1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 91 ZTI_MODE_NULL, /* don't create a taskq */ 92 ZTI_NMODES 93 } zti_modes_t; 94 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 98 99 #define ZTI_N(n) ZTI_P(n, 1) 100 #define ZTI_ONE ZTI_N(1) 101 102 typedef struct zio_taskq_info { 103 zti_modes_t zti_mode; 104 uint_t zti_value; 105 uint_t zti_count; 106 } zio_taskq_info_t; 107 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 109 "issue", "issue_high", "intr", "intr_high" 110 }; 111 112 /* 113 * This table defines the taskq settings for each ZFS I/O type. When 114 * initializing a pool, we use this table to create an appropriately sized 115 * taskq. Some operations are low volume and therefore have a small, static 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 117 * macros. Other operations process a large amount of data; the ZTI_BATCH 118 * macro causes us to create a taskq oriented for throughput. Some operations 119 * are so high frequency and short-lived that the taskq itself can become a a 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 121 * additional degree of parallelism specified by the number of threads per- 122 * taskq and the number of taskqs; when dispatching an event in this case, the 123 * particular taskq is chosen at random. 124 * 125 * The different taskq priorities are to handle the different contexts (issue 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 127 * need to be handled with minimum delay. 128 */ 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 132 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */ 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 137 }; 138 139 static void spa_sync_version(void *arg, dmu_tx_t *tx); 140 static void spa_sync_props(void *arg, dmu_tx_t *tx); 141 static boolean_t spa_has_active_shared_spare(spa_t *spa); 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 144 char **ereport); 145 static void spa_vdev_resilver_done(spa_t *spa); 146 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 148 id_t zio_taskq_psrset_bind = PS_NONE; 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 151 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 153 extern int zfs_sync_pass_deferred_free; 154 155 /* 156 * This (illegal) pool name is used when temporarily importing a spa_t in order 157 * to get the vdev stats associated with the imported devices. 158 */ 159 #define TRYIMPORT_NAME "$import" 160 161 /* 162 * ========================================================================== 163 * SPA properties routines 164 * ========================================================================== 165 */ 166 167 /* 168 * Add a (source=src, propname=propval) list to an nvlist. 169 */ 170 static void 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 172 uint64_t intval, zprop_source_t src) 173 { 174 const char *propname = zpool_prop_to_name(prop); 175 nvlist_t *propval; 176 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 179 180 if (strval != NULL) 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 182 else 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 184 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 186 nvlist_free(propval); 187 } 188 189 /* 190 * Get property values from the spa configuration. 191 */ 192 static void 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 194 { 195 vdev_t *rvd = spa->spa_root_vdev; 196 dsl_pool_t *pool = spa->spa_dsl_pool; 197 uint64_t size; 198 uint64_t alloc; 199 uint64_t space; 200 uint64_t cap, version; 201 zprop_source_t src = ZPROP_SRC_NONE; 202 spa_config_dirent_t *dp; 203 204 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 205 206 if (rvd != NULL) { 207 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 208 size = metaslab_class_get_space(spa_normal_class(spa)); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 213 size - alloc, src); 214 215 space = 0; 216 for (int c = 0; c < rvd->vdev_children; c++) { 217 vdev_t *tvd = rvd->vdev_child[c]; 218 space += tvd->vdev_max_asize - tvd->vdev_asize; 219 } 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 221 src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 224 (spa_mode(spa) == FREAD), src); 225 226 cap = (size == 0) ? 