given pool_guid exists. If device_guid is 1082 * non-zero, determine whether the pool exists *and* contains a device with the 1083 * specified device_guid. 1084 */ 1085 boolean_t 1086 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1087 { 1088 spa_t *spa; 1089 avl_tree_t *t = &spa_namespace_avl; 1090 1091 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1092 1093 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1094 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1095 continue; 1096 if (spa->spa_root_vdev == NULL) 1097 continue; 1098 if (spa_guid(spa) == pool_guid) { 1099 if (device_guid == 0) 1100 break; 1101 1102 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1103 device_guid) != NULL) 1104 break; 1105 1106 /* 1107 * Check any devices we may be in the process of adding. 1108 */ 1109 if (spa->spa_pending_vdev) { 1110 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1111 device_guid) != NULL) 1112 break; 1113 } 1114 } 1115 } 1116 1117 return (spa != NULL); 1118 } 1119 1120 char * 1121 spa_strdup(const char *s) 1122 { 1123 size_t len; 1124 char *new; 1125 1126 len = strlen(s); 1127 new = kmem_alloc(len + 1, KM_SLEEP); 1128 bcopy(s, new, len); 1129 new[len] = '\0'; 1130 1131 return (new); 1132 } 1133 1134 void 1135 spa_strfree(char *s) 1136 { 1137 kmem_free(s, strlen(s) + 1); 1138 } 1139 1140 uint64_t 1141 spa_get_random(uint64_t range) 1142 { 1143 uint64_t r; 1144 1145 ASSERT(range != 0); 1146 1147 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1148 1149 return (r % range); 1150 } 1151 1152 uint64_t 1153 spa_generate_guid(spa_t *spa) 1154 { 1155 uint64_t guid = spa_get_random(-1ULL); 1156 1157 if (spa != NULL) { 1158 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1159 guid = spa_get_random(-1ULL); 1160 } else { 1161 while (guid == 0 || spa_guid_exists(guid, 0)) 1162 guid = spa_get_random(-1ULL); 1163 } 1164 1165 return (guid); 1166 } 1167 1168 void 1169 sprintf_blkptr(char *buf, const blkptr_t *bp) 1170 { 1171 char *type = NULL; 1172 char *checksum = NULL; 1173 char *compress = NULL; 1174 1175 if (bp != NULL) { 1176 type = dmu_ot[BP_GET_TYPE(bp)].ot_name; 1177 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1178 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1179 } 1180 1181 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress); 1182 } 1183 1184 void 1185 spa_freeze(spa_t *spa) 1186 { 1187 uint64_t freeze_txg = 0; 1188 1189 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1190 if (spa->spa_freeze_txg == UINT64_MAX) { 1191 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1192 spa->spa_freeze_txg = freeze_txg; 1193 } 1194 spa_config_exit(spa, SCL_ALL, FTAG); 1195 if (freeze_txg != 0) 1196 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1197 } 1198 1199 void 1200 zfs_panic_recover(const char *fmt, ...) 1201 { 1202 va_list adx; 1203 1204 va_start(adx, fmt); 1205 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1206 va_end(adx); 1207 } 1208 1209 /* 1210 * This is a stripped-down version of strtoull, suitable only for converting 1211 * lowercase hexidecimal numbers that don't overflow. 1212 */ 1213 uint64_t 1214 strtonum(const char *str, char **nptr) 1215 { 1216 uint64_t val = 0; 1217 char c; 1218 int digit; 1219 1220 while ((c = *str) != '\0') { 1221 if (c >= '0' && c <= '9') 1222 digit = c - '0'; 1223 else if (c >= 'a' && c <= 'f') 1224 digit = 10 + c - 'a'; 1225 else 1226 break; 1227 1228 val *= 16; 1229 val += digit; 1230 1231 str++; 1232 } 1233 1234 if (nptr) 1235 *nptr = (char *)str; 1236 1237 return (val); 1238 } 1239 1240 /* 1241 * ========================================================================== 1242 * Accessor functions 1243 * ========================================================================== 1244 */ 1245 1246 boolean_t 1247 spa_shutting_down(spa_t *spa) 1248 { 1249 return (spa->spa_async_suspended); 1250 } 1251 1252 dsl_pool_t * 1253 spa_get_dsl(spa_t *spa) 1254 { 1255 return (spa->spa_dsl_pool); 1256 } 1257 1258 blkptr_t * 1259 spa_get_rootblkptr(spa_t *spa) 1260 { 1261 return (&spa->spa_ubsync.ub_rootbp); 1262 } 1263 1264 void 1265 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1266 { 1267 spa->spa_uberblock.ub_rootbp = *bp; 1268 } 1269 1270 void 1271 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1272 { 1273 if (spa->spa_root == NULL) 1274 buf[0] = '\0'; 1275 else 1276 (void) strncpy(buf, spa->spa_root, buflen); 1277 } 1278 1279 int 1280 