1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/spa.h> 27 #include <sys/spa_impl.h> 28 #include <sys/nvpair.h> 29 #include <sys/uio.h> 30 #include <sys/fs/zfs.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/zfs_ioctl.h> 33 #include <sys/utsname.h> 34 #include <sys/systeminfo.h> 35 #include <sys/sunddi.h> 36 #ifdef _KERNEL 37 #include <sys/kobj.h> 38 #include <sys/zone.h> 39 #endif 40 41 /* 42 * Pool configuration repository. 43 * 44 * Pool configuration is stored as a packed nvlist on the filesystem. By 45 * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot 46 * (when the ZFS module is loaded). Pools can also have the 'cachefile' 47 * property set that allows them to be stored in an alternate location until 48 * the control of external software. 49 * 50 * For each cache file, we have a single nvlist which holds all the 51 * configuration information. When the module loads, we read this information 52 * from /etc/zfs/zpool.cache and populate the SPA namespace. This namespace is 53 * maintained independently in spa.c. Whenever the namespace is modified, or 54 * the configuration of a pool is changed, we call spa_config_sync(), which 55 * walks through all the active pools and writes the configuration to disk. 56 */ 57 58 static uint64_t spa_config_generation = 1; 59 60 /* 61 * This can be overridden in userland to preserve an alternate namespace for 62 * userland pools when doing testing. 63 */ 64 const char *spa_config_path = ZPOOL_CACHE; 65 66 /* 67 * Called when the module is first loaded, this routine loads the configuration 68 * file into the SPA namespace. It does not actually open or load the pools; it 69 * only populates the namespace. 70 */ 71 void 72 spa_config_load(void) 73 { 74 void *buf = NULL; 75 nvlist_t *nvlist, *child; 76 nvpair_t *nvpair; 77 char *pathname; 78 struct _buf *file; 79 uint64_t fsize; 80 81 /* 82 * Open the configuration file. 83 */ 84 pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 85 86 (void) snprintf(pathname, MAXPATHLEN, "%s%s", 87 (rootdir != NULL) ? "./" : "", spa_config_path); 88 89 file = kobj_open_file(pathname); 90 91 kmem_free(pathname, MAXPATHLEN); 92 93 if (file == (struct _buf *)-1) 94 return; 95 96 if (kobj_get_filesize(file, &fsize) != 0) 97 goto out; 98 99 buf = kmem_alloc(fsize, KM_SLEEP); 100 101 /* 102 * Read the nvlist from the file. 103 */ 104 if (kobj_read_file(file, buf, fsize, 0) < 0) 105 goto out; 106 107 /* 108 * Unpack the nvlist. 109 */ 110 if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0) 111 goto out; 112 113 /* 114 * Iterate over all elements in the nvlist, creating a new spa_t for 115 * each one with the specified configuration. 116 */ 117 mutex_enter(&spa_namespace_lock); 118 nvpair = NULL; 119 while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) { 120 if (nvpair_type(nvpair) != DATA_TYPE_NVLIST) 121 continue; 122 123 VERIFY(nvpair_value_nvlist(nvpair, &child) == 0); 124 125 if (spa_lookup(nvpair_name(nvpair)) != NULL) 126 continue; 127 (void) spa_add(nvpair_name(nvpair), child, NULL); 128 } 129 mutex_exit(&spa_namespace_lock); 130 131 nvlist_free(nvlist); 132 133 out: 134 if (buf != NULL) 135 kmem_free(buf, fsize); 136 137 kobj_close_file(file); 138 } 139 140 static void 141 spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl) 142 { 143 size_t buflen; 144 char *buf; 145 vnode_t *vp; 146 int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX; 147 char *temp; 148 149 /* 150 * If the nvlist is empty (NULL), then remove the old cachefile. 151 */ 152 if (nvl == NULL) { 153 (void) vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE); 154 return; 155 } 156 157 /* 158 * Pack the configuration into a buffer. 159 */ 160 VERIFY(nvlist_size(nvl, &buflen, NV_ENCODE_XDR) == 0); 161 162 buf = kmem_alloc(buflen, KM_SLEEP); 163 temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 164 165 VERIFY(nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_XDR, 166 KM_SLEEP) == 0); 167 168 /* 169 * Write the configuration to disk. We need to do the traditional 170 * 'write to temporary file, sync, move over original' to make sure we 171 * always have a consistent view of the data. 172 */ 173 (void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path); 174 175 if (vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0) == 0) { 176 if (vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE, 177 0, RLIM64_INFINITY, kcred, NULL) == 0 && 178 VOP_FSYNC(vp, FSYNC, kcred, NULL) == 0) { 179 (void) vn_rename(temp, dp->scd_path, UIO_SYSSPACE); 180 } 181 (void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL); 182 VN_RELE(vp); 183 } 184 185 (void) vn_remove(temp, UIO_SYSSPACE, RMFILE); 186 187 kmem_free(buf, buflen); 188 kmem_free(temp, MAXPATHLEN); 189 } 190 191 /* 192 * Synchronize pool configuration to disk. This must be called with the 193 * namespace lock held. 194 */ 195 void 196 spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent) 197 { 198 spa_config_dirent_t *dp, *tdp; 199 nvlist_t *nvl; 200 201 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 202 203 if (rootdir == NULL || !