0 : (alloc * 100 / size); 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 228 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 230 ddt_get_pool_dedup_ratio(spa), src); 231 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 233 rvd->vdev_state, src); 234 235 version = spa_version(spa); 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 237 src = ZPROP_SRC_DEFAULT; 238 else 239 src = ZPROP_SRC_LOCAL; 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 241 } 242 243 if (pool != NULL) { 244 dsl_dir_t *freedir = pool->dp_free_dir; 245 246 /* 247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 248 * when opening pools before this version freedir will be NULL. 249 */ 250 if (freedir != NULL) { 251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 252 freedir->dd_phys->dd_used_bytes, src); 253 } else { 254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 255 NULL, 0, src); 256 } 257 } 258 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 260 261 if (spa->spa_comment != NULL) { 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 263 0, ZPROP_SRC_LOCAL); 264 } 265 266 if (spa->spa_root != NULL) 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 268 0, ZPROP_SRC_LOCAL); 269 270 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 271 if (dp->scd_path == NULL) { 272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 273 "none", 0, ZPROP_SRC_LOCAL); 274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 276 dp->scd_path, 0, ZPROP_SRC_LOCAL); 277 } 278 } 279 } 280 281 /* 282 * Get zpool property values. 283 */ 284 int 285 spa_prop_get(spa_t *spa, nvlist_t **nvp) 286 { 287 objset_t *mos = spa->spa_meta_objset; 288 zap_cursor_t zc; 289 zap_attribute_t za; 290 int err; 291 292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 293 294 mutex_enter(&spa->spa_props_lock); 295 296 /* 297 * Get properties from the spa config. 298 */ 299 spa_prop_get_config(spa, nvp); 300 301 /* If no pool property object, no more prop to get. */ 302 if (mos == NULL || spa->spa_pool_props_object == 0) { 303 mutex_exit(&spa->spa_props_lock); 304 return (0); 305 } 306 307 /* 308 * Get properties from the MOS pool property object. 309 */ 310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 311 (err = zap_cursor_retrieve(&zc, &za)) == 0; 312 zap_cursor_advance(&zc)) { 313 uint64_t intval = 0; 314 char *strval = NULL; 315 zprop_source_t src = ZPROP_SRC_DEFAULT; 316 zpool_prop_t prop; 317 318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 319 continue; 320 321 switch (za.za_integer_length) { 322 case 8: 323 /* integer property */ 324 if (za.za_first_integer != 325 zpool_prop_default_numeric(prop)) 326 src = ZPROP_SRC_LOCAL; 327 328 if (prop == ZPOOL_PROP_BOOTFS) { 329 dsl_pool_t *dp; 330 dsl_dataset_t *ds = NULL; 331 332 dp = spa_get_dsl(spa); 333 dsl_pool_config_enter(dp, FTAG); 334 if (err = dsl_dataset_hold_obj(dp, 335 za.za_first_integer, FTAG, &ds)) { 336 dsl_pool_config_exit(dp, FTAG); 337 break; 338 } 339 340 strval = kmem_alloc( 341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 342 KM_SLEEP); 343 dsl_dataset_name(ds, strval); 344 dsl_dataset_rele(ds, FTAG); 345 dsl_pool_config_exit(dp, FTAG); 346 } else { 347 strval = NULL; 348 intval = za.za_first_integer; 349 } 350 351 spa_prop_add_list(*nvp, prop, strval, intval, src); 352 353 if (strval != NULL) 354 kmem_free(strval, 355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 356 357 break; 358 359 case 1: 360 /* string property */ 361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 362 err = zap_lookup(mos, spa->spa_pool_props_object, 363 za.za_name, 1, za.za_num_integers, strval); 364 if (err) { 365 kmem_free(strval, za.za_num_integers); 366 break; 367 } 368 spa_prop_add_list(*nvp, prop, strval, 0, src); 369 kmem_free(strval, za.za_num_integers); 