xref: /titanic_41/usr/src/uts/common/fs/zfs/spa_misc.c (revision 2208104ea4cd6d9d44c2a0c21cf2479b92aacf08)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/spa_boot.h>
31 #include <sys/zio.h>
32 #include <sys/zio_checksum.h>
33 #include <sys/zio_compress.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/zap.h>
37 #include <sys/zil.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/metaslab.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/txg.h>
42 #include <sys/avl.h>
43 #include <sys/unique.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_dir.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/arc.h>
51 #include <sys/ddt.h>
52 #include "zfs_prop.h"
53 #include "zfeature_common.h"
54 
55 /*
56  * SPA locking
57  *
58  * There are four basic locks for managing spa_t structures:
59  *
60  * spa_namespace_lock (global mutex)
61  *
62  *	This lock must be acquired to do any of the following:
63  *
64  *		- Lookup a spa_t by name
65  *		- Add or remove a spa_t from the namespace
66  *		- Increase spa_refcount from non-zero
67  *		- Check if spa_refcount is zero
68  *		- Rename a spa_t
69  *		- add/remove/attach/detach devices
70  *		- Held for the duration of create/destroy/import/export
71  *
72  *	It does not need to handle recursion.  A create or destroy may
73  *	reference objects (files or zvols) in other pools, but by
74  *	definition they must have an existing reference, and will never need
75  *	to lookup a spa_t by name.
76  *
77  * spa_refcount (per-spa refcount_t protected by mutex)
78  *
79  *	This reference count keep track of any active users of the spa_t.  The
80  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
81  *	the refcount is never really 'zero' - opening a pool implicitly keeps
82  *	some references in the DMU.  Internally we check against spa_minref, but
83  *	present the image of a zero/non-zero value to consumers.
84  *
85  * spa_config_lock[] (per-spa array of rwlocks)
86  *
87  *	This protects the spa_t from config changes, and must be held in
88  *	the following circumstances:
89  *
90  *		- RW_READER to perform I/O to the spa
91  *		- RW_WRITER to change the vdev config
92  *
93  * The locking order is fairly straightforward:
94  *
95  *		spa_namespace_lock	->	spa_refcount
96  *
97  *	The namespace lock must be acquired to increase the refcount from 0
98  *	or to check if it is zero.
99  *
100  *		spa_refcount		->	spa_config_lock[]
101  *
102  *	There must be at least one valid reference on the spa_t to acquire
103  *	the config lock.
104  *
105  *		spa_namespace_lock	->	spa_config_lock[]
106  *
107  *	The namespace lock must always be taken before the config lock.
108  *
109  *
110  * The spa_namespace_lock can be acquired directly and is globally visible.
111  *
112  * The namespace is manipulated using the following functions, all of which
113  * require the spa_namespace_lock to be held.
114  *
115  *	spa_lookup()		Lookup a spa_t by name.
116  *
117  *	spa_add()		Create a new spa_t in the namespace.
118  *
119  *	spa_remove()		Remove a spa_t from the namespace.  This also
120  *				frees up any memory associated with the spa_t.
121  *
122  *	spa_next()		Returns the next spa_t in the system, or the
123  *				first if NULL is passed.
124  *
125  *	spa_evict_all()		Shutdown and remove all spa_t structures in
126  *				the system.
127  *
128  *	spa_guid_exists()	Determine whether a pool/device guid exists.
129  *
130  * The spa_refcount is manipulated using the following functions:
131  *
132  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
133  *				called with spa_namespace_lock held if the
134  *				refcount is currently zero.
135  *
136  *	spa_close()		Remove a reference from the spa_t.  This will
137  *				not free the spa_t or remove it from the
138  *				namespace.  No locking is required.
139  *
140  *	spa_refcount_zero()	Returns true if the refcount is currently
141  *				zero.  Must be called with spa_namespace_lock
142  *				held.
143  *
144  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
145  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
146  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
147  *
148  * To read the configuration, it suffices to hold one of these locks as reader.
149  * To modify the configuration, you must hold all locks as writer.  To modify
150  * vdev state without altering the vdev tree's topology (e.g. online/offline),
151  * you must hold SCL_STATE and SCL_ZIO as writer.
152  *
153  * We use these distinct config locks to avoid recursive lock entry.
154  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
155  * block allocations (SCL_ALLOC), which may require reading space maps
156  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
157  *
158  * The spa config locks cannot be normal rwlocks because we need the
159  * ability to hand off ownership.  For example, SCL_ZIO is acquired
160  * by the issuing thread and later released by an interrupt thread.
161  * They do, however, obey the usual write-wanted semantics to prevent
162  * writer (i.e. system administrator) starvation.
163  *
164  * The lock acquisition rules are as follows:
165  *
166  * SCL_CONFIG
167  *	Protects changes to the vdev tree topology, such as vdev
168  *	add/remove/attach/detach.  Protects the dirty config list
169  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
170  *
171  * SCL_STATE
172  *	Protects changes to pool state and vdev state, such as vdev
173  *	online/offline/fault/degrade/clear.  Protects the dirty state list
174  *	(spa_state_dirty_list) and global pool state (spa_state).
175  *
176  * SCL_ALLOC
177  *	Protects changes to metaslab groups and classes.
178  *	Held as reader by metaslab_alloc() and metaslab_claim().
179  *
180  * SCL_ZIO
181  *	Held by bp-level zios (those which have no io_vd upon entry)
182  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
183  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
184  *
185  * SCL_FREE
186  *	Protects changes to metaslab groups and classes.
187  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
188  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
189  *	blocks in zio_done() while another i/o that holds either
190  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
191  *
192  * SCL_VDEV
193  *	Held as reader to prevent changes to the vdev tree during trivial
194  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
195  *	other locks, and lower than all of them, to ensure that it's safe
196  *	to acquire regardless of caller context.
197  *
198  * In addition, the following rules apply:
199  *
200  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
201  *	The lock ordering is SCL_CONFIG > spa_props_lock.
202  *
203  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
204  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
205  *	or zio_write_phys() -- the caller must ensure that the config cannot
206  *	cannot change in the interim, and that the vdev cannot be reopened.
207  *	SCL_STATE as reader suffices for both.
208  *
209  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
210  *
211  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
212  *				for writing.
213  *
214  *	spa_vdev_exit()		Release the config lock, wait for all I/O
215  *				to complete, sync the updated configs to the
216  *				cache, and release the namespace lock.
217  *
218  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
219  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
220  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
221  *
222  * spa_rename() is also implemented within this file since it requires
223  * manipulation of the namespace.
224  */
225 
226 static avl_tree_t spa_namespace_avl;
227 kmutex_t spa_namespace_lock;
228 static kcondvar_t spa_namespace_cv;
229 static int spa_active_count;
230 int spa_max_replication_override = SPA_DVAS_PER_BP;
231 
232 static kmutex_t spa_spare_lock;
233 static avl_tree_t spa_spare_avl;
234 static kmutex_t spa_l2cache_lock;
235 static avl_tree_t spa_l2cache_avl;
236 
237 kmem_cache_t *spa_buffer_pool;
238 int spa_mode_global;
239 
240 #ifdef ZFS_DEBUG
241 /* Everything except dprintf and spa is on by default in debug builds */
242 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
243 #else
244 int zfs_flags = 0;
245 #endif
246 
247 /*
248  * zfs_recover can be set to nonzero to attempt to recover from
249  * otherwise-fatal errors, typically caused by on-disk corruption.  When
250  * set, calls to zfs_panic_recover() will turn into warning messages.
