xref: /titanic_41/usr/src/uts/common/fs/zfs/spa_config.c (revision b89a2c3e86acf555d0e45c283052876d244d9e6b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27 
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/nvpair.h>
31 #include <sys/uio.h>
32 #include <sys/fs/zfs.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zfs_ioctl.h>
35 #include <sys/utsname.h>
36 #include <sys/systeminfo.h>
37 #include <sys/sunddi.h>
38 #include <sys/zfeature.h>
39 #ifdef _KERNEL
40 #include <sys/kobj.h>
41 #include <sys/zone.h>
42 #endif
43 
44 /*
45  * Pool configuration repository.
46  *
47  * Pool configuration is stored as a packed nvlist on the filesystem.  By
48  * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot
49  * (when the ZFS module is loaded).  Pools can also have the 'cachefile'
50  * property set that allows them to be stored in an alternate location until
51  * the control of external software.
52  *
53  * For each cache file, we have a single nvlist which holds all the
54  * configuration information.  When the module loads, we read this information
55  * from /etc/zfs/zpool.cache and populate the SPA namespace.  This namespace is
56  * maintained independently in spa.c.  Whenever the namespace is modified, or
57  * the configuration of a pool is changed, we call spa_config_sync(), which
58  * walks through all the active pools and writes the configuration to disk.
59  */
60 
61 static uint64_t spa_config_generation = 1;
62 
63 /*
64  * This can be overridden in userland to preserve an alternate namespace for
65  * userland pools when doing testing.
66  */
67 const char *spa_config_path = ZPOOL_CACHE;
68 
69 /*
70  * Called when the module is first loaded, this routine loads the configuration
71  * file into the SPA namespace.  It does not actually open or load the pools; it
72  * only populates the namespace.
73  */
74 void
75 spa_config_load(void)
76 {
77 	void *buf = NULL;
78 	nvlist_t *nvlist, *child;
79 	nvpair_t *nvpair;
80 	char *pathname;
81 	struct _buf *file;
82 	uint64_t fsize;
83 
84 	/*
85 	 * Open the configuration file.
86 	 */
87 	pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
88 
89 	(void) snprintf(pathname, MAXPATHLEN, "%s%s",
90 	    (rootdir != NULL) ? "./" : "", spa_config_path);
91 
92 	file = kobj_open_file(pathname);
93 
94 	kmem_free(pathname, MAXPATHLEN);
95 
96 	if (file == (struct _buf *)-1)
97 		return;
98 
99 	if (kobj_get_filesize(file, &fsize) != 0)
100 		goto out;
101 
102 	buf = kmem_alloc(fsize, KM_SLEEP);
103 
104 	/*
105 	 * Read the nvlist from the file.
106 	 */
107 	if (kobj_read_file(file, buf, fsize, 0) < 0)
108 		goto out;
109 
110 	/*
111 	 * Unpack the nvlist.
112 	 */
113 	if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
114 		goto out;
115 
116 	/*
117 	 * Iterate over all elements in the nvlist, creating a new spa_t for
118 	 * each one with the specified configuration.
119 	 */
120 	mutex_enter(&spa_namespace_lock);
121 	nvpair = NULL;
122 	while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
123 		if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
124 			continue;
125 
126 		VERIFY(nvpair_value_nvlist(nvpair, &child) == 0);
127 
128 		if (spa_lookup(nvpair_name(nvpair)) != NULL)
129 			continue;
130 		(void) spa_add(nvpair_name(nvpair), child, NULL);
131 	}
132 	mutex_exit(&spa_namespace_lock);
133 
134 	nvlist_free(nvlist);
135 
136 out:
137 	if (buf != NULL)
138 		kmem_free(buf, fsize);
139 
140 	kobj_close_file(file);
141 }
142 
143 static void
144 spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
145 {
146 	size_t buflen;
147 	char *buf;
148 	vnode_t *vp;
149 	int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX;
150 	char *temp;
151 
152 	/*
153 	 * If the nvlist is empty (NULL), then remove the old cachefile.
