1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 */ 28 29 /* 30 * SPA: Storage Pool Allocator 31 * 32 * This file contains all the routines used when modifying on-disk SPA state. 33 * This includes opening, importing, destroying, exporting a pool, and syncing a 34 * pool. 35 */ 36 37 #include <sys/zfs_context.h> 38 #include <sys/fm/fs/zfs.h> 39 #include <sys/spa_impl.h> 40 #include <sys/zio.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu.h> 43 #include <sys/dmu_tx.h> 44 #include <sys/zap.h> 45 #include <sys/zil.h> 46 #include <sys/ddt.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/metaslab.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/uberblock_impl.h> 51 #include <sys/txg.h> 52 #include <sys/avl.h> 53 #include <sys/dmu_traverse.h> 54 #include <sys/dmu_objset.h> 55 #include <sys/unique.h> 56 #include <sys/dsl_pool.h> 57 #include <sys/dsl_dataset.h> 58 #include <sys/dsl_dir.h> 59 #include <sys/dsl_prop.h> 60 #include <sys/dsl_synctask.h> 61 #include <sys/fs/zfs.h> 62 #include <sys/arc.h> 63 #include <sys/callb.h> 64 #include <sys/systeminfo.h> 65 #include <sys/spa_boot.h> 66 #include <sys/zfs_ioctl.h> 67 #include <sys/dsl_scan.h> 68 #include <sys/zfeature.h> 69 #include <sys/dsl_destroy.h> 70 71 #ifdef _KERNEL 72 #include <sys/bootprops.h> 73 #include <sys/callb.h> 74 #include <sys/cpupart.h> 75 #include <sys/pool.h> 76 #include <sys/sysdc.h> 77 #include <sys/zone.h> 78 #endif /* _KERNEL */ 79 80 #include "zfs_prop.h" 81 #include "zfs_comutil.h" 82 83 /* 84 * The interval, in seconds, at which failed configuration cache file writes 85 * should be retried. 86 */ 87 static int zfs_ccw_retry_interval = 300; 88 89 typedef enum zti_modes { 90 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 92 ZTI_MODE_NULL, /* don't create a taskq */ 93 ZTI_NMODES 94 } zti_modes_t; 95 96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 97 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 98 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 99 100 #define ZTI_N(n) ZTI_P(n, 1) 101 #define ZTI_ONE ZTI_N(1) 102 103 typedef struct zio_taskq_info { 104 zti_modes_t zti_mode; 105 uint_t zti_value; 106 uint_t zti_count; 107 } zio_taskq_info_t; 108 109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 110 "issue", "issue_high", "intr", "intr_high" 111 }; 112 113 /* 114 * This table defines the taskq settings for each ZFS I/O type. When 115 * initializing a pool, we use this table to create an appropriately sized 116 * taskq. Some operations are low volume and therefore have a small, static 117 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 118 * macros. Other operations process a large amount of data; the ZTI_BATCH 119 * macro causes us to create a taskq oriented for throughput. Some operations 120 * are so high frequency and short-lived that the taskq itself can become a a 121 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 122 * additional degree of parallelism specified by the number of threads per- 123 * taskq and the number of taskqs; when dispatching an event in this case, the 124 * particular taskq is chosen at random. 125 * 126 * The different taskq priorities are to handle the different contexts (issue 127 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 128 * need to be handled with minimum delay. 129 */ 130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 131 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 133 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 134 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 135 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 138 }; 139 140 static void spa_sync_version(void *arg, dmu_tx_t *tx); 141 static void spa_sync_props(void *arg, dmu_tx_t *tx); 142 static boolean_t spa_has_active_shared_spare(spa_t *spa); 143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 144 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 145 char **ereport); 146 static void spa_vdev_resilver_done(spa_t *spa); 147 148 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 149 id_t zio_taskq_psrset_bind = PS_NONE; 150 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 151 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 152 153 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 154 extern int zfs_sync_pass_deferred_free; 155 156 /* 157 * This (illegal) pool name is used when temporarily importing a spa_t in order 158 * to get the vdev stats associated with the imported devices. 159 */ 160 #define TRYIMPORT_NAME "$import" 161 162 /* 163 * ========================================================================== 164 * SPA properties routines 165 * ========================================================================== 166 */ 167 168 /* 169 * Add a (source=src, propname=propval) list to an nvlist. 170 */ 171 static void 172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 173 uint64_t intval, zprop_source_t src) 174 { 175 const char *propname = zpool_prop_to_name(prop); 176 nvlist_t *propval; 177 178 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 179 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 180 181 if (strval != NULL) 182 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 183 else 184 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 185 186 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 187 nvlist_free(propval); 188 } 189 190 /* 191 * Get property values from the spa configuration. 192 */ 193 static void 194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 195 { 196 vdev_t *rvd = spa->spa_root_vdev; 197 dsl_pool_t *pool = spa->spa_dsl_pool; 198 uint64_t size, alloc, cap, version; 199 zprop_source_t src = ZPROP_SRC_NONE; 200 spa_config_dirent_t *dp; 201 metaslab_class_t *mc = spa_normal_class(spa); 202 203 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 204 205 if (rvd != NULL) { 206 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 207 size = metaslab_class_get_space(spa_normal_class(spa)); 208 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 212 size - alloc, src); 213 214 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 215 metaslab_class_fragmentation(mc), src); 216 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 217 metaslab_class_expandable_space(mc), src); 218 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 219 (spa_mode(spa) == FREAD), src); 220 221 cap = (size == 0) ? 0 : (alloc * 100 / size); 222 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 223 224 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 225 ddt_get_pool_dedup_ratio(spa), src); 226 227 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 228 rvd->vdev_state, src); 229 230 version = spa_version(spa); 231 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 232 src = ZPROP_SRC_DEFAULT; 233 else 234 src = ZPROP_SRC_LOCAL; 235 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 236 } 237 238 if (pool != NULL) { 239 /* 240 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 241 * when opening pools before this version freedir will be NULL. 242 */ 243 if (pool->dp_free_dir != NULL) { 244 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 245 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 246 src); 247 } else { 248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 249 NULL, 0, src); 250 } 251 252 if (pool->dp_leak_dir != NULL) { 253 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 254 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 255 src); 256 } else { 257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 258 NULL, 0, src); 259 } 260 } 261 262 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 263 264 if (spa->spa_comment != NULL) { 265 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 266 0, ZPROP_SRC_LOCAL); 267 } 268 269 if (spa->spa_root != NULL) 270 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 271 0, ZPROP_SRC_LOCAL); 272 273 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 274 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 275 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 276 } else { 277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 278 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 279 } 280 281 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 282 if (dp->scd_path == NULL) { 283 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 284 "none", 0, ZPROP_SRC_LOCAL); 285 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 286 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 287 dp->scd_path, 0, ZPROP_SRC_LOCAL); 288 } 289 } 290 } 291 292 /* 293 * Get zpool property values. 294 */ 295 int 296 spa_prop_get(spa_t *spa, nvlist_t **nvp) 297 { 298 objset_t *mos = spa->spa_meta_objset; 299 zap_cursor_t zc; 300 zap_attribute_t za; 301 int err; 302 303 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 304 305 mutex_enter(&spa->spa_props_lock); 306 307 /* 308 * Get properties from the spa config. 309 */ 310 spa_prop_get_config(spa, nvp); 311 312 /* If no pool property object, no more prop to get. */ 313 if (mos == NULL || spa->spa_pool_props_object == 0) { 314 mutex_exit(&spa->spa_props_lock); 315 return (0); 316 } 317 318 /* 319 * Get properties from the MOS pool property object. 320 */ 321 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 322 (err = zap_cursor_retrieve(&zc, &za)) == 0; 323 zap_cursor_advance(&zc)) { 324 uint64_t intval = 0; 325 char *strval = NULL; 326 zprop_source_t src = ZPROP_SRC_DEFAULT; 327 zpool_prop_t prop; 328 329 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 330 continue; 331 332 switch (za.za_integer_length) { 333 case 8: 334 /* integer property */ 335 if (za.za_first_integer != 336 zpool_prop_default_numeric(prop)) 337 src = ZPROP_SRC_LOCAL; 338 339 if (prop == ZPOOL_PROP_BOOTFS) { 340 dsl_pool_t *dp; 341 dsl_dataset_t *ds = NULL; 342 343 dp = spa_get_dsl(spa); 344 dsl_pool_config_enter(dp, FTAG); 345 if (err = dsl_dataset_hold_obj(dp, 346 za.za_first_integer, FTAG, &ds)) { 347 dsl_pool_config_exit(dp, FTAG); 348 break; 349 } 350 351 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 352 KM_SLEEP); 353 dsl_dataset_name(ds, strval); 354 dsl_dataset_rele(ds, FTAG); 355 dsl_pool_config_exit(dp, FTAG); 356 } else { 357 strval = NULL; 358 intval = za.za_first_integer; 359 } 360 361 spa_prop_add_list(*nvp, prop, strval, intval, src); 362 363 if (strval != NULL) 364 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 365 366 break; 367 368 case 1: 369 /* string property */ 370 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 371 err = zap_lookup(mos, spa->spa_pool_props_object, 372 za.za_name, 1, za.za_num_integers, strval); 373 if (err) { 374 kmem_free(strval, za.za_num_integers); 375 break; 376 } 377 spa_prop_add_list(*nvp, prop, strval, 0, src); 378 kmem_free(strval, za.za_num_integers); 379 break; 380 381 default: 382 break; 383 } 384 } 385 zap_cursor_fini(&zc); 386 mutex_exit(&spa->spa_props_lock); 387 out: 388 if (err && err != ENOENT) { 389 nvlist_free(*nvp); 390 *nvp = NULL; 391 return (err); 392 } 393 394 return (0); 395 } 396 397 /* 398 * Validate the given pool properties nvlist and modify the list 399 * for the property values to be set. 400 */ 401 static int 402 spa_prop_validate(spa_t *spa, nvlist_t *props) 403 { 404 nvpair_t *elem; 405 int error = 0, reset_bootfs = 0; 406 uint64_t objnum = 0; 407 boolean_t has_feature = B_FALSE; 408 409 elem = NULL; 410 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 411 uint64_t intval; 412 char *strval, *slash, *check, *fname; 413 const char *propname = nvpair_name(elem); 414 zpool_prop_t prop = zpool_name_to_prop(propname); 415 416 switch (prop) { 417 case ZPROP_INVAL: 418 if (!zpool_prop_feature(propname)) { 419 error = SET_ERROR(EINVAL); 420 break; 421 } 422 423 /* 424 * Sanitize the input. 425 */ 426 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 427 error = SET_ERROR(EINVAL); 428 break; 429 } 430 431 if (nvpair_value_uint64(elem, &intval) != 0) { 432 error = SET_ERROR(EINVAL); 433 break; 434 } 435 436 if (intval != 0) { 437 error = SET_ERROR(EINVAL); 438 break; 439 } 440 441 fname = strchr(propname, '@') + 1; 442 if (zfeature_lookup_name(fname, NULL) != 0) { 443 error = SET_ERROR(EINVAL); 444 break; 445 } 446 447 has_feature = B_TRUE; 448 break; 449 450 case ZPOOL_PROP_VERSION: 451 error = nvpair_value_uint64(elem, &intval); 452 if (!error && 453 (intval < spa_version(spa) || 454 intval > SPA_VERSION_BEFORE_FEATURES || 455 has_feature)) 456 error = SET_ERROR(EINVAL); 457 break; 458 459 case ZPOOL_PROP_DELEGATION: 460 case ZPOOL_PROP_AUTOREPLACE: 461 case ZPOOL_PROP_LISTSNAPS: 462 case ZPOOL_PROP_AUTOEXPAND: 463 error = nvpair_value_uint64(elem, &intval); 464 if (!error && intval > 1) 465 error = SET_ERROR(EINVAL); 466 break; 467 468 case ZPOOL_PROP_BOOTFS: 469 /* 470 * If the pool version is less than SPA_VERSION_BOOTFS, 471 * or the pool is still being created (version == 0), 472 * the bootfs property cannot be set. 473 */ 474 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 475 error = SET_ERROR(ENOTSUP); 476 break; 477 } 478 479 /* 480 * Make sure the vdev config is bootable 481 */ 482 if (!vdev_is_bootable(spa->spa_root_vdev)) { 483 error = SET_ERROR(ENOTSUP); 484 break; 485 } 486 487 reset_bootfs = 1; 488 489 error = nvpair_value_string(elem, &strval); 490 491 if (!error) { 492 objset_t *os; 493 uint64_t propval; 494 495 if (strval == NULL || strval[0] == '\0') { 496 objnum = zpool_prop_default_numeric( 497 ZPOOL_PROP_BOOTFS); 498 break; 499 } 500 501 if (error = dmu_objset_hold(strval, FTAG, &os)) 502 break; 503 504 /* 505 * Must be ZPL, and its property settings 506 * must be supported by GRUB (compression 507 * is not gzip, and large blocks are not used). 508 */ 509 510 if (dmu_objset_type(os) != DMU_OST_ZFS) { 511 error = SET_ERROR(ENOTSUP); 512 } else if ((error = 513 dsl_prop_get_int_ds(dmu_objset_ds(os), 514 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 515 &propval)) == 0 && 516 !BOOTFS_COMPRESS_VALID(propval)) { 517 error = SET_ERROR(ENOTSUP); 518 } else if ((error = 519 dsl_prop_get_int_ds(dmu_objset_ds(os), 520 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), 521 &propval)) == 0 && 522 propval > SPA_OLD_MAXBLOCKSIZE) { 523 error = SET_ERROR(ENOTSUP); 524 } else { 525 objnum = dmu_objset_id(os); 526 } 527 dmu_objset_rele(os, FTAG); 528 } 529 break; 530 531 case ZPOOL_PROP_FAILUREMODE: 532 error = nvpair_value_uint64(elem, &intval); 533 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 534 intval > ZIO_FAILURE_MODE_PANIC)) 535 error = SET_ERROR(EINVAL); 536 537 /* 538 * This is a special case which only occurs when 539 * the pool has completely failed. This allows 540 * the user to change the in-core failmode property 541 * without syncing it out to disk (I/Os might 542 * currently be blocked). We do this by returning 543 * EIO to the caller (spa_prop_set) to trick it 544 * into thinking we encountered a property validation 545 * error. 546 */ 547 if (!error && spa_suspended(spa)) { 548 spa->spa_failmode = intval; 549 error = SET_ERROR(EIO); 550 } 551 break; 552 553 case ZPOOL_PROP_CACHEFILE: 554 if ((error = nvpair_value_string(elem, &strval)) != 0) 555 break; 556 557 if (strval[0] == '\0') 558 break; 559 560 if (strcmp(strval, "none") == 0) 561 break; 562 563 if (strval[0] != '/') { 564 error = SET_ERROR(EINVAL); 565 break; 566 } 567 568 slash = strrchr(strval, '/'); 569 ASSERT(slash != NULL); 570 571 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 572 strcmp(slash, "/..") == 0) 573 error = SET_ERROR(EINVAL); 574 break; 575 576 case ZPOOL_PROP_COMMENT: 577 if ((error = nvpair_value_string(elem, &strval)) != 0) 578 break; 579 for (check = strval; *check != '\0'; check++) { 580 /* 581 * The kernel doesn't have an easy isprint() 582 * check. For this kernel check, we merely 583 * check ASCII apart from DEL. Fix this if 584 * there is an easy-to-use kernel isprint(). 585 */ 586 if (*check >= 0x7f) { 587 error = SET_ERROR(EINVAL); 588 break; 589 } 590 check++; 591 } 592 if (strlen(strval) > ZPROP_MAX_COMMENT) 593 error = E2BIG; 594 break; 595 596 case ZPOOL_PROP_DEDUPDITTO: 597 if (spa_version(spa) < SPA_VERSION_DEDUP) 598 error = SET_ERROR(ENOTSUP); 599 else 600 error = nvpair_value_uint64(elem, &intval); 601 if (error == 0 && 602 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 603 error = SET_ERROR(EINVAL); 604 break; 605 } 606 607 if (error) 608 break; 609 } 610 611 if (!error && reset_bootfs) { 612 error = nvlist_remove(props, 613 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 614 615 if (!error) { 616 error = nvlist_add_uint64(props, 617 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 618 } 619 } 620 621 return (error); 622 } 623 624 void 625 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 626 { 627 char *cachefile; 628 spa_config_dirent_t *dp; 629 630 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 631 &cachefile) != 0) 632 return; 633 634 dp = kmem_alloc(sizeof (spa_config_dirent_t), 635 KM_SLEEP); 636 637 if (cachefile[0] == '\0') 638 dp->scd_path = spa_strdup(spa_config_path); 639 else if (strcmp(cachefile, "none") == 0) 640 dp->scd_path = NULL; 641 else 642 dp->scd_path = spa_strdup(cachefile); 643 644 list_insert_head(&spa->spa_config_list, dp); 645 if (need_sync) 646 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 647 } 648 649 int 650 spa_prop_set(spa_t *spa, nvlist_t *nvp) 651 { 652 int error; 653 nvpair_t *elem = NULL; 654 boolean_t need_sync = B_FALSE; 655 656 if ((error = spa_prop_validate(spa, nvp)) != 0) 657 return (error); 658 659 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 660 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 661 662 if (prop == ZPOOL_PROP_CACHEFILE || 663 prop == ZPOOL_PROP_ALTROOT || 664 prop == ZPOOL_PROP_READONLY) 665 continue; 666 667 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 668 uint64_t ver; 669 670 if (prop == ZPOOL_PROP_VERSION) { 671 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 672 } else { 673 ASSERT(zpool_prop_feature(nvpair_name(elem))); 674 ver = SPA_VERSION_FEATURES; 675 need_sync = B_TRUE; 676 } 677 678 /* Save time if the version is already set. */ 679 if (ver == spa_version(spa)) 680 continue; 681 682 /* 683 * In addition to the pool directory object, we might 684 * create the pool properties object, the features for 685 * read object, the features for write object, or the 686 * feature descriptions object. 687 */ 688 error = dsl_sync_task(spa->spa_name, NULL, 689 spa_sync_version, &ver, 690 6, ZFS_SPACE_CHECK_RESERVED); 691 if (error) 692 return (error); 693 continue; 694 } 695 696 need_sync = B_TRUE; 697 break; 698 } 699 700 if (need_sync) { 701 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 702 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 703 } 704 705 return (0); 706 } 707 708 /* 709 * If the bootfs property value is dsobj, clear it. 710 */ 711 void 712 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 713 { 714 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 715 VERIFY(zap_remove(spa->spa_meta_objset, 716 spa->spa_pool_props_object, 717 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 718 spa->spa_bootfs = 0; 719 } 720 } 721 722 /*ARGSUSED*/ 723 static int 724 spa_change_guid_check(void *arg, dmu_tx_t *tx) 725 { 726 uint64_t *newguid = arg; 727 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 728 vdev_t *rvd = spa->spa_root_vdev; 729 uint64_t vdev_state; 730 731 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 732 vdev_state = rvd->vdev_state; 733 spa_config_exit(spa, SCL_STATE, FTAG); 734 735 if (vdev_state != VDEV_STATE_HEALTHY) 736 return (SET_ERROR(ENXIO)); 737 738 ASSERT3U(spa_guid(spa), !=, *newguid); 739 740 return (0); 741 } 742 743 static void 744 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 745 { 746 uint64_t *newguid = arg; 747 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 748 uint64_t oldguid; 749 vdev_t *rvd = spa->spa_root_vdev; 750 751 oldguid = spa_guid(spa); 752 753 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 754 rvd->vdev_guid = *newguid; 755 rvd->vdev_guid_sum += (*newguid - oldguid); 756 vdev_config_dirty(rvd); 757 spa_config_exit(spa, SCL_STATE, FTAG); 758 759 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 760 oldguid, *newguid); 761 } 762 763 /* 764 * Change the GUID for the pool. This is done so that we can later 765 * re-import a pool built from a clone of our own vdevs. We will modify 766 * the root vdev's guid, our own pool guid, and then mark all of our 767 * vdevs dirty. Note that we must make sure that all our vdevs are 768 * online when we do this, or else any vdevs that weren't present 769 * would be orphaned from our pool. We are also going to issue a 770 * sysevent to update any watchers. 771 */ 772 int 773 spa_change_guid(spa_t *spa) 774 { 775 int error; 776 uint64_t guid; 777 778 mutex_enter(&spa->spa_vdev_top_lock); 779 mutex_enter(&spa_namespace_lock); 780 guid = spa_generate_guid(NULL); 781 782 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 783 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 784 785 if (error == 0) { 786 spa_config_sync(spa, B_FALSE, B_TRUE); 787 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 788 } 789 790 mutex_exit(&spa_namespace_lock); 791 mutex_exit(&spa->spa_vdev_top_lock); 792 793 return (error); 794 } 795 796 /* 797 * ========================================================================== 798 * SPA state manipulation (open/create/destroy/import/export) 799 * ========================================================================== 800 */ 801 802 static int 803 spa_error_entry_compare(const void *a, const void *b) 804 { 805 spa_error_entry_t *sa = (spa_error_entry_t *)a; 806 spa_error_entry_t *sb = (spa_error_entry_t *)b; 807 int ret; 808 809 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 810 sizeof (zbookmark_phys_t)); 811 812 if (ret < 0) 813 return (-1); 814 else if (ret > 0) 815 return (1); 816 else 817 return (0); 818 } 819 820 /* 821 * Utility function which retrieves copies of the current logs and 822 * re-initializes them in the process. 823 */ 824 void 825 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 826 { 827 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 828 829 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 830 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 831 832 avl_create(&spa->spa_errlist_scrub, 833 spa_error_entry_compare, sizeof (spa_error_entry_t), 834 offsetof(spa_error_entry_t, se_avl)); 835 avl_create(&spa->spa_errlist_last, 836 spa_error_entry_compare, sizeof (spa_error_entry_t), 837 offsetof(spa_error_entry_t, se_avl)); 838 } 839 840 static void 841 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 842 { 843 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 844 enum zti_modes mode = ztip->zti_mode; 845 uint_t value = ztip->zti_value; 846 uint_t count = ztip->zti_count; 847 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 848 char name[32]; 849 uint_t flags = 0; 850 boolean_t batch = B_FALSE; 851 852 if (mode == ZTI_MODE_NULL) { 853 tqs->stqs_count = 0; 854 tqs->stqs_taskq = NULL; 855 return; 856 } 857 858 ASSERT3U(count, >, 0); 859 860 tqs->stqs_count = count; 861 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 862 863 switch (mode) { 864 case ZTI_MODE_FIXED: 865 ASSERT3U(value, >=, 1); 866 value = MAX(value, 1); 867 break; 868 869 case ZTI_MODE_BATCH: 870 batch = B_TRUE; 871 flags |= TASKQ_THREADS_CPU_PCT; 872 value = zio_taskq_batch_pct; 873 break; 874 875 default: 876 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 877 "spa_activate()", 878 zio_type_name[t], zio_taskq_types[q], mode, value); 879 break; 880 } 881 882 for (uint_t i = 0; i < count; i++) { 883 taskq_t *tq; 884 885 if (count > 1) { 886 (void) snprintf(name, sizeof (name), "%s_%s_%u", 887 zio_type_name[t], zio_taskq_types[q], i); 888 } else { 889 (void) snprintf(name, sizeof (name), "%s_%s", 890 zio_type_name[t], zio_taskq_types[q]); 891 } 892 893 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 894 if (batch) 895 flags |= TASKQ_DC_BATCH; 896 897 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 898 spa->spa_proc, zio_taskq_basedc, flags); 899 } else { 900 pri_t pri = maxclsyspri; 901 /* 902 * The write issue taskq can be extremely CPU 903 * intensive. Run it at slightly lower priority 904 * than the other taskqs. 