251  * This should only be used as a last resort, as it typically results
252  * in leaked space, or worse.
253  */
254 boolean_t zfs_recover = B_FALSE;
255 
256 /*
257  * If destroy encounters an EIO while reading metadata (e.g. indirect
258  * blocks), space referenced by the missing metadata can not be freed.
259  * Normally this causes the background destroy to become "stalled", as
260  * it is unable to make forward progress.  While in this stalled state,
261  * all remaining space to free from the error-encountering filesystem is
262  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
263  * permanently leak the space from indirect blocks that can not be read,
264  * and continue to free everything else that it can.
265  *
266  * The default, "stalling" behavior is useful if the storage partially
267  * fails (i.e. some but not all i/os fail), and then later recovers.  In
268  * this case, we will be able to continue pool operations while it is
269  * partially failed, and when it recovers, we can continue to free the
270  * space, with no leaks.  However, note that this case is actually
271  * fairly rare.
272  *
273  * Typically pools either (a) fail completely (but perhaps temporarily,
274  * e.g. a top-level vdev going offline), or (b) have localized,
275  * permanent errors (e.g. disk returns the wrong data due to bit flip or
276  * firmware bug).  In case (a), this setting does not matter because the
277  * pool will be suspended and the sync thread will not be able to make
278  * forward progress regardless.  In case (b), because the error is
279  * permanent, the best we can do is leak the minimum amount of space,
280  * which is what setting this flag will do.  Therefore, it is reasonable
281  * for this flag to normally be set, but we chose the more conservative
282  * approach of not setting it, so that there is no possibility of
283  * leaking space in the "partial temporary" failure case.
284  */
285 boolean_t zfs_free_leak_on_eio = B_FALSE;
286 
287 /*
288  * Expiration time in milliseconds. This value has two meanings. First it is
289  * used to determine when the spa_deadman() logic should fire. By default the
290  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
291  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
292  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
293  * in a system panic.
294  */
295 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
296 
297 /*
298  * Check time in milliseconds. This defines the frequency at which we check
299  * for hung I/O.
300  */
301 uint64_t zfs_deadman_checktime_ms = 5000ULL;
302 
303 /*
304  * Override the zfs deadman behavior via /etc/system. By default the
305  * deadman is enabled except on VMware and sparc deployments.
306  */
307 int zfs_deadman_enabled = -1;
308 
309 /*
310  * The worst case is single-sector max-parity RAID-Z blocks, in which
311  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
312  * times the size; so just assume that.  Add to this the fact that
313  * we can have up to 3 DVAs per bp, and one more factor of 2 because
314  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
315  * the worst case is:
316  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
317  */
318 int spa_asize_inflation = 24;
319 
320 /*
321  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
322  * the pool to be consumed.  This ensures that we don't run the pool
323  * completely out of space, due to unaccounted changes (e.g. to the MOS).
324  * It also limits the worst-case time to allocate space.  If we have
325  * less than this amount of free space, most ZPL operations (e.g. write,
326  * create) will return ENOSPC.
327  *
328  * Certain operations (e.g. file removal, most administrative actions) can
329  * use half the slop space.  They will only return ENOSPC if less than half
330  * the slop space is free.  Typically, once the pool has less than the slop
331  * space free, the user will use these operations to free up space in the pool.
332  * These are the operations that call dsl_pool_adjustedsize() with the netfree
333  * argument set to TRUE.
334  *
335  * A very restricted set of operations are always permitted, regardless of
336  * the amount of free space.  These are the operations that call
337  * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
338  * operations result in a net increase in the amount of space used,
339  * it is possible to run the pool completely out of space, causing it to
340  * be permanently read-only.
341  *
342  * See also the comments in zfs_space_check_t.
343  */
344 int spa_slop_shift = 5;
345 
346 /*
347  * ==========================================================================
348  * SPA config locking
349  * ==========================================================================
350  */
351 static void
352 spa_config_lock_init(spa_t *spa)
353 {
354 	for (int i = 0; i < SCL_LOCKS; i++) {
355 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
356 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
357 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
358 		refcount_create_untracked(&scl->scl_count);
359 		scl->scl_writer = NULL;
360 		scl->scl_write_wanted = 0;
361 	}
362 }
363 
364 static void
365 spa_config_lock_destroy(spa_t *spa)
366 {
367 	for (int i = 0; i < SCL_LOCKS; i++) {
368 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
369 		mutex_destroy(&scl->scl_lock);
370 		cv_destroy(&scl->scl_cv);
371 		refcount_destroy(&scl->scl_count);
372 		ASSERT(scl->scl_writer == NULL);
373 		ASSERT(scl->scl_write_wanted == 0);
374 	}
375 }
376 
377 int
378 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
379 {
380 	for (int i = 0; i < SCL_LOCKS; i++) {
381 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
382 		if (!(locks & (1 << i)))
383 			continue;
384 		mutex_enter(&scl->scl_lock);
385 		if (rw == RW_READER) {
386 			if (scl->scl_writer || scl->scl_write_wanted) {
387 				mutex_exit(&scl->scl_lock);
388 				spa_config_exit(spa, locks ^ (1 << i), tag);
389 				return (0);
390 			}
391 		} else {
392 			ASSERT(scl->scl_writer != curthread);
393 			if (!refcount_is_zero(&scl->scl_count)) {
394 				mutex_exit(&scl->scl_lock);
395 				spa_config_exit(spa, locks ^ (1 << i), tag);
396 				return (0);
397 			}
398 			scl->scl_writer = curthread;
399 		}
400 		(void) refcount_add(&scl->scl_count, tag);
401 		mutex_exit(&scl->scl_lock);
402 	}
403 	return (1);
404 }
405 
406 void
407 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
408 {
409 	int wlocks_held = 0;
410 
411 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
412 
413 	for (int i = 0; i < SCL_LOCKS; i++) {
414 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
415 		if (scl->scl_writer == curthread)
416 			wlocks_held |= (1 << i);
417 		if (!(locks & (1 << i)))
418 			continue;
419 		mutex_enter(&scl->scl_lock);
420 		if (rw == RW_READER) {
421 			while (scl->scl_writer || scl->scl_write_wanted) {
422 				cv_wait(&scl->scl_cv, &scl->scl_lock);
423 			}
424 		} else {
425 			ASSERT(scl->scl_writer != curthread);
426 			while (!refcount_is_zero(&scl->scl_count)) {
427 				scl->scl_write_wanted++;
428 				cv_wait(&scl->scl_cv, &scl->scl_lock);
429 				scl->scl_write_wanted--;
430 			}
431 			scl->scl_writer = curthread;
432 		}
433 		(void) refcount_add(&scl->scl_count, tag);
434 		mutex_exit(&scl->scl_lock);
435 	}
436 	ASSERT(wlocks_held <= locks);
437 }
438 
439 void
440 spa_config_exit(spa_t *spa, int locks, void *tag)
441 {
442 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
443 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
444 		if (!(locks & (1 << i)))
445 			continue;
446 		mutex_enter(&scl->scl_lock);
447 		ASSERT(!refcount_is_zero(&scl->scl_count));
448 		if (refcount_remove(&scl->scl_count, tag) == 0) {
449 			ASSERT(scl->scl_writer == NULL ||
450 			    scl->scl_writer == curthread);
451 			scl->scl_writer = NULL;	/* OK in either case */
452 			cv_broadcast(&scl->scl_cv);
453 		}
454 		mutex_exit(&scl->scl_lock);
455 	}
456 }
457 
458 int
459 spa_config_held(spa_t *spa, int locks, krw_t rw)
460 {
461 	int locks_held = 0;
462 
463 	for (int i = 0; i < SCL_LOCKS; i++) {
464 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
465 		if (!(locks & (1 << i)))
466 			continue;
467 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
468 		    (rw == RW_WRITER && scl->scl_writer == curthread))
469 			locks_held |= 1 << i;
470 	}
471 
472 	return (locks_held);
473 }
474 
475 /*
476  * ==========================================================================
477  * SPA namespace functions
478  * ==========================================================================
479  */
480 
481 /*
482  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
483  * Returns NULL if no matching spa_t is found.