154 	 */
155 	if (nvl == NULL) {
156 		(void) vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE);
157 		return;
158 	}
159 
160 	/*
161 	 * Pack the configuration into a buffer.
162 	 */
163 	VERIFY(nvlist_size(nvl, &buflen, NV_ENCODE_XDR) == 0);
164 
165 	buf = kmem_alloc(buflen, KM_SLEEP);
166 	temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
167 
168 	VERIFY(nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_XDR,
169 	    KM_SLEEP) == 0);
170 
171 	/*
172 	 * Write the configuration to disk.  We need to do the traditional
173 	 * 'write to temporary file, sync, move over original' to make sure we
174 	 * always have a consistent view of the data.
175 	 */
176 	(void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path);
177 
178 	if (vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0) == 0) {
179 		if (vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE,
180 		    0, RLIM64_INFINITY, kcred, NULL) == 0 &&
181 		    VOP_FSYNC(vp, FSYNC, kcred, NULL) == 0) {
182 			(void) vn_rename(temp, dp->scd_path, UIO_SYSSPACE);
183 		}
184 		(void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
185 		VN_RELE(vp);
186 	}
187 
188 	(void) vn_remove(temp, UIO_SYSSPACE, RMFILE);
189 
190 	kmem_free(buf, buflen);
191 	kmem_free(temp, MAXPATHLEN);
192 }
193 
194 /*
195  * Synchronize pool configuration to disk.  This must be called with the
196  * namespace lock held.
197  */
198 void
199 spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent)
200 {
201 	spa_config_dirent_t *dp, *tdp;
202 	nvlist_t *nvl;
203 
204 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
205 
206 	if (rootdir == NULL || !(spa_mode_global & FWRITE))
207 		return;
208 
209 	/*
210 	 * Iterate over all cachefiles for the pool, past or present.  When the
211 	 * cachefile is changed, the new one is pushed onto this list, allowing
212 	 * us to update previous cachefiles that no longer contain this pool.
213 	 */
214 	for (dp = list_head(&target->spa_config_list); dp != NULL;
215 	    dp = list_next(&target->spa_config_list, dp)) {
216 		spa_t *spa = NULL;
217 		if (dp->scd_path == NULL)
218 			continue;
219 
220 		/*
221 		 * Iterate over all pools, adding any matching pools to 'nvl'.
222 		 */
223 		nvl = NULL;
224 		while ((spa = spa_next(spa)) != NULL) {
225 			/*
226 			 * Skip over our own pool if we're about to remove
227 			 * ourselves from the spa namespace or any pool that
228 			 * is readonly. Since we cannot guarantee that a
229 			 * readonly pool would successfully import upon reboot,
230 			 * we don't allow them to be written to the cache file.
231 			 */
232 			if ((spa == target && removing) ||
233 			    !spa_writeable(spa))
234 				continue;
235 
236 			mutex_enter(&spa->spa_props_lock);
237 			tdp = list_head(&spa->spa_config_list);
238 			if (spa->spa_config == NULL ||
239 			    tdp->scd_path == NULL ||
240 			    strcmp(tdp->scd_path, dp->scd_path) != 0) {
241 				mutex_exit(&spa->spa_props_lock);
242 				continue;
243 			}
244 
245 			if (nvl == NULL)
246 				VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME,
247 				    KM_SLEEP) == 0);
248 
249 			VERIFY(nvlist_add_nvlist(nvl, spa->spa_name,
250 			    spa->spa_config) == 0);
251 			mutex_exit(&spa->spa_props_lock);
252 		}
253 
254 		spa_config_write(dp, nvl);
255 		nvlist_free(nvl);
256 	}
257 
258 	/*
259 	 * Remove any config entries older than the current one.