370 break; 371 372 default: 373 break; 374 } 375 } 376 zap_cursor_fini(&zc); 377 mutex_exit(&spa->spa_props_lock); 378 out: 379 if (err && err != ENOENT) { 380 nvlist_free(*nvp); 381 *nvp = NULL; 382 return (err); 383 } 384 385 return (0); 386 } 387 388 /* 389 * Validate the given pool properties nvlist and modify the list 390 * for the property values to be set. 391 */ 392 static int 393 spa_prop_validate(spa_t *spa, nvlist_t *props) 394 { 395 nvpair_t *elem; 396 int error = 0, reset_bootfs = 0; 397 uint64_t objnum = 0; 398 boolean_t has_feature = B_FALSE; 399 400 elem = NULL; 401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 402 uint64_t intval; 403 char *strval, *slash, *check, *fname; 404 const char *propname = nvpair_name(elem); 405 zpool_prop_t prop = zpool_name_to_prop(propname); 406 407 switch (prop) { 408 case ZPROP_INVAL: 409 if (!zpool_prop_feature(propname)) { 410 error = SET_ERROR(EINVAL); 411 break; 412 } 413 414 /* 415 * Sanitize the input. 416 */ 417 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 418 error = SET_ERROR(EINVAL); 419 break; 420 } 421 422 if (nvpair_value_uint64(elem, &intval) != 0) { 423 error = SET_ERROR(EINVAL); 424 break; 425 } 426 427 if (intval != 0) { 428 error = SET_ERROR(EINVAL); 429 break; 430 } 431 432 fname = strchr(propname, '@') + 1; 433 if (zfeature_lookup_name(fname, NULL) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 has_feature = B_TRUE; 439 break; 440 441 case ZPOOL_PROP_VERSION: 442 error = nvpair_value_uint64(elem, &intval); 443 if (!error && 444 (intval < spa_version(spa) || 445 intval > SPA_VERSION_BEFORE_FEATURES || 446 has_feature)) 447 error = SET_ERROR(EINVAL); 448 break; 449 450 case ZPOOL_PROP_DELEGATION: 451 case ZPOOL_PROP_AUTOREPLACE: 452 case ZPOOL_PROP_LISTSNAPS: 453 case ZPOOL_PROP_AUTOEXPAND: 454 error = nvpair_value_uint64(elem, &intval); 455 if (!error && intval > 1) 456 error = SET_ERROR(EINVAL); 457 break; 458 459 case ZPOOL_PROP_BOOTFS: 460 /* 461 * If the pool version is less than SPA_VERSION_BOOTFS, 462 * or the pool is still being created (version == 0), 463 * the bootfs property cannot be set. 464 */ 465 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 466 error = SET_ERROR(ENOTSUP); 467 break; 468 } 469 470 /* 471 * Make sure the vdev config is bootable 472 */ 473 if (!vdev_is_bootable(spa->spa_root_vdev)) { 474 error = SET_ERROR(ENOTSUP); 475 break; 476 } 477 478 reset_bootfs = 1; 479 480 error = nvpair_value_string(elem, &strval); 481 482 if (!error) { 483 objset_t *os; 484 uint64_t compress; 485 486 if (strval == NULL || strval[0] == '\0') { 487 objnum = zpool_prop_default_numeric( 488 ZPOOL_PROP_BOOTFS); 489 break; 490 } 491 492 if (error = dmu_objset_hold(strval, FTAG, &os)) 493 break; 494 495 /* Must be ZPL and not gzip compressed. */ 496 497 if (dmu_objset_type(os) != DMU_OST_ZFS) { 498 error = SET_ERROR(ENOTSUP); 499 } else if ((error = 500 dsl_prop_get_int_ds(dmu_objset_ds(os), 501 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 502 &compress)) == 0 && 503 !BOOTFS_COMPRESS_VALID(compress)) { 504 error = SET_ERROR(ENOTSUP); 505 } else { 506 objnum = dmu_objset_id(os); 507 } 508 dmu_objset_rele(os, FTAG); 509 } 510 break; 511 512 case ZPOOL_PROP_FAILUREMODE: 513 error = nvpair_value_uint64(elem, &intval); 514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 515 intval > ZIO_FAILURE_MODE_PANIC)) 516 error = SET_ERROR(EINVAL); 517 518 /* 519 * This is a special case which only occurs when 520 * the pool has completely failed. This allows 521 * the user to change the in-core failmode property 522 * without syncing it out to disk (I/Os might 523 * currently be blocked). We do this by returning 524 * EIO to the caller (spa_prop_set) to trick it 525 * into thinking we encountered a property validation 526 * error. 