(spa_mode_global & FWRITE)) 204 return; 205 206 /* 207 * Iterate over all cachefiles for the pool, past or present. When the 208 * cachefile is changed, the new one is pushed onto this list, allowing 209 * us to update previous cachefiles that no longer contain this pool. 210 */ 211 for (dp = list_head(&target->spa_config_list); dp != NULL; 212 dp = list_next(&target->spa_config_list, dp)) { 213 spa_t *spa = NULL; 214 if (dp->scd_path == NULL) 215 continue; 216 217 /* 218 * Iterate over all pools, adding any matching pools to 'nvl'. 219 */ 220 nvl = NULL; 221 while ((spa = spa_next(spa)) != NULL) { 222 if (spa == target && removing) 223 continue; 224 225 mutex_enter(&spa->spa_props_lock); 226 tdp = list_head(&spa->spa_config_list); 227 if (spa->spa_config == NULL || 228 tdp->scd_path == NULL || 229 strcmp(tdp->scd_path, dp->scd_path) != 0) { 230 mutex_exit(&spa->spa_props_lock); 231 continue; 232 } 233 234 if (nvl == NULL) 235 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, 236 KM_SLEEP) == 0); 237 238 VERIFY(nvlist_add_nvlist(nvl, spa->spa_name, 239 spa->spa_config) == 0); 240 mutex_exit(&spa->spa_props_lock); 241 } 242 243 spa_config_write(dp, nvl); 244 nvlist_free(nvl); 245 } 246 247 /* 248 * Remove any config entries older than the current one. 249 */ 250 dp = list_head(&target->spa_config_list); 251 while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) { 252 list_remove(&target->spa_config_list, tdp); 253 if (tdp->scd_path != NULL) 254 spa_strfree(tdp->scd_path); 255 kmem_free(tdp, sizeof (spa_config_dirent_t)); 256 } 257 258 spa_config_generation++; 259 260 if (postsysevent) 261 spa_event_notify(target, NULL, ESC_ZFS_CONFIG_SYNC); 262 } 263 264 /* 265 * Sigh. Inside a local zone, we don't have access to /etc/zfs/zpool.cache, 266 * and we don't want to allow the local zone to see all the pools anyway. 267 * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration 268 * information for all pool visible within the zone. 269 */ 270 nvlist_t * 271 spa_all_configs(uint64_t *generation) 272 { 273 nvlist_t *pools; 274 spa_t *spa = NULL; 275 276 if (*generation == spa_config_generation) 277 return (NULL); 278 279 VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0); 280 281 mutex_enter(&spa_namespace_lock); 282 while ((spa = spa_next(spa)) != NULL) { 283 if (INGLOBALZONE(curproc) || 284 zone_dataset_visible(spa_name(spa), NULL)) { 285 mutex_enter(&spa->spa_props_lock); 286 VERIFY(nvlist_add_nvlist(pools, spa_name(spa), 287 spa->spa_config) == 0); 288 mutex_exit(&spa->spa_props_lock); 289 } 290 } 291 *generation = spa_config_generation; 292 mutex_exit(&spa_namespace_lock); 293 294 return (pools); 295 } 296 297 void 298 spa_config_set(spa_t *spa, nvlist_t *config) 299 { 300 mutex_enter(&spa->spa_props_lock); 301 if (spa->spa_config != NULL) 302 nvlist_free(spa->spa_config); 303 spa->spa_config = config; 304 mutex_exit(&spa->spa_props_lock); 305 } 306 307 /* Add discovered rewind info, if any to the provided nvlist */ 308 void 309 spa_rewind_data_to_nvlist(spa_t *spa, nvlist_t *tonvl) 310 { 311 int64_t loss = 0; 312 313 if (tonvl == NULL || spa->spa_load_txg == 0) 314 return; 315 316 VERIFY(nvlist_add_uint64(tonvl, ZPOOL_CONFIG_LOAD_TIME, 317 spa->spa_load_txg_ts) == 0); 318 if (spa->spa_last_ubsync_txg) 319 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 320 VERIFY(nvlist_add_int64(tonvl, ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 321 VERIFY(nvlist_add_uint64(tonvl, ZPOOL_CONFIG_LOAD_DATA_ERRORS, 322 spa->spa_load_data_errors) == 0); 323 } 324 325 /* 326 * Generate the pool's configuration based on the current in-core state. 327 * We infer whether to generate a complete config or just one top-level config 328 * based on whether vd is the root vdev. 329 */ 330 nvlist_t * 331 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats) 332 { 333 nvlist_t *config, *nvroot; 334 vdev_t *rvd = spa->spa_root_vdev; 335 unsigned long hostid = 0; 336 boolean_t locked = B_FALSE; 337 uint64_t split_guid; 338 339 if (vd == NULL) { 340 vd = rvd; 341 locked = B_TRUE; 342 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 343 } 344 345 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) == 346 (SCL_CONFIG | SCL_STATE)); 347 348 /* 349 * If txg is -1, report the current value of spa->spa_config_txg. 350 */ 351 if (txg == -1ULL) 352 txg = spa->spa_config_txg; 353 354 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0); 355 356 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 357 spa_version(spa)) == 0); 358 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 359 spa_name(spa)) == 0); 360 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 361 spa_state(spa)) == 0); 362 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 363 txg) == 0); 364 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 365 spa_guid(spa)) == 0); 366 #ifdef _KERNEL 367 hostid = zone_get_hostid(NULL); 368 #else /* _KERNEL */ 369 /* 370 * We're emulating the system's hostid in userland, so we can't use 371 * zone_get_hostid(). 