905 */ 906 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 907 pri--; 908 909 tq = taskq_create_proc(name, value, pri, 50, 910 INT_MAX, spa->spa_proc, flags); 911 } 912 913 tqs->stqs_taskq[i] = tq; 914 } 915 } 916 917 static void 918 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 919 { 920 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 921 922 if (tqs->stqs_taskq == NULL) { 923 ASSERT0(tqs->stqs_count); 924 return; 925 } 926 927 for (uint_t i = 0; i < tqs->stqs_count; i++) { 928 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 929 taskq_destroy(tqs->stqs_taskq[i]); 930 } 931 932 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 933 tqs->stqs_taskq = NULL; 934 } 935 936 /* 937 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 938 * Note that a type may have multiple discrete taskqs to avoid lock contention 939 * on the taskq itself. In that case we choose which taskq at random by using 940 * the low bits of gethrtime(). 941 */ 942 void 943 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 944 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 945 { 946 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 947 taskq_t *tq; 948 949 ASSERT3P(tqs->stqs_taskq, !=, NULL); 950 ASSERT3U(tqs->stqs_count, !=, 0); 951 952 if (tqs->stqs_count == 1) { 953 tq = tqs->stqs_taskq[0]; 954 } else { 955 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 956 } 957 958 taskq_dispatch_ent(tq, func, arg, flags, ent); 959 } 960 961 static void 962 spa_create_zio_taskqs(spa_t *spa) 963 { 964 for (int t = 0; t < ZIO_TYPES; t++) { 965 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 966 spa_taskqs_init(spa, t, q); 967 } 968 } 969 } 970 971 #ifdef _KERNEL 972 static void 973 spa_thread(void *arg) 974 { 975 callb_cpr_t cprinfo; 976 977 spa_t *spa = arg; 978 user_t *pu = PTOU(curproc); 979 980 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 981 spa->spa_name); 982 983 ASSERT(curproc != &p0); 984 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 985 "zpool-%s", spa->spa_name); 986 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 987 988 /* bind this thread to the requested psrset */ 989 if (zio_taskq_psrset_bind != PS_NONE) { 990 pool_lock(); 991 mutex_enter(&cpu_lock); 992 mutex_enter(&pidlock); 993 mutex_enter(&curproc->p_lock); 994 995 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 996 0, NULL, NULL) == 0) { 997 curthread->t_bind_pset = zio_taskq_psrset_bind; 998 } else { 999 cmn_err(CE_WARN, 1000 "Couldn't bind process for zfs pool \"%s\" to " 1001 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1002 } 1003 1004 mutex_exit(&curproc->p_lock); 1005 mutex_exit(&pidlock); 1006 mutex_exit(&cpu_lock); 1007 pool_unlock(); 1008 } 1009 1010 if (zio_taskq_sysdc) { 1011 sysdc_thread_enter(curthread, 100, 0); 1012 } 1013 1014 spa->spa_proc = curproc; 1015 spa->spa_did = curthread->t_did; 1016 1017 spa_create_zio_taskqs(spa); 1018 1019 mutex_enter(&spa->spa_proc_lock); 1020 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1021 1022 spa->spa_proc_state = SPA_PROC_ACTIVE; 1023 cv_broadcast(&spa->spa_proc_cv); 1024 1025 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1026 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1027 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1028 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1029 1030 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1031 spa->spa_proc_state = SPA_PROC_GONE; 1032 spa->spa_proc = &p0; 1033 cv_broadcast(&spa->spa_proc_cv); 1034 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1035 1036 mutex_enter(&curproc->p_lock); 1037 lwp_exit(); 1038 } 1039 #endif 1040 1041 /* 1042 * Activate an uninitialized pool. 1043 */ 1044 static void 1045 spa_activate(spa_t *spa, int mode) 1046 { 1047 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1048 1049 spa->spa_state = POOL_STATE_ACTIVE; 1050 spa->spa_mode = mode; 1051 1052 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1053 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1054 1055 /* Try to create a covering process */ 1056 mutex_enter(&spa->spa_proc_lock); 1057 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1058 ASSERT(spa->spa_proc == &p0); 1059 spa->spa_did = 0; 1060 1061 /* Only create a process if we're going to be around a while. */ 1062 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1063 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1064 NULL, 0) == 0) { 1065 spa->spa_proc_state = SPA_PROC_CREATED; 1066 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1067 cv_wait(&spa->spa_proc_cv, 1068 &spa->spa_proc_lock); 1069 } 1070 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1071 ASSERT(spa->spa_proc != &p0); 1072 ASSERT(spa->spa_did != 0); 1073 } else { 1074 #ifdef _KERNEL 1075 cmn_err(CE_WARN, 1076 "Couldn't create process for zfs pool \"%s\"\n", 1077 spa->spa_name); 1078 #endif 1079 } 1080 } 1081 mutex_exit(&spa->spa_proc_lock); 1082 1083 /* If we didn't create a process, we need to create our taskqs. */ 1084 if (spa->spa_proc == &p0) { 1085 spa_create_zio_taskqs(spa); 1086 } 1087 1088 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1089 offsetof(vdev_t, vdev_config_dirty_node)); 1090 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1091 offsetof(objset_t, os_evicting_node)); 1092 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1093 offsetof(vdev_t, vdev_state_dirty_node)); 1094 1095 txg_list_create(&spa->spa_vdev_txg_list, 1096 offsetof(struct vdev, vdev_txg_node)); 1097 1098 avl_create(&spa->spa_errlist_scrub, 1099 spa_error_entry_compare, sizeof (spa_error_entry_t), 1100 offsetof(spa_error_entry_t, se_avl)); 1101 avl_create(&spa->spa_errlist_last, 1102 spa_error_entry_compare, sizeof (spa_error_entry_t), 1103 offsetof(spa_error_entry_t, se_avl)); 1104 } 1105 1106 /* 1107 * Opposite of spa_activate(). 1108 */ 1109 static void 1110 spa_deactivate(spa_t *spa) 1111 { 1112 ASSERT(spa->spa_sync_on == B_FALSE); 1113 ASSERT(spa->spa_dsl_pool == NULL); 1114 ASSERT(spa->spa_root_vdev == NULL); 1115 ASSERT(spa->spa_async_zio_root == NULL); 1116 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1117 1118 spa_evicting_os_wait(spa); 1119 1120 txg_list_destroy(&spa->spa_vdev_txg_list); 1121 1122 list_destroy(&spa->spa_config_dirty_list); 1123 list_destroy(&spa->spa_evicting_os_list); 1124 list_destroy(&spa->spa_state_dirty_list); 1125 1126 for (int t = 0; t < ZIO_TYPES; t++) { 1127 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1128 spa_taskqs_fini(spa, t, q); 1129 } 1130 } 1131 1132 metaslab_class_destroy(spa->spa_normal_class); 1133 spa->spa_normal_class = NULL; 1134 1135 metaslab_class_destroy(spa->spa_log_class); 1136 spa->spa_log_class = NULL; 1137 1138 /* 1139 * If this was part of an import or the open otherwise failed, we may 1140 * still have errors left in the queues. Empty them just in case. 1141 */ 1142 spa_errlog_drain(spa); 1143 1144 avl_destroy(&spa->spa_errlist_scrub); 1145 avl_destroy(&spa->spa_errlist_last); 1146 1147 spa->spa_state = POOL_STATE_UNINITIALIZED; 1148 1149 mutex_enter(&spa->spa_proc_lock); 1150 if (spa->spa_proc_state != SPA_PROC_NONE) { 1151 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1152 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1153 cv_broadcast(&spa->spa_proc_cv); 1154 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1155 ASSERT(spa->spa_proc != &p0); 1156 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1157 } 1158 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1159 spa->spa_proc_state = SPA_PROC_NONE; 1160 } 1161 ASSERT(spa->spa_proc == &p0); 1162 mutex_exit(&spa->spa_proc_lock); 1163 1164 /* 1165 * We want to make sure spa_thread() has actually exited the ZFS 1166 * module, so that the module can't be unloaded out from underneath 1167 * it. 1168 */ 1169 if (spa->spa_did != 0) { 1170 thread_join(spa->spa_did); 1171 spa->spa_did = 0; 1172 } 1173 } 1174 1175 /* 1176 * Verify a pool configuration, and construct the vdev tree appropriately. This 1177 * will create all the necessary vdevs in the appropriate layout, with each vdev 1178 * in the CLOSED state. This will prep the pool before open/creation/import. 1179 * All vdev validation is done by the vdev_alloc() routine. 1180 */ 1181 static int 1182 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1183 uint_t id, int atype) 1184 { 1185 nvlist_t **child; 1186 uint_t children; 1187 int error; 1188 1189 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1190 return (error); 1191 1192 if ((*vdp)->vdev_ops->vdev_op_leaf) 1193 return (0); 1194 1195 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1196 &child, &children); 1197 1198 if (error == ENOENT) 1199 return (0); 1200 1201 if (error) { 1202 vdev_free(*vdp); 1203 *vdp = NULL; 1204 return (SET_ERROR(EINVAL)); 1205 } 1206 1207 for (int c = 0; c < children; c++) { 1208 vdev_t *vd; 1209 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1210 atype)) != 0) { 1211 vdev_free(*vdp); 1212 *vdp = NULL; 1213 return (error); 1214 } 1215 } 1216 1217 ASSERT(*vdp != NULL); 1218 1219 return (0); 1220 } 1221 1222 /* 1223 * Opposite of spa_load(). 1224 */ 1225 static void 1226 spa_unload(spa_t *spa) 1227 { 1228 int i; 1229 1230 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1231 1232 /* 1233 * Stop async tasks. 1234 */ 1235 spa_async_suspend(spa); 1236 1237 /* 1238 * Stop syncing. 1239 */ 1240 if (spa->spa_sync_on) { 1241 txg_sync_stop(spa->spa_dsl_pool); 1242 spa->spa_sync_on = B_FALSE; 1243 } 1244 1245 /* 1246 * Wait for any outstanding async I/O to complete. 1247 */ 1248 if (spa->spa_async_zio_root != NULL) { 1249 for (int i = 0; i < max_ncpus; i++) 1250 (void) zio_wait(spa->spa_async_zio_root[i]); 1251 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1252 spa->spa_async_zio_root = NULL; 1253 } 1254 1255 bpobj_close(&spa->spa_deferred_bpobj); 1256 1257 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1258 1259 /* 1260 * Close all vdevs. 1261 */ 1262 if (spa->spa_root_vdev) 1263 vdev_free(spa->spa_root_vdev); 1264 ASSERT(spa->spa_root_vdev == NULL); 1265 1266 /* 1267 * Close the dsl pool. 1268 */ 1269 if (spa->spa_dsl_pool) { 1270 dsl_pool_close(spa->spa_dsl_pool); 1271 spa->spa_dsl_pool = NULL; 1272 spa->spa_meta_objset = NULL; 1273 } 1274 1275 ddt_unload(spa); 1276 1277 1278 /* 1279 * Drop and purge level 2 cache 1280 */ 1281 spa_l2cache_drop(spa); 1282 1283 for (i = 0; i < spa->spa_spares.sav_count; i++) 1284 vdev_free(spa->spa_spares.sav_vdevs[i]); 1285 if (spa->spa_spares.sav_vdevs) { 1286 kmem_free(spa->spa_spares.sav_vdevs, 1287 spa->spa_spares.sav_count * sizeof (void *)); 1288 spa->spa_spares.sav_vdevs = NULL; 1289 } 1290 if (spa->spa_spares.sav_config) { 1291 nvlist_free(spa->spa_spares.sav_config); 1292 spa->spa_spares.sav_config = NULL; 1293 } 1294 spa->spa_spares.sav_count = 0; 1295 1296 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1297 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1298 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1299 } 1300 if (spa->spa_l2cache.sav_vdevs) { 1301 kmem_free(spa->spa_l2cache.sav_vdevs, 1302 spa->spa_l2cache.sav_count * sizeof (void *)); 1303 spa->spa_l2cache.sav_vdevs = NULL; 1304 } 1305 if (spa->spa_l2cache.sav_config) { 1306 nvlist_free(spa->spa_l2cache.sav_config); 1307 spa->spa_l2cache.sav_config = NULL; 1308 } 1309 spa->spa_l2cache.sav_count = 0; 1310 1311 spa->spa_async_suspended = 0; 1312 1313 if (spa->spa_comment != NULL) { 1314 spa_strfree(spa->spa_comment); 1315 spa->spa_comment = NULL; 1316 } 1317 1318 spa_config_exit(spa, SCL_ALL, FTAG); 1319 } 1320 1321 /* 1322 * Load (or re-load) the current list of vdevs describing the active spares for 1323 * this pool. When this is called, we have some form of basic information in 1324 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1325 * then re-generate a more complete list including status information. 1326 */ 1327 static void 1328 spa_load_spares(spa_t *spa) 1329 { 1330 nvlist_t **spares; 1331 uint_t nspares; 1332 int i; 1333 vdev_t *vd, *tvd; 1334 1335 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1336 1337 /* 1338 * First, close and free any existing spare vdevs. 1339 */ 1340 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1341 vd = spa->spa_spares.sav_vdevs[i]; 1342 1343 /* Undo the call to spa_activate() below */ 1344 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1345 B_FALSE)) != NULL && tvd->vdev_isspare) 1346 spa_spare_remove(tvd); 1347 vdev_close(vd); 1348 vdev_free(vd); 1349 } 1350 1351 if (spa->spa_spares.sav_vdevs) 1352 kmem_free(spa->spa_spares.sav_vdevs, 1353 spa->spa_spares.sav_count * sizeof (void *)); 1354 1355 if (spa->spa_spares.sav_config == NULL) 1356 nspares = 0; 1357 else 1358 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1359 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1360 1361 spa->spa_spares.sav_count = (int)nspares; 1362 spa->spa_spares.sav_vdevs = NULL; 1363 1364 if (nspares == 0) 1365 return; 1366 1367 /* 1368 * Construct the array of vdevs, opening them to get status in the 1369 * process. For each spare, there is potentially two different vdev_t 1370 * structures associated with it: one in the list of spares (used only 1371 * for basic validation purposes) and one in the active vdev 1372 * configuration (if it's spared in). During this phase we open and 1373 * validate each vdev on the spare list. If the vdev also exists in the 1374 * active configuration, then we also mark this vdev as an active spare. 1375 */ 1376 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1377 KM_SLEEP); 1378 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1379 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1380 VDEV_ALLOC_SPARE) == 0); 1381 ASSERT(vd != NULL); 1382 1383 spa->spa_spares.sav_vdevs[i] = vd; 1384 1385 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1386 B_FALSE)) != NULL) { 1387 if (!tvd->vdev_isspare) 1388 spa_spare_add(tvd); 1389 1390 /* 1391 * We only mark the spare active if we were successfully 1392 * able to load the vdev. Otherwise, importing a pool 1393 * with a bad active spare would result in strange 1394 * behavior, because multiple pool would think the spare 1395 * is actively in use. 1396 * 1397 * There is a vulnerability here to an equally bizarre 1398 * circumstance, where a dead active spare is later 1399 * brought back to life (onlined or otherwise). Given 1400 * the rarity of this scenario, and the extra complexity 1401 * it adds, we ignore the possibility. 1402 */ 1403 if (!vdev_is_dead(tvd)) 1404 spa_spare_activate(tvd); 1405 } 1406 1407 vd->vdev_top = vd; 1408 vd->vdev_aux = &spa->spa_spares; 1409 1410 if (vdev_open(vd) != 0) 1411 continue; 1412 1413 if (vdev_validate_aux(vd) == 0) 1414 spa_spare_add(vd); 1415 } 1416 1417 /* 1418 * Recompute the stashed list of spares, with status information 1419 * this time. 1420 */ 1421 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1422 DATA_TYPE_NVLIST_ARRAY) == 0); 1423 1424 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1425 KM_SLEEP); 1426 for (i = 0; i < spa->spa_spares.sav_count; i++) 1427 spares[i] = vdev_config_generate(spa, 1428 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1429 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1430 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1431 for (i = 0; i < spa->spa_spares.sav_count; i++) 1432 nvlist_free(spares[i]); 1433 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1434 } 1435 1436 /* 1437 * Load (or re-load) the current list of vdevs describing the active l2cache for 1438 * this pool. When this is called, we have some form of basic information in 1439 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1440 * then re-generate a more complete list including status information. 1441 * Devices which are already active have their details maintained, and are 1442 * not re-opened. 1443 */ 1444 static void 1445 spa_load_l2cache(spa_t *spa) 1446 { 1447 nvlist_t **l2cache; 1448 uint_t nl2cache; 1449 int i, j, oldnvdevs; 1450 uint64_t guid; 1451 vdev_t *vd, **oldvdevs, **newvdevs; 1452 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1453 1454 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1455 1456 if (sav->sav_config != NULL) { 1457 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1458 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1459 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1460 } else { 1461 nl2cache = 0; 1462 newvdevs = NULL; 1463 } 1464 1465 oldvdevs = sav->sav_vdevs; 1466 oldnvdevs = sav->sav_count; 1467 sav->sav_vdevs = NULL; 1468 sav->sav_count = 0; 1469 1470 /* 1471 * Process new nvlist of vdevs. 1472 */ 1473 for (i = 0; i < nl2cache; i++) { 1474 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1475 &guid) == 0); 1476 1477 newvdevs[i] = NULL; 1478 for (j = 0; j < oldnvdevs; j++) { 1479 vd = oldvdevs[j]; 1480 if (vd != NULL && guid == vd->vdev_guid) { 1481 /* 1482 * Retain previous vdev for add/remove ops. 1483 */ 1484 newvdevs[i] = vd; 1485 oldvdevs[j] = NULL; 1486 break; 1487 } 1488 } 1489 1490 if (newvdevs[i] == NULL) { 1491 /* 1492 * Create new vdev 1493 */ 1494 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1495 VDEV_ALLOC_L2CACHE) == 0); 1496 ASSERT(vd != NULL); 1497 newvdevs[i] = vd; 1498 1499 /* 1500 * Commit this vdev as an l2cache device, 1501 * even if it fails to open. 1502 */ 1503 spa_l2cache_add(vd); 1504 1505 vd->vdev_top = vd; 1506 vd->vdev_aux = sav; 1507 1508 spa_l2cache_activate(vd); 1509 1510 if (vdev_open(vd) != 0) 1511 continue; 1512 1513 (void) vdev_validate_aux(vd); 1514 1515 if (!vdev_is_dead(vd)) { 1516 boolean_t do_rebuild = B_FALSE; 1517 1518 (void) nvlist_lookup_boolean_value(l2cache[i], 1519 ZPOOL_CONFIG_L2CACHE_PERSISTENT, 1520 &do_rebuild); 1521 l2arc_add_vdev(spa, vd, do_rebuild); 1522 } 1523 } 1524 } 1525 1526 /* 1527 * Purge vdevs that were dropped 1528 */ 1529 for (i = 0; i < oldnvdevs; i++) { 1530 uint64_t pool; 1531 1532 vd = oldvdevs[i]; 1533 if (vd != NULL) { 1534 ASSERT(vd->vdev_isl2cache); 1535 1536 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1537 pool != 0ULL && l2arc_vdev_present(vd)) 1538 l2arc_remove_vdev(vd); 1539 vdev_clear_stats(vd); 1540 vdev_free(vd); 1541 } 1542 } 1543 1544 if (oldvdevs) 1545 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1546 1547 if (sav->sav_config == NULL) 1548 goto out; 1549 1550 sav->sav_vdevs = newvdevs; 1551 sav->sav_count = (int)nl2cache; 1552 1553 /* 1554 * Recompute the stashed list of l2cache devices, with status 1555 * information this time. 1556 */ 1557 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1558 DATA_TYPE_NVLIST_ARRAY) == 0); 1559 1560 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1561 for (i = 0; i < sav->sav_count; i++) 1562 l2cache[i] = vdev_config_generate(spa, 1563 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1564 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1565 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1566 out: 1567 for (i = 0; i < sav->sav_count; i++) 1568 nvlist_free(l2cache[i]); 1569 if (sav->sav_count) 1570 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1571 } 1572 1573 static int 1574 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1575 { 1576 dmu_buf_t *db; 1577 char *packed = NULL; 1578 size_t nvsize = 0; 1579 int error; 1580 *value = NULL; 1581 1582 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1583 if (error != 0) 1584 return (error); 1585 1586 nvsize = *(uint64_t *)db->db_data; 1587 dmu_buf_rele(db, FTAG); 1588 1589 packed = kmem_alloc(nvsize, KM_SLEEP); 1590 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1591 DMU_READ_PREFETCH); 1592 if (error == 0) 1593 error = nvlist_unpack(packed, nvsize, value, 0); 1594 kmem_free(packed, nvsize); 1595 1596 return (error); 1597 } 1598 1599 /* 1600 * Checks to see if the given vdev could not be opened, in which case we post a 1601 * sysevent to notify the autoreplace code that the device has been removed. 1602 */ 1603 static void 1604 spa_check_removed(vdev_t *vd) 1605 { 1606 for (int c = 0; c < vd->vdev_children; c++) 1607 spa_check_removed(vd->vdev_child[c]); 1608 1609 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1610 !vd->vdev_ishole) { 1611 zfs_post_autoreplace(vd->vdev_spa, vd); 1612 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1613 } 1614 } 1615 1616 /* 1617 * Validate the current config against the MOS config 1618 */ 1619 static boolean_t 1620 spa_config_valid(spa_t *spa, nvlist_t *config) 1621 { 1622 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1623 nvlist_t *nv; 1624 1625 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1626 1627 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1628 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1629 1630 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1631 1632 /* 1633 * If we're doing a normal import, then build up any additional 1634 * diagnostic information about missing devices in this config. 1635 * We'll pass this up to the user for further processing. 1636 */ 1637 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1638 nvlist_t **child, *nv; 1639 uint64_t idx = 0; 1640 1641 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1642 KM_SLEEP); 1643 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1644 1645 for (int c = 0; c < rvd->vdev_children; c++) { 1646 vdev_t *tvd = rvd->vdev_child[c]; 1647 vdev_t *mtvd = mrvd->vdev_child[c]; 1648 1649 if (tvd->vdev_ops == &vdev_missing_ops && 1650 mtvd->vdev_ops != &vdev_missing_ops && 1651 mtvd->vdev_islog) 1652 child[idx++] = vdev_config_generate(spa, mtvd, 1653 B_FALSE, 0); 1654 } 1655 1656 if (idx) { 1657 VERIFY(nvlist_add_nvlist_array(nv, 1658 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1659 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1660 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1661 1662 for (int i = 0; i < idx; i++) 1663 nvlist_free(child[i]); 1664 } 1665 nvlist_free(nv); 1666 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1667 } 1668 1669 /* 1670 * Compare the root vdev tree with the information we have 1671 * from the MOS config (mrvd). Check each top-level vdev 1672 * with the corresponding MOS config top-level (mtvd). 1673 */ 1674 for (int c = 0; c < rvd->vdev_children; c++) { 1675 vdev_t *tvd = rvd->vdev_child[c]; 1676 vdev_t *mtvd = mrvd->vdev_child[c]; 1677 1678 /* 1679 * Resolve any "missing" vdevs in the current configuration. 1680 * If we find that the MOS config has more accurate information 1681 * about the top-level vdev then use that vdev instead. 1682 */ 1683 if (tvd->vdev_ops == &vdev_missing_ops && 1684 mtvd->vdev_ops != &vdev_missing_ops) { 1685 1686 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1687 continue; 1688 1689 /* 1690 * Device specific actions. 1691 */ 1692 if (mtvd->vdev_islog) { 1693 spa_set_log_state(spa, SPA_LOG_CLEAR); 1694 } else { 1695 /* 1696 * XXX - once we have 'readonly' pool 1697 * support we should be able to handle 1698 * missing data devices by transitioning 1699 * the pool to readonly. 1700 */ 1701 continue; 1702 } 1703 1704 /* 1705 * Swap the missing vdev with the data we were 1706 * able to obtain from the MOS config. 1707 */ 1708 vdev_remove_child(rvd, tvd); 1709 vdev_remove_child(mrvd, mtvd); 1710 1711 vdev_add_child(rvd, mtvd); 1712 vdev_add_child(mrvd, tvd); 1713 1714 spa_config_exit(spa, SCL_ALL, FTAG); 1715 vdev_load(mtvd); 1716 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1717 1718 vdev_reopen(rvd); 1719 } else if (mtvd->vdev_islog) { 1720 /* 1721 * Load the slog device's state from the MOS config 1722 * since it's possible that the label does not 1723 * contain the most up-to-date information. 1724 */ 1725 vdev_load_log_state(tvd, mtvd); 1726 vdev_reopen(tvd); 1727 } 1728 } 1729 vdev_free(mrvd); 1730 spa_config_exit(spa, SCL_ALL, FTAG); 1731 1732 /* 1733 * Ensure we were able to validate the config. 1734 */ 1735 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1736 } 1737 1738 /* 1739 * Check for missing log devices 1740 */ 1741 static boolean_t 1742 spa_check_logs(spa_t *spa) 1743 { 1744 boolean_t rv = B_FALSE; 1745 dsl_pool_t *dp = spa_get_dsl(spa); 1746 1747 switch (spa->spa_log_state) { 1748 case SPA_LOG_MISSING: 1749 /* need to recheck in case slog has been restored */ 1750 case SPA_LOG_UNKNOWN: 1751 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1752 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1753 if (rv) 1754 spa_set_log_state(spa, SPA_LOG_MISSING); 1755 break; 1756 } 1757 return (rv); 1758 } 1759 1760 static boolean_t 1761 spa_passivate_log(spa_t *spa) 1762 { 1763 vdev_t *rvd = spa->spa_root_vdev; 1764 boolean_t slog_found = B_FALSE; 1765 1766 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1767 1768 if (!spa_has_slogs(spa)) 1769 return (B_FALSE); 1770 1771 for (int c = 0; c < rvd->vdev_children; c++) { 1772 vdev_t *tvd = rvd->vdev_child[c]; 1773 metaslab_group_t *mg = tvd->vdev_mg; 1774 1775 if (tvd->vdev_islog) { 1776 metaslab_group_passivate(mg); 1777 slog_found = B_TRUE; 1778 } 1779 } 1780 1781 return (slog_found); 1782 } 1783 1784 static void 1785 spa_activate_log(spa_t *spa) 1786 { 1787 vdev_t *rvd = spa->spa_root_vdev; 1788 1789 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1790 1791 for (int c = 0; c < rvd->vdev_children; c++) { 1792 vdev_t *tvd = rvd->vdev_child[c]; 1793 metaslab_group_t *mg = tvd->vdev_mg; 1794 1795 if (tvd->vdev_islog) 1796 metaslab_group_activate(mg); 1797 } 1798 } 1799 1800 int 1801 spa_offline_log(spa_t *spa) 1802 { 1803 int error; 1804 1805 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1806 NULL, DS_FIND_CHILDREN); 1807 if (error == 0) { 1808 /* 1809 * We successfully offlined the log device, sync out the 1810 * current txg so that the "stubby" block can be removed 1811 * by zil_sync(). 