527 */ 528 if (!error && spa_suspended(spa)) { 529 spa->spa_failmode = intval; 530 error = SET_ERROR(EIO); 531 } 532 break; 533 534 case ZPOOL_PROP_CACHEFILE: 535 if ((error = nvpair_value_string(elem, &strval)) != 0) 536 break; 537 538 if (strval[0] == '\0') 539 break; 540 541 if (strcmp(strval, "none") == 0) 542 break; 543 544 if (strval[0] != '/') { 545 error = SET_ERROR(EINVAL); 546 break; 547 } 548 549 slash = strrchr(strval, '/'); 550 ASSERT(slash != NULL); 551 552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 553 strcmp(slash, "/..") == 0) 554 error = SET_ERROR(EINVAL); 555 break; 556 557 case ZPOOL_PROP_COMMENT: 558 if ((error = nvpair_value_string(elem, &strval)) != 0) 559 break; 560 for (check = strval; *check != '\0'; check++) { 561 /* 562 * The kernel doesn't have an easy isprint() 563 * check. For this kernel check, we merely 564 * check ASCII apart from DEL. Fix this if 565 * there is an easy-to-use kernel isprint(). 566 */ 567 if (*check >= 0x7f) { 568 error = SET_ERROR(EINVAL); 569 break; 570 } 571 check++; 572 } 573 if (strlen(strval) > ZPROP_MAX_COMMENT) 574 error = E2BIG; 575 break; 576 577 case ZPOOL_PROP_DEDUPDITTO: 578 if (spa_version(spa) < SPA_VERSION_DEDUP) 579 error = SET_ERROR(ENOTSUP); 580 else 581 error = nvpair_value_uint64(elem, &intval); 582 if (error == 0 && 583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 584 error = SET_ERROR(EINVAL); 585 break; 586 } 587 588 if (error) 589 break; 590 } 591 592 if (!error && reset_bootfs) { 593 error = nvlist_remove(props, 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 595 596 if (!error) { 597 error = nvlist_add_uint64(props, 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 599 } 600 } 601 602 return (error); 603 } 604 605 void 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 607 { 608 char *cachefile; 609 spa_config_dirent_t *dp; 610 611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 612 &cachefile) != 0) 613 return; 614 615 dp = kmem_alloc(sizeof (spa_config_dirent_t), 616 KM_SLEEP); 617 618 if (cachefile[0] == '\0') 619 dp->scd_path = spa_strdup(spa_config_path); 620 else if (strcmp(cachefile, "none") == 0) 621 dp->scd_path = NULL; 622 else 623 dp->scd_path = spa_strdup(cachefile); 624 625 list_insert_head(&spa->spa_config_list, dp); 626 if (need_sync) 627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 628 } 629 630 int 631 spa_prop_set(spa_t *spa, nvlist_t *nvp) 632 { 633 int error; 634 nvpair_t *elem = NULL; 635 boolean_t need_sync = B_FALSE; 636 637 if ((error = spa_prop_validate(spa, nvp)) != 0) 638 return (error); 639 640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 642 643 if (prop == ZPOOL_PROP_CACHEFILE || 644 prop == ZPOOL_PROP_ALTROOT || 645 prop == ZPOOL_PROP_READONLY) 646 continue; 647 648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 649 uint64_t ver; 650 651 if (prop == ZPOOL_PROP_VERSION) { 652 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 653 } else { 654 ASSERT(zpool_prop_feature(nvpair_name(elem))); 655 ver = SPA_VERSION_FEATURES; 656 need_sync = B_TRUE; 657 } 658 659 /* Save time if the version is already set. */ 660 if (ver == spa_version(spa)) 661 continue; 662 663 /* 664 * In addition to the pool directory object, we might 665 * create the pool properties object, the features for 666 * read object, the features for write object, or the 667 * feature descriptions object. 668 */ 669 error = dsl_sync_task(spa->spa_name, NULL, 670 spa_sync_version, &ver, 6); 671 if (error) 672 return (error); 673 continue; 674 } 675 676 need_sync = B_TRUE; 677 break; 678 } 679 680 if (need_sync) { 681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 682 nvp, 6)); 683 } 684 685 return (0); 686 } 687 688 /* 689 * If the bootfs property value is dsobj, clear it. 690 */ 691 void 692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 693 { 694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 695 VERIFY(zap_remove(spa->spa_meta_objset, 696 spa->spa_pool_props_object, 697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 698 spa->spa_bootfs = 0; 699 } 700 } 701 702 /*ARGSUSED*/ 703 static int 704 spa_change_guid_check(void *arg, dmu_tx_t *tx) 705 { 706 uint64_t *newguid = arg; 707 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 708 vdev_t *rvd = spa->spa_root_vdev; 709 uint64_t vdev_state; 710 711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 712 vdev_state = rvd->vdev_state; 713 spa_config_exit(spa, SCL_STATE, FTAG); 714 715 if (vdev_state != VDEV_STATE_HEALTHY) 716 return (SET_ERROR(ENXIO)); 717 718 ASSERT3U(spa_guid(spa), !