spa_sync_pass(spa_t *spa) 1281 { 1282 return (spa->spa_sync_pass); 1283 } 1284 1285 char * 1286 spa_name(spa_t *spa) 1287 { 1288 return (spa->spa_name); 1289 } 1290 1291 uint64_t 1292 spa_guid(spa_t *spa) 1293 { 1294 /* 1295 * If we fail to parse the config during spa_load(), we can go through 1296 * the error path (which posts an ereport) and end up here with no root 1297 * vdev. We stash the original pool guid in 'spa_load_guid' to handle 1298 * this case. 1299 */ 1300 if (spa->spa_root_vdev != NULL) 1301 return (spa->spa_root_vdev->vdev_guid); 1302 else 1303 return (spa->spa_load_guid); 1304 } 1305 1306 uint64_t 1307 spa_last_synced_txg(spa_t *spa) 1308 { 1309 return (spa->spa_ubsync.ub_txg); 1310 } 1311 1312 uint64_t 1313 spa_first_txg(spa_t *spa) 1314 { 1315 return (spa->spa_first_txg); 1316 } 1317 1318 uint64_t 1319 spa_syncing_txg(spa_t *spa) 1320 { 1321 return (spa->spa_syncing_txg); 1322 } 1323 1324 pool_state_t 1325 spa_state(spa_t *spa) 1326 { 1327 return (spa->spa_state); 1328 } 1329 1330 spa_load_state_t 1331 spa_load_state(spa_t *spa) 1332 { 1333 return (spa->spa_load_state); 1334 } 1335 1336 uint64_t 1337 spa_freeze_txg(spa_t *spa) 1338 { 1339 return (spa->spa_freeze_txg); 1340 } 1341 1342 /* ARGSUSED */ 1343 uint64_t 1344 spa_get_asize(spa_t *spa, uint64_t lsize) 1345 { 1346 /* 1347 * The worst case is single-sector max-parity RAID-Z blocks, in which 1348 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 1349 * times the size; so just assume that. Add to this the fact that 1350 * we can have up to 3 DVAs per bp, and one more factor of 2 because 1351 * the block may be dittoed with up to 3 DVAs by ddt_sync(). 1352 */ 1353 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2); 1354 } 1355 1356 uint64_t 1357 spa_get_dspace(spa_t *spa) 1358 { 1359 return (spa->spa_dspace); 1360 } 1361 1362 void 1363 spa_update_dspace(spa_t *spa) 1364 { 1365 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1366 ddt_get_dedup_dspace(spa); 1367 } 1368 1369 /* 1370 * Return the failure mode that has been set to this pool. The default 1371 * behavior will be to block all I/Os when a complete failure occurs. 1372 */ 1373 uint8_t 1374 spa_get_failmode(spa_t *spa) 1375 { 1376 return (spa->spa_failmode); 1377 } 1378 1379 boolean_t 1380 spa_suspended(spa_t *spa) 1381 { 1382 return (spa->spa_suspended); 1383 } 1384 1385 uint64_t 1386 spa_version(spa_t *spa) 1387 { 1388 return (spa->spa_ubsync.ub_version); 1389 } 1390 1391 boolean_t 1392 spa_deflate(spa_t *spa) 1393 { 1394 return (spa->spa_deflate); 1395 } 1396 1397 metaslab_class_t * 1398 spa_normal_class(spa_t *spa) 1399 { 1400 return (spa->spa_normal_class); 1401 } 1402 1403 metaslab_class_t * 1404 spa_log_class(spa_t *spa) 1405 { 1406 return (spa->spa_log_class); 1407 } 1408 1409 int 1410 spa_max_replication(spa_t *spa) 1411 { 1412 /* 1413 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1414 * handle BPs with more than one DVA allocated. Set our max 1415 * replication level accordingly. 1416 */ 1417 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1418 return (1); 1419 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1420 } 1421 1422 int 1423 spa_prev_software_version(spa_t *spa) 1424 { 1425 return (spa->spa_prev_software_version); 1426 } 1427 1428 uint64_t 1429 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1430 { 1431 uint64_t asize = DVA_GET_ASIZE(dva); 1432 uint64_t dsize = asize; 1433 1434 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1435 1436 if (asize != 0 && spa->spa_deflate) { 1437 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1438 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1439 } 1440 1441 return (dsize); 1442 } 1443 1444 uint64_t 1445 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1446 { 1447 uint64_t dsize = 0; 1448 1449 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1450 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1451 1452 return (dsize); 1453 } 1454 1455 uint64_t 1456 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1457 { 1458 uint64_t dsize = 0; 1459 1460 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1461 1462 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1463 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1464 1465 spa_config_exit(spa, SCL_VDEV, FTAG); 1466 1467 return (dsize); 1468 } 1469 1470 /* 1471 * ========================================================================== 1472 * Initialization