1812 */ 1813 txg_wait_synced(spa->spa_dsl_pool, 0); 1814 } 1815 return (error); 1816 } 1817 1818 static void 1819 spa_aux_check_removed(spa_aux_vdev_t *sav) 1820 { 1821 for (int i = 0; i < sav->sav_count; i++) 1822 spa_check_removed(sav->sav_vdevs[i]); 1823 } 1824 1825 void 1826 spa_claim_notify(zio_t *zio) 1827 { 1828 spa_t *spa = zio->io_spa; 1829 1830 if (zio->io_error) 1831 return; 1832 1833 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1834 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1835 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1836 mutex_exit(&spa->spa_props_lock); 1837 } 1838 1839 typedef struct spa_load_error { 1840 uint64_t sle_meta_count; 1841 uint64_t sle_data_count; 1842 } spa_load_error_t; 1843 1844 static void 1845 spa_load_verify_done(zio_t *zio) 1846 { 1847 blkptr_t *bp = zio->io_bp; 1848 spa_load_error_t *sle = zio->io_private; 1849 dmu_object_type_t type = BP_GET_TYPE(bp); 1850 int error = zio->io_error; 1851 spa_t *spa = zio->io_spa; 1852 1853 if (error) { 1854 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1855 type != DMU_OT_INTENT_LOG) 1856 atomic_inc_64(&sle->sle_meta_count); 1857 else 1858 atomic_inc_64(&sle->sle_data_count); 1859 } 1860 zio_data_buf_free(zio->io_data, zio->io_size); 1861 1862 mutex_enter(&spa->spa_scrub_lock); 1863 spa->spa_scrub_inflight--; 1864 cv_broadcast(&spa->spa_scrub_io_cv); 1865 mutex_exit(&spa->spa_scrub_lock); 1866 } 1867 1868 /* 1869 * Maximum number of concurrent scrub i/os to create while verifying 1870 * a pool while importing it. 1871 */ 1872 int spa_load_verify_maxinflight = 10000; 1873 boolean_t spa_load_verify_metadata = B_TRUE; 1874 boolean_t spa_load_verify_data = B_TRUE; 1875 1876 /*ARGSUSED*/ 1877 static int 1878 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1879 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1880 { 1881 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1882 return (0); 1883 /* 1884 * Note: normally this routine will not be called if 1885 * spa_load_verify_metadata is not set. However, it may be useful 1886 * to manually set the flag after the traversal has begun. 1887 */ 1888 if (!spa_load_verify_metadata) 1889 return (0); 1890 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1891 return (0); 1892 1893 zio_t *rio = arg; 1894 size_t size = BP_GET_PSIZE(bp); 1895 void *data = zio_data_buf_alloc(size); 1896 1897 mutex_enter(&spa->spa_scrub_lock); 1898 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1899 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1900 spa->spa_scrub_inflight++; 1901 mutex_exit(&spa->spa_scrub_lock); 1902 1903 zio_nowait(zio_read(rio, spa, bp, data, size, 1904 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1905 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1906 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1907 return (0); 1908 } 1909 1910 static int 1911 spa_load_verify(spa_t *spa) 1912 { 1913 zio_t *rio; 1914 spa_load_error_t sle = { 0 }; 1915 zpool_rewind_policy_t policy; 1916 boolean_t verify_ok = B_FALSE; 1917 int error = 0; 1918 1919 zpool_get_rewind_policy(spa->spa_config, &policy); 1920 1921 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1922 return (0); 1923 1924 rio = zio_root(spa, NULL, &sle, 1925 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1926 1927 if (spa_load_verify_metadata) { 1928 error = traverse_pool(spa, spa->spa_verify_min_txg, 1929 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1930 spa_load_verify_cb, rio); 1931 } 1932 1933 (void) zio_wait(rio); 1934 1935 spa->spa_load_meta_errors = sle.sle_meta_count; 1936 spa->spa_load_data_errors = sle.sle_data_count; 1937 1938 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1939 sle.sle_data_count <= policy.zrp_maxdata) { 1940 int64_t loss = 0; 1941 1942 verify_ok = B_TRUE; 1943 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1944 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1945 1946 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1947 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1948 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1949 VERIFY(nvlist_add_int64(spa->spa_load_info, 1950 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1951 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1952 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1953 } else { 1954 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1955 } 1956 1957 if (error) { 1958 if (error != ENXIO && error != EIO) 1959 error = SET_ERROR(EIO); 1960 return (error); 1961 } 1962 1963 return (verify_ok ? 0 : EIO); 1964 } 1965 1966 /* 1967 * Find a value in the pool props object. 1968 */ 1969 static void 1970 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1971 { 1972 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1973 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1974 } 1975 1976 /* 1977 * Find a value in the pool directory object. 1978 */ 1979 static int 1980 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1981 { 1982 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1983 name, sizeof (uint64_t), 1, val)); 1984 } 1985 1986 static int 1987 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1988 { 1989 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1990 return (err); 1991 } 1992 1993 /* 1994 * Fix up config after a partly-completed split. This is done with the 1995 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1996 * pool have that entry in their config, but only the splitting one contains 1997 * a list of all the guids of the vdevs that are being split off. 1998 * 1999 * This function determines what to do with that list: either rejoin 2000 * all the disks to the pool, or complete the splitting process. To attempt 2001 * the rejoin, each disk that is offlined is marked online again, and 2002 * we do a reopen() call. If the vdev label for every disk that was 2003 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2004 * then we call vdev_split() on each disk, and complete the split. 2005 * 2006 * Otherwise we leave the config alone, with all the vdevs in place in 2007 * the original pool. 2008 */ 2009 static void 2010 spa_try_repair(spa_t *spa, nvlist_t *config) 2011 { 2012 uint_t extracted; 2013 uint64_t *glist; 2014 uint_t i, gcount; 2015 nvlist_t *nvl; 2016 vdev_t **vd; 2017 boolean_t attempt_reopen; 2018 2019 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2020 return; 2021 2022 /* check that the config is complete */ 2023 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2024 &glist, &gcount) != 0) 2025 return; 2026 2027 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2028 2029 /* attempt to online all the vdevs & validate */ 2030 attempt_reopen = B_TRUE; 2031 for (i = 0; i < gcount; i++) { 2032 if (glist[i] == 0) /* vdev is hole */ 2033 continue; 2034 2035 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2036 if (vd[i] == NULL) { 2037 /* 2038 * Don't bother attempting to reopen the disks; 2039 * just do the split. 2040 */ 2041 attempt_reopen = B_FALSE; 2042 } else { 2043 /* attempt to re-online it */ 2044 vd[i]->vdev_offline = B_FALSE; 2045 } 2046 } 2047 2048 if (attempt_reopen) { 2049 vdev_reopen(spa->spa_root_vdev); 2050 2051 /* check each device to see what state it's in */ 2052 for (extracted = 0, i = 0; i < gcount; i++) { 2053 if (vd[i] != NULL && 2054 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2055 break; 2056 ++extracted; 2057 } 2058 } 2059 2060 /* 2061 * If every disk has been moved to the new pool, or if we never 2062 * even attempted to look at them, then we split them off for 2063 * good. 2064 */ 2065 if (!attempt_reopen || gcount == extracted) { 2066 for (i = 0; i < gcount; i++) 2067 if (vd[i] != NULL) 2068 vdev_split(vd[i]); 2069 vdev_reopen(spa->spa_root_vdev); 2070 } 2071 2072 kmem_free(vd, gcount * sizeof (vdev_t *)); 2073 } 2074 2075 static int 2076 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2077 boolean_t mosconfig) 2078 { 2079 nvlist_t *config = spa->spa_config; 2080 char *ereport = FM_EREPORT_ZFS_POOL; 2081 char *comment; 2082 int error; 2083 uint64_t pool_guid; 2084 nvlist_t *nvl; 2085 2086 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2087 return (SET_ERROR(EINVAL)); 2088 2089 ASSERT(spa->spa_comment == NULL); 2090 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2091 spa->spa_comment = spa_strdup(comment); 2092 2093 /* 2094 * Versioning wasn't explicitly added to the label until later, so if 2095 * it's not present treat it as the initial version. 2096 */ 2097 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2098 &spa->spa_ubsync.ub_version) != 0) 2099 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2100 2101 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2102 &spa->spa_config_txg); 2103 2104 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2105 spa_guid_exists(pool_guid, 0)) { 2106 error = SET_ERROR(EEXIST); 2107 } else { 2108 spa->spa_config_guid = pool_guid; 2109 2110 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2111 &nvl) == 0) { 2112 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2113 KM_SLEEP) == 0); 2114 } 2115 2116 nvlist_free(spa->spa_load_info); 2117 spa->spa_load_info = fnvlist_alloc(); 2118 2119 gethrestime(&spa->spa_loaded_ts); 2120 error = spa_load_impl(spa, pool_guid, config, state, type, 2121 mosconfig, &ereport); 2122 } 2123 2124 /* 2125 * Don't count references from objsets that are already closed 2126 * and are making their way through the eviction process. 2127 */ 2128 spa_evicting_os_wait(spa); 2129 spa->spa_minref = refcount_count(&spa->spa_refcount); 2130 if (error) { 2131 if (error != EEXIST) { 2132 spa->spa_loaded_ts.tv_sec = 0; 2133 spa->spa_loaded_ts.tv_nsec = 0; 2134 } 2135 if (error != EBADF) { 2136 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2137 } 2138 } 2139 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2140 spa->spa_ena = 0; 2141 2142 return (error); 2143 } 2144 2145 /* 2146 * Load an existing storage pool, using the pool's builtin spa_config as a 2147 * source of configuration information. 2148 */ 2149 static int 2150 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2151 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2152 char **ereport) 2153 { 2154 int error = 0; 2155 nvlist_t *nvroot = NULL; 2156 nvlist_t *label; 2157 vdev_t *rvd; 2158 uberblock_t *ub = &spa->spa_uberblock; 2159 uint64_t children, config_cache_txg = spa->spa_config_txg; 2160 int orig_mode = spa->spa_mode; 2161 int parse; 2162 uint64_t obj; 2163 boolean_t missing_feat_write = B_FALSE; 2164 2165 /* 2166 * If this is an untrusted config, access the pool in read-only mode. 2167 * This prevents things like resilvering recently removed devices. 2168 */ 2169 if (!mosconfig) 2170 spa->spa_mode = FREAD; 2171 2172 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2173 2174 spa->spa_load_state = state; 2175 2176 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2177 return (SET_ERROR(EINVAL)); 2178 2179 parse = (type == SPA_IMPORT_EXISTING ? 2180 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2181 2182 /* 2183 * Create "The Godfather" zio to hold all async IOs 2184 */ 2185 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2186 KM_SLEEP); 2187 for (int i = 0; i < max_ncpus; i++) { 2188 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2189 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2190 ZIO_FLAG_GODFATHER); 2191 } 2192 2193 /* 2194 * Parse the configuration into a vdev tree. We explicitly set the 2195 * value that will be returned by spa_version() since parsing the 2196 * configuration requires knowing the version number. 2197 */ 2198 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2199 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2200 spa_config_exit(spa, SCL_ALL, FTAG); 2201 2202 if (error != 0) 2203 return (error); 2204 2205 ASSERT(spa->spa_root_vdev == rvd); 2206 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2207 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2208 2209 if (type != SPA_IMPORT_ASSEMBLE) { 2210 ASSERT(spa_guid(spa) == pool_guid); 2211 } 2212 2213 /* 2214 * Try to open all vdevs, loading each label in the process. 2215 */ 2216 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2217 error = vdev_open(rvd); 2218 spa_config_exit(spa, SCL_ALL, FTAG); 2219 if (error != 0) 2220 return (error); 2221 2222 /* 2223 * We need to validate the vdev labels against the configuration that 2224 * we have in hand, which is dependent on the setting of mosconfig. If 2225 * mosconfig is true then we're validating the vdev labels based on 2226 * that config. Otherwise, we're validating against the cached config 2227 * (zpool.cache) that was read when we loaded the zfs module, and then 2228 * later we will recursively call spa_load() and validate against 2229 * the vdev config. 2230 * 2231 * If we're assembling a new pool that's been split off from an 2232 * existing pool, the labels haven't yet been updated so we skip 2233 * validation for now. 2234 */ 2235 if (type != SPA_IMPORT_ASSEMBLE) { 2236 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2237 error = vdev_validate(rvd, mosconfig); 2238 spa_config_exit(spa, SCL_ALL, FTAG); 2239 2240 if (error != 0) 2241 return (error); 2242 2243 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2244 return (SET_ERROR(ENXIO)); 2245 } 2246 2247 /* 2248 * Find the best uberblock. 2249 */ 2250 vdev_uberblock_load(rvd, ub, &label); 2251 2252 /* 2253 * If we weren't able to find a single valid uberblock, return failure. 2254 */ 2255 if (ub->ub_txg == 0) { 2256 nvlist_free(label); 2257 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2258 } 2259 2260 /* 2261 * If the pool has an unsupported version we can't open it. 2262 */ 2263 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2264 nvlist_free(label); 2265 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2266 } 2267 2268 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2269 nvlist_t *features; 2270 2271 /* 2272 * If we weren't able to find what's necessary for reading the 2273 * MOS in the label, return failure. 2274 */ 2275 if (label == NULL || nvlist_lookup_nvlist(label, 2276 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2277 nvlist_free(label); 2278 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2279 ENXIO)); 2280 } 2281 2282 /* 2283 * Update our in-core representation with the definitive values 2284 * from the label. 2285 */ 2286 nvlist_free(spa->spa_label_features); 2287 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2288 } 2289 2290 nvlist_free(label); 2291 2292 /* 2293 * Look through entries in the label nvlist's features_for_read. If 2294 * there is a feature listed there which we don't understand then we 2295 * cannot open a pool. 2296 */ 2297 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2298 nvlist_t *unsup_feat; 2299 2300 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2301 0); 2302 2303 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2304 NULL); nvp != NULL; 2305 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2306 if (!zfeature_is_supported(nvpair_name(nvp))) { 2307 VERIFY(nvlist_add_string(unsup_feat, 2308 nvpair_name(nvp), "") == 0); 2309 } 2310 } 2311 2312 if (!nvlist_empty(unsup_feat)) { 2313 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2314 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2315 nvlist_free(unsup_feat); 2316 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2317 ENOTSUP)); 2318 } 2319 2320 nvlist_free(unsup_feat); 2321 } 2322 2323 /* 2324 * If the vdev guid sum doesn't match the uberblock, we have an 2325 * incomplete configuration. We first check to see if the pool 2326 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2327 * If it is, defer the vdev_guid_sum check till later so we 2328 * can handle missing vdevs. 2329 */ 2330 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2331 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2332 rvd->vdev_guid_sum != ub->ub_guid_sum) 2333 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2334 2335 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2336 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2337 spa_try_repair(spa, config); 2338 spa_config_exit(spa, SCL_ALL, FTAG); 2339 nvlist_free(spa->spa_config_splitting); 2340 spa->spa_config_splitting = NULL; 2341 } 2342 2343 /* 2344 * Initialize internal SPA structures. 2345 */ 2346 spa->spa_state = POOL_STATE_ACTIVE; 2347 spa->spa_ubsync = spa->spa_uberblock; 2348 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2349 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2350 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2351 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2352 spa->spa_claim_max_txg = spa->spa_first_txg; 2353 spa->spa_prev_software_version = ub->ub_software_version; 2354 2355 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2356 if (error) 2357 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2358 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2359 2360 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2361 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2362 2363 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2364 boolean_t missing_feat_read = B_FALSE; 2365 nvlist_t *unsup_feat, *enabled_feat; 2366 2367 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2368 &spa->spa_feat_for_read_obj) != 0) { 2369 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2370 } 2371 2372 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2373 &spa->spa_feat_for_write_obj) != 0) { 2374 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2375 } 2376 2377 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2378 &spa->spa_feat_desc_obj) != 0) { 2379 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2380 } 2381 2382 enabled_feat = fnvlist_alloc(); 2383 unsup_feat = fnvlist_alloc(); 2384 2385 if (!spa_features_check(spa, B_FALSE, 2386 unsup_feat, enabled_feat)) 2387 missing_feat_read = B_TRUE; 2388 2389 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2390 if (!spa_features_check(spa, B_TRUE, 2391 unsup_feat, enabled_feat)) { 2392 missing_feat_write = B_TRUE; 2393 } 2394 } 2395 2396 fnvlist_add_nvlist(spa->spa_load_info, 2397 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2398 2399 if (!nvlist_empty(unsup_feat)) { 2400 fnvlist_add_nvlist(spa->spa_load_info, 2401 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2402 } 2403 2404 fnvlist_free(enabled_feat); 2405 fnvlist_free(unsup_feat); 2406 2407 if (!missing_feat_read) { 2408 fnvlist_add_boolean(spa->spa_load_info, 2409 ZPOOL_CONFIG_CAN_RDONLY); 2410 } 2411 2412 /* 2413 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2414 * twofold: to determine whether the pool is available for 2415 * import in read-write mode and (if it is not) whether the 2416 * pool is available for import in read-only mode. If the pool 2417 * is available for import in read-write mode, it is displayed 2418 * as available in userland; if it is not available for import 2419 * in read-only mode, it is displayed as unavailable in 2420 * userland. If the pool is available for import in read-only 2421 * mode but not read-write mode, it is displayed as unavailable 2422 * in userland with a special note that the pool is actually 2423 * available for open in read-only mode. 2424 * 2425 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2426 * missing a feature for write, we must first determine whether 2427 * the pool can be opened read-only before returning to 2428 * userland in order to know whether to display the 2429 * abovementioned note. 2430 */ 2431 if (missing_feat_read || (missing_feat_write && 2432 spa_writeable(spa))) { 2433 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2434 ENOTSUP)); 2435 } 2436 2437 /* 2438 * Load refcounts for ZFS features from disk into an in-memory 2439 * cache during SPA initialization. 2440 */ 2441 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2442 uint64_t refcount; 2443 2444 error = feature_get_refcount_from_disk(spa, 2445 &spa_feature_table[i], &refcount); 2446 if (error == 0) { 2447 spa->spa_feat_refcount_cache[i] = refcount; 2448 } else if (error == ENOTSUP) { 2449 spa->spa_feat_refcount_cache[i] = 2450 SPA_FEATURE_DISABLED; 2451 } else { 2452 return (spa_vdev_err(rvd, 2453 VDEV_AUX_CORRUPT_DATA, EIO)); 2454 } 2455 } 2456 } 2457 2458 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2459 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2460 &spa->spa_feat_enabled_txg_obj) != 0) 2461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2462 } 2463 2464 spa->spa_is_initializing = B_TRUE; 2465 error = dsl_pool_open(spa->spa_dsl_pool); 2466 spa->spa_is_initializing = B_FALSE; 2467 if (error != 0) 2468 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2469 2470 if (!mosconfig) { 2471 uint64_t hostid; 2472 nvlist_t *policy = NULL, *nvconfig; 2473 2474 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2475 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2476 2477 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2478 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2479 char *hostname; 2480 unsigned long myhostid = 0; 2481 2482 VERIFY(nvlist_lookup_string(nvconfig, 2483 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2484 2485 #ifdef _KERNEL 2486 myhostid = zone_get_hostid(NULL); 2487 #else /* _KERNEL */ 2488 /* 2489 * We're emulating the system's hostid in userland, so 2490 * we can't use zone_get_hostid(). 2491 */ 2492 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2493 #endif /* _KERNEL */ 2494 if (hostid != 0 && myhostid != 0 && 2495 hostid != myhostid) { 2496 nvlist_free(nvconfig); 2497 cmn_err(CE_WARN, "pool '%s' could not be " 2498 "loaded as it was last accessed by " 2499 "another system (host: %s hostid: 0x%lx). " 2500 "See: http://illumos.org/msg/ZFS-8000-EY", 2501 spa_name(spa), hostname, 2502 (unsigned long)hostid); 2503 return (SET_ERROR(EBADF)); 2504 } 2505 } 2506 if (nvlist_lookup_nvlist(spa->spa_config, 2507 ZPOOL_REWIND_POLICY, &policy) == 0) 2508 VERIFY(nvlist_add_nvlist(nvconfig, 2509 ZPOOL_REWIND_POLICY, policy) == 0); 2510 2511 spa_config_set(spa, nvconfig); 2512 spa_unload(spa); 2513 spa_deactivate(spa); 2514 spa_activate(spa, orig_mode); 2515 2516 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2517 } 2518 2519 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2520 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2521 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2522 if (error != 0) 2523 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2524 2525 /* 2526 * Load the bit that tells us to use the new accounting function 2527 * (raid-z deflation). If we have an older pool, this will not 2528 * be present. 2529 */ 2530 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2531 if (error != 0 && error != ENOENT) 2532 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2533 2534 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2535 &spa->spa_creation_version); 2536 if (error != 0 && error != ENOENT) 2537 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2538 2539 /* 2540 * Load the persistent error log. If we have an older pool, this will 2541 * not be present. 2542 */ 2543 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2544 if (error != 0 && error != ENOENT) 2545 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2546 2547 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2548 &spa->spa_errlog_scrub); 2549 if (error != 0 && error != ENOENT) 2550 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2551 2552 /* 2553 * Load the history object. If we have an older pool, this 2554 * will not be present. 2555 */ 2556 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2557 if (error != 0 && error != ENOENT) 2558 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2559 2560 /* 2561 * If we're assembling the pool from the split-off vdevs of 2562 * an existing pool, we don't want to attach the spares & cache 2563 * devices. 