372 */ 373 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 374 #endif /* _KERNEL */ 375 if (hostid != 0) { 376 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 377 hostid) == 0); 378 } 379 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 380 utsname.nodename) == 0); 381 382 if (vd != rvd) { 383 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID, 384 vd->vdev_top->vdev_guid) == 0); 385 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID, 386 vd->vdev_guid) == 0); 387 if (vd->vdev_isspare) 388 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE, 389 1ULL) == 0); 390 if (vd->vdev_islog) 391 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG, 392 1ULL) == 0); 393 vd = vd->vdev_top; /* label contains top config */ 394 } else { 395 /* 396 * Only add the (potentially large) split information 397 * in the mos config, and not in the vdev labels 398 */ 399 if (spa->spa_config_splitting != NULL) 400 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT, 401 spa->spa_config_splitting) == 0); 402 } 403 404 /* 405 * Add the top-level config. We even add this on pools which 406 * don't support holes in the namespace as older pools will 407 * just ignore it. 408 */ 409 vdev_top_config_generate(spa, config); 410 411 /* 412 * If we're splitting, record the original pool's guid. 413 */ 414 if (spa->spa_config_splitting != NULL && 415 nvlist_lookup_uint64(spa->spa_config_splitting, 416 ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) { 417 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID, 418 split_guid) == 0); 419 } 420 421 nvroot = vdev_config_generate(spa, vd, getstats, 0); 422 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 423 nvlist_free(nvroot); 424 425 if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) { 426 ddt_histogram_t *ddh; 427 ddt_stat_t *dds; 428 ddt_object_t *ddo; 429 430 ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP); 431 ddt_get_dedup_histogram(spa, ddh); 432 VERIFY(nvlist_add_uint64_array(config, 433 ZPOOL_CONFIG_DDT_HISTOGRAM, 434 (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0); 435 kmem_free(ddh, sizeof (ddt_histogram_t)); 436 437 ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP); 438 ddt_get_dedup_object_stats(spa, ddo); 439 VERIFY(nvlist_add_uint64_array(config, 440 ZPOOL_CONFIG_DDT_OBJ_STATS, 441 (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0); 442 kmem_free(ddo, sizeof (ddt_object_t)); 443 444 dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP); 445 ddt_get_dedup_stats(spa, dds); 446 VERIFY(nvlist_add_uint64_array(config, 447 ZPOOL_CONFIG_DDT_STATS, 448 (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0); 449 kmem_free(dds, sizeof (ddt_stat_t)); 450 } 451 452 spa_rewind_data_to_nvlist(spa, config); 453 454 if (locked) 455 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 456 457 return (config); 458 } 459 460 /* 461 * Update all disk labels, generate a fresh config based on the current 462 * in-core state, and sync the global config cache (do not sync the config 463 * cache if this is a booting rootpool). 464 */ 465 void 466 spa_config_update(spa_t *spa, int what) 467 { 468 vdev_t *rvd = spa->spa_root_vdev; 469 uint64_t txg; 470 int c; 471 472 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 473 474 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 475 txg = spa_last_synced_txg(spa) + 1; 476 if (what == SPA_CONFIG_UPDATE_POOL) { 477 vdev_config_dirty(rvd); 478 } else { 479 /* 480 * If we have top-level vdevs that were added but have 481 * not yet been prepared for allocation, do that now. 482 * (It's safe now because the config cache is up to date, 483 * so it will be able to translate the new DVAs.) 484 * See comments in spa_vdev_add() for full details. 485 */ 486 for (c = 0; c < rvd->vdev_children; c++) { 487 vdev_t *tvd = rvd->vdev_child[c]; 488 if (tvd->vdev_ms_array == 0) 489 vdev_metaslab_set_size(tvd); 490 vdev_expand(tvd, txg); 491 } 492 } 493 spa_config_exit(spa, SCL_ALL, FTAG); 494 495 /* 496 * Wait for the mosconfig to be regenerated and synced. 497 */ 498 txg_wait_synced(spa->spa_dsl_pool, txg); 499 500 /* 501 * Update the global config cache to reflect the new mosconfig. 502 */ 503 if (!spa->spa_is_root) 504 spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL); 505 506 if (what == SPA_CONFIG_UPDATE_POOL) 507 spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS); 508 } 509