and Termination 1473 * ========================================================================== 1474 */ 1475 1476 static int 1477 spa_name_compare(const void *a1, const void *a2) 1478 { 1479 const spa_t *s1 = a1; 1480 const spa_t *s2 = a2; 1481 int s; 1482 1483 s = strcmp(s1->spa_name, s2->spa_name); 1484 if (s > 0) 1485 return (1); 1486 if (s < 0) 1487 return (-1); 1488 return (0); 1489 } 1490 1491 int 1492 spa_busy(void) 1493 { 1494 return (spa_active_count); 1495 } 1496 1497 void 1498 spa_boot_init() 1499 { 1500 spa_config_load(); 1501 } 1502 1503 void 1504 spa_init(int mode) 1505 { 1506 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1507 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1508 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1509 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1510 1511 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1512 offsetof(spa_t, spa_avl)); 1513 1514 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1515 offsetof(spa_aux_t, aux_avl)); 1516 1517 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1518 offsetof(spa_aux_t, aux_avl)); 1519 1520 spa_mode_global = mode; 1521 1522 refcount_init(); 1523 unique_init(); 1524 zio_init(); 1525 dmu_init(); 1526 zil_init(); 1527 vdev_cache_stat_init(); 1528 zfs_prop_init(); 1529 zpool_prop_init(); 1530 spa_config_load(); 1531 l2arc_start(); 1532 } 1533 1534 void 1535 spa_fini(void) 1536 { 1537 l2arc_stop(); 1538 1539 spa_evict_all(); 1540 1541 vdev_cache_stat_fini(); 1542 zil_fini(); 1543 dmu_fini(); 1544 zio_fini(); 1545 unique_fini(); 1546 refcount_fini(); 1547 1548 avl_destroy(&spa_namespace_avl); 1549 avl_destroy(&spa_spare_avl); 1550 avl_destroy(&spa_l2cache_avl); 1551 1552 cv_destroy(&spa_namespace_cv); 1553 mutex_destroy(&spa_namespace_lock); 1554 mutex_destroy(&spa_spare_lock); 1555 mutex_destroy(&spa_l2cache_lock); 1556 } 1557 1558 /* 1559 * Return whether this pool has slogs. No locking needed. 1560 * It's not a problem if the wrong answer is returned as it's only for 1561 * performance and not correctness 1562 */ 1563 boolean_t 1564 spa_has_slogs(spa_t *spa) 1565 { 1566 return (spa->spa_log_class->mc_rotor != NULL); 1567 } 1568 1569 spa_log_state_t 1570 spa_get_log_state(spa_t *spa) 1571 { 1572 return (spa->spa_log_state); 1573 } 1574 1575 void 1576 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1577 { 1578 spa->spa_log_state = state; 1579 } 1580 1581 boolean_t 1582 spa_is_root(spa_t *spa) 1583 { 1584 return (spa->spa_is_root); 1585 } 1586 1587 boolean_t 1588 spa_writeable(spa_t *spa) 1589 { 1590 return (!!(spa->spa_mode & FWRITE)); 1591 } 1592 1593 int 1594 spa_mode(spa_t *spa) 1595 { 1596 return (spa->spa_mode); 1597 } 1598 1599 uint64_t 1600 spa_bootfs(spa_t *spa) 1601 { 1602 return (spa->spa_bootfs); 1603 } 1604 1605 uint64_t 1606 spa_delegation(spa_t *spa) 1607 { 1608 return (spa->spa_delegation); 1609 } 1610 1611 objset_t * 1612 spa_meta_objset(spa_t *spa) 1613 { 1614 return (spa->spa_meta_objset); 1615 } 1616 1617 enum zio_checksum 1618 spa_dedup_checksum(spa_t *spa) 1619 { 1620 return (spa->spa_dedup_checksum); 1621 } 1622 1623 /* 1624 * Reset pool scan stat per scan pass (or reboot). 1625 */ 1626 void 1627 spa_scan_stat_init(spa_t *spa) 1628 { 1629 /* data not stored on disk */ 1630 spa->spa_scan_pass_start = gethrestime_sec(); 1631 spa->spa_scan_pass_exam = 0; 1632 vdev_scan_stat_init(spa->spa_root_vdev); 1633 } 1634 1635 /* 1636 * Get scan stats for zpool status reports 1637 */ 1638 int 1639 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 1640 { 1641 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 1642 1643 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 1644 return (ENOENT); 1645 bzero(ps, sizeof (pool_scan_stat_t)); 1646 1647 /* data stored on disk */ 1648 ps->pss_func = scn->scn_phys.scn_func; 1649 ps->pss_start_time = scn->scn_phys.scn_start_time; 1650 ps->pss_end_time = scn->scn_phys.scn_end_time; 1651 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 1652 ps->pss_examined = scn->scn_phys.scn_examined; 1653 ps->pss_to_process = scn->scn_phys.scn_to_process; 1654 ps->pss_processed = scn->scn_phys.scn_processed; 1655 ps->pss_errors = scn->scn_phys.scn_errors; 1656 ps->pss_state = scn->scn_phys.scn_state; 1657 1658 /* data not stored on disk */ 1659 ps->pss_pass_start = spa->spa_scan_pass_start; 1660 ps->pss_pass_exam = spa->spa_scan_pass_exam; 1661 1662 return (0); 1663 } 1664