2564 */ 2565 2566 /* 2567 * Load any hot spares for this pool. 2568 */ 2569 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2570 if (error != 0 && error != ENOENT) 2571 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2572 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2573 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2574 if (load_nvlist(spa, spa->spa_spares.sav_object, 2575 &spa->spa_spares.sav_config) != 0) 2576 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2577 2578 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2579 spa_load_spares(spa); 2580 spa_config_exit(spa, SCL_ALL, FTAG); 2581 } else if (error == 0) { 2582 spa->spa_spares.sav_sync = B_TRUE; 2583 } 2584 2585 /* 2586 * Load any level 2 ARC devices for this pool. 2587 */ 2588 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2589 &spa->spa_l2cache.sav_object); 2590 if (error != 0 && error != ENOENT) 2591 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2592 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2593 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2594 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2595 &spa->spa_l2cache.sav_config) != 0) 2596 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2597 2598 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2599 spa_load_l2cache(spa); 2600 spa_config_exit(spa, SCL_ALL, FTAG); 2601 } else if (error == 0) { 2602 spa->spa_l2cache.sav_sync = B_TRUE; 2603 } 2604 2605 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2606 2607 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2608 if (error && error != ENOENT) 2609 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2610 2611 if (error == 0) { 2612 uint64_t autoreplace; 2613 2614 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2615 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2616 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2617 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2618 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2619 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2620 &spa->spa_dedup_ditto); 2621 2622 spa->spa_autoreplace = (autoreplace != 0); 2623 } 2624 2625 /* 2626 * If the 'autoreplace' property is set, then post a resource notifying 2627 * the ZFS DE that it should not issue any faults for unopenable 2628 * devices. We also iterate over the vdevs, and post a sysevent for any 2629 * unopenable vdevs so that the normal autoreplace handler can take 2630 * over. 2631 */ 2632 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2633 spa_check_removed(spa->spa_root_vdev); 2634 /* 2635 * For the import case, this is done in spa_import(), because 2636 * at this point we're using the spare definitions from 2637 * the MOS config, not necessarily from the userland config. 2638 */ 2639 if (state != SPA_LOAD_IMPORT) { 2640 spa_aux_check_removed(&spa->spa_spares); 2641 spa_aux_check_removed(&spa->spa_l2cache); 2642 } 2643 } 2644 2645 /* 2646 * Load the vdev state for all toplevel vdevs. 2647 */ 2648 vdev_load(rvd); 2649 2650 /* 2651 * Propagate the leaf DTLs we just loaded all the way up the tree. 2652 */ 2653 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2654 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2655 spa_config_exit(spa, SCL_ALL, FTAG); 2656 2657 /* 2658 * Load the DDTs (dedup tables). 2659 */ 2660 error = ddt_load(spa); 2661 if (error != 0) 2662 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2663 2664 spa_update_dspace(spa); 2665 2666 /* 2667 * Validate the config, using the MOS config to fill in any 2668 * information which might be missing. If we fail to validate 2669 * the config then declare the pool unfit for use. If we're 2670 * assembling a pool from a split, the log is not transferred 2671 * over. 2672 */ 2673 if (type != SPA_IMPORT_ASSEMBLE) { 2674 nvlist_t *nvconfig; 2675 2676 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2677 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2678 2679 if (!spa_config_valid(spa, nvconfig)) { 2680 nvlist_free(nvconfig); 2681 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2682 ENXIO)); 2683 } 2684 nvlist_free(nvconfig); 2685 2686 /* 2687 * Now that we've validated the config, check the state of the 2688 * root vdev. If it can't be opened, it indicates one or 2689 * more toplevel vdevs are faulted. 2690 */ 2691 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2692 return (SET_ERROR(ENXIO)); 2693 2694 if (spa_writeable(spa) && spa_check_logs(spa)) { 2695 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2696 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2697 } 2698 } 2699 2700 if (missing_feat_write) { 2701 ASSERT(state == SPA_LOAD_TRYIMPORT); 2702 2703 /* 2704 * At this point, we know that we can open the pool in 2705 * read-only mode but not read-write mode. We now have enough 2706 * information and can return to userland. 2707 */ 2708 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2709 } 2710 2711 /* 2712 * We've successfully opened the pool, verify that we're ready 2713 * to start pushing transactions. 2714 */ 2715 if (state != SPA_LOAD_TRYIMPORT) { 2716 if (error = spa_load_verify(spa)) 2717 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2718 error)); 2719 } 2720 2721 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2722 spa->spa_load_max_txg == UINT64_MAX)) { 2723 dmu_tx_t *tx; 2724 int need_update = B_FALSE; 2725 dsl_pool_t *dp = spa_get_dsl(spa); 2726 2727 ASSERT(state != SPA_LOAD_TRYIMPORT); 2728 2729 /* 2730 * Claim log blocks that haven't been committed yet. 2731 * This must all happen in a single txg. 2732 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2733 * invoked from zil_claim_log_block()'s i/o done callback. 2734 * Price of rollback is that we abandon the log. 2735 */ 2736 spa->spa_claiming = B_TRUE; 2737 2738 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 2739 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2740 zil_claim, tx, DS_FIND_CHILDREN); 2741 dmu_tx_commit(tx); 2742 2743 spa->spa_claiming = B_FALSE; 2744 2745 spa_set_log_state(spa, SPA_LOG_GOOD); 2746 spa->spa_sync_on = B_TRUE; 2747 txg_sync_start(spa->spa_dsl_pool); 2748 2749 /* 2750 * Wait for all claims to sync. We sync up to the highest 2751 * claimed log block birth time so that claimed log blocks 2752 * don't appear to be from the future. spa_claim_max_txg 2753 * will have been set for us by either zil_check_log_chain() 2754 * (invoked from spa_check_logs()) or zil_claim() above. 2755 */ 2756 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2757 2758 /* 2759 * If the config cache is stale, or we have uninitialized 2760 * metaslabs (see spa_vdev_add()), then update the config. 2761 * 2762 * If this is a verbatim import, trust the current 2763 * in-core spa_config and update the disk labels. 2764 */ 2765 if (config_cache_txg != spa->spa_config_txg || 2766 state == SPA_LOAD_IMPORT || 2767 state == SPA_LOAD_RECOVER || 2768 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2769 need_update = B_TRUE; 2770 2771 for (int c = 0; c < rvd->vdev_children; c++) 2772 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2773 need_update = B_TRUE; 2774 2775 /* 2776 * Update the config cache asychronously in case we're the 2777 * root pool, in which case the config cache isn't writable yet. 2778 */ 2779 if (need_update) 2780 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2781 2782 /* 2783 * Check all DTLs to see if anything needs resilvering. 2784 */ 2785 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2786 vdev_resilver_needed(rvd, NULL, NULL)) 2787 spa_async_request(spa, SPA_ASYNC_RESILVER); 2788 2789 /* 2790 * Log the fact that we booted up (so that we can detect if 2791 * we rebooted in the middle of an operation). 2792 */ 2793 spa_history_log_version(spa, "open"); 2794 2795 /* 2796 * Delete any inconsistent datasets. 2797 */ 2798 (void) dmu_objset_find(spa_name(spa), 2799 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2800 2801 /* 2802 * Clean up any stale temporary dataset userrefs. 2803 */ 2804 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2805 } 2806 2807 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2808 2809 return (0); 2810 } 2811 2812 static int 2813 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2814 { 2815 int mode = spa->spa_mode; 2816 2817 spa_unload(spa); 2818 spa_deactivate(spa); 2819 2820 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2821 2822 spa_activate(spa, mode); 2823 spa_async_suspend(spa); 2824 2825 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2826 } 2827 2828 /* 2829 * If spa_load() fails this function will try loading prior txg's. If 2830 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2831 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2832 * function will not rewind the pool and will return the same error as 2833 * spa_load(). 2834 */ 2835 static int 2836 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2837 uint64_t max_request, int rewind_flags) 2838 { 2839 nvlist_t *loadinfo = NULL; 2840 nvlist_t *config = NULL; 2841 int load_error, rewind_error; 2842 uint64_t safe_rewind_txg; 2843 uint64_t min_txg; 2844 2845 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2846 spa->spa_load_max_txg = spa->spa_load_txg; 2847 spa_set_log_state(spa, SPA_LOG_CLEAR); 2848 } else { 2849 spa->spa_load_max_txg = max_request; 2850 if (max_request != UINT64_MAX) 2851 spa->spa_extreme_rewind = B_TRUE; 2852 } 2853 2854 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2855 mosconfig); 2856 if (load_error == 0) 2857 return (0); 2858 2859 if (spa->spa_root_vdev != NULL) 2860 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2861 2862 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2863 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2864 2865 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2866 nvlist_free(config); 2867 return (load_error); 2868 } 2869 2870 if (state == SPA_LOAD_RECOVER) { 2871 /* Price of rolling back is discarding txgs, including log */ 2872 spa_set_log_state(spa, SPA_LOG_CLEAR); 2873 } else { 2874 /* 2875 * If we aren't rolling back save the load info from our first 2876 * import attempt so that we can restore it after attempting 2877 * to rewind. 2878 */ 2879 loadinfo = spa->spa_load_info; 2880 spa->spa_load_info = fnvlist_alloc(); 2881 } 2882 2883 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2884 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2885 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2886 TXG_INITIAL : safe_rewind_txg; 2887 2888 /* 2889 * Continue as long as we're finding errors, we're still within 2890 * the acceptable rewind range, and we're still finding uberblocks 2891 */ 2892 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2893 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2894 if (spa->spa_load_max_txg < safe_rewind_txg) 2895 spa->spa_extreme_rewind = B_TRUE; 2896 rewind_error = spa_load_retry(spa, state, mosconfig); 2897 } 2898 2899 spa->spa_extreme_rewind = B_FALSE; 2900 spa->spa_load_max_txg = UINT64_MAX; 2901 2902 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2903 spa_config_set(spa, config); 2904 2905 if (state == SPA_LOAD_RECOVER) { 2906 ASSERT3P(loadinfo, ==, NULL); 2907 return (rewind_error); 2908 } else { 2909 /* Store the rewind info as part of the initial load info */ 2910 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2911 spa->spa_load_info); 2912 2913 /* Restore the initial load info */ 2914 fnvlist_free(spa->spa_load_info); 2915 spa->spa_load_info = loadinfo; 2916 2917 return (load_error); 2918 } 2919 } 2920 2921 /* 2922 * Pool Open/Import 2923 * 2924 * The import case is identical to an open except that the configuration is sent 2925 * down from userland, instead of grabbed from the configuration cache. For the 2926 * case of an open, the pool configuration will exist in the 2927 * POOL_STATE_UNINITIALIZED state. 2928 * 2929 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2930 * the same time open the pool, without having to keep around the spa_t in some 2931 * ambiguous state. 2932 */ 2933 static int 2934 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2935 nvlist_t **config) 2936 { 2937 spa_t *spa; 2938 spa_load_state_t state = SPA_LOAD_OPEN; 2939 int error; 2940 int locked = B_FALSE; 2941 2942 *spapp = NULL; 2943 2944 /* 2945 * As disgusting as this is, we need to support recursive calls to this 2946 * function because dsl_dir_open() is called during spa_load(), and ends 2947 * up calling spa_open() again. The real fix is to figure out how to 2948 * avoid dsl_dir_open() calling this in the first place. 2949 */ 2950 if (mutex_owner(&spa_namespace_lock) != curthread) { 2951 mutex_enter(&spa_namespace_lock); 2952 locked = B_TRUE; 2953 } 2954 2955 if ((spa = spa_lookup(pool)) == NULL) { 2956 if (locked) 2957 mutex_exit(&spa_namespace_lock); 2958 return (SET_ERROR(ENOENT)); 2959 } 2960 2961 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2962 zpool_rewind_policy_t policy; 2963 2964 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2965 &policy); 2966 if (policy.zrp_request & ZPOOL_DO_REWIND) 2967 state = SPA_LOAD_RECOVER; 2968 2969 spa_activate(spa, spa_mode_global); 2970 2971 if (state != SPA_LOAD_RECOVER) 2972 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2973 2974 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2975 policy.zrp_request); 2976 2977 if (error == EBADF) { 2978 /* 2979 * If vdev_validate() returns failure (indicated by 2980 * EBADF), it indicates that one of the vdevs indicates 2981 * that the pool has been exported or destroyed. If 2982 * this is the case, the config cache is out of sync and 2983 * we should remove the pool from the namespace. 2984 */ 2985 spa_unload(spa); 2986 spa_deactivate(spa); 2987 spa_config_sync(spa, B_TRUE, B_TRUE); 2988 spa_remove(spa); 2989 if (locked) 2990 mutex_exit(&spa_namespace_lock); 2991 return (SET_ERROR(ENOENT)); 2992 } 2993 2994 if (error) { 2995 /* 2996 * We can't open the pool, but we still have useful 2997 * information: the state of each vdev after the 2998 * attempted vdev_open(). Return this to the user. 2999 */ 3000 if (config != NULL && spa->spa_config) { 3001 VERIFY(nvlist_dup(spa->spa_config, config, 3002 KM_SLEEP) == 0); 3003 VERIFY(nvlist_add_nvlist(*config, 3004 ZPOOL_CONFIG_LOAD_INFO, 3005 spa->spa_load_info) == 0); 3006 } 3007 spa_unload(spa); 3008 spa_deactivate(spa); 3009 spa->spa_last_open_failed = error; 3010 if (locked) 3011 mutex_exit(&spa_namespace_lock); 3012 *spapp = NULL; 3013 return (error); 3014 } 3015 } 3016 3017 spa_open_ref(spa, tag); 3018 3019 if (config != NULL) 3020 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3021 3022 /* 3023 * If we've recovered the pool, pass back any information we 3024 * gathered while doing the load. 3025 */ 3026 if (state == SPA_LOAD_RECOVER) { 3027 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3028 spa->spa_load_info) == 0); 3029 } 3030 3031 if (locked) { 3032 spa->spa_last_open_failed = 0; 3033 spa->spa_last_ubsync_txg = 0; 3034 spa->spa_load_txg = 0; 3035 mutex_exit(&spa_namespace_lock); 3036 } 3037 3038 *spapp = spa; 3039 3040 return (0); 3041 } 3042 3043 int 3044 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3045 nvlist_t **config) 3046 { 3047 return (spa_open_common(name, spapp, tag, policy, config)); 3048 } 3049 3050 int 3051 spa_open(const char *name, spa_t **spapp, void *tag) 3052 { 3053 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3054 } 3055 3056 /* 3057 * Lookup the given spa_t, incrementing the inject count in the process, 3058 * preventing it from being exported or destroyed. 3059 */ 3060 spa_t * 3061 spa_inject_addref(char *name) 3062 { 3063 spa_t *spa; 3064 3065 mutex_enter(&spa_namespace_lock); 3066 if ((spa = spa_lookup(name)) == NULL) { 3067 mutex_exit(&spa_namespace_lock); 3068 return (NULL); 3069 } 3070 spa->spa_inject_ref++; 3071 mutex_exit(&spa_namespace_lock); 3072 3073 return (spa); 3074 } 3075 3076 void 3077 spa_inject_delref(spa_t *spa) 3078 { 3079 mutex_enter(&spa_namespace_lock); 3080 spa->spa_inject_ref--; 3081 mutex_exit(&spa_namespace_lock); 3082 } 3083 3084 /* 3085 * Add spares device information to the nvlist. 3086 */ 3087 static void 3088 spa_add_spares(spa_t *spa, nvlist_t *config) 3089 { 3090 nvlist_t **spares; 3091 uint_t i, nspares; 3092 nvlist_t *nvroot; 3093 uint64_t guid; 3094 vdev_stat_t *vs; 3095 uint_t vsc; 3096 uint64_t pool; 3097 3098 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3099 3100 if (spa->spa_spares.sav_count == 0) 3101 return; 3102 3103 VERIFY(nvlist_lookup_nvlist(config, 3104 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3105 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3106 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3107 if (nspares != 0) { 3108 VERIFY(nvlist_add_nvlist_array(nvroot, 3109 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3110 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3111 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3112 3113 /* 3114 * Go through and find any spares which have since been 3115 * repurposed as an active spare. If this is the case, update 3116 * their status appropriately. 3117 */ 3118 for (i = 0; i < nspares; i++) { 3119 VERIFY(nvlist_lookup_uint64(spares[i], 3120 ZPOOL_CONFIG_GUID, &guid) == 0); 3121 if (spa_spare_exists(guid, &pool, NULL) && 3122 pool != 0ULL) { 3123 VERIFY(nvlist_lookup_uint64_array( 3124 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3125 (uint64_t **)&vs, &vsc) == 0); 3126 vs->vs_state = VDEV_STATE_CANT_OPEN; 3127 vs->vs_aux = VDEV_AUX_SPARED; 3128 } 3129 } 3130 } 3131 } 3132 3133 /* 3134 * Add l2cache device information to the nvlist, including vdev stats. 3135 */ 3136 static void 3137 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3138 { 3139 nvlist_t **l2cache; 3140 uint_t i, j, nl2cache; 3141 nvlist_t *nvroot; 3142 uint64_t guid; 3143 vdev_t *vd; 3144 vdev_stat_t *vs; 3145 uint_t vsc; 3146 3147 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3148 3149 if (spa->spa_l2cache.sav_count == 0) 3150 return; 3151 3152 VERIFY(nvlist_lookup_nvlist(config, 3153 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3154 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3155 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3156 if (nl2cache != 0) { 3157 VERIFY(nvlist_add_nvlist_array(nvroot, 3158 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3159 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3160 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3161 3162 /* 3163 * Update level 2 cache device stats. 3164 */ 3165 3166 for (i = 0; i < nl2cache; i++) { 3167 VERIFY(nvlist_lookup_uint64(l2cache[i], 3168 ZPOOL_CONFIG_GUID, &guid) == 0); 3169 3170 vd = NULL; 3171 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3172 if (guid == 3173 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3174 vd = spa->spa_l2cache.sav_vdevs[j]; 3175 break; 3176 } 3177 } 3178 ASSERT(vd != NULL); 3179 3180 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3181 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3182 == 0); 3183 vdev_get_stats(vd, vs); 3184 } 3185 } 3186 } 3187 3188 static void 3189 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3190 { 3191 nvlist_t *features; 3192 zap_cursor_t zc; 3193 zap_attribute_t za; 3194 3195 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3196 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3197 3198 if (spa->spa_feat_for_read_obj != 0) { 3199 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3200 spa->spa_feat_for_read_obj); 3201 zap_cursor_retrieve(&zc, &za) == 0; 3202 zap_cursor_advance(&zc)) { 3203 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3204 za.za_num_integers == 1); 3205 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3206 za.za_first_integer)); 3207 } 3208 zap_cursor_fini(&zc); 3209 } 3210 3211 if (spa->spa_feat_for_write_obj != 0) { 3212 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3213 spa->spa_feat_for_write_obj); 3214 zap_cursor_retrieve(&zc, &za) == 0; 3215 zap_cursor_advance(&zc)) { 3216 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3217 za.za_num_integers == 1); 3218 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3219 za.za_first_integer)); 3220 } 3221 zap_cursor_fini(&zc); 3222 } 3223 3224 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3225 features) == 0); 3226 nvlist_free(features); 3227 } 3228 3229 int 3230 spa_get_stats(const char *name, nvlist_t **config, 3231 char *altroot, size_t buflen) 3232 { 3233 int error; 3234 spa_t *spa; 3235 3236 *config = NULL; 3237 error = spa_open_common(name, &spa, FTAG, NULL, config); 3238 3239 if (spa != NULL) { 3240 /* 3241 * This still leaves a window of inconsistency where the spares 3242 * or l2cache devices could change and the config would be 3243 * self-inconsistent. 3244 */ 3245 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3246 3247 if (*config != NULL) { 3248 uint64_t loadtimes[2]; 3249 3250 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3251 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3252 VERIFY(nvlist_add_uint64_array(*config, 3253 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3254 3255 VERIFY(nvlist_add_uint64(*config, 3256 ZPOOL_CONFIG_ERRCOUNT, 3257 spa_get_errlog_size(spa)) == 0); 3258 3259 if (spa_suspended(spa)) 3260 VERIFY(nvlist_add_uint64(*config, 3261 ZPOOL_CONFIG_SUSPENDED, 3262 spa->spa_failmode) == 0); 3263 3264 spa_add_spares(spa, *config); 3265 spa_add_l2cache(spa, *config); 3266 spa_add_feature_stats(spa, *config); 3267 } 3268 } 3269 3270 /* 3271 * We want to get the alternate root even for faulted pools, so we cheat 3272 * and call spa_lookup() directly. 3273 */ 3274 if (altroot) { 3275 if (spa == NULL) { 3276 mutex_enter(&spa_namespace_lock); 3277 spa = spa_lookup(name); 3278 if (spa) 3279 spa_altroot(spa, altroot, buflen); 3280 else 3281 altroot[0] = '\0'; 3282 spa = NULL; 3283 mutex_exit(&spa_namespace_lock); 3284 } else { 3285 spa_altroot(spa, altroot, buflen); 3286 } 3287 } 3288 3289 if (spa != NULL) { 3290 spa_config_exit(spa, SCL_CONFIG, FTAG); 3291 spa_close(spa, FTAG); 3292 } 3293 3294 return (error); 3295 } 3296 3297 /* 3298 * Validate that the auxiliary device array is well formed. We must have an 3299 * array of nvlists, each which describes a valid leaf vdev. If this is an 3300 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3301 * specified, as long as they are well-formed. 3302 */ 3303 static int 3304 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3305 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3306 vdev_labeltype_t label) 3307 { 3308 nvlist_t **dev; 3309 uint_t i, ndev; 3310 vdev_t *vd; 3311 int error; 3312 3313 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3314 3315 /* 3316 * It's acceptable to have no devs specified. 3317 */ 3318 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3319 return (0); 3320 3321 if (ndev == 0) 3322 return (SET_ERROR(EINVAL)); 3323 3324 /* 3325 * Make sure the pool is formatted with a version that supports this 3326 * device type. 3327 */ 3328 if (spa_version(spa) < version) 3329 return (SET_ERROR(ENOTSUP)); 3330 3331 /* 3332 * Set the pending device list so we correctly handle device in-use 3333 * checking. 