484  */
485 spa_t *
486 spa_lookup(const char *name)
487 {
488 	static spa_t search;	/* spa_t is large; don't allocate on stack */
489 	spa_t *spa;
490 	avl_index_t where;
491 	char *cp;
492 
493 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
494 
495 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
496 
497 	/*
498 	 * If it's a full dataset name, figure out the pool name and
499 	 * just use that.
500 	 */
501 	cp = strpbrk(search.spa_name, "/@#");
502 	if (cp != NULL)
503 		*cp = '\0';
504 
505 	spa = avl_find(&spa_namespace_avl, &search, &where);
506 
507 	return (spa);
508 }
509 
510 /*
511  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
512  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
513  * looking for potentially hung I/Os.
514  */
515 void
516 spa_deadman(void *arg)
517 {
518 	spa_t *spa = arg;
519 
520 	/*
521 	 * Disable the deadman timer if the pool is suspended.
522 	 */
523 	if (spa_suspended(spa)) {
524 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
525 		return;
526 	}
527 
528 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
529 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
530 	    ++spa->spa_deadman_calls);
531 	if (zfs_deadman_enabled)
532 		vdev_deadman(spa->spa_root_vdev);
533 }
534 
535 /*
536  * Create an uninitialized spa_t with the given name.  Requires
537  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
538  * exist by calling spa_lookup() first.
539  */
540 spa_t *
541 spa_add(const char *name, nvlist_t *config, const char *altroot)
542 {
543 	spa_t *spa;
544 	spa_config_dirent_t *dp;
545 	cyc_handler_t hdlr;
546 	cyc_time_t when;
547 
548 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
549 
550 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
551 
552 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
553 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
554 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
555 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
556 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
557 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
558 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
559 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
560 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
561 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
562 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
563 
564 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
565 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
566 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
567 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
568 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
569 
570 	for (int t = 0; t < TXG_SIZE; t++)
571 		bplist_create(&spa->spa_free_bplist[t]);
572 
573 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
574 	spa->spa_state = POOL_STATE_UNINITIALIZED;
575 	spa->spa_freeze_txg = UINT64_MAX;
576 	spa->spa_final_txg = UINT64_MAX;
577 	spa->spa_load_max_txg = UINT64_MAX;
578 	spa->spa_proc = &p0;
579 	spa->spa_proc_state = SPA_PROC_NONE;
580 
581 	hdlr.cyh_func = spa_deadman;
582 	hdlr.cyh_arg = spa;
583 	hdlr.cyh_level = CY_LOW_LEVEL;
584 
585 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
586 
587 	/*
588 	 * This determines how often we need to check for hung I/Os after
589 	 * the cyclic has already fired. Since checking for hung I/Os is
590 	 * an expensive operation we don't want to check too frequently.
591 	 * Instead wait for 5 seconds before checking again.
592 	 */
593 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
594 	when.cyt_when = CY_INFINITY;
595 	mutex_enter(&cpu_lock);
596 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
597 	mutex_exit(&cpu_lock);
598 
599 	refcount_create(&spa->spa_refcount);
600 	spa_config_lock_init(spa);
601 
602 	avl_add(&spa_namespace_avl, spa);
603 
604 	/*
605 	 * Set the alternate root, if there is one.
606 	 */
607 	if (altroot) {
608 		spa->spa_root = spa_strdup(altroot);
609 		spa_active_count++;
610 	}
611 
612 	/*
613 	 * Every pool starts with the default cachefile
614 	 */
615 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
616 	    offsetof(spa_config_dirent_t, scd_link));
617 
618 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
619 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
620 	list_insert_head(&spa->spa_config_list, dp);
621 
622 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
623 	    KM_SLEEP) == 0);
624 
625 	if (config != NULL) {
626 		nvlist_t *features;
627 
628 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
629 		    &features) == 0) {
630 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
631 			    0) == 0);
632 		}
633 
634 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
635 	}
636 
637 	if (spa->spa_label_features == NULL) {
638 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
639 		    KM_SLEEP) == 0);
640 	}
641 
642 	spa->spa_iokstat = kstat_create("zfs", 0, name,
643 	    "disk", KSTAT_TYPE_IO, 1, 0);
644 	if (spa->spa_iokstat) {
645 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
646 		kstat_install(spa->spa_iokstat);
647 	}
648 
649 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
650 
651 	/*
652 	 * As a pool is being created, treat all features as disabled by
653 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
654 	 * refcount cache.
655 	 */
656 	for (int i = 0; i < SPA_FEATURES; i++) {
657 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
658 	}
659 
660 	return (spa);
661 }
662 
663 /*
664  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
665  * spa_namespace_lock.  This is called only after the spa_t has been closed and
666  * deactivated.
667  */
668 void
669 spa_remove(spa_t *spa)
670 {
671 	spa_config_dirent_t *dp;
672 
673 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
674 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
675 	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
676 
677 	nvlist_free(spa->spa_config_splitting);
678 
679 	avl_remove(&spa_namespace_avl, spa);
680 	cv_broadcast(&spa_namespace_cv);
681 
682 	if (spa->spa_root) {
683 		spa_strfree(spa->spa_root);
684 		spa_active_count--;
685 	}
686 
687 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
688 		list_remove(&spa->spa_config_list, dp);
689 		if (dp->scd_path != NULL)
690 			spa_strfree(dp->scd_path);
691 		kmem_free(dp, sizeof (spa_config_dirent_t));
692 	}
693 
694 	list_destroy(&spa->spa_config_list);
695 
696 	nvlist_free(spa->spa_label_features);
697 	nvlist_free(spa->spa_load_info);
698 	spa_config_set(spa, NULL);
699 
700 	mutex_enter(&cpu_lock);
701 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
702 		cyclic_remove(spa->spa_deadman_cycid);
703 	mutex_exit(&cpu_lock);
704 	spa->spa_deadman_cycid = CYCLIC_NONE;
705 
706 	refcount_destroy(&spa->spa_refcount);
707 
708 	spa_config_lock_destroy(spa);
709 
710 	kstat_delete(spa->spa_iokstat);
711 	spa->spa_iokstat = NULL;
712 
713 	for (int t = 0; t < TXG_SIZE; t++)
714 		bplist_destroy(&spa->spa_free_bplist[t]);
715 
716 	cv_destroy(&spa->spa_async_cv);
717 	cv_destroy(&spa->spa_evicting_os_cv);
718 	cv_destroy(&spa->spa_proc_cv);
719 	cv_destroy(&spa->spa_scrub_io_cv);
720 	cv_destroy(&spa->spa_suspend_cv);
721 
722 	mutex_destroy(&spa->spa_async_lock);
723 	mutex_destroy(&spa->spa_errlist_lock);
724 	mutex_destroy(&spa->spa_errlog_lock);
725 	mutex_destroy(&spa->spa_evicting_os_lock);
726 	mutex_destroy(&spa->spa_history_lock);
727 	mutex_destroy(&spa->spa_proc_lock);
728 	mutex_destroy(&spa->spa_props_lock);
729 	mutex_destroy(&spa->spa_scrub_lock);
730 	mutex_destroy(&spa->spa_suspend_lock);
731 	mutex_destroy(&spa->spa_vdev_top_lock);
732 	mutex_destroy(&spa->spa_iokstat_lock);
733 
734 	kmem_free(spa, sizeof (spa_t));
735 }
736 
737 /*
738  * Given a pool, return the next pool in the namespace, or NULL if there is
739  * none.  If 'prev' is NULL, return the first pool.