260 	 */
261 	dp = list_head(&target->spa_config_list);
262 	while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) {
263 		list_remove(&target->spa_config_list, tdp);
264 		if (tdp->scd_path != NULL)
265 			spa_strfree(tdp->scd_path);
266 		kmem_free(tdp, sizeof (spa_config_dirent_t));
267 	}
268 
269 	spa_config_generation++;
270 
271 	if (postsysevent)
272 		spa_event_notify(target, NULL, ESC_ZFS_CONFIG_SYNC);
273 }
274 
275 /*
276  * Sigh.  Inside a local zone, we don't have access to /etc/zfs/zpool.cache,
277  * and we don't want to allow the local zone to see all the pools anyway.
278  * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration
279  * information for all pool visible within the zone.
280  */
281 nvlist_t *
282 spa_all_configs(uint64_t *generation)
283 {
284 	nvlist_t *pools;
285 	spa_t *spa = NULL;
286 
287 	if (*generation == spa_config_generation)
288 		return (NULL);
289 
290 	VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0);
291 
292 	mutex_enter(&spa_namespace_lock);
293 	while ((spa = spa_next(spa)) != NULL) {
294 		if (INGLOBALZONE(curproc) ||
295 		    zone_dataset_visible(spa_name(spa), NULL)) {
296 			mutex_enter(&spa->spa_props_lock);
297 			VERIFY(nvlist_add_nvlist(pools, spa_name(spa),
298 			    spa->spa_config) == 0);
299 			mutex_exit(&spa->spa_props_lock);
300 		}
301 	}
302 	*generation = spa_config_generation;
303 	mutex_exit(&spa_namespace_lock);
304 
305 	return (pools);
306 }
307 
308 void
309 spa_config_set(spa_t *spa, nvlist_t *config)
310 {
311 	mutex_enter(&spa->spa_props_lock);
312 	if (spa->spa_config != NULL)
313 		nvlist_free(spa->spa_config);
314 	spa->spa_config = config;
315 	mutex_exit(&spa->spa_props_lock);
316 }
317 
318 /*
319  * Generate the pool's configuration based on the current in-core state.
320  * We infer whether to generate a complete config or just one top-level config
321  * based on whether vd is the root vdev.
322  */
323 nvlist_t *
324 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
325 {
326 	nvlist_t *config, *nvroot;
327 	vdev_t *rvd = spa->spa_root_vdev;
328 	unsigned long hostid = 0;
329 	boolean_t locked = B_FALSE;
330 	uint64_t split_guid;
331 
332 	if (vd == NULL) {
333 		vd = rvd;
334 		locked = B_TRUE;
335 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
336 	}
337 
338 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
339 	    (SCL_CONFIG | SCL_STATE));
340 
341 	/*
342 	 * If txg is -1, report the current value of spa->spa_config_txg.
343 	 */
344 	if (txg == -1ULL)
345 		txg = spa->spa_config_txg;
346 
347 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0);
348 
349 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
350 	    spa_version(spa)) == 0);
351 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
352 	    spa_name(spa)) == 0);
353 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
354 	    spa_state(spa)) == 0);
355 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
356 	    txg) == 0);
357 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
358 	    spa_guid(spa)) == 0);
359 	VERIFY(spa->spa_comment == NULL || nvlist_add_string(config,
360 	    ZPOOL_CONFIG_COMMENT, spa->spa_comment) == 0);
361 
362 
363 #ifdef	_KERNEL
364 	hostid = zone_get_hostid(NULL);
365 #else	/* _KERNEL */
366 	/*
367 	 * We're emulating the system's hostid in userland, so we can't use
368 	 * zone_get_hostid().
369 	 */
370 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
371 #endif	/* _KERNEL */
372 	if (hostid != 0) {
373 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
374 		    hostid) == 0);
375 	}
376 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
377 	    utsname.nodename) == 0);
378 
379 	if (vd != rvd) {
380 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
381 		    vd->vdev_top->vdev_guid) == 0);
382 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
383 		    vd->vdev_guid) == 0);
384 		if (vd->vdev_isspare)
385 			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE,
386 			    1ULL) == 0);
387 		if (vd->vdev_islog)
388 			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG,
389 			    1ULL) == 0);
390 		vd = vd->vdev_top;		/* label contains top config */
391 	} else {
392 		/*
393 		 * Only add the (potentially large) split information
394 		 * in the mos config, and not in the vdev labels
395 		 */
396 		if (spa->spa_config_splitting != NULL)
397 			VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
398 			    spa->spa_config_splitting) == 0);
399 	}
400 
401 	/*
402 	 * Add the top-level config.  We even add this on pools which
403 	 * don't support holes in the namespace.