3334 */ 3335 sav->sav_pending = dev; 3336 sav->sav_npending = ndev; 3337 3338 for (i = 0; i < ndev; i++) { 3339 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3340 mode)) != 0) 3341 goto out; 3342 3343 if (!vd->vdev_ops->vdev_op_leaf) { 3344 vdev_free(vd); 3345 error = SET_ERROR(EINVAL); 3346 goto out; 3347 } 3348 3349 /* 3350 * The L2ARC currently only supports disk devices in 3351 * kernel context. For user-level testing, we allow it. 3352 */ 3353 #ifdef _KERNEL 3354 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3355 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3356 error = SET_ERROR(ENOTBLK); 3357 vdev_free(vd); 3358 goto out; 3359 } 3360 #endif 3361 vd->vdev_top = vd; 3362 3363 if ((error = vdev_open(vd)) == 0 && 3364 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3365 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3366 vd->vdev_guid) == 0); 3367 } 3368 3369 vdev_free(vd); 3370 3371 if (error && 3372 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3373 goto out; 3374 else 3375 error = 0; 3376 } 3377 3378 out: 3379 sav->sav_pending = NULL; 3380 sav->sav_npending = 0; 3381 return (error); 3382 } 3383 3384 static int 3385 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3386 { 3387 int error; 3388 3389 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3390 3391 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3392 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3393 VDEV_LABEL_SPARE)) != 0) { 3394 return (error); 3395 } 3396 3397 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3398 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3399 VDEV_LABEL_L2CACHE)); 3400 } 3401 3402 static void 3403 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3404 const char *config) 3405 { 3406 int i; 3407 3408 if (sav->sav_config != NULL) { 3409 nvlist_t **olddevs; 3410 uint_t oldndevs; 3411 nvlist_t **newdevs; 3412 3413 /* 3414 * Generate new dev list by concatentating with the 3415 * current dev list. 3416 */ 3417 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3418 &olddevs, &oldndevs) == 0); 3419 3420 newdevs = kmem_alloc(sizeof (void *) * 3421 (ndevs + oldndevs), KM_SLEEP); 3422 for (i = 0; i < oldndevs; i++) 3423 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3424 KM_SLEEP) == 0); 3425 for (i = 0; i < ndevs; i++) 3426 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3427 KM_SLEEP) == 0); 3428 3429 VERIFY(nvlist_remove(sav->sav_config, config, 3430 DATA_TYPE_NVLIST_ARRAY) == 0); 3431 3432 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3433 config, newdevs, ndevs + oldndevs) == 0); 3434 for (i = 0; i < oldndevs + ndevs; i++) 3435 nvlist_free(newdevs[i]); 3436 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3437 } else { 3438 /* 3439 * Generate a new dev list. 3440 */ 3441 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3442 KM_SLEEP) == 0); 3443 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3444 devs, ndevs) == 0); 3445 } 3446 } 3447 3448 /* 3449 * Stop and drop level 2 ARC devices 3450 */ 3451 void 3452 spa_l2cache_drop(spa_t *spa) 3453 { 3454 vdev_t *vd; 3455 int i; 3456 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3457 3458 for (i = 0; i < sav->sav_count; i++) { 3459 uint64_t pool; 3460 3461 vd = sav->sav_vdevs[i]; 3462 ASSERT(vd != NULL); 3463 3464 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3465 pool != 0ULL && l2arc_vdev_present(vd)) 3466 l2arc_remove_vdev(vd); 3467 } 3468 } 3469 3470 /* 3471 * Pool Creation 3472 */ 3473 int 3474 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3475 nvlist_t *zplprops) 3476 { 3477 spa_t *spa; 3478 char *altroot = NULL; 3479 vdev_t *rvd; 3480 dsl_pool_t *dp; 3481 dmu_tx_t *tx; 3482 int error = 0; 3483 uint64_t txg = TXG_INITIAL; 3484 nvlist_t **spares, **l2cache; 3485 uint_t nspares, nl2cache; 3486 uint64_t version, obj; 3487 boolean_t has_features; 3488 3489 /* 3490 * If this pool already exists, return failure. 3491 */ 3492 mutex_enter(&spa_namespace_lock); 3493 if (spa_lookup(pool) != NULL) { 3494 mutex_exit(&spa_namespace_lock); 3495 return (SET_ERROR(EEXIST)); 3496 } 3497 3498 /* 3499 * Allocate a new spa_t structure. 3500 */ 3501 (void) nvlist_lookup_string(props, 3502 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3503 spa = spa_add(pool, NULL, altroot); 3504 spa_activate(spa, spa_mode_global); 3505 3506 if (props && (error = spa_prop_validate(spa, props))) { 3507 spa_deactivate(spa); 3508 spa_remove(spa); 3509 mutex_exit(&spa_namespace_lock); 3510 return (error); 3511 } 3512 3513 has_features = B_FALSE; 3514 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3515 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3516 if (zpool_prop_feature(nvpair_name(elem))) 3517 has_features = B_TRUE; 3518 } 3519 3520 if (has_features || nvlist_lookup_uint64(props, 3521 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3522 version = SPA_VERSION; 3523 } 3524 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3525 3526 spa->spa_first_txg = txg; 3527 spa->spa_uberblock.ub_txg = txg - 1; 3528 spa->spa_uberblock.ub_version = version; 3529 spa->spa_ubsync = spa->spa_uberblock; 3530 3531 /* 3532 * Create "The Godfather" zio to hold all async IOs 3533 */ 3534 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3535 KM_SLEEP); 3536 for (int i = 0; i < max_ncpus; i++) { 3537 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3538 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3539 ZIO_FLAG_GODFATHER); 3540 } 3541 3542 /* 3543 * Create the root vdev. 3544 */ 3545 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3546 3547 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3548 3549 ASSERT(error != 0 || rvd != NULL); 3550 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3551 3552 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3553 error = SET_ERROR(EINVAL); 3554 3555 if (error == 0 && 3556 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3557 (error = spa_validate_aux(spa, nvroot, txg, 3558 VDEV_ALLOC_ADD)) == 0) { 3559 for (int c = 0; c < rvd->vdev_children; c++) { 3560 vdev_metaslab_set_size(rvd->vdev_child[c]); 3561 vdev_expand(rvd->vdev_child[c], txg); 3562 } 3563 } 3564 3565 spa_config_exit(spa, SCL_ALL, FTAG); 3566 3567 if (error != 0) { 3568 spa_unload(spa); 3569 spa_deactivate(spa); 3570 spa_remove(spa); 3571 mutex_exit(&spa_namespace_lock); 3572 return (error); 3573 } 3574 3575 /* 3576 * Get the list of spares, if specified. 3577 */ 3578 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3579 &spares, &nspares) == 0) { 3580 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3581 KM_SLEEP) == 0); 3582 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3583 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3584 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3585 spa_load_spares(spa); 3586 spa_config_exit(spa, SCL_ALL, FTAG); 3587 spa->spa_spares.sav_sync = B_TRUE; 3588 } 3589 3590 /* 3591 * Get the list of level 2 cache devices, if specified. 3592 */ 3593 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3594 &l2cache, &nl2cache) == 0) { 3595 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3596 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3597 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3598 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3599 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3600 spa_load_l2cache(spa); 3601 spa_config_exit(spa, SCL_ALL, FTAG); 3602 spa->spa_l2cache.sav_sync = B_TRUE; 3603 } 3604 3605 spa->spa_is_initializing = B_TRUE; 3606 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3607 spa->spa_meta_objset = dp->dp_meta_objset; 3608 spa->spa_is_initializing = B_FALSE; 3609 3610 /* 3611 * Create DDTs (dedup tables). 3612 */ 3613 ddt_create(spa); 3614 3615 spa_update_dspace(spa); 3616 3617 tx = dmu_tx_create_assigned(dp, txg); 3618 3619 /* 3620 * Create the pool config object. 3621 */ 3622 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3623 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3624 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3625 3626 if (zap_add(spa->spa_meta_objset, 3627 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3628 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3629 cmn_err(CE_PANIC, "failed to add pool config"); 3630 } 3631 3632 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3633 spa_feature_create_zap_objects(spa, tx); 3634 3635 if (zap_add(spa->spa_meta_objset, 3636 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3637 sizeof (uint64_t), 1, &version, tx) != 0) { 3638 cmn_err(CE_PANIC, "failed to add pool version"); 3639 } 3640 3641 /* Newly created pools with the right version are always deflated. */ 3642 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3643 spa->spa_deflate = TRUE; 3644 if (zap_add(spa->spa_meta_objset, 3645 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3646 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3647 cmn_err(CE_PANIC, "failed to add deflate"); 3648 } 3649 } 3650 3651 /* 3652 * Create the deferred-free bpobj. Turn off compression 3653 * because sync-to-convergence takes longer if the blocksize 3654 * keeps changing. 3655 */ 3656 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3657 dmu_object_set_compress(spa->spa_meta_objset, obj, 3658 ZIO_COMPRESS_OFF, tx); 3659 if (zap_add(spa->spa_meta_objset, 3660 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3661 sizeof (uint64_t), 1, &obj, tx) != 0) { 3662 cmn_err(CE_PANIC, "failed to add bpobj"); 3663 } 3664 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3665 spa->spa_meta_objset, obj)); 3666 3667 /* 3668 * Create the pool's history object. 3669 */ 3670 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3671 spa_history_create_obj(spa, tx); 3672 3673 /* 3674 * Set pool properties. 3675 */ 3676 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3677 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3678 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3679 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3680 3681 if (props != NULL) { 3682 spa_configfile_set(spa, props, B_FALSE); 3683 spa_sync_props(props, tx); 3684 } 3685 3686 dmu_tx_commit(tx); 3687 3688 spa->spa_sync_on = B_TRUE; 3689 txg_sync_start(spa->spa_dsl_pool); 3690 3691 /* 3692 * We explicitly wait for the first transaction to complete so that our 3693 * bean counters are appropriately updated. 3694 */ 3695 txg_wait_synced(spa->spa_dsl_pool, txg); 3696 3697 spa_config_sync(spa, B_FALSE, B_TRUE); 3698 3699 spa_history_log_version(spa, "create"); 3700 3701 /* 3702 * Don't count references from objsets that are already closed 3703 * and are making their way through the eviction process. 3704 */ 3705 spa_evicting_os_wait(spa); 3706 spa->spa_minref = refcount_count(&spa->spa_refcount); 3707 3708 mutex_exit(&spa_namespace_lock); 3709 3710 return (0); 3711 } 3712 3713 #ifdef _KERNEL 3714 /* 3715 * Get the root pool information from the root disk, then import the root pool 3716 * during the system boot up time. 3717 */ 3718 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3719 3720 static nvlist_t * 3721 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3722 { 3723 nvlist_t *config; 3724 nvlist_t *nvtop, *nvroot; 3725 uint64_t pgid; 3726 3727 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3728 return (NULL); 3729 3730 /* 3731 * Add this top-level vdev to the child array. 3732 */ 3733 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3734 &nvtop) == 0); 3735 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3736 &pgid) == 0); 3737 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3738 3739 /* 3740 * Put this pool's top-level vdevs into a root vdev. 3741 */ 3742 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3743 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3744 VDEV_TYPE_ROOT) == 0); 3745 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3746 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3747 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3748 &nvtop, 1) == 0); 3749 3750 /* 3751 * Replace the existing vdev_tree with the new root vdev in 3752 * this pool's configuration (remove the old, add the new). 3753 */ 3754 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3755 nvlist_free(nvroot); 3756 return (config); 3757 } 3758 3759 /* 3760 * Walk the vdev tree and see if we can find a device with "better" 3761 * configuration. A configuration is "better" if the label on that 3762 * device has a more recent txg. 3763 */ 3764 static void 3765 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3766 { 3767 for (int c = 0; c < vd->vdev_children; c++) 3768 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3769 3770 if (vd->vdev_ops->vdev_op_leaf) { 3771 nvlist_t *label; 3772 uint64_t label_txg; 3773 3774 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3775 &label) != 0) 3776 return; 3777 3778 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3779 &label_txg) == 0); 3780 3781 /* 3782 * Do we have a better boot device? 3783 */ 3784 if (label_txg > *txg) { 3785 *txg = label_txg; 3786 *avd = vd; 3787 } 3788 nvlist_free(label); 3789 } 3790 } 3791 3792 /* 3793 * Import a root pool. 3794 * 3795 * For x86. devpath_list will consist of devid and/or physpath name of 3796 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3797 * The GRUB "findroot" command will return the vdev we should boot. 3798 * 3799 * For Sparc, devpath_list consists the physpath name of the booting device 3800 * no matter the rootpool is a single device pool or a mirrored pool. 3801 * e.g. 3802 * "/pci@1f,0/ide@d/disk@0,0:a" 3803 */ 3804 int 3805 spa_import_rootpool(char *devpath, char *devid) 3806 { 3807 spa_t *spa; 3808 vdev_t *rvd, *bvd, *avd = NULL; 3809 nvlist_t *config, *nvtop; 3810 uint64_t guid, txg; 3811 char *pname; 3812 int error; 3813 3814 /* 3815 * Read the label from the boot device and generate a configuration. 3816 */ 3817 config = spa_generate_rootconf(devpath, devid, &guid); 3818 #if defined(_OBP) && defined(_KERNEL) 3819 if (config == NULL) { 3820 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3821 /* iscsi boot */ 3822 get_iscsi_bootpath_phy(devpath); 3823 config = spa_generate_rootconf(devpath, devid, &guid); 3824 } 3825 } 3826 #endif 3827 if (config == NULL) { 3828 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3829 devpath); 3830 return (SET_ERROR(EIO)); 3831 } 3832 3833 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3834 &pname) == 0); 3835 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3836 3837 mutex_enter(&spa_namespace_lock); 3838 if ((spa = spa_lookup(pname)) != NULL) { 3839 /* 3840 * Remove the existing root pool from the namespace so that we 3841 * can replace it with the correct config we just read in. 3842 */ 3843 spa_remove(spa); 3844 } 3845 3846 spa = spa_add(pname, config, NULL); 3847 spa->spa_is_root = B_TRUE; 3848 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3849 3850 /* 3851 * Build up a vdev tree based on the boot device's label config. 3852 */ 3853 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3854 &nvtop) == 0); 3855 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3856 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3857 VDEV_ALLOC_ROOTPOOL); 3858 spa_config_exit(spa, SCL_ALL, FTAG); 3859 if (error) { 3860 mutex_exit(&spa_namespace_lock); 3861 nvlist_free(config); 3862 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3863 pname); 3864 return (error); 3865 } 3866 3867 /* 3868 * Get the boot vdev. 3869 */ 3870 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3871 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3872 (u_longlong_t)guid); 3873 error = SET_ERROR(ENOENT); 3874 goto out; 3875 } 3876 3877 /* 3878 * Determine if there is a better boot device. 3879 */ 3880 avd = bvd; 3881 spa_alt_rootvdev(rvd, &avd, &txg); 3882 if (avd != bvd) { 3883 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3884 "try booting from '%s'", avd->vdev_path); 3885 error = SET_ERROR(EINVAL); 3886 goto out; 3887 } 3888 3889 /* 3890 * If the boot device is part of a spare vdev then ensure that 3891 * we're booting off the active spare. 3892 */ 3893 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3894 !bvd->vdev_isspare) { 3895 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3896 "try booting from '%s'", 3897 bvd->vdev_parent-> 3898 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3899 error = SET_ERROR(EINVAL); 3900 goto out; 3901 } 3902 3903 error = 0; 3904 out: 3905 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3906 vdev_free(rvd); 3907 spa_config_exit(spa, SCL_ALL, FTAG); 3908 mutex_exit(&spa_namespace_lock); 3909 3910 nvlist_free(config); 3911 return (error); 3912 } 3913 3914 #endif 3915 3916 /* 3917 * Import a non-root pool into the system. 3918 */ 3919 int 3920 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3921 { 3922 spa_t *spa; 3923 char *altroot = NULL; 3924 spa_load_state_t state = SPA_LOAD_IMPORT; 3925 zpool_rewind_policy_t policy; 3926 uint64_t mode = spa_mode_global; 3927 uint64_t readonly = B_FALSE; 3928 int error; 3929 nvlist_t *nvroot; 3930 nvlist_t **spares, **l2cache; 3931 uint_t nspares, nl2cache; 3932 3933 /* 3934 * If a pool with this name exists, return failure. 3935 */ 3936 mutex_enter(&spa_namespace_lock); 3937 if (spa_lookup(pool) != NULL) { 3938 mutex_exit(&spa_namespace_lock); 3939 return (SET_ERROR(EEXIST)); 3940 } 3941 3942 /* 3943 * Create and initialize the spa structure. 3944 */ 3945 (void) nvlist_lookup_string(props, 3946 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3947 (void) nvlist_lookup_uint64(props, 3948 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3949 if (readonly) 3950 mode = FREAD; 3951 spa = spa_add(pool, config, altroot); 3952 spa->spa_import_flags = flags; 3953 3954 /* 3955 * Verbatim import - Take a pool and insert it into the namespace 3956 * as if it had been loaded at boot. 3957 */ 3958 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3959 if (props != NULL) 3960 spa_configfile_set(spa, props, B_FALSE); 3961 3962 spa_config_sync(spa, B_FALSE, B_TRUE); 3963 3964 mutex_exit(&spa_namespace_lock); 3965 return (0); 3966 } 3967 3968 spa_activate(spa, mode); 3969 3970 /* 3971 * Don't start async tasks until we know everything is healthy. 3972 */ 3973 spa_async_suspend(spa); 3974 3975 zpool_get_rewind_policy(config, &policy); 3976 if (policy.zrp_request & ZPOOL_DO_REWIND) 3977 state = SPA_LOAD_RECOVER; 3978 3979 /* 3980 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3981 * because the user-supplied config is actually the one to trust when 3982 * doing an import. 3983 */ 3984 if (state != SPA_LOAD_RECOVER) 3985 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3986 3987 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3988 policy.zrp_request); 3989 3990 /* 3991 * Propagate anything learned while loading the pool and pass it 3992 * back to caller (i.e. rewind info, missing devices, etc). 3993 */ 3994 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3995 spa->spa_load_info) == 0); 3996 3997 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3998 /* 3999 * Toss any existing sparelist, as it doesn't have any validity 4000 * anymore, and conflicts with spa_has_spare(). 4001 */ 4002 if (spa->spa_spares.sav_config) { 4003 nvlist_free(spa->spa_spares.sav_config); 4004 spa->spa_spares.sav_config = NULL; 4005 spa_load_spares(spa); 4006 } 4007 if (spa->spa_l2cache.sav_config) { 4008 nvlist_free(spa->spa_l2cache.sav_config); 4009 spa->spa_l2cache.sav_config = NULL; 4010 spa_load_l2cache(spa); 4011 } 4012 4013 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4014 &nvroot) == 0); 4015 if (error == 0) 4016 error = spa_validate_aux(spa, nvroot, -1ULL, 4017 VDEV_ALLOC_SPARE); 4018 if (error == 0) 4019 error = spa_validate_aux(spa, nvroot, -1ULL, 4020 VDEV_ALLOC_L2CACHE); 4021 spa_config_exit(spa, SCL_ALL, FTAG); 4022 4023 if (props != NULL) 4024 spa_configfile_set(spa, props, B_FALSE); 4025 4026 if (error != 0 || (props && spa_writeable(spa) && 4027 (error = spa_prop_set(spa, props)))) { 4028 spa_unload(spa); 4029 spa_deactivate(spa); 4030 spa_remove(spa); 4031 mutex_exit(&spa_namespace_lock); 4032 return (error); 4033 } 4034 4035 spa_async_resume(spa); 4036 4037 /* 4038 * Override any spares and level 2 cache devices as specified by 4039 * the user, as these may have correct device names/devids, etc. 4040 */ 4041 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4042 &spares, &nspares) == 0) { 4043 if (spa->spa_spares.sav_config) 4044 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4045 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4046 else 4047 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4048 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4049 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4050 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4051 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4052 spa_load_spares(spa); 4053 spa_config_exit(spa, SCL_ALL, FTAG); 4054 spa->spa_spares.sav_sync = B_TRUE; 4055 } 4056 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4057 &l2cache, &nl2cache) == 0) { 4058 if (spa->spa_l2cache.sav_config) 4059 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4060 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4061 else 4062 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4063 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4064 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4065 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4066 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4067 spa_load_l2cache(spa); 4068 spa_config_exit(spa, SCL_ALL, FTAG); 4069 spa->spa_l2cache.sav_sync = B_TRUE; 4070 } 4071 4072 /* 4073 * Check for any removed devices. 4074 */ 4075 if (spa->spa_autoreplace) { 4076 spa_aux_check_removed(&spa->spa_spares); 4077 spa_aux_check_removed(&spa->spa_l2cache); 4078 } 4079 4080 if (spa_writeable(spa)) { 4081 /* 4082 * Update the config cache to include the newly-imported pool. 4083 */ 4084 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4085 } 4086 4087 /* 4088 * It's possible that the pool was expanded while it was exported. 4089 * We kick off an async task to handle this for us. 4090 */ 4091 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4092 4093 mutex_exit(&spa_namespace_lock); 4094 spa_history_log_version(spa, "import"); 4095 4096 return (0); 4097 } 4098 4099 nvlist_t * 4100 spa_tryimport(nvlist_t *tryconfig) 4101 { 4102 nvlist_t *config = NULL; 4103 char *poolname; 4104 spa_t *spa; 4105 uint64_t state; 4106 int error; 4107 4108 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4109 return (NULL); 4110 4111 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4112 return (NULL); 4113 4114 /* 4115 * Create and initialize the spa structure. 4116 */ 4117 mutex_enter(&spa_namespace_lock); 4118 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4119 spa_activate(spa, FREAD); 4120 4121 /* 4122 * Pass off the heavy lifting to spa_load(). 4123 * Pass TRUE for mosconfig because the user-supplied config 4124 * is actually the one to trust when doing an import. 4125 */ 4126 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4127 4128 /* 4129 * If 'tryconfig' was at least parsable, return the current config. 4130 */ 4131 if (spa->spa_root_vdev != NULL) { 4132 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4133 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4134 poolname) == 0); 4135 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4136 state) == 0); 4137 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4138 spa->spa_uberblock.ub_timestamp) == 0); 4139 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4140 spa->spa_load_info) == 0); 4141 4142 /* 4143 * If the bootfs property exists on this pool then we 4144 * copy it out so that external consumers can tell which 4145 * pools are bootable. 4146 */ 4147 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4148 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4149 4150 /* 4151 * We have to play games with the name since the 4152 * pool was opened as TRYIMPORT_NAME. 4153 */ 4154 if (dsl_dsobj_to_dsname(spa_name(spa), 4155 spa->spa_bootfs, tmpname) == 0) { 4156 char *cp; 4157 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4158 4159 cp = strchr(tmpname, '/'); 4160 if (cp == NULL) { 4161 (void) strlcpy(dsname, tmpname, 4162 MAXPATHLEN); 4163 } else { 4164 (void) snprintf(dsname, MAXPATHLEN, 4165 "%s/%s", poolname, ++cp); 4166 } 4167 VERIFY(nvlist_add_string(config, 4168 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4169 kmem_free(dsname, MAXPATHLEN); 4170 } 4171 kmem_free(tmpname, MAXPATHLEN); 4172 } 4173 4174 /* 4175 * Add the list of hot spares and level 2 cache devices. 4176 */ 4177 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4178 spa_add_spares(spa, config); 4179 spa_add_l2cache(spa, config); 4180 spa_config_exit(spa, SCL_CONFIG, FTAG); 4181 } 4182 4183 spa_unload(spa); 4184 spa_deactivate(spa); 4185 spa_remove(spa); 4186 mutex_exit(&spa_namespace_lock); 4187 4188 return (config); 4189 } 4190 4191 /* 4192 * Pool export/destroy 4193 * 4194 * The act of destroying or exporting a pool is very simple. We make sure there 4195 * is no more pending I/O and any references to the pool are gone. Then, we 4196 * update the pool state and sync all the labels to disk, removing the 4197 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4198 * we don't sync the labels or remove the configuration cache. 4199 */ 4200 static int 4201 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4202 boolean_t force, boolean_t hardforce) 4203 { 4204 spa_t *spa; 4205 4206 if (oldconfig) 4207 *oldconfig = NULL; 4208 4209 if (!(spa_mode_global & FWRITE)) 4210 return (SET_ERROR(EROFS)); 4211 4212 mutex_enter(&spa_namespace_lock); 4213 if ((spa = spa_lookup(pool)) == NULL) { 4214 mutex_exit(&spa_namespace_lock); 4215 return (SET_ERROR(ENOENT)); 4216 } 4217 4218 /* 4219 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4220 * reacquire the namespace lock, and see if we can export. 