740  */
741 spa_t *
742 spa_next(spa_t *prev)
743 {
744 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
745 
746 	if (prev)
747 		return (AVL_NEXT(&spa_namespace_avl, prev));
748 	else
749 		return (avl_first(&spa_namespace_avl));
750 }
751 
752 /*
753  * ==========================================================================
754  * SPA refcount functions
755  * ==========================================================================
756  */
757 
758 /*
759  * Add a reference to the given spa_t.  Must have at least one reference, or
760  * have the namespace lock held.
761  */
762 void
763 spa_open_ref(spa_t *spa, void *tag)
764 {
765 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
766 	    MUTEX_HELD(&spa_namespace_lock));
767 	(void) refcount_add(&spa->spa_refcount, tag);
768 }
769 
770 /*
771  * Remove a reference to the given spa_t.  Must have at least one reference, or
772  * have the namespace lock held.
773  */
774 void
775 spa_close(spa_t *spa, void *tag)
776 {
777 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
778 	    MUTEX_HELD(&spa_namespace_lock));
779 	(void) refcount_remove(&spa->spa_refcount, tag);
780 }
781 
782 /*
783  * Remove a reference to the given spa_t held by a dsl dir that is
784  * being asynchronously released.  Async releases occur from a taskq
785  * performing eviction of dsl datasets and dirs.  The namespace lock
786  * isn't held and the hold by the object being evicted may contribute to
787  * spa_minref (e.g. dataset or directory released during pool export),
788  * so the asserts in spa_close() do not apply.
789  */
790 void
791 spa_async_close(spa_t *spa, void *tag)
792 {
793 	(void) refcount_remove(&spa->spa_refcount, tag);
794 }
795 
796 /*
797  * Check to see if the spa refcount is zero.  Must be called with
798  * spa_namespace_lock held.  We really compare against spa_minref, which is the
799  * number of references acquired when opening a pool
800  */
801 boolean_t
802 spa_refcount_zero(spa_t *spa)
803 {
804 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
805 
806 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
807 }
808 
809 /*
810  * ==========================================================================
811  * SPA spare and l2cache tracking
812  * ==========================================================================
813  */
814 
815 /*
816  * Hot spares and cache devices are tracked using the same code below,
817  * for 'auxiliary' devices.
818  */
819 
820 typedef struct spa_aux {
821 	uint64_t	aux_guid;
822 	uint64_t	aux_pool;
823 	avl_node_t	aux_avl;
824 	int		aux_count;
825 } spa_aux_t;
826 
827 static int
828 spa_aux_compare(const void *a, const void *b)
829 {
830 	const spa_aux_t *sa = a;
831 	const spa_aux_t *sb = b;
832 
833 	if (sa->aux_guid < sb->aux_guid)
834 		return (-1);
835 	else if (sa->aux_guid > sb->aux_guid)
836 		return (1);
837 	else
838 		return (0);
839 }
840 
841 void
842 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
843 {
844 	avl_index_t where;
845 	spa_aux_t search;
846 	spa_aux_t *aux;
847 
848 	search.aux_guid = vd->vdev_guid;
849 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
850 		aux->aux_count++;
851 	} else {
852 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
853 		aux->aux_guid = vd->vdev_guid;
854 		aux->aux_count = 1;
855 		avl_insert(avl, aux, where);
856 	}
857 }
858 
859 void
860 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
861 {
862 	spa_aux_t search;
863 	spa_aux_t *aux;
864 	avl_index_t where;
865 
866 	search.aux_guid = vd->vdev_guid;
867 	aux = avl_find(avl, &search, &where);
868 
869 	ASSERT(aux != NULL);
870 
871 	if (--aux->aux_count == 0) {
872 		avl_remove(avl, aux);
873 		kmem_free(aux, sizeof (spa_aux_t));
874 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
875 		aux->aux_pool = 0ULL;
876 	}
877 }
878 
879 boolean_t
880 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
881 {
882 	spa_aux_t search, *found;
883 
884 	search.aux_guid = guid;
885 	found = avl_find(avl, &search, NULL);
886 
887 	if (pool) {
888 		if (found)
889 			*pool = found->aux_pool;
890 		else
891 			*pool = 0ULL;
892 	}
893 
894 	if (refcnt) {
895 		if (found)
896 			*refcnt = found->aux_count;
897 		else
898 			*refcnt = 0;
899 	}
900 
901 	return (found != NULL);
902 }
903 
904 void
905 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
906 {
907 	spa_aux_t search, *found;
908 	avl_index_t where;
909 
910 	search.aux_guid = vd->vdev_guid;
911 	found = avl_find(avl, &search, &where);
912 	ASSERT(found != NULL);
913 	ASSERT(found->aux_pool == 0ULL);
914 
915 	found->aux_pool = spa_guid(vd->vdev_spa);
916 }
917 
918 /*
919  * Spares are tracked globally due to the following constraints:
920  *
921  * 	- A spare may be part of multiple pools.
922  * 	- A spare may be added to a pool even if it's actively in use within
923  *	  another pool.
924  * 	- A spare in use in any pool can only be the source of a replacement if
925  *	  the target is a spare in the same pool.
926  *
927  * We keep track of all spares on the system through the use of a reference
928  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
929  * spare, then we bump the reference count in the AVL tree.  In addition, we set
930  * the 'vdev_isspare' member to indicate that the device is a spare (active or
931  * inactive).  When a spare is made active (used to replace a device in the
932  * pool), we also keep track of which pool its been made a part of.
933  *
934  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
935  * called under the spa_namespace lock as part of vdev reconfiguration.  The
936  * separate spare lock exists for the status query path, which does not need to
937  * be completely consistent with respect to other vdev configuration changes.
938  */
939 
940 static int
941 spa_spare_compare(const void *a, const void *b)
942 {
943 	return (spa_aux_compare(a, b));
944 }
945 
946 void
947 spa_spare_add(vdev_t *vd)
948 {
949 	mutex_enter(&spa_spare_lock);
950 	ASSERT(!vd->vdev_isspare);
951 	spa_aux_add(vd, &spa_spare_avl);
952 	vd->vdev_isspare = B_TRUE;
953 	mutex_exit(&spa_spare_lock);
954 }
955 
956 void
957 spa_spare_remove(vdev_t *vd)
958 {
959 	mutex_enter(&spa_spare_lock);
960 	ASSERT(vd->vdev_isspare);
961 	spa_aux_remove(vd, &spa_spare_avl);
962 	vd->vdev_isspare = B_FALSE;
963 	mutex_exit(&spa_spare_lock);
964 }
965 
966 boolean_t
967 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
968 {
969 	boolean_t found;
970 
971 	mutex_enter(&spa_spare_lock);
972 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
973 	mutex_exit(&spa_spare_lock);
974 
975 	return (found);
976 }
977 
978 void
979 spa_spare_activate(vdev_t *vd)
980 {
981 	mutex_enter(&spa_spare_lock);
982 	ASSERT(vd->vdev_isspare);
983 	spa_aux_activate(vd, &spa_spare_avl);
984 	mutex_exit(&spa_spare_lock);
985 }
986 
987 /*
988  * Level 2 ARC devices are tracked globally for the same reasons as spares.