=, *newguid); 719 720 return (0); 721 } 722 723 static void 724 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 725 { 726 uint64_t *newguid = arg; 727 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 728 uint64_t oldguid; 729 vdev_t *rvd = spa->spa_root_vdev; 730 731 oldguid = spa_guid(spa); 732 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 734 rvd->vdev_guid = *newguid; 735 rvd->vdev_guid_sum += (*newguid - oldguid); 736 vdev_config_dirty(rvd); 737 spa_config_exit(spa, SCL_STATE, FTAG); 738 739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 740 oldguid, *newguid); 741 } 742 743 /* 744 * Change the GUID for the pool. This is done so that we can later 745 * re-import a pool built from a clone of our own vdevs. We will modify 746 * the root vdev's guid, our own pool guid, and then mark all of our 747 * vdevs dirty. Note that we must make sure that all our vdevs are 748 * online when we do this, or else any vdevs that weren't present 749 * would be orphaned from our pool. We are also going to issue a 750 * sysevent to update any watchers. 751 */ 752 int 753 spa_change_guid(spa_t *spa) 754 { 755 int error; 756 uint64_t guid; 757 758 mutex_enter(&spa->spa_vdev_top_lock); 759 mutex_enter(&spa_namespace_lock); 760 guid = spa_generate_guid(NULL); 761 762 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 763 spa_change_guid_sync, &guid, 5); 764 765 if (error == 0) { 766 spa_config_sync(spa, B_FALSE, B_TRUE); 767 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 768 } 769 770 mutex_exit(&spa_namespace_lock); 771 mutex_exit(&spa->spa_vdev_top_lock); 772 773 return (error); 774 } 775 776 /* 777 * ========================================================================== 778 * SPA state manipulation (open/create/destroy/import/export) 779 * ========================================================================== 780 */ 781 782 static int 783 spa_error_entry_compare(const void *a, const void *b) 784 { 785 spa_error_entry_t *sa = (spa_error_entry_t *)a; 786 spa_error_entry_t *sb = (spa_error_entry_t *)b; 787 int ret; 788 789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 790 sizeof (zbookmark_t)); 791 792 if (ret < 0) 793 return (-1); 794 else if (ret > 0) 795 return (1); 796 else 797 return (0); 798 } 799 800 /* 801 * Utility function which retrieves copies of the current logs and 802 * re-initializes them in the process. 803 */ 804 void 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 806 { 807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 808 809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 811 812 avl_create(&spa->spa_errlist_scrub, 813 spa_error_entry_compare, sizeof (spa_error_entry_t), 814 offsetof(spa_error_entry_t, se_avl)); 815 avl_create(&spa->spa_errlist_last, 816 spa_error_entry_compare, sizeof (spa_error_entry_t), 817 offsetof(spa_error_entry_t, se_avl)); 818 } 819 820 static void 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 822 { 823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 824 enum zti_modes mode = ztip->zti_mode; 825 uint_t value = ztip->zti_value; 826 uint_t count = ztip->zti_count; 827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 828 char name[32]; 829 uint_t flags = 0; 830 boolean_t batch = B_FALSE; 831 832 if (mode == ZTI_MODE_NULL) { 833 tqs->stqs_count = 0; 834 tqs->stqs_taskq = NULL; 835 return; 836 } 837 838 ASSERT3U(count, >, 0); 839 840 tqs->stqs_count = count; 841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 842 843 switch (mode) { 844 case ZTI_MODE_FIXED: 845 ASSERT3U(value, >=, 1); 846 value = MAX(value, 1); 847 break; 848 849 case