4221 */ 4222 spa_open_ref(spa, FTAG); 4223 mutex_exit(&spa_namespace_lock); 4224 spa_async_suspend(spa); 4225 mutex_enter(&spa_namespace_lock); 4226 spa_close(spa, FTAG); 4227 4228 /* 4229 * The pool will be in core if it's openable, 4230 * in which case we can modify its state. 4231 */ 4232 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4233 /* 4234 * Objsets may be open only because they're dirty, so we 4235 * have to force it to sync before checking spa_refcnt. 4236 */ 4237 txg_wait_synced(spa->spa_dsl_pool, 0); 4238 spa_evicting_os_wait(spa); 4239 4240 /* 4241 * A pool cannot be exported or destroyed if there are active 4242 * references. If we are resetting a pool, allow references by 4243 * fault injection handlers. 4244 */ 4245 if (!spa_refcount_zero(spa) || 4246 (spa->spa_inject_ref != 0 && 4247 new_state != POOL_STATE_UNINITIALIZED)) { 4248 spa_async_resume(spa); 4249 mutex_exit(&spa_namespace_lock); 4250 return (SET_ERROR(EBUSY)); 4251 } 4252 4253 /* 4254 * A pool cannot be exported if it has an active shared spare. 4255 * This is to prevent other pools stealing the active spare 4256 * from an exported pool. At user's own will, such pool can 4257 * be forcedly exported. 4258 */ 4259 if (!force && new_state == POOL_STATE_EXPORTED && 4260 spa_has_active_shared_spare(spa)) { 4261 spa_async_resume(spa); 4262 mutex_exit(&spa_namespace_lock); 4263 return (SET_ERROR(EXDEV)); 4264 } 4265 4266 /* 4267 * We want this to be reflected on every label, 4268 * so mark them all dirty. spa_unload() will do the 4269 * final sync that pushes these changes out. 4270 */ 4271 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4272 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4273 spa->spa_state = new_state; 4274 spa->spa_final_txg = spa_last_synced_txg(spa) + 4275 TXG_DEFER_SIZE + 1; 4276 vdev_config_dirty(spa->spa_root_vdev); 4277 spa_config_exit(spa, SCL_ALL, FTAG); 4278 } 4279 } 4280 4281 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4282 4283 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4284 spa_unload(spa); 4285 spa_deactivate(spa); 4286 } 4287 4288 if (oldconfig && spa->spa_config) 4289 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4290 4291 if (new_state != POOL_STATE_UNINITIALIZED) { 4292 if (!hardforce) 4293 spa_config_sync(spa, B_TRUE, B_TRUE); 4294 spa_remove(spa); 4295 } 4296 mutex_exit(&spa_namespace_lock); 4297 4298 return (0); 4299 } 4300 4301 /* 4302 * Destroy a storage pool. 4303 */ 4304 int 4305 spa_destroy(char *pool) 4306 { 4307 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4308 B_FALSE, B_FALSE)); 4309 } 4310 4311 /* 4312 * Export a storage pool. 4313 */ 4314 int 4315 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4316 boolean_t hardforce) 4317 { 4318 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4319 force, hardforce)); 4320 } 4321 4322 /* 4323 * Similar to spa_export(), this unloads the spa_t without actually removing it 4324 * from the namespace in any way. 4325 */ 4326 int 4327 spa_reset(char *pool) 4328 { 4329 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4330 B_FALSE, B_FALSE)); 4331 } 4332 4333 /* 4334 * ========================================================================== 4335 * Device manipulation 4336 * ========================================================================== 4337 */ 4338 4339 /* 4340 * Add a device to a storage pool. 4341 */ 4342 int 4343 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4344 { 4345 uint64_t txg, id; 4346 int error; 4347 vdev_t *rvd = spa->spa_root_vdev; 4348 vdev_t *vd, *tvd; 4349 nvlist_t **spares, **l2cache; 4350 uint_t nspares, nl2cache; 4351 4352 ASSERT(spa_writeable(spa)); 4353 4354 txg = spa_vdev_enter(spa); 4355 4356 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4357 VDEV_ALLOC_ADD)) != 0) 4358 return (spa_vdev_exit(spa, NULL, txg, error)); 4359 4360 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4361 4362 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4363 &nspares) != 0) 4364 nspares = 0; 4365 4366 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4367 &nl2cache) != 0) 4368 nl2cache = 0; 4369 4370 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4371 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4372 4373 if (vd->vdev_children != 0 && 4374 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4375 return (spa_vdev_exit(spa, vd, txg, error)); 4376 4377 /* 4378 * We must validate the spares and l2cache devices after checking the 4379 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4380 */ 4381 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4382 return (spa_vdev_exit(spa, vd, txg, error)); 4383 4384 /* 4385 * Transfer each new top-level vdev from vd to rvd. 4386 */ 4387 for (int c = 0; c < vd->vdev_children; c++) { 4388 4389 /* 4390 * Set the vdev id to the first hole, if one exists. 4391 */ 4392 for (id = 0; id < rvd->vdev_children; id++) { 4393 if (rvd->vdev_child[id]->vdev_ishole) { 4394 vdev_free(rvd->vdev_child[id]); 4395 break; 4396 } 4397 } 4398 tvd = vd->vdev_child[c]; 4399 vdev_remove_child(vd, tvd); 4400 tvd->vdev_id = id; 4401 vdev_add_child(rvd, tvd); 4402 vdev_config_dirty(tvd); 4403 } 4404 4405 if (nspares != 0) { 4406 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4407 ZPOOL_CONFIG_SPARES); 4408 spa_load_spares(spa); 4409 spa->spa_spares.sav_sync = B_TRUE; 4410 } 4411 4412 if (nl2cache != 0) { 4413 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4414 ZPOOL_CONFIG_L2CACHE); 4415 spa_load_l2cache(spa); 4416 spa->spa_l2cache.sav_sync = B_TRUE; 4417 } 4418 4419 /* 4420 * We have to be careful when adding new vdevs to an existing pool. 4421 * If other threads start allocating from these vdevs before we 4422 * sync the config cache, and we lose power, then upon reboot we may 4423 * fail to open the pool because there are DVAs that the config cache 4424 * can't translate. Therefore, we first add the vdevs without 4425 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4426 * and then let spa_config_update() initialize the new metaslabs. 4427 * 4428 * spa_load() checks for added-but-not-initialized vdevs, so that 4429 * if we lose power at any point in this sequence, the remaining 4430 * steps will be completed the next time we load the pool. 4431 */ 4432 (void) spa_vdev_exit(spa, vd, txg, 0); 4433 4434 mutex_enter(&spa_namespace_lock); 4435 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4436 mutex_exit(&spa_namespace_lock); 4437 4438 return (0); 4439 } 4440 4441 /* 4442 * Attach a device to a mirror. The arguments are the path to any device 4443 * in the mirror, and the nvroot for the new device. If the path specifies 4444 * a device that is not mirrored, we automatically insert the mirror vdev. 4445 * 4446 * If 'replacing' is specified, the new device is intended to replace the 4447 * existing device; in this case the two devices are made into their own 4448 * mirror using the 'replacing' vdev, which is functionally identical to 4449 * the mirror vdev (it actually reuses all the same ops) but has a few 4450 * extra rules: you can't attach to it after it's been created, and upon 4451 * completion of resilvering, the first disk (the one being replaced) 4452 * is automatically detached. 4453 */ 4454 int 4455 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4456 { 4457 uint64_t txg, dtl_max_txg; 4458 vdev_t *rvd = spa->spa_root_vdev; 4459 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4460 vdev_ops_t *pvops; 4461 char *oldvdpath, *newvdpath; 4462 int newvd_isspare; 4463 int error; 4464 4465 ASSERT(spa_writeable(spa)); 4466 4467 txg = spa_vdev_enter(spa); 4468 4469 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4470 4471 if (oldvd == NULL) 4472 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4473 4474 if (!oldvd->vdev_ops->vdev_op_leaf) 4475 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4476 4477 pvd = oldvd->vdev_parent; 4478 4479 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4480 VDEV_ALLOC_ATTACH)) != 0) 4481 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4482 4483 if (newrootvd->vdev_children != 1) 4484 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4485 4486 newvd = newrootvd->vdev_child[0]; 4487 4488 if (!newvd->vdev_ops->vdev_op_leaf) 4489 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4490 4491 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4492 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4493 4494 /* 4495 * Spares can't replace logs 4496 */ 4497 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4498 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4499 4500 if (!replacing) { 4501 /* 4502 * For attach, the only allowable parent is a mirror or the root 4503 * vdev. 4504 */ 4505 if (pvd->vdev_ops != &vdev_mirror_ops && 4506 pvd->vdev_ops != &vdev_root_ops) 4507 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4508 4509 pvops = &vdev_mirror_ops; 4510 } else { 4511 /* 4512 * Active hot spares can only be replaced by inactive hot 4513 * spares. 4514 */ 4515 if (pvd->vdev_ops == &vdev_spare_ops && 4516 oldvd->vdev_isspare && 4517 !spa_has_spare(spa, newvd->vdev_guid)) 4518 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4519 4520 /* 4521 * If the source is a hot spare, and the parent isn't already a 4522 * spare, then we want to create a new hot spare. Otherwise, we 4523 * want to create a replacing vdev. The user is not allowed to 4524 * attach to a spared vdev child unless the 'isspare' state is 4525 * the same (spare replaces spare, non-spare replaces 4526 * non-spare). 4527 */ 4528 if (pvd->vdev_ops == &vdev_replacing_ops && 4529 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4530 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4531 } else if (pvd->vdev_ops == &vdev_spare_ops && 4532 newvd->vdev_isspare != oldvd->vdev_isspare) { 4533 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4534 } 4535 4536 if (newvd->vdev_isspare) 4537 pvops = &vdev_spare_ops; 4538 else 4539 pvops = &vdev_replacing_ops; 4540 } 4541 4542 /* 4543 * Make sure the new device is big enough. 4544 */ 4545 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4546 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4547 4548 /* 4549 * The new device cannot have a higher alignment requirement 4550 * than the top-level vdev. 4551 */ 4552 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4553 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4554 4555 /* 4556 * If this is an in-place replacement, update oldvd's path and devid 4557 * to make it distinguishable from newvd, and unopenable from now on. 4558 */ 4559 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4560 spa_strfree(oldvd->vdev_path); 4561 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4562 KM_SLEEP); 4563 (void) sprintf(oldvd->vdev_path, "%s/%s", 4564 newvd->vdev_path, "old"); 4565 if (oldvd->vdev_devid != NULL) { 4566 spa_strfree(oldvd->vdev_devid); 4567 oldvd->vdev_devid = NULL; 4568 } 4569 } 4570 4571 /* mark the device being resilvered */ 4572 newvd->vdev_resilver_txg = txg; 4573 4574 /* 4575 * If the parent is not a mirror, or if we're replacing, insert the new 4576 * mirror/replacing/spare vdev above oldvd. 4577 */ 4578 if (pvd->vdev_ops != pvops) 4579 pvd = vdev_add_parent(oldvd, pvops); 4580 4581 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4582 ASSERT(pvd->vdev_ops == pvops); 4583 ASSERT(oldvd->vdev_parent == pvd); 4584 4585 /* 4586 * Extract the new device from its root and add it to pvd. 4587 */ 4588 vdev_remove_child(newrootvd, newvd); 4589 newvd->vdev_id = pvd->vdev_children; 4590 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4591 vdev_add_child(pvd, newvd); 4592 4593 tvd = newvd->vdev_top; 4594 ASSERT(pvd->vdev_top == tvd); 4595 ASSERT(tvd->vdev_parent == rvd); 4596 4597 vdev_config_dirty(tvd); 4598 4599 /* 4600 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4601 * for any dmu_sync-ed blocks. It will propagate upward when 4602 * spa_vdev_exit() calls vdev_dtl_reassess(). 4603 */ 4604 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4605 4606 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4607 dtl_max_txg - TXG_INITIAL); 4608 4609 if (newvd->vdev_isspare) { 4610 spa_spare_activate(newvd); 4611 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4612 } 4613 4614 oldvdpath = spa_strdup(oldvd->vdev_path); 4615 newvdpath = spa_strdup(newvd->vdev_path); 4616 newvd_isspare = newvd->vdev_isspare; 4617 4618 /* 4619 * Mark newvd's DTL dirty in this txg. 4620 */ 4621 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4622 4623 /* 4624 * Schedule the resilver to restart in the future. We do this to 4625 * ensure that dmu_sync-ed blocks have been stitched into the 4626 * respective datasets. 4627 */ 4628 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4629 4630 /* 4631 * Commit the config 4632 */ 4633 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4634 4635 spa_history_log_internal(spa, "vdev attach", NULL, 4636 "%s vdev=%s %s vdev=%s", 4637 replacing && newvd_isspare ? "spare in" : 4638 replacing ? "replace" : "attach", newvdpath, 4639 replacing ? "for" : "to", oldvdpath); 4640 4641 spa_strfree(oldvdpath); 4642 spa_strfree(newvdpath); 4643 4644 if (spa->spa_bootfs) 4645 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4646 4647 return (0); 4648 } 4649 4650 /* 4651 * Detach a device from a mirror or replacing vdev. 4652 * 4653 * If 'replace_done' is specified, only detach if the parent 4654 * is a replacing vdev. 4655 */ 4656 int 4657 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4658 { 4659 uint64_t txg; 4660 int error; 4661 vdev_t *rvd = spa->spa_root_vdev; 4662 vdev_t *vd, *pvd, *cvd, *tvd; 4663 boolean_t unspare = B_FALSE; 4664 uint64_t unspare_guid = 0; 4665 char *vdpath; 4666 4667 ASSERT(spa_writeable(spa)); 4668 4669 txg = spa_vdev_enter(spa); 4670 4671 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4672 4673 if (vd == NULL) 4674 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4675 4676 if (!vd->vdev_ops->vdev_op_leaf) 4677 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4678 4679 pvd = vd->vdev_parent; 4680 4681 /* 4682 * If the parent/child relationship is not as expected, don't do it. 4683 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4684 * vdev that's replacing B with C. The user's intent in replacing 4685 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4686 * the replace by detaching C, the expected behavior is to end up 4687 * M(A,B). But suppose that right after deciding to detach C, 4688 * the replacement of B completes. We would have M(A,C), and then 4689 * ask to detach C, which would leave us with just A -- not what 4690 * the user wanted. To prevent this, we make sure that the 4691 * parent/child relationship hasn't changed -- in this example, 4692 * that C's parent is still the replacing vdev R. 4693 */ 4694 if (pvd->vdev_guid != pguid && pguid != 0) 4695 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4696 4697 /* 4698 * Only 'replacing' or 'spare' vdevs can be replaced. 4699 */ 4700 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4701 pvd->vdev_ops != &vdev_spare_ops) 4702 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4703 4704 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4705 spa_version(spa) >= SPA_VERSION_SPARES); 4706 4707 /* 4708 * Only mirror, replacing, and spare vdevs support detach. 4709 */ 4710 if (pvd->vdev_ops != &vdev_replacing_ops && 4711 pvd->vdev_ops != &vdev_mirror_ops && 4712 pvd->vdev_ops != &vdev_spare_ops) 4713 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4714 4715 /* 4716 * If this device has the only valid copy of some data, 4717 * we cannot safely detach it. 4718 */ 4719 if (vdev_dtl_required(vd)) 4720 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4721 4722 ASSERT(pvd->vdev_children >= 2); 4723 4724 /* 4725 * If we are detaching the second disk from a replacing vdev, then 4726 * check to see if we changed the original vdev's path to have "/old" 4727 * at the end in spa_vdev_attach(). If so, undo that change now. 4728 */ 4729 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4730 vd->vdev_path != NULL) { 4731 size_t len = strlen(vd->vdev_path); 4732 4733 for (int c = 0; c < pvd->vdev_children; c++) { 4734 cvd = pvd->vdev_child[c]; 4735 4736 if (cvd == vd || cvd->vdev_path == NULL) 4737 continue; 4738 4739 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4740 strcmp(cvd->vdev_path + len, "/old") == 0) { 4741 spa_strfree(cvd->vdev_path); 4742 cvd->vdev_path = spa_strdup(vd->vdev_path); 4743 break; 4744 } 4745 } 4746 } 4747 4748 /* 4749 * If we are detaching the original disk from a spare, then it implies 4750 * that the spare should become a real disk, and be removed from the 4751 * active spare list for the pool. 4752 */ 4753 if (pvd->vdev_ops == &vdev_spare_ops && 4754 vd->vdev_id == 0 && 4755 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4756 unspare = B_TRUE; 4757 4758 /* 4759 * Erase the disk labels so the disk can be used for other things. 4760 * This must be done after all other error cases are handled, 4761 * but before we disembowel vd (so we can still do I/O to it). 4762 * But if we can't do it, don't treat the error as fatal -- 4763 * it may be that the unwritability of the disk is the reason 4764 * it's being detached! 4765 */ 4766 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4767 4768 /* 4769 * Remove vd from its parent and compact the parent's children. 4770 */ 4771 vdev_remove_child(pvd, vd); 4772 vdev_compact_children(pvd); 4773 4774 /* 4775 * Remember one of the remaining children so we can get tvd below. 4776 */ 4777 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4778 4779 /* 4780 * If we need to remove the remaining child from the list of hot spares, 4781 * do it now, marking the vdev as no longer a spare in the process. 4782 * We must do this before vdev_remove_parent(), because that can 4783 * change the GUID if it creates a new toplevel GUID. For a similar 4784 * reason, we must remove the spare now, in the same txg as the detach; 4785 * otherwise someone could attach a new sibling, change the GUID, and 4786 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4787 */ 4788 if (unspare) { 4789 ASSERT(cvd->vdev_isspare); 4790 spa_spare_remove(cvd); 4791 unspare_guid = cvd->vdev_guid; 4792 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4793 cvd->vdev_unspare = B_TRUE; 4794 } 4795 4796 /* 4797 * If the parent mirror/replacing vdev only has one child, 4798 * the parent is no longer needed. Remove it from the tree. 4799 */ 4800 if (pvd->vdev_children == 1) { 4801 if (pvd->vdev_ops == &vdev_spare_ops) 4802 cvd->vdev_unspare = B_FALSE; 4803 vdev_remove_parent(cvd); 4804 } 4805 4806 4807 /* 4808 * We don't set tvd until now because the parent we just removed 4809 * may have been the previous top-level vdev. 4810 */ 4811 tvd = cvd->vdev_top; 4812 ASSERT(tvd->vdev_parent == rvd); 4813 4814 /* 4815 * Reevaluate the parent vdev state. 4816 */ 4817 vdev_propagate_state(cvd); 4818 4819 /* 4820 * If the 'autoexpand' property is set on the pool then automatically 4821 * try to expand the size of the pool. For example if the device we 4822 * just detached was smaller than the others, it may be possible to 4823 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4824 * first so that we can obtain the updated sizes of the leaf vdevs. 4825 */ 4826 if (spa->spa_autoexpand) { 4827 vdev_reopen(tvd); 4828 vdev_expand(tvd, txg); 4829 } 4830 4831 vdev_config_dirty(tvd); 4832 4833 /* 4834 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4835 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4836 * But first make sure we're not on any *other* txg's DTL list, to 4837 * prevent vd from being accessed after it's freed. 4838 */ 4839 vdpath = spa_strdup(vd->vdev_path); 4840 for (int t = 0; t < TXG_SIZE; t++) 4841 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4842 vd->vdev_detached = B_TRUE; 4843 vdev_dirty(tvd, VDD_DTL, vd, txg); 4844 4845 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4846 4847 /* hang on to the spa before we release the lock */ 4848 spa_open_ref(spa, FTAG); 4849 4850 error = spa_vdev_exit(spa, vd, txg, 0); 4851 4852 spa_history_log_internal(spa, "detach", NULL, 4853 "vdev=%s", vdpath); 4854 spa_strfree(vdpath); 4855 4856 /* 4857 * If this was the removal of the original device in a hot spare vdev, 4858 * then we want to go through and remove the device from the hot spare 4859 * list of every other pool. 4860 */ 4861 if (unspare) { 4862 spa_t *altspa = NULL; 4863 4864 mutex_enter(&spa_namespace_lock); 4865 while ((altspa = spa_next(altspa)) != NULL) { 4866 if (altspa->spa_state != POOL_STATE_ACTIVE || 4867 altspa == spa) 4868 continue; 4869 4870 spa_open_ref(altspa, FTAG); 4871 mutex_exit(&spa_namespace_lock); 4872 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4873 mutex_enter(&spa_namespace_lock); 4874 spa_close(altspa, FTAG); 4875 } 4876 mutex_exit(&spa_namespace_lock); 4877 4878 /* search the rest of the vdevs for spares to remove */ 4879 spa_vdev_resilver_done(spa); 4880 } 4881 4882 /* all done with the spa; OK to release */ 4883 mutex_enter(&spa_namespace_lock); 4884 spa_close(spa, FTAG); 4885 mutex_exit(&spa_namespace_lock); 4886 4887 return (error); 4888 } 4889 4890 /* 4891 * Split a set of devices from their mirrors, and create a new pool from them. 4892 */ 4893 int 4894 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4895 nvlist_t *props, boolean_t exp) 4896 { 4897 int error = 0; 4898 uint64_t txg, *glist; 4899 spa_t *newspa; 4900 uint_t c, children, lastlog; 4901 nvlist_t **child, *nvl, *tmp; 4902 dmu_tx_t *tx; 4903 char *altroot = NULL; 4904 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4905 boolean_t activate_slog; 4906 4907 ASSERT(spa_writeable(spa)); 4908 4909 txg = spa_vdev_enter(spa); 4910 4911 /* clear the log and flush everything up to now */ 4912 activate_slog = spa_passivate_log(spa); 4913 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4914 error = spa_offline_log(spa); 4915 txg = spa_vdev_config_enter(spa); 4916 4917 if (activate_slog) 4918 spa_activate_log(spa); 4919 4920 if (error != 0) 4921 return (spa_vdev_exit(spa, NULL, txg, error)); 4922 4923 /* check new spa name before going any further */ 4924 if (spa_lookup(newname) != NULL) 4925 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4926 4927 /* 4928 * scan through all the children to ensure they're all mirrors 4929 */ 4930 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4931 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4932 &children) != 0) 4933 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4934 4935 /* first, check to ensure we've got the right child count */ 4936 rvd = spa->spa_root_vdev; 4937 lastlog = 0; 4938 for (c = 0; c < rvd->vdev_children; c++) { 4939 vdev_t *vd = rvd->vdev_child[c]; 4940 4941 /* don't count the holes & logs as children */ 4942 if (vd->vdev_islog || vd->vdev_ishole) { 4943 if (lastlog == 0) 4944 lastlog = c; 4945 continue; 4946 } 4947 4948 lastlog = 0; 4949 } 4950 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4951 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4952 4953 /* next, ensure no spare or cache devices are part of the split */ 4954 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4955 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4956 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4957 4958 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4959 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4960 4961 /* then, loop over each vdev and validate it */ 4962 for (c = 0; c < children; c++) { 4963 uint64_t is_hole = 0; 4964 4965 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4966 &is_hole); 4967 4968 if (is_hole != 0) { 4969 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4970 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4971 continue; 4972 } else { 4973 error = SET_ERROR(EINVAL); 4974 break; 4975 } 4976 } 4977 4978 /* which disk is going to be split? */ 4979 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4980 &glist[c]) != 0) { 4981 error = SET_ERROR(EINVAL); 4982 break; 4983 } 4984 4985 /* look it up in the spa */ 4986 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4987 if (vml[c] == NULL) { 4988 error = SET_ERROR(ENODEV); 4989 break; 4990 } 4991 4992 /* make sure there's nothing stopping the split */ 4993 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4994 vml[c]->vdev_islog || 4995 vml[c]->vdev_ishole || 4996 vml[c]->vdev_isspare || 4997 vml[c]->vdev_isl2cache || 4998 !vdev_writeable(vml[c]) || 4999 vml[c]->vdev_children != 0 || 5000 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 5001 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 5002 error = SET_ERROR(EINVAL); 5003 break; 5004 } 5005 5006 if (vdev_dtl_required(vml[c])) { 5007 error = SET_ERROR(EBUSY); 5008 break; 5009 } 5010 5011 /* we need certain info from the top level */ 5012 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5013 vml[c]->vdev_top->vdev_ms_array) == 0); 5014 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5015 vml[c]->vdev_top->vdev_ms_shift) == 0); 5016 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5017 vml[c]->vdev_top->vdev_asize) == 0); 5018 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5019 vml[c]->vdev_top->vdev_ashift) == 0); 5020 } 5021 5022 if (error != 0) { 5023 kmem_free(vml, children * sizeof (vdev_t *)); 5024 kmem_free(glist, children * sizeof (uint64_t)); 5025 return (spa_vdev_exit(spa, NULL, txg, error)); 5026 } 5027 5028 /* stop writers from using the disks */ 5029 for (c = 0; c < children; c++) { 5030 if (vml[c] != NULL) 5031 vml[c]->vdev_offline = B_TRUE; 5032 } 5033 vdev_reopen(spa->spa_root_vdev); 5034 5035 /* 5036 * Temporarily record the splitting vdevs in the spa config. This 5037 * will disappear once the config is regenerated. 