989  * Cache devices currently only support one pool per cache device, and so
990  * for these devices the aux reference count is currently unused beyond 1.
991  */
992 
993 static int
994 spa_l2cache_compare(const void *a, const void *b)
995 {
996 	return (spa_aux_compare(a, b));
997 }
998 
999 void
1000 spa_l2cache_add(vdev_t *vd)
1001 {
1002 	mutex_enter(&spa_l2cache_lock);
1003 	ASSERT(!vd->vdev_isl2cache);
1004 	spa_aux_add(vd, &spa_l2cache_avl);
1005 	vd->vdev_isl2cache = B_TRUE;
1006 	mutex_exit(&spa_l2cache_lock);
1007 }
1008 
1009 void
1010 spa_l2cache_remove(vdev_t *vd)
1011 {
1012 	mutex_enter(&spa_l2cache_lock);
1013 	ASSERT(vd->vdev_isl2cache);
1014 	spa_aux_remove(vd, &spa_l2cache_avl);
1015 	vd->vdev_isl2cache = B_FALSE;
1016 	mutex_exit(&spa_l2cache_lock);
1017 }
1018 
1019 boolean_t
1020 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1021 {
1022 	boolean_t found;
1023 
1024 	mutex_enter(&spa_l2cache_lock);
1025 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1026 	mutex_exit(&spa_l2cache_lock);
1027 
1028 	return (found);
1029 }
1030 
1031 void
1032 spa_l2cache_activate(vdev_t *vd)
1033 {
1034 	mutex_enter(&spa_l2cache_lock);
1035 	ASSERT(vd->vdev_isl2cache);
1036 	spa_aux_activate(vd, &spa_l2cache_avl);
1037 	mutex_exit(&spa_l2cache_lock);
1038 }
1039 
1040 /*
1041  * ==========================================================================
1042  * SPA vdev locking
1043  * ==========================================================================
1044  */
1045 
1046 /*
1047  * Lock the given spa_t for the purpose of adding or removing a vdev.
1048  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1049  * It returns the next transaction group for the spa_t.
1050  */
1051 uint64_t
1052 spa_vdev_enter(spa_t *spa)
1053 {
1054 	mutex_enter(&spa->spa_vdev_top_lock);
1055 	mutex_enter(&spa_namespace_lock);
1056 	return (spa_vdev_config_enter(spa));
1057 }
1058 
1059 /*
1060  * Internal implementation for spa_vdev_enter().  Used when a vdev
1061  * operation requires multiple syncs (i.e. removing a device) while
1062  * keeping the spa_namespace_lock held.
1063  */
1064 uint64_t
1065 spa_vdev_config_enter(spa_t *spa)
1066 {
1067 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1068 
1069 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1070 
1071 	return (spa_last_synced_txg(spa) + 1);
1072 }
1073 
1074 /*
1075  * Used in combination with spa_vdev_config_enter() to allow the syncing
1076  * of multiple transactions without releasing the spa_namespace_lock.
1077  */
1078 void
1079 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1080 {
1081 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1082 
1083 	int config_changed = B_FALSE;
1084 
1085 	ASSERT(txg > spa_last_synced_txg(spa));
1086 
1087 	spa->spa_pending_vdev = NULL;
1088 
1089 	/*
1090 	 * Reassess the DTLs.
1091 	 */
1092 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1093 
1094 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1095 		config_changed = B_TRUE;
1096 		spa->spa_config_generation++;
1097 	}
1098 
1099 	/*
1100 	 * Verify the metaslab classes.
1101 	 */
1102 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1103 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1104 
1105 	spa_config_exit(spa, SCL_ALL, spa);
1106 
1107 	/*
1108 	 * Panic the system if the specified tag requires it.  This
1109 	 * is useful for ensuring that configurations are updated
1110 	 * transactionally.
1111 	 */
1112 	if (zio_injection_enabled)
1113 		zio_handle_panic_injection(spa, tag, 0);
1114 
1115 	/*
1116 	 * Note: this txg_wait_synced() is important because it ensures
1117 	 * that there won't be more than one config change per txg.
1118 	 * This allows us to use the txg as the generation number.
1119 	 */
1120 	if (error == 0)
1121 		txg_wait_synced(spa->spa_dsl_pool, txg);
1122 
1123 	if (vd != NULL) {
1124 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1125 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1126 		vdev_free(vd);
1127 		spa_config_exit(spa, SCL_ALL, spa);
1128 	}
1129 
1130 	/*
1131 	 * If the config changed, update the config cache.
1132 	 */
1133 	if (config_changed)
1134 		spa_config_sync(spa, B_FALSE, B_TRUE);
1135 }
1136 
1137 /*
1138  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1139  * locking of spa_vdev_enter(), we also want make sure the transactions have
1140  * synced to disk, and then update the global configuration cache with the new
1141  * information.
1142  */
1143 int
1144 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1145 {
1146 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1147 	mutex_exit(&spa_namespace_lock);
1148 	mutex_exit(&spa->spa_vdev_top_lock);
1149 
1150 	return (error);
1151 }
1152 
1153 /*
1154  * Lock the given spa_t for the purpose of changing vdev state.
1155  */
1156 void
1157 spa_vdev_state_enter(spa_t *spa, int oplocks)
1158 {
1159 	int locks = SCL_STATE_ALL | oplocks;
1160 
1161 	/*
1162 	 * Root pools may need to read of the underlying devfs filesystem
1163 	 * when opening up a vdev.  Unfortunately if we're holding the
1164 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1165 	 * the read from the root filesystem.  Instead we "prefetch"
1166 	 * the associated vnodes that we need prior to opening the
1167 	 * underlying devices and cache them so that we can prevent
1168 	 * any I/O when we are doing the actual open.
1169 	 */
1170 	if (spa_is_root(spa)) {
1171 		int low = locks & ~(SCL_ZIO - 1);
1172 		int high = locks & ~low;
1173 
1174 		spa_config_enter(spa, high, spa, RW_WRITER);
1175 		vdev_hold(spa->spa_root_vdev);
1176 		spa_config_enter(spa, low, spa, RW_WRITER);
1177 	} else {
1178 		spa_config_enter(spa, locks, spa, RW_WRITER);
1179 	}
1180 	spa->spa_vdev_locks = locks;
1181 }
1182 
1183 int
1184 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1185 {
1186 	boolean_t config_changed = B_FALSE;
1187 
1188 	if (vd != NULL || error == 0)
1189 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1190 		    0, 0, B_FALSE);
1191 
1192 	if (vd != NULL) {
1193 		vdev_state_dirty(vd->vdev_top);
1194 		config_changed = B_TRUE;
1195 		spa->spa_config_generation++;
1196 	}
1197 
1198 	if (spa_is_root(spa))
1199 		vdev_rele(spa->spa_root_vdev);
1200 
1201 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1202 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1203 
1204 	/*
1205 	 * If anything changed, wait for it to sync.  This ensures that,
1206 	 * from the system administrator's perspective, zpool(1M) commands
1207 	 * are synchronous.  This is important for things like zpool offline:
1208 	 * when the command completes, you expect no further I/O from ZFS.
1209 	 */
1210 	if (vd != NULL)
1211 		txg_wait_synced(spa->spa_dsl_pool, 0);
1212 
1213 	/*
1214 	 * If the config changed, update the config cache.
1215 	 */
1216 	if (config_changed) {
1217 		mutex_enter(&spa_namespace_lock);
1218 		spa_config_sync(spa, B_FALSE, B_TRUE);
1219 		mutex_exit(&spa_namespace_lock);
1220 	}
1221 
1222 	return (error);
1223 }
1224 
1225 /*
1226  * ==========================================================================
1227  * Miscellaneous functions
1228  * ==========================================================================
1229  */
1230 
1231 void
1232 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1233 {
1234 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1235 		fnvlist_add_boolean(spa->spa_label_features, feature);
1236 		/*
1237 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1238 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1239 		 * Thankfully, in this case we don't need to dirty the config
1240 		 * because it will be written out anyway when we finish
1241 		 * creating the pool.
1242 		 */
1243 		if (tx->tx_txg != TXG_INITIAL)
1244 			vdev_config_dirty(spa->spa_root_vdev);
1245 	}
1246 }
1247 
1248 void
1249 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1250 {
1251 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1252 		vdev_config_dirty(spa->spa_root_vdev);
1253 }
1254 
1255 /*
1256  * Rename a spa_t.
1257  */
1258 int
1259 spa_rename(const char *name, const char *newname)
1260 {
1261 	spa_t *spa;
1262 	int err;
1263 
1264 	/*
1265 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1266 	 * actually open the pool so that we can sync out the necessary labels.
1267 	 * It's OK to call spa_open() with the namespace lock held because we
1268 	 * allow recursive calls for other reasons.
1269 	 */
1270 	mutex_enter(&spa_namespace_lock);
1271 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1272 		mutex_exit(&spa_namespace_lock);
1273 		return (err);
1274 	}
1275 
1276 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1277 
1278 	avl_remove(&spa_namespace_avl, spa);
1279 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1280 	avl_add(&spa_namespace_avl, spa);
1281 
1282 	/*
1283 	 * Sync all labels to disk with the new names by marking the root vdev
1284 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1285 	 * during the sync.
1286 	 */
1287 	vdev_config_dirty(spa->spa_root_vdev);
1288 
1289 	spa_config_exit(spa, SCL_ALL, FTAG);
1290 
1291 	txg_wait_synced(spa->spa_dsl_pool, 0);
1292 
1293 	/*
1294 	 * Sync the updated config cache.
1295 	 */
1296 	spa_config_sync(spa, B_FALSE, B_TRUE);
1297 
1298 	spa_close(spa, FTAG);
1299 
1300 	mutex_exit(&spa_namespace_lock);
1301 
1302 	return (0);
1303 }
1304 
1305 /*
1306  * Return the spa_t associated with given pool_guid, if it exists.  If
1307  * device_guid is non-zero, determine whether the pool exists *and* contains
1308  * a device with the specified device_guid.
1309  */
1310 spa_t *
1311 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1312 {
1313 	spa_t *spa;
1314 	avl_tree_t *t = &spa_namespace_avl;
1315 
1316 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1317 
1318 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1319 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1320 			continue;
1321 		if (spa->spa_root_vdev == NULL)
1322 			continue;
1323 		if (spa_guid(spa) == pool_guid) {
1324 			if (device_guid == 0)
1325 				break;
1326 
1327 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1328 			    device_guid) != NULL)
1329 				break;
1330 
1331 			/*
1332 			 * Check any devices we may be in the process of adding.
1333 			 */
1334 			if (spa->spa_pending_vdev) {
1335 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1336 				    device_guid) != NULL)
1337 					break;
1338 			}
1339 		}
1340 	}
1341 
1342 	return (spa);
1343 }
1344 
1345 /*
1346  * Determine whether a pool with the given pool_guid exists.
1347  */
1348 boolean_t
1349 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1350 {
1351 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1352 }
1353 
1354 char *
1355 spa_strdup(const char *s)
1356 {
1357 	size_t len;
1358 	char *new;
1359 
1360 	len = strlen(s);
1361 	new = kmem_alloc(len + 1, KM_SLEEP);
1362 	bcopy(s, new, len);
1363 	new[len] = '\0';
1364 
1365 	return (new);
1366 }
1367 
1368 void
1369 spa_strfree(char *s)
1370 {
1371 	kmem_free(s, strlen(s) + 1);
1372 }
1373 
1374 uint64_t
1375 spa_get_random(uint64_t range)
1376 {
1377 	uint64_t r;
1378 
1379 	ASSERT(range != 0);
1380 
1381 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1382 
1383 	return (r % range);
1384 }
1385 
1386 uint64_t
1387 spa_generate_guid(spa_t *spa)
1388 {
1389 	uint64_t guid = spa_get_random(-1ULL);
1390 
1391 	if (spa != NULL) {
1392 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1393 			guid = spa_get_random(-1ULL);
1394 	} else {
1395 		while (guid == 0 || spa_guid_exists(guid, 0))
1396 			guid = spa_get_random(-1ULL);
1397 	}
1398 
1399 	return (guid);
1400 }
1401 
1402 void
1403 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1404 {
1405 	char type[256];
1406 	char *checksum = NULL;
1407 	char *compress = NULL;
1408 
1409 	if (bp != NULL) {
1410 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1411 			dmu_object_byteswap_t bswap =
1412 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1413 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1414 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1415 			    "metadata" : "data",
1416 			    dmu_ot_byteswap[bswap].ob_name);
1417 		} else {
1418 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1419 			    sizeof (type));
1420 		}
1421 		if (!BP_IS_EMBEDDED(bp)) {
1422 			checksum =
1423 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1424 		}
1425 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1426 	}
1427 
1428 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1429 	    compress);
1430 }
1431 
1432 void
1433 spa_freeze(spa_t *spa)
1434 {
1435 	uint64_t freeze_txg = 0;
1436 
1437 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1438 	if (spa->spa_freeze_txg == UINT64_MAX) {
1439 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1440 		spa->spa_freeze_txg = freeze_txg;
1441 	}
1442 	spa_config_exit(spa, SCL_ALL, FTAG);
1443 	if (freeze_txg != 0)
1444 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1445 }
1446 
1447 void
1448 zfs_panic_recover(const char *fmt, ...)
1449 {
1450 	va_list adx;
1451 
1452 	va_start(adx, fmt);
1453 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1454 	va_end(adx);
1455 }
1456 
1457 /*
1458  * This is a stripped-down version of strtoull, suitable only for converting
1459  * lowercase hexadecimal numbers that don't overflow.