ZTI_MODE_BATCH: 850 batch = B_TRUE; 851 flags |= TASKQ_THREADS_CPU_PCT; 852 value = zio_taskq_batch_pct; 853 break; 854 855 default: 856 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 857 "spa_activate()", 858 zio_type_name[t], zio_taskq_types[q], mode, value); 859 break; 860 } 861 862 for (uint_t i = 0; i < count; i++) { 863 taskq_t *tq; 864 865 if (count > 1) { 866 (void) snprintf(name, sizeof (name), "%s_%s_%u", 867 zio_type_name[t], zio_taskq_types[q], i); 868 } else { 869 (void) snprintf(name, sizeof (name), "%s_%s", 870 zio_type_name[t], zio_taskq_types[q]); 871 } 872 873 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 874 if (batch) 875 flags |= TASKQ_DC_BATCH; 876 877 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 878 spa->spa_proc, zio_taskq_basedc, flags); 879 } else { 880 pri_t pri = maxclsyspri; 881 /* 882 * The write issue taskq can be extremely CPU 883 * intensive. Run it at slightly lower priority 884 * than the other taskqs. 885 */ 886 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 887 pri--; 888 889 tq = taskq_create_proc(name, value, pri, 50, 890 INT_MAX, spa->spa_proc, flags); 891 } 892 893 tqs->stqs_taskq[i] = tq; 894 } 895 } 896 897 static void 898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 899 { 900 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 901 902 if (tqs->stqs_taskq == NULL) { 903 ASSERT0(tqs->stqs_count); 904 return; 905 } 906 907 for (uint_t i = 0; i < tqs->stqs_count; i++) { 908 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 909 taskq_destroy(tqs->stqs_taskq[i]); 910 } 911 912 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 913 tqs->stqs_taskq = NULL; 914 } 915 916 /* 917 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 918 * Note that a type may have multiple discrete taskqs to avoid lock contention 919 * on the taskq itself. In that case we choose which taskq at random by using 920 * the low bits of gethrtime(). 921 */ 922 void 923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 924 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 925 { 926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 927 taskq_t *tq; 928 929 ASSERT3P(tqs->stqs_taskq, !=, NULL); 930 ASSERT3U(tqs->stqs_count, !=, 0); 931 932 if (tqs->stqs_count == 1) { 933 tq = tqs->stqs_taskq[0]; 934 } else { 935 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 936 } 937 938 taskq_dispatch_ent(tq, func, arg, flags, ent); 939 } 940 941 static void 942 spa_create_zio_taskqs(spa_t *spa) 943 { 944 for (int t = 0; t < ZIO_TYPES; t++) { 945 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 946 spa_taskqs_init(spa, t, q); 947 } 948 } 949 } 950 951 #ifdef _KERNEL 952 static void 953 spa_thread(void *arg) 954 { 955 callb_cpr_t cprinfo; 956 957 spa_t *spa = arg; 958 user_t *pu = PTOU(curproc); 959 960 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 961 spa->spa_name); 962 963 ASSERT(curproc != &p0); 964 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 965 "zpool-%s", spa->spa_name); 966 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 967 968 /* bind this thread to the requested psrset */ 969 if (zio_taskq_psrset_bind != PS_NONE) { 970 pool_lock(); 971 mutex_enter(&cpu_lock); 972 mutex_enter(&pidlock); 973 mutex_enter(&curproc->p_lock); 974 975 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 976 0, NULL, NULL) == 0) { 977 curthread->t_bind_pset = zio_taskq_psrset_bind; 978 } else { 979 cmn_err(CE_WARN, 980 "Couldn't bind process for zfs pool \"%s\" to " 981 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 982 } 983 984 mutex_exit(&curproc->p_lock); 985 mutex_exit(&pidlock); 986 mutex_exit(&cpu_lock); 987 pool_unlock(); 988 } 989 990 if (zio_taskq_sysdc) { 991 sysdc_thread_enter(curthread, 100, 0); 992 } 993 994 spa->spa_proc = curproc; 995 spa->spa_did = curthread->t_did; 996 997 spa_create_zio_taskqs(spa); 998 999 mutex_enter(&spa->spa_proc_lock); 1000 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1001 1002 spa->spa_proc_state = SPA_PROC_