5038 */ 5039 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5040 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5041 glist, children) == 0); 5042 kmem_free(glist, children * sizeof (uint64_t)); 5043 5044 mutex_enter(&spa->spa_props_lock); 5045 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5046 nvl) == 0); 5047 mutex_exit(&spa->spa_props_lock); 5048 spa->spa_config_splitting = nvl; 5049 vdev_config_dirty(spa->spa_root_vdev); 5050 5051 /* configure and create the new pool */ 5052 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5053 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5054 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5055 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5056 spa_version(spa)) == 0); 5057 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5058 spa->spa_config_txg) == 0); 5059 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5060 spa_generate_guid(NULL)) == 0); 5061 (void) nvlist_lookup_string(props, 5062 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5063 5064 /* add the new pool to the namespace */ 5065 newspa = spa_add(newname, config, altroot); 5066 newspa->spa_config_txg = spa->spa_config_txg; 5067 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5068 5069 /* release the spa config lock, retaining the namespace lock */ 5070 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5071 5072 if (zio_injection_enabled) 5073 zio_handle_panic_injection(spa, FTAG, 1); 5074 5075 spa_activate(newspa, spa_mode_global); 5076 spa_async_suspend(newspa); 5077 5078 /* create the new pool from the disks of the original pool */ 5079 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5080 if (error) 5081 goto out; 5082 5083 /* if that worked, generate a real config for the new pool */ 5084 if (newspa->spa_root_vdev != NULL) { 5085 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5086 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5087 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5088 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5089 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5090 B_TRUE)); 5091 } 5092 5093 /* set the props */ 5094 if (props != NULL) { 5095 spa_configfile_set(newspa, props, B_FALSE); 5096 error = spa_prop_set(newspa, props); 5097 if (error) 5098 goto out; 5099 } 5100 5101 /* flush everything */ 5102 txg = spa_vdev_config_enter(newspa); 5103 vdev_config_dirty(newspa->spa_root_vdev); 5104 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5105 5106 if (zio_injection_enabled) 5107 zio_handle_panic_injection(spa, FTAG, 2); 5108 5109 spa_async_resume(newspa); 5110 5111 /* finally, update the original pool's config */ 5112 txg = spa_vdev_config_enter(spa); 5113 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5114 error = dmu_tx_assign(tx, TXG_WAIT); 5115 if (error != 0) 5116 dmu_tx_abort(tx); 5117 for (c = 0; c < children; c++) { 5118 if (vml[c] != NULL) { 5119 vdev_split(vml[c]); 5120 if (error == 0) 5121 spa_history_log_internal(spa, "detach", tx, 5122 "vdev=%s", vml[c]->vdev_path); 5123 vdev_free(vml[c]); 5124 } 5125 } 5126 vdev_config_dirty(spa->spa_root_vdev); 5127 spa->spa_config_splitting = NULL; 5128 nvlist_free(nvl); 5129 if (error == 0) 5130 dmu_tx_commit(tx); 5131 (void) spa_vdev_exit(spa, NULL, txg, 0); 5132 5133 if (zio_injection_enabled) 5134 zio_handle_panic_injection(spa, FTAG, 3); 5135 5136 /* split is complete; log a history record */ 5137 spa_history_log_internal(newspa, "split", NULL, 5138 "from pool %s", spa_name(spa)); 5139 5140 kmem_free(vml, children * sizeof (vdev_t *)); 5141 5142 /* if we're not going to mount the filesystems in userland, export */ 5143 if (exp) 5144 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5145 B_FALSE, B_FALSE); 5146 5147 return (error); 5148 5149 out: 5150 spa_unload(newspa); 5151 spa_deactivate(newspa); 5152 spa_remove(newspa); 5153 5154 txg = spa_vdev_config_enter(spa); 5155 5156 /* re-online all offlined disks */ 5157 for (c = 0; c < children; c++) { 5158 if (vml[c] != NULL) 5159 vml[c]->vdev_offline = B_FALSE; 5160 } 5161 vdev_reopen(spa->spa_root_vdev); 5162 5163 nvlist_free(spa->spa_config_splitting); 5164 spa->spa_config_splitting = NULL; 5165 (void) spa_vdev_exit(spa, NULL, txg, error); 5166 5167 kmem_free(vml, children * sizeof (vdev_t *)); 5168 return (error); 5169 } 5170 5171 static nvlist_t * 5172 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5173 { 5174 for (int i = 0; i < count; i++) { 5175 uint64_t guid; 5176 5177 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5178 &guid) == 0); 5179 5180 if (guid == target_guid) 5181 return (nvpp[i]); 5182 } 5183 5184 return (NULL); 5185 } 5186 5187 static void 5188 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5189 nvlist_t *dev_to_remove) 5190 { 5191 nvlist_t **newdev = NULL; 5192 5193 if (count > 1) 5194 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5195 5196 for (int i = 0, j = 0; i < count; i++) { 5197 if (dev[i] == dev_to_remove) 5198 continue; 5199 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5200 } 5201 5202 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5203 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5204 5205 for (int i = 0; i < count - 1; i++) 5206 nvlist_free(newdev[i]); 5207 5208 if (count > 1) 5209 kmem_free(newdev, (count - 1) * sizeof (void *)); 5210 } 5211 5212 /* 5213 * Evacuate the device. 5214 */ 5215 static int 5216 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5217 { 5218 uint64_t txg; 5219 int error = 0; 5220 5221 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5222 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5223 ASSERT(vd == vd->vdev_top); 5224 5225 /* 5226 * Evacuate the device. We don't hold the config lock as writer 5227 * since we need to do I/O but we do keep the 5228 * spa_namespace_lock held. Once this completes the device 5229 * should no longer have any blocks allocated on it. 5230 */ 5231 if (vd->vdev_islog) { 5232 if (vd->vdev_stat.vs_alloc != 0) 5233 error = spa_offline_log(spa); 5234 } else { 5235 error = SET_ERROR(ENOTSUP); 5236 } 5237 5238 if (error) 5239 return (error); 5240 5241 /* 5242 * The evacuation succeeded. Remove any remaining MOS metadata 5243 * associated with this vdev, and wait for these changes to sync. 5244 */ 5245 ASSERT0(vd->vdev_stat.vs_alloc); 5246 txg = spa_vdev_config_enter(spa); 5247 vd->vdev_removing = B_TRUE; 5248 vdev_dirty_leaves(vd, VDD_DTL, txg); 5249 vdev_config_dirty(vd); 5250 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5251 5252 return (0); 5253 } 5254 5255 /* 5256 * Complete the removal by cleaning up the namespace. 5257 */ 5258 static void 5259 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5260 { 5261 vdev_t *rvd = spa->spa_root_vdev; 5262 uint64_t id = vd->vdev_id; 5263 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5264 5265 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5266 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5267 ASSERT(vd == vd->vdev_top); 5268 5269 /* 5270 * Only remove any devices which are empty. 5271 */ 5272 if (vd->vdev_stat.vs_alloc != 0) 5273 return; 5274 5275 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5276 5277 if (list_link_active(&vd->vdev_state_dirty_node)) 5278 vdev_state_clean(vd); 5279 if (list_link_active(&vd->vdev_config_dirty_node)) 5280 vdev_config_clean(vd); 5281 5282 vdev_free(vd); 5283 5284 if (last_vdev) { 5285 vdev_compact_children(rvd); 5286 } else { 5287 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5288 vdev_add_child(rvd, vd); 5289 } 5290 vdev_config_dirty(rvd); 5291 5292 /* 5293 * Reassess the health of our root vdev. 5294 */ 5295 vdev_reopen(rvd); 5296 } 5297 5298 /* 5299 * Remove a device from the pool - 5300 * 5301 * Removing a device from the vdev namespace requires several steps 5302 * and can take a significant amount of time. As a result we use 5303 * the spa_vdev_config_[enter/exit] functions which allow us to 5304 * grab and release the spa_config_lock while still holding the namespace 5305 * lock. During each step the configuration is synced out. 5306 * 5307 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5308 * devices. 5309 */ 5310 int 5311 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5312 { 5313 vdev_t *vd; 5314 metaslab_group_t *mg; 5315 nvlist_t **spares, **l2cache, *nv; 5316 uint64_t txg = 0; 5317 uint_t nspares, nl2cache; 5318 int error = 0; 5319 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5320 5321 ASSERT(spa_writeable(spa)); 5322 5323 if (!locked) 5324 txg = spa_vdev_enter(spa); 5325 5326 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5327 5328 if (spa->spa_spares.sav_vdevs != NULL && 5329 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5330 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5331 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5332 /* 5333 * Only remove the hot spare if it's not currently in use 5334 * in this pool. 5335 */ 5336 if (vd == NULL || unspare) { 5337 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5338 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5339 spa_load_spares(spa); 5340 spa->spa_spares.sav_sync = B_TRUE; 5341 } else { 5342 error = SET_ERROR(EBUSY); 5343 } 5344 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5345 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5346 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5347 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5348 /* 5349 * Cache devices can always be removed. 5350 */ 5351 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5352 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5353 spa_load_l2cache(spa); 5354 spa->spa_l2cache.sav_sync = B_TRUE; 5355 } else if (vd != NULL && vd->vdev_islog) { 5356 ASSERT(!locked); 5357 ASSERT(vd == vd->vdev_top); 5358 5359 mg = vd->vdev_mg; 5360 5361 /* 5362 * Stop allocating from this vdev. 5363 */ 5364 metaslab_group_passivate(mg); 5365 5366 /* 5367 * Wait for the youngest allocations and frees to sync, 5368 * and then wait for the deferral of those frees to finish. 5369 */ 5370 spa_vdev_config_exit(spa, NULL, 5371 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5372 5373 /* 5374 * Attempt to evacuate the vdev. 5375 */ 5376 error = spa_vdev_remove_evacuate(spa, vd); 5377 5378 txg = spa_vdev_config_enter(spa); 5379 5380 /* 5381 * If we couldn't evacuate the vdev, unwind. 5382 */ 5383 if (error) { 5384 metaslab_group_activate(mg); 5385 return (spa_vdev_exit(spa, NULL, txg, error)); 5386 } 5387 5388 /* 5389 * Clean up the vdev namespace. 5390 */ 5391 spa_vdev_remove_from_namespace(spa, vd); 5392 5393 } else if (vd != NULL) { 5394 /* 5395 * Normal vdevs cannot be removed (yet). 5396 */ 5397 error = SET_ERROR(ENOTSUP); 5398 } else { 5399 /* 5400 * There is no vdev of any kind with the specified guid. 5401 */ 5402 error = SET_ERROR(ENOENT); 5403 } 5404 5405 if (!locked) 5406 return (spa_vdev_exit(spa, NULL, txg, error)); 5407 5408 return (error); 5409 } 5410 5411 /* 5412 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5413 * currently spared, so we can detach it. 5414 */ 5415 static vdev_t * 5416 spa_vdev_resilver_done_hunt(vdev_t *vd) 5417 { 5418 vdev_t *newvd, *oldvd; 5419 5420 for (int c = 0; c < vd->vdev_children; c++) { 5421 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5422 if (oldvd != NULL) 5423 return (oldvd); 5424 } 5425 5426 /* 5427 * Check for a completed replacement. We always consider the first 5428 * vdev in the list to be the oldest vdev, and the last one to be 5429 * the newest (see spa_vdev_attach() for how that works). In 5430 * the case where the newest vdev is faulted, we will not automatically 5431 * remove it after a resilver completes. This is OK as it will require 5432 * user intervention to determine which disk the admin wishes to keep. 5433 */ 5434 if (vd->vdev_ops == &vdev_replacing_ops) { 5435 ASSERT(vd->vdev_children > 1); 5436 5437 newvd = vd->vdev_child[vd->vdev_children - 1]; 5438 oldvd = vd->vdev_child[0]; 5439 5440 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5441 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5442 !vdev_dtl_required(oldvd)) 5443 return (oldvd); 5444 } 5445 5446 /* 5447 * Check for a completed resilver with the 'unspare' flag set. 5448 */ 5449 if (vd->vdev_ops == &vdev_spare_ops) { 5450 vdev_t *first = vd->vdev_child[0]; 5451 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5452 5453 if (last->vdev_unspare) { 5454 oldvd = first; 5455 newvd = last; 5456 } else if (first->vdev_unspare) { 5457 oldvd = last; 5458 newvd = first; 5459 } else { 5460 oldvd = NULL; 5461 } 5462 5463 if (oldvd != NULL && 5464 vdev_dtl_empty(newvd, DTL_MISSING) && 5465 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5466 !vdev_dtl_required(oldvd)) 5467 return (oldvd); 5468 5469 /* 5470 * If there are more than two spares attached to a disk, 5471 * and those spares are not required, then we want to 5472 * attempt to free them up now so that they can be used 5473 * by other pools. Once we're back down to a single 5474 * disk+spare, we stop removing them. 5475 */ 5476 if (vd->vdev_children > 2) { 5477 newvd = vd->vdev_child[1]; 5478 5479 if (newvd->vdev_isspare && last->vdev_isspare && 5480 vdev_dtl_empty(last, DTL_MISSING) && 5481 vdev_dtl_empty(last, DTL_OUTAGE) && 5482 !vdev_dtl_required(newvd)) 5483 return (newvd); 5484 } 5485 } 5486 5487 return (NULL); 5488 } 5489 5490 static void 5491 spa_vdev_resilver_done(spa_t *spa) 5492 { 5493 vdev_t *vd, *pvd, *ppvd; 5494 uint64_t guid, sguid, pguid, ppguid; 5495 5496 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5497 5498 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5499 pvd = vd->vdev_parent; 5500 ppvd = pvd->vdev_parent; 5501 guid = vd->vdev_guid; 5502 pguid = pvd->vdev_guid; 5503 ppguid = ppvd->vdev_guid; 5504 sguid = 0; 5505 /* 5506 * If we have just finished replacing a hot spared device, then 5507 * we need to detach the parent's first child (the original hot 5508 * spare) as well. 5509 */ 5510 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5511 ppvd->vdev_children == 2) { 5512 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5513 sguid = ppvd->vdev_child[1]->vdev_guid; 5514 } 5515 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5516 5517 spa_config_exit(spa, SCL_ALL, FTAG); 5518 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5519 return; 5520 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5521 return; 5522 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5523 } 5524 5525 spa_config_exit(spa, SCL_ALL, FTAG); 5526 } 5527 5528 /* 5529 * Update the stored path or FRU for this vdev. 5530 */ 5531 int 5532 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5533 boolean_t ispath) 5534 { 5535 vdev_t *vd; 5536 boolean_t sync = B_FALSE; 5537 5538 ASSERT(spa_writeable(spa)); 5539 5540 spa_vdev_state_enter(spa, SCL_ALL); 5541 5542 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5543 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5544 5545 if (!vd->vdev_ops->vdev_op_leaf) 5546 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5547 5548 if (ispath) { 5549 if (strcmp(value, vd->vdev_path) != 0) { 5550 spa_strfree(vd->vdev_path); 5551 vd->vdev_path = spa_strdup(value); 5552 sync = B_TRUE; 5553 } 5554 } else { 5555 if (vd->vdev_fru == NULL) { 5556 vd->vdev_fru = spa_strdup(value); 5557 sync = B_TRUE; 5558 } else if (strcmp(value, vd->vdev_fru) != 0) { 5559 spa_strfree(vd->vdev_fru); 5560 vd->vdev_fru = spa_strdup(value); 5561 sync = B_TRUE; 5562 } 5563 } 5564 5565 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5566 } 5567 5568 int 5569 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5570 { 5571 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5572 } 5573 5574 int 5575 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5576 { 5577 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5578 } 5579 5580 /* 5581 * ========================================================================== 5582 * SPA Scanning 5583 * ========================================================================== 5584 */ 5585 5586 int 5587 spa_scan_stop(spa_t *spa) 5588 { 5589 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5590 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5591 return (SET_ERROR(EBUSY)); 5592 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5593 } 5594 5595 int 5596 spa_scan(spa_t *spa, pool_scan_func_t func) 5597 { 5598 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5599 5600 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5601 return (SET_ERROR(ENOTSUP)); 5602 5603 /* 5604 * If a resilver was requested, but there is no DTL on a 5605 * writeable leaf device, we have nothing to do. 5606 */ 5607 if (func == POOL_SCAN_RESILVER && 5608 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5609 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5610 return (0); 5611 } 5612 5613 return (dsl_scan(spa->spa_dsl_pool, func)); 5614 } 5615 5616 /* 5617 * ========================================================================== 5618 * SPA async task processing 5619 * ========================================================================== 5620 */ 5621 5622 static void 5623 spa_async_remove(spa_t *spa, vdev_t *vd) 5624 { 5625 if (vd->vdev_remove_wanted) { 5626 vd->vdev_remove_wanted = B_FALSE; 5627 vd->vdev_delayed_close = B_FALSE; 5628 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5629 5630 /* 5631 * We want to clear the stats, but we don't want to do a full 5632 * vdev_clear() as that will cause us to throw away 5633 * degraded/faulted state as well as attempt to reopen the 5634 * device, all of which is a waste. 5635 */ 5636 vd->vdev_stat.vs_read_errors = 0; 5637 vd->vdev_stat.vs_write_errors = 0; 5638 vd->vdev_stat.vs_checksum_errors = 0; 5639 5640 vdev_state_dirty(vd->vdev_top); 5641 } 5642 5643 for (int c = 0; c < vd->vdev_children; c++) 5644 spa_async_remove(spa, vd->vdev_child[c]); 5645 } 5646 5647 static void 5648 spa_async_probe(spa_t *spa, vdev_t *vd) 5649 { 5650 if (vd->vdev_probe_wanted) { 5651 vd->vdev_probe_wanted = B_FALSE; 5652 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5653 } 5654 5655 for (int c = 0; c < vd->vdev_children; c++) 5656 spa_async_probe(spa, vd->vdev_child[c]); 5657 } 5658 5659 static void 5660 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5661 { 5662 sysevent_id_t eid; 5663 nvlist_t *attr; 5664 char *physpath; 5665 5666 if (!spa->spa_autoexpand) 5667 return; 5668 5669 for (int c = 0; c < vd->vdev_children; c++) { 5670 vdev_t *cvd = vd->vdev_child[c]; 5671 spa_async_autoexpand(spa, cvd); 5672 } 5673 5674 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5675 return; 5676 5677 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5678 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5679 5680 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5681 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5682 5683 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5684 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5685 5686 nvlist_free(attr); 5687 kmem_free(physpath, MAXPATHLEN); 5688 } 5689 5690 static void 5691 spa_async_thread(spa_t *spa) 5692 { 5693 int tasks; 5694 5695 ASSERT(spa->spa_sync_on); 5696 5697 mutex_enter(&spa->spa_async_lock); 5698 tasks = spa->spa_async_tasks; 5699 spa->spa_async_tasks = 0; 5700 mutex_exit(&spa->spa_async_lock); 5701 5702 /* 5703 * See if the config needs to be updated. 5704 */ 5705 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5706 uint64_t old_space, new_space; 5707 5708 mutex_enter(&spa_namespace_lock); 5709 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5710 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5711 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5712 mutex_exit(&spa_namespace_lock); 5713 5714 /* 5715 * If the pool grew as a result of the config update, 5716 * then log an internal history event. 5717 */ 5718 if (new_space != old_space) { 5719 spa_history_log_internal(spa, "vdev online", NULL, 5720 "pool '%s' size: %llu(+%llu)", 5721 spa_name(spa), new_space, new_space - old_space); 5722 } 5723 } 5724 5725 /* 5726 * See if any devices need to be marked REMOVED. 5727 */ 5728 if (tasks & SPA_ASYNC_REMOVE) { 5729 spa_vdev_state_enter(spa, SCL_NONE); 5730 spa_async_remove(spa, spa->spa_root_vdev); 5731 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5732 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5733 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5734 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5735 (void) spa_vdev_state_exit(spa, NULL, 0); 5736 } 5737 5738 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5739 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5740 spa_async_autoexpand(spa, spa->spa_root_vdev); 5741 spa_config_exit(spa, SCL_CONFIG, FTAG); 5742 } 5743 5744 /* 5745 * See if any devices need to be probed. 5746 */ 5747 if (tasks & SPA_ASYNC_PROBE) { 5748 spa_vdev_state_enter(spa, SCL_NONE); 5749 spa_async_probe(spa, spa->spa_root_vdev); 5750 (void) spa_vdev_state_exit(spa, NULL, 0); 5751 } 5752 5753 /* 5754 * If any devices are done replacing, detach them. 5755 */ 5756 if (tasks & SPA_ASYNC_RESILVER_DONE) 5757 spa_vdev_resilver_done(spa); 5758 5759 /* 5760 * Kick off a resilver. 5761 */ 5762 if (tasks & SPA_ASYNC_RESILVER) 5763 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5764 5765 /* 5766 * Kick off L2 cache rebuilding. 5767 */ 5768 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) 5769 l2arc_spa_rebuild_start(spa); 5770 5771 /* 5772 * Let the world know that we're done. 5773 */ 5774 mutex_enter(&spa->spa_async_lock); 5775 spa->spa_async_thread = NULL; 5776 cv_broadcast(&spa->spa_async_cv); 5777 mutex_exit(&spa->spa_async_lock); 5778 thread_exit(); 5779 } 5780 5781 void 5782 spa_async_suspend(spa_t *spa) 5783 { 5784 mutex_enter(&spa->spa_async_lock); 5785 spa->spa_async_suspended++; 5786 while (spa->spa_async_thread != NULL) 5787 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5788 mutex_exit(&spa->spa_async_lock); 5789 } 5790 5791 void 5792 spa_async_resume(spa_t *spa) 5793 { 5794 mutex_enter(&spa->spa_async_lock); 5795 ASSERT(spa->spa_async_suspended != 0); 5796 spa->spa_async_suspended--; 5797 mutex_exit(&spa->spa_async_lock); 5798 } 5799 5800 static boolean_t 5801 spa_async_tasks_pending(spa_t *spa) 5802 { 5803 uint_t non_config_tasks; 5804 uint_t config_task; 5805 boolean_t config_task_suspended; 5806 5807 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5808 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5809 if (spa->spa_ccw_fail_time == 0) { 5810 config_task_suspended = B_FALSE; 5811 } else { 5812 config_task_suspended = 5813 (gethrtime() - spa->spa_ccw_fail_time) < 5814 (zfs_ccw_retry_interval * NANOSEC); 5815 } 5816 5817 return (non_config_tasks || (config_task && !config_task_suspended)); 5818 } 5819 5820 static void 5821 spa_async_dispatch(spa_t *spa) 5822 { 5823 mutex_enter(&spa->spa_async_lock); 5824 if (spa_async_tasks_pending(spa) && 5825 !spa->spa_async_suspended && 5826 spa->spa_async_thread == NULL && 5827 rootdir != NULL) 5828 spa->spa_async_thread = thread_create(NULL, 0, 5829 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5830 mutex_exit(&spa->spa_async_lock); 5831 } 5832 5833 void 5834 spa_async_request(spa_t *spa, int task) 5835 { 5836 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5837 mutex_enter(&spa->spa_async_lock); 5838 spa->spa_async_tasks |= task; 5839 mutex_exit(&spa->spa_async_lock); 5840 } 5841 5842 /* 5843 * ========================================================================== 5844 * SPA syncing routines 5845 * ========================================================================== 5846 */ 5847 5848 static int 5849 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5850 { 5851 bpobj_t *bpo = arg; 5852 bpobj_enqueue(bpo, bp, tx); 5853 return (0); 5854 } 5855 5856 static int 5857 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5858 { 5859 zio_t *zio = arg; 5860 5861 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5862 zio->io_flags)); 5863 return (0); 5864 } 5865 5866 /* 5867 * Note: this simple function is not inlined to make it easier to dtrace the 5868 * amount of time spent syncing frees. 