1460  */
1461 uint64_t
1462 strtonum(const char *str, char **nptr)
1463 {
1464 	uint64_t val = 0;
1465 	char c;
1466 	int digit;
1467 
1468 	while ((c = *str) != '\0') {
1469 		if (c >= '0' && c <= '9')
1470 			digit = c - '0';
1471 		else if (c >= 'a' && c <= 'f')
1472 			digit = 10 + c - 'a';
1473 		else
1474 			break;
1475 
1476 		val *= 16;
1477 		val += digit;
1478 
1479 		str++;
1480 	}
1481 
1482 	if (nptr)
1483 		*nptr = (char *)str;
1484 
1485 	return (val);
1486 }
1487 
1488 /*
1489  * ==========================================================================
1490  * Accessor functions
1491  * ==========================================================================
1492  */
1493 
1494 boolean_t
1495 spa_shutting_down(spa_t *spa)
1496 {
1497 	return (spa->spa_async_suspended);
1498 }
1499 
1500 dsl_pool_t *
1501 spa_get_dsl(spa_t *spa)
1502 {
1503 	return (spa->spa_dsl_pool);
1504 }
1505 
1506 boolean_t
1507 spa_is_initializing(spa_t *spa)
1508 {
1509 	return (spa->spa_is_initializing);
1510 }
1511 
1512 blkptr_t *
1513 spa_get_rootblkptr(spa_t *spa)
1514 {
1515 	return (&spa->spa_ubsync.ub_rootbp);
1516 }
1517 
1518 void
1519 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1520 {
1521 	spa->spa_uberblock.ub_rootbp = *bp;
1522 }
1523 
1524 void
1525 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1526 {
1527 	if (spa->spa_root == NULL)
1528 		buf[0] = '\0';
1529 	else
1530 		(void) strncpy(buf, spa->spa_root, buflen);
1531 }
1532 
1533 int
1534 spa_sync_pass(spa_t *spa)
1535 {
1536 	return (spa->spa_sync_pass);
1537 }
1538 
1539 char *
1540 spa_name(spa_t *spa)
1541 {
1542 	return (spa->spa_name);
1543 }
1544 
1545 uint64_t
1546 spa_guid(spa_t *spa)
1547 {
1548 	dsl_pool_t *dp = spa_get_dsl(spa);
1549 	uint64_t guid;
1550 
1551 	/*
1552 	 * If we fail to parse the config during spa_load(), we can go through
1553 	 * the error path (which posts an ereport) and end up here with no root
1554 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1555 	 * this case.
1556 	 */
1557 	if (spa->spa_root_vdev == NULL)
1558 		return (spa->spa_config_guid);
1559 
1560 	guid = spa->spa_last_synced_guid != 0 ?
1561 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1562 
1563 	/*
1564 	 * Return the most recently synced out guid unless we're
1565 	 * in syncing context.
1566 	 */
1567 	if (dp && dsl_pool_sync_context(dp))
1568 		return (spa->spa_root_vdev->vdev_guid);
1569 	else
1570 		return (guid);
1571 }
1572 
1573 uint64_t
1574 spa_load_guid(spa_t *spa)
1575 {
1576 	/*
1577 	 * This is a GUID that exists solely as a reference for the
1578 	 * purposes of the arc.  It is generated at load time, and
1579 	 * is never written to persistent storage.
1580 	 */
1581 	return (spa->spa_load_guid);
1582 }
1583 
1584 uint64_t
1585 spa_last_synced_txg(spa_t *spa)
1586 {
1587 	return (spa->spa_ubsync.ub_txg);
1588 }
1589 
1590 uint64_t
1591 spa_first_txg(spa_t *spa)
1592 {
1593 	return (spa->spa_first_txg);
1594 }
1595 
1596 uint64_t
1597 spa_syncing_txg(spa_t *spa)
1598 {
1599 	return (spa->spa_syncing_txg);
1600 }
1601 
1602 pool_state_t
1603 spa_state(spa_t *spa)
1604 {
1605 	return (spa->spa_state);
1606 }
1607 
1608 spa_load_state_t
1609 spa_load_state(spa_t *spa)
1610 {
1611 	return (spa->spa_load_state);
1612 }
1613 
1614 uint64_t
1615 spa_freeze_txg(spa_t *spa)
1616 {
1617 	return (spa->spa_freeze_txg);
1618 }
1619 
1620 /* ARGSUSED */
1621 uint64_t
1622 spa_get_asize(spa_t *spa, uint64_t lsize)
1623 {
1624 	return (lsize * spa_asize_inflation);
1625 }
1626 
1627 /*
1628  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1629  * or at least 32MB.
1630  *
1631  * See the comment above spa_slop_shift for details.
1632  */
1633 uint64_t
1634 spa_get_slop_space(spa_t *spa) {
1635 	uint64_t space = spa_get_dspace(spa);
1636 	return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1637 }
1638 
1639 uint64_t
1640 spa_get_dspace(spa_t *spa)
1641 {
1642 	return (spa->spa_dspace);
1643 }
1644 
1645 void
1646 spa_update_dspace(spa_t *spa)
1647 {
1648 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1649 	    ddt_get_dedup_dspace(spa);
1650 }
1651 
1652 /*
1653  * Return the failure mode that has been set to this pool. The default
1654  * behavior will be to block all I/Os when a complete failure occurs.
1655  */
1656 uint8_t
1657 spa_get_failmode(spa_t *spa)
1658 {
1659 	return (spa->spa_failmode);
1660 }
1661 
1662 boolean_t
1663 spa_suspended(spa_t *spa)
1664 {
1665 	return (spa->spa_suspended);
1666 }
1667 
1668 uint64_t
1669 spa_version(spa_t *spa)
1670 {
1671 	return (spa->spa_ubsync.ub_version);
1672 }
1673 
1674 boolean_t
1675 spa_deflate(spa_t *spa)
1676 {
1677 	return (spa->spa_deflate);
1678 }
1679 
1680 metaslab_class_t *
1681 spa_normal_class(spa_t *spa)
1682 {
1683 	return (spa->spa_normal_class);
1684 }
1685 
1686 metaslab_class_t *
1687 spa_log_class(spa_t *spa)
1688 {
1689 	return (spa->spa_log_class);
1690 }
1691 
1692 void
1693 spa_evicting_os_register(spa_t *spa, objset_t *os)
1694 {
1695 	mutex_enter(&spa->spa_evicting_os_lock);
1696 	list_insert_head(&spa->spa_evicting_os_list, os);
1697 	mutex_exit(&spa->spa_evicting_os_lock);
1698 }
1699 
1700 void
1701 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1702 {
1703 	mutex_enter(&spa->spa_evicting_os_lock);
1704 	list_remove(&spa->spa_evicting_os_list, os);
1705 	cv_broadcast(&spa->spa_evicting_os_cv);
1706 	mutex_exit(&spa->spa_evicting_os_lock);
1707 }
1708 
1709 void
1710 spa_evicting_os_wait(spa_t *spa)
1711 {
1712 	mutex_enter(&spa->spa_evicting_os_lock);
1713 	while (!list_is_empty(&spa->spa_evicting_os_list))
1714 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1715 	mutex_exit(&spa->spa_evicting_os_lock);
1716 
1717 	dmu_buf_user_evict_wait();
1718 }
1719 
1720 int
1721 spa_max_replication(spa_t *spa)
1722 {
1723 	/*
1724 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1725 	 * handle BPs with more than one DVA allocated.  Set our max
1726 	 * replication level accordingly.
1727 	 */
1728 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1729 		return (1);
1730 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1731 }
1732 
1733 int
1734 spa_prev_software_version(spa_t *spa)
1735 {
1736 	return (spa->spa_prev_software_version);
1737 }
1738 
1739 uint64_t
1740 spa_deadman_synctime(spa_t *spa)
1741 {
1742 	return (spa->spa_deadman_synctime);
1743 }
1744 
1745 uint64_t
1746 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1747 {
1748 	uint64_t asize = DVA_GET_ASIZE(dva);
1749 	uint64_t dsize = asize;
1750 
1751 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1752 
1753 	if (asize != 0 && spa->spa_deflate) {
1754 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1755 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1756 	}
1757 
1758 	return (dsize);
1759 }
1760 
1761 uint64_t
1762 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1763 {
1764 	uint64_t dsize = 0;
1765 
1766 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1767 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1768 
1769 	return (dsize);
1770 }
1771 
1772 uint64_t
1773 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1774 {
1775 	uint64_t dsize = 0;
1776 
1777 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1778 
1779 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1780 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1781 
1782 	spa_config_exit(spa, SCL_VDEV, FTAG);
1783 
1784 	return (dsize);
1785 }
1786 
1787 /*
1788  * ==========================================================================
1789  * Initialization and Termination
1790  * ==========================================================================
1791  */
1792 
1793 static int
1794 spa_name_compare(const void *a1, const void *a2)
1795 {
1796 	const spa_t *s1 = a1;
1797 	const spa_t *s2 = a2;
1798 	int s;
1799 
1800 	s = strcmp(s1->spa_name, s2->spa_name);
1801 	if (s > 0)
1802 		return (1);
1803 	if (s < 0)
1804 		return (-1);
1805 	return (0);
1806 }
1807 
1808 int
1809 spa_busy(void)
1810 {
1811 	return (spa_active_count);
1812 }
1813 
1814 void
1815 spa_boot_init()
1816 {
1817 	spa_config_load();
1818 }
1819 
1820 void
1821 spa_init(int mode)
1822 {
1823 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1824 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1825 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1826 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1827 
1828 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1829 	    offsetof(spa_t, spa_avl));
1830 
1831 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1832 	    offsetof(spa_aux_t, aux_avl));
1833 
1834 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1835 	    offsetof(spa_aux_t, aux_avl));
1836 
1837 	spa_mode_global = mode;
1838 
1839 #ifdef _KERNEL
1840 	spa_arch_init();
1841 #else
1842 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1843 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1844 		if (arc_procfd == -1) {
1845 			perror("could not enable watchpoints: "
1846 			    "opening /proc/self/ctl failed: ");
1847 		} else {
1848 			arc_watch = B_TRUE;
1849 		}
1850 	}
1851 #endif
1852 
1853 	refcount_init();
1854 	unique_init();
1855 	range_tree_init();
1856 	zio_init();
1857 	dmu_init();
1858 	zil_init();
1859 	vdev_cache_stat_init();
1860 	zfs_prop_init();
1861 	zpool_prop_init();
1862 	zpool_feature_init();
1863 	spa_config_load();
1864 	l2arc_start();
1865 }
1866 
1867 void
1868 spa_fini(void)
1869 {
1870 	l2arc_stop();
1871 
1872 	spa_evict_all();
1873 
1874 	vdev_cache_stat_fini();
1875 	zil_fini();
1876 	dmu_fini();
1877 	zio_fini();
1878 	range_tree_fini();
1879 	unique_fini();
1880 	refcount_fini();
1881 
1882 	avl_destroy(&spa_namespace_avl);
1883 	avl_destroy(&spa_spare_avl);
1884 	avl_destroy(&spa_l2cache_avl);
1885 
1886 	cv_destroy(&spa_namespace_cv);
1887 	mutex_destroy(&spa_namespace_lock);
1888 	mutex_destroy(&spa_spare_lock);
1889 	mutex_destroy(&spa_l2cache_lock);
1890 }
1891 
1892 /*
1893  * Return whether this pool has slogs. No locking needed.
1894  * It's not a problem if the wrong answer is returned as it's only for
1895  * performance and not correctness
1896  */
1897 boolean_t
1898 spa_has_slogs(spa_t *spa)
1899 {
1900 	return (spa->spa_log_class->mc_rotor != NULL);
1901 }
1902 
1903 spa_log_state_t
1904 spa_get_log_state(spa_t *spa)
1905 {
1906 	return (spa->spa_log_state);
1907 }
1908 
1909 void
1910 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1911 {
1912 	spa->spa_log_state = state;
1913 }
1914 
1915 boolean_t
1916 spa_is_root(spa_t *spa)
1917 {
1918 	return (spa->spa_is_root);
1919 }
1920 
1921 boolean_t
1922 spa_writeable(spa_t *spa)
1923 {
1924 	return (!!(spa->spa_mode & FWRITE));
1925 }
1926 
1927 /*
1928  * Returns true if there is a pending sync task in any of the current
1929  * syncing txg, the current quiescing txg, or the current open txg.
1930  */
1931 boolean_t
1932 spa_has_pending_synctask(spa_t *spa)
1933 {
1934 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1935 }
1936 
1937 int
1938 spa_mode(spa_t *spa)
1939 {
1940 	return (spa->spa_mode);
1941 }
1942 
1943 uint64_t
1944 spa_bootfs(spa_t *spa)
1945 {
1946 	return (spa->spa_bootfs);
1947 }
1948 
1949 uint64_t
1950 spa_delegation(spa_t *spa)
1951 {
1952 	return (spa->spa_delegation);
1953 }
1954 
1955 objset_t *
1956 spa_meta_objset(spa_t *spa)
1957 {
1958 	return (spa->spa_meta_objset);
1959 }
1960 
1961 enum zio_checksum
1962 spa_dedup_checksum(spa_t *spa)
1963 {
1964 	return (spa->spa_dedup_checksum);
1965 }
1966 
1967 /*
1968  * Reset pool scan stat per scan pass (or reboot).
1969  */
1970 void
1971 spa_scan_stat_init(spa_t *spa)
1972 {
1973 	/* data not stored on disk */
1974 	spa->spa_scan_pass_start = gethrestime_sec();
1975 	spa->spa_scan_pass_exam = 0;
1976 	vdev_scan_stat_init(spa->spa_root_vdev);
1977 }
1978 
1979 /*
1980  * Get scan stats for zpool status reports
1981  */
1982 int
1983 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1984 {
1985 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1986 
1987 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1988 		return (SET_ERROR(ENOENT));
1989 	bzero(ps, sizeof (pool_scan_stat_t));
1990 
1991 	/* data stored on disk */
1992 	ps->pss_func = scn->scn_phys.scn_func;
1993 	ps->pss_start_time = scn->scn_phys.scn_start_time;
1994 	ps->pss_end_time = scn->scn_phys.scn_end_time;
1995 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1996 	ps->pss_examined = scn->scn_phys.scn_examined;
1997 	ps->pss_to_process = scn->scn_phys.scn_to_process;
1998 	ps->pss_processed = scn->scn_phys.scn_processed;
1999 	ps->pss_errors = scn->scn_phys.scn_errors;
2000 	ps->pss_state = scn->scn_phys.scn_state;
2001 
2002 	/* data not stored on disk */
2003 	ps->pss_pass_start = spa->spa_scan_pass_start;
2004 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2005 
2006 	return (0);
2007 }
2008 
2009 boolean_t
2010 spa_debug_enabled(spa_t *spa)
2011 {
2012 	return (spa->spa_debug);
2013 }
2014 
2015 int
2016 spa_maxblocksize(spa_t *spa)
2017 {
2018 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2019 		return (SPA_MAXBLOCKSIZE);
2020 	else
2021 		return (SPA_OLD_MAXBLOCKSIZE);
2022 }
2023