404 	 */
405 	vdev_top_config_generate(spa, config);
406 
407 	/*
408 	 * If we're splitting, record the original pool's guid.
409 	 */
410 	if (spa->spa_config_splitting != NULL &&
411 	    nvlist_lookup_uint64(spa->spa_config_splitting,
412 	    ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
413 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID,
414 		    split_guid) == 0);
415 	}
416 
417 	nvroot = vdev_config_generate(spa, vd, getstats, 0);
418 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
419 	nvlist_free(nvroot);
420 
421 	/*
422 	 * Store what's necessary for reading the MOS in the label.
423 	 */
424 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
425 	    spa->spa_label_features) == 0);
426 
427 	if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
428 		ddt_histogram_t *ddh;
429 		ddt_stat_t *dds;
430 		ddt_object_t *ddo;
431 
432 		ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
433 		ddt_get_dedup_histogram(spa, ddh);
434 		VERIFY(nvlist_add_uint64_array(config,
435 		    ZPOOL_CONFIG_DDT_HISTOGRAM,
436 		    (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0);
437 		kmem_free(ddh, sizeof (ddt_histogram_t));
438 
439 		ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
440 		ddt_get_dedup_object_stats(spa, ddo);
441 		VERIFY(nvlist_add_uint64_array(config,
442 		    ZPOOL_CONFIG_DDT_OBJ_STATS,
443 		    (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0);
444 		kmem_free(ddo, sizeof (ddt_object_t));
445 
446 		dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
447 		ddt_get_dedup_stats(spa, dds);
448 		VERIFY(nvlist_add_uint64_array(config,
449 		    ZPOOL_CONFIG_DDT_STATS,
450 		    (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0);
451 		kmem_free(dds, sizeof (ddt_stat_t));
452 	}
453 
454 	if (locked)
455 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
456 
457 	return (config);
458 }
459 
460 /*
461  * Update all disk labels, generate a fresh config based on the current
462  * in-core state, and sync the global config cache (do not sync the config
463  * cache if this is a booting rootpool).
464  */
465 void
466 spa_config_update(spa_t *spa, int what)
467 {
468 	vdev_t *rvd = spa->spa_root_vdev;
469 	uint64_t txg;
470 	int c;
471 
472 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
473 
474 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
475 	txg = spa_last_synced_txg(spa) + 1;
476 	if (what == SPA_CONFIG_UPDATE_POOL) {
477 		vdev_config_dirty(rvd);
478 	} else {
479 		/*
480 		 * If we have top-level vdevs that were added but have
481 		 * not yet been prepared for allocation, do that now.
482 		 * (It's safe now because the config cache is up to date,
483 		 * so it will be able to translate the new DVAs.)
484 		 * See comments in spa_vdev_add() for full details.
485 		 */
486 		for (c = 0; c < rvd->vdev_children; c++) {
487 			vdev_t *tvd = rvd->vdev_child[c];
488 			if (tvd->vdev_ms_array == 0)
489 				vdev_metaslab_set_size(tvd);
490 			vdev_expand(tvd, txg);
491 		}
492 	}
493 	spa_config_exit(spa, SCL_ALL, FTAG);
494 
495 	/*
496 	 * Wait for the mosconfig to be regenerated and synced.
497 	 */
498 	txg_wait_synced(spa->spa_dsl_pool, txg);
499 
500 	/*
501 	 * Update the global config cache to reflect the new mosconfig.
502 	 */
503 	if (!spa->spa_is_root)
504 		spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL);
505 
506 	if (what == SPA_CONFIG_UPDATE_POOL)
507 		spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
508 }
509