5869 */ 5870 static void 5871 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5872 { 5873 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5874 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5875 VERIFY(zio_wait(zio) == 0); 5876 } 5877 5878 /* 5879 * Note: this simple function is not inlined to make it easier to dtrace the 5880 * amount of time spent syncing deferred frees. 5881 */ 5882 static void 5883 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5884 { 5885 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5886 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5887 spa_free_sync_cb, zio, tx), ==, 0); 5888 VERIFY0(zio_wait(zio)); 5889 } 5890 5891 5892 static void 5893 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5894 { 5895 char *packed = NULL; 5896 size_t bufsize; 5897 size_t nvsize = 0; 5898 dmu_buf_t *db; 5899 5900 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5901 5902 /* 5903 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5904 * information. This avoids the dmu_buf_will_dirty() path and 5905 * saves us a pre-read to get data we don't actually care about. 5906 */ 5907 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5908 packed = kmem_alloc(bufsize, KM_SLEEP); 5909 5910 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5911 KM_SLEEP) == 0); 5912 bzero(packed + nvsize, bufsize - nvsize); 5913 5914 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5915 5916 kmem_free(packed, bufsize); 5917 5918 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5919 dmu_buf_will_dirty(db, tx); 5920 *(uint64_t *)db->db_data = nvsize; 5921 dmu_buf_rele(db, FTAG); 5922 } 5923 5924 static void 5925 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5926 const char *config, const char *entry) 5927 { 5928 nvlist_t *nvroot; 5929 nvlist_t **list; 5930 int i; 5931 5932 if (!sav->sav_sync) 5933 return; 5934 5935 /* 5936 * Update the MOS nvlist describing the list of available devices. 5937 * spa_validate_aux() will have already made sure this nvlist is 5938 * valid and the vdevs are labeled appropriately. 5939 */ 5940 if (sav->sav_object == 0) { 5941 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5942 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5943 sizeof (uint64_t), tx); 5944 VERIFY(zap_update(spa->spa_meta_objset, 5945 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5946 &sav->sav_object, tx) == 0); 5947 } 5948 5949 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5950 if (sav->sav_count == 0) { 5951 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5952 } else { 5953 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5954 for (i = 0; i < sav->sav_count; i++) 5955 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5956 B_FALSE, VDEV_CONFIG_L2CACHE); 5957 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5958 sav->sav_count) == 0); 5959 for (i = 0; i < sav->sav_count; i++) 5960 nvlist_free(list[i]); 5961 kmem_free(list, sav->sav_count * sizeof (void *)); 5962 } 5963 5964 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5965 nvlist_free(nvroot); 5966 5967 sav->sav_sync = B_FALSE; 5968 } 5969 5970 static void 5971 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5972 { 5973 nvlist_t *config; 5974 5975 if (list_is_empty(&spa->spa_config_dirty_list)) 5976 return; 5977 5978 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5979 5980 config = spa_config_generate(spa, spa->spa_root_vdev, 5981 dmu_tx_get_txg(tx), B_FALSE); 5982 5983 /* 5984 * If we're upgrading the spa version then make sure that 5985 * the config object gets updated with the correct version. 5986 */ 5987 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5988 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5989 spa->spa_uberblock.ub_version); 5990 5991 spa_config_exit(spa, SCL_STATE, FTAG); 5992 5993 if (spa->spa_config_syncing) 5994 nvlist_free(spa->spa_config_syncing); 5995 spa->spa_config_syncing = config; 5996 5997 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5998 } 5999 6000 static void 6001 spa_sync_version(void *arg, dmu_tx_t *tx) 6002 { 6003 uint64_t *versionp = arg; 6004 uint64_t version = *versionp; 6005 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6006 6007 /* 6008 * Setting the version is special cased when first creating the pool. 6009 */ 6010 ASSERT(tx->tx_txg != TXG_INITIAL); 6011 6012 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6013 ASSERT(version >= spa_version(spa)); 6014 6015 spa->spa_uberblock.ub_version = version; 6016 vdev_config_dirty(spa->spa_root_vdev); 6017 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6018 } 6019 6020 /* 6021 * Set zpool properties. 6022 */ 6023 static void 6024 spa_sync_props(void *arg, dmu_tx_t *tx) 6025 { 6026 nvlist_t *nvp = arg; 6027 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6028 objset_t *mos = spa->spa_meta_objset; 6029 nvpair_t *elem = NULL; 6030 6031 mutex_enter(&spa->spa_props_lock); 6032 6033 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6034 uint64_t intval; 6035 char *strval, *fname; 6036 zpool_prop_t prop; 6037 const char *propname; 6038 zprop_type_t proptype; 6039 spa_feature_t fid; 6040 6041 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6042 case ZPROP_INVAL: 6043 /* 6044 * We checked this earlier in spa_prop_validate(). 6045 */ 6046 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6047 6048 fname = strchr(nvpair_name(elem), '@') + 1; 6049 VERIFY0(zfeature_lookup_name(fname, &fid)); 6050 6051 spa_feature_enable(spa, fid, tx); 6052 spa_history_log_internal(spa, "set", tx, 6053 "%s=enabled", nvpair_name(elem)); 6054 break; 6055 6056 case ZPOOL_PROP_VERSION: 6057 intval = fnvpair_value_uint64(elem); 6058 /* 6059 * The version is synced seperatly before other 6060 * properties and should be correct by now. 6061 */ 6062 ASSERT3U(spa_version(spa), >=, intval); 6063 break; 6064 6065 case ZPOOL_PROP_ALTROOT: 6066 /* 6067 * 'altroot' is a non-persistent property. It should 6068 * have been set temporarily at creation or import time. 6069 */ 6070 ASSERT(spa->spa_root != NULL); 6071 break; 6072 6073 case ZPOOL_PROP_READONLY: 6074 case ZPOOL_PROP_CACHEFILE: 6075 /* 6076 * 'readonly' and 'cachefile' are also non-persisitent 6077 * properties. 6078 */ 6079 break; 6080 case ZPOOL_PROP_COMMENT: 6081 strval = fnvpair_value_string(elem); 6082 if (spa->spa_comment != NULL) 6083 spa_strfree(spa->spa_comment); 6084 spa->spa_comment = spa_strdup(strval); 6085 /* 6086 * We need to dirty the configuration on all the vdevs 6087 * so that their labels get updated. It's unnecessary 6088 * to do this for pool creation since the vdev's 6089 * configuratoin has already been dirtied. 6090 */ 6091 if (tx->tx_txg != TXG_INITIAL) 6092 vdev_config_dirty(spa->spa_root_vdev); 6093 spa_history_log_internal(spa, "set", tx, 6094 "%s=%s", nvpair_name(elem), strval); 6095 break; 6096 default: 6097 /* 6098 * Set pool property values in the poolprops mos object. 6099 */ 6100 if (spa->spa_pool_props_object == 0) { 6101 spa->spa_pool_props_object = 6102 zap_create_link(mos, DMU_OT_POOL_PROPS, 6103 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6104 tx); 6105 } 6106 6107 /* normalize the property name */ 6108 propname = zpool_prop_to_name(prop); 6109 proptype = zpool_prop_get_type(prop); 6110 6111 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6112 ASSERT(proptype == PROP_TYPE_STRING); 6113 strval = fnvpair_value_string(elem); 6114 VERIFY0(zap_update(mos, 6115 spa->spa_pool_props_object, propname, 6116 1, strlen(strval) + 1, strval, tx)); 6117 spa_history_log_internal(spa, "set", tx, 6118 "%s=%s", nvpair_name(elem), strval); 6119 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6120 intval = fnvpair_value_uint64(elem); 6121 6122 if (proptype == PROP_TYPE_INDEX) { 6123 const char *unused; 6124 VERIFY0(zpool_prop_index_to_string( 6125 prop, intval, &unused)); 6126 } 6127 VERIFY0(zap_update(mos, 6128 spa->spa_pool_props_object, propname, 6129 8, 1, &intval, tx)); 6130 spa_history_log_internal(spa, "set", tx, 6131 "%s=%lld", nvpair_name(elem), intval); 6132 } else { 6133 ASSERT(0); /* not allowed */ 6134 } 6135 6136 switch (prop) { 6137 case ZPOOL_PROP_DELEGATION: 6138 spa->spa_delegation = intval; 6139 break; 6140 case ZPOOL_PROP_BOOTFS: 6141 spa->spa_bootfs = intval; 6142 break; 6143 case ZPOOL_PROP_FAILUREMODE: 6144 spa->spa_failmode = intval; 6145 break; 6146 case ZPOOL_PROP_AUTOEXPAND: 6147 spa->spa_autoexpand = intval; 6148 if (tx->tx_txg != TXG_INITIAL) 6149 spa_async_request(spa, 6150 SPA_ASYNC_AUTOEXPAND); 6151 break; 6152 case ZPOOL_PROP_DEDUPDITTO: 6153 spa->spa_dedup_ditto = intval; 6154 break; 6155 default: 6156 break; 6157 } 6158 } 6159 6160 } 6161 6162 mutex_exit(&spa->spa_props_lock); 6163 } 6164 6165 /* 6166 * Perform one-time upgrade on-disk changes. spa_version() does not 6167 * reflect the new version this txg, so there must be no changes this 6168 * txg to anything that the upgrade code depends on after it executes. 6169 * Therefore this must be called after dsl_pool_sync() does the sync 6170 * tasks. 6171 */ 6172 static void 6173 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6174 { 6175 dsl_pool_t *dp = spa->spa_dsl_pool; 6176 6177 ASSERT(spa->spa_sync_pass == 1); 6178 6179 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6180 6181 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6182 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6183 dsl_pool_create_origin(dp, tx); 6184 6185 /* Keeping the origin open increases spa_minref */ 6186 spa->spa_minref += 3; 6187 } 6188 6189 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6190 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6191 dsl_pool_upgrade_clones(dp, tx); 6192 } 6193 6194 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6195 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6196 dsl_pool_upgrade_dir_clones(dp, tx); 6197 6198 /* Keeping the freedir open increases spa_minref */ 6199 spa->spa_minref += 3; 6200 } 6201 6202 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6203 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6204 spa_feature_create_zap_objects(spa, tx); 6205 } 6206 6207 /* 6208 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6209 * when possibility to use lz4 compression for metadata was added 6210 * Old pools that have this feature enabled must be upgraded to have 6211 * this feature active 6212 */ 6213 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6214 boolean_t lz4_en = spa_feature_is_enabled(spa, 6215 SPA_FEATURE_LZ4_COMPRESS); 6216 boolean_t lz4_ac = spa_feature_is_active(spa, 6217 SPA_FEATURE_LZ4_COMPRESS); 6218 6219 if (lz4_en && !lz4_ac) 6220 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6221 } 6222 rrw_exit(&dp->dp_config_rwlock, FTAG); 6223 } 6224 6225 /* 6226 * Sync the specified transaction group. New blocks may be dirtied as 6227 * part of the process, so we iterate until it converges. 6228 */ 6229 void 6230 spa_sync(spa_t *spa, uint64_t txg) 6231 { 6232 dsl_pool_t *dp = spa->spa_dsl_pool; 6233 objset_t *mos = spa->spa_meta_objset; 6234 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6235 vdev_t *rvd = spa->spa_root_vdev; 6236 vdev_t *vd; 6237 dmu_tx_t *tx; 6238 int error; 6239 6240 VERIFY(spa_writeable(spa)); 6241 6242 /* 6243 * Lock out configuration changes. 6244 */ 6245 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6246 6247 spa->spa_syncing_txg = txg; 6248 spa->spa_sync_pass = 0; 6249 6250 /* 6251 * If there are any pending vdev state changes, convert them 6252 * into config changes that go out with this transaction group. 6253 */ 6254 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6255 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6256 /* 6257 * We need the write lock here because, for aux vdevs, 6258 * calling vdev_config_dirty() modifies sav_config. 6259 * This is ugly and will become unnecessary when we 6260 * eliminate the aux vdev wart by integrating all vdevs 6261 * into the root vdev tree. 6262 */ 6263 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6264 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6265 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6266 vdev_state_clean(vd); 6267 vdev_config_dirty(vd); 6268 } 6269 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6270 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6271 } 6272 spa_config_exit(spa, SCL_STATE, FTAG); 6273 6274 tx = dmu_tx_create_assigned(dp, txg); 6275 6276 spa->spa_sync_starttime = gethrtime(); 6277 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6278 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6279 6280 /* 6281 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6282 * set spa_deflate if we have no raid-z vdevs. 6283 */ 6284 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6285 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6286 int i; 6287 6288 for (i = 0; i < rvd->vdev_children; i++) { 6289 vd = rvd->vdev_child[i]; 6290 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6291 break; 6292 } 6293 if (i == rvd->vdev_children) { 6294 spa->spa_deflate = TRUE; 6295 VERIFY(0 == zap_add(spa->spa_meta_objset, 6296 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6297 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6298 } 6299 } 6300 6301 /* 6302 * Iterate to convergence. 6303 */ 6304 do { 6305 int pass = ++spa->spa_sync_pass; 6306 6307 spa_sync_config_object(spa, tx); 6308 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6309 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6310 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6311 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6312 spa_errlog_sync(spa, txg); 6313 dsl_pool_sync(dp, txg); 6314 6315 if (pass < zfs_sync_pass_deferred_free) { 6316 spa_sync_frees(spa, free_bpl, tx); 6317 } else { 6318 /* 6319 * We can not defer frees in pass 1, because 6320 * we sync the deferred frees later in pass 1. 6321 */ 6322 ASSERT3U(pass, >, 1); 6323 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6324 &spa->spa_deferred_bpobj, tx); 6325 } 6326 6327 ddt_sync(spa, txg); 6328 dsl_scan_sync(dp, tx); 6329 6330 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6331 vdev_sync(vd, txg); 6332 6333 if (pass == 1) { 6334 spa_sync_upgrades(spa, tx); 6335 ASSERT3U(txg, >=, 6336 spa->spa_uberblock.ub_rootbp.blk_birth); 6337 /* 6338 * Note: We need to check if the MOS is dirty 6339 * because we could have marked the MOS dirty 6340 * without updating the uberblock (e.g. if we 6341 * have sync tasks but no dirty user data). We 6342 * need to check the uberblock's rootbp because 6343 * it is updated if we have synced out dirty 6344 * data (though in this case the MOS will most 6345 * likely also be dirty due to second order 6346 * effects, we don't want to rely on that here). 6347 */ 6348 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6349 !dmu_objset_is_dirty(mos, txg)) { 6350 /* 6351 * Nothing changed on the first pass, 6352 * therefore this TXG is a no-op. Avoid 6353 * syncing deferred frees, so that we 6354 * can keep this TXG as a no-op. 6355 */ 6356 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6357 txg)); 6358 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6359 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6360 break; 6361 } 6362 spa_sync_deferred_frees(spa, tx); 6363 } 6364 6365 } while (dmu_objset_is_dirty(mos, txg)); 6366 6367 /* 6368 * Rewrite the vdev configuration (which includes the uberblock) 6369 * to commit the transaction group. 6370 * 6371 * If there are no dirty vdevs, we sync the uberblock to a few 6372 * random top-level vdevs that are known to be visible in the 6373 * config cache (see spa_vdev_add() for a complete description). 6374 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6375 */ 6376 for (;;) { 6377 /* 6378 * We hold SCL_STATE to prevent vdev open/close/etc. 6379 * while we're attempting to write the vdev labels. 6380 */ 6381 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6382 6383 if (list_is_empty(&spa->spa_config_dirty_list)) { 6384 vdev_t *svd[SPA_DVAS_PER_BP]; 6385 int svdcount = 0; 6386 int children = rvd->vdev_children; 6387 int c0 = spa_get_random(children); 6388 6389 for (int c = 0; c < children; c++) { 6390 vd = rvd->vdev_child[(c0 + c) % children]; 6391 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6392 continue; 6393 svd[svdcount++] = vd; 6394 if (svdcount == SPA_DVAS_PER_BP) 6395 break; 6396 } 6397 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6398 if (error != 0) 6399 error = vdev_config_sync(svd, svdcount, txg, 6400 B_TRUE); 6401 } else { 6402 error = vdev_config_sync(rvd->vdev_child, 6403 rvd->vdev_children, txg, B_FALSE); 6404 if (error != 0) 6405 error = vdev_config_sync(rvd->vdev_child, 6406 rvd->vdev_children, txg, B_TRUE); 6407 } 6408 6409 if (error == 0) 6410 spa->spa_last_synced_guid = rvd->vdev_guid; 6411 6412 spa_config_exit(spa, SCL_STATE, FTAG); 6413 6414 if (error == 0) 6415 break; 6416 zio_suspend(spa, NULL); 6417 zio_resume_wait(spa); 6418 } 6419 dmu_tx_commit(tx); 6420 6421 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6422 6423 /* 6424 * Clear the dirty config list. 6425 */ 6426 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6427 vdev_config_clean(vd); 6428 6429 /* 6430 * Now that the new config has synced transactionally, 6431 * let it become visible to the config cache. 6432 */ 6433 if (spa->spa_config_syncing != NULL) { 6434 spa_config_set(spa, spa->spa_config_syncing); 6435 spa->spa_config_txg = txg; 6436 spa->spa_config_syncing = NULL; 6437 } 6438 6439 spa->spa_ubsync = spa->spa_uberblock; 6440 6441 dsl_pool_sync_done(dp, txg); 6442 6443 /* 6444 * Update usable space statistics. 6445 */ 6446 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6447 vdev_sync_done(vd, txg); 6448 6449 spa_update_dspace(spa); 6450 6451 /* 6452 * It had better be the case that we didn't dirty anything 6453 * since vdev_config_sync(). 6454 */ 6455 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6456 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6457 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6458 6459 spa->spa_sync_pass = 0; 6460 6461 spa_config_exit(spa, SCL_CONFIG, FTAG); 6462 6463 spa_handle_ignored_writes(spa); 6464 6465 /* 6466 * If any async tasks have been requested, kick them off. 6467 */ 6468 spa_async_dispatch(spa); 6469 } 6470 6471 /* 6472 * Sync all pools. We don't want to hold the namespace lock across these 6473 * operations, so we take a reference on the spa_t and drop the lock during the 6474 * sync. 6475 */ 6476 void 6477 spa_sync_allpools(void) 6478 { 6479 spa_t *spa = NULL; 6480 mutex_enter(&spa_namespace_lock); 6481 while ((spa = spa_next(spa)) != NULL) { 6482 if (spa_state(spa) != POOL_STATE_ACTIVE || 6483 !spa_writeable(spa) || spa_suspended(spa)) 6484 continue; 6485 spa_open_ref(spa, FTAG); 6486 mutex_exit(&spa_namespace_lock); 6487 txg_wait_synced(spa_get_dsl(spa), 0); 6488 mutex_enter(&spa_namespace_lock); 6489 spa_close(spa, FTAG); 6490 } 6491 mutex_exit(&spa_namespace_lock); 6492 } 6493 6494 /* 6495 * ========================================================================== 6496 * Miscellaneous routines 6497 * ========================================================================== 6498 */ 6499 6500 /* 6501 * Remove all pools in the system. 6502 */ 6503 void 6504 spa_evict_all(void) 6505 { 6506 spa_t *spa; 6507 6508 /* 6509 * Remove all cached state. All pools should be closed now, 6510 * so every spa in the AVL tree should be unreferenced. 6511 */ 6512 mutex_enter(&spa_namespace_lock); 6513 while ((spa = spa_next(NULL)) != NULL) { 6514 /* 6515 * Stop async tasks. The async thread may need to detach 6516 * a device that's been replaced, which requires grabbing 6517 * spa_namespace_lock, so we must drop it here. 6518 */ 6519 spa_open_ref(spa, FTAG); 6520 mutex_exit(&spa_namespace_lock); 6521 spa_async_suspend(spa); 6522 mutex_enter(&spa_namespace_lock); 6523 spa_close(spa, FTAG); 6524 6525 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6526 spa_unload(spa); 6527 spa_deactivate(spa); 6528 } 6529 spa_remove(spa); 6530 } 6531 mutex_exit(&spa_namespace_lock); 6532 } 6533 6534 vdev_t * 6535 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6536 { 6537 vdev_t *vd; 6538 int i; 6539 6540 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6541 return (vd); 6542 6543 if (aux) { 6544 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6545 vd = spa->spa_l2cache.sav_vdevs[i]; 6546 if (vd->vdev_guid == guid) 6547 return (vd); 6548 } 6549 6550 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6551 vd = spa->spa_spares.sav_vdevs[i]; 6552 if (vd->vdev_guid == guid) 6553 return (vd); 6554 } 6555 } 6556 6557 return (NULL); 6558 } 6559 6560 void 6561 spa_upgrade(spa_t *spa, uint64_t version) 6562 { 6563 ASSERT(spa_writeable(spa)); 6564 6565 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6566 6567 /* 6568 * This should only be called for a non-faulted pool, and since a 6569 * future version would result in an unopenable pool, this shouldn't be 6570 * possible. 6571 */ 6572 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6573 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6574 6575 spa->spa_uberblock.ub_version = version; 6576 vdev_config_dirty(spa->spa_root_vdev); 6577 6578 spa_config_exit(spa, SCL_ALL, FTAG); 6579 6580 txg_wait_synced(spa_get_dsl(spa), 0); 6581 } 6582 6583 boolean_t 6584 spa_has_spare(spa_t *spa, uint64_t guid) 6585 { 6586 int i; 6587 uint64_t spareguid; 6588 spa_aux_vdev_t *sav = &spa->spa_spares; 6589 6590 for (i = 0; i < sav->sav_count; i++) 6591 if (sav->sav_vdevs[i]->vdev_guid == guid) 6592 return (B_TRUE); 6593 6594 for (i = 0; i < sav->sav_npending; i++) { 6595 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6596 &spareguid) == 0 && spareguid == guid) 6597 return (B_TRUE); 6598 } 6599 6600 return (B_FALSE); 6601 } 6602 6603 /* 6604 * Check if a pool has an active shared spare device. 6605 * Note: reference count of an active spare is 2, as a spare and as a replace 6606 */ 6607 static boolean_t 6608 spa_has_active_shared_spare(spa_t *spa) 6609 { 6610 int i, refcnt; 6611 uint64_t pool; 6612 spa_aux_vdev_t *sav = &spa->spa_spares; 6613 6614 for (i = 0; i < sav->sav_count; i++) { 6615 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6616 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6617 refcnt > 2) 6618 return (B_TRUE); 6619 } 6620 6621 return (B_FALSE); 6622 } 6623 6624 /* 6625 * Post a sysevent corresponding to the given event. The 'name' must be one of 6626 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6627 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6628 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6629 * or zdb as real changes. 6630 */ 6631 void 6632 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6633 { 6634 #ifdef _KERNEL 6635 sysevent_t *ev; 6636 sysevent_attr_list_t *attr = NULL; 6637 sysevent_value_t value; 6638 sysevent_id_t eid; 6639 6640 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6641 SE_SLEEP); 6642 6643 value.value_type = SE_DATA_TYPE_STRING; 6644 value.value.sv_string = spa_name(spa); 6645 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6646 goto done; 6647 6648 value.value_type = SE_DATA_TYPE_UINT64; 6649 value.value.sv_uint64 = spa_guid(spa); 6650 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6651 goto done; 6652 6653 if (vd) { 6654 value.value_type = SE_DATA_TYPE_UINT64; 6655 value.value.sv_uint64 = vd->vdev_guid; 6656 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6657 SE_SLEEP) != 0) 6658 goto done; 6659 6660 if (vd->vdev_path) { 6661 value.value_type = SE_DATA_TYPE_STRING; 6662 value.value.sv_string = vd->vdev_path; 6663 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6664 &value, SE_SLEEP) != 0) 6665 goto done; 6666 } 6667 } 6668 6669 if (sysevent_attach_attributes(ev, attr) != 0) 6670 goto done; 6671 attr = NULL; 6672 6673 (void) log_sysevent(ev, SE_SLEEP, &eid); 6674 6675 done: 6676 if (attr) 6677 sysevent_free_attr(attr); 6678 sysevent_free(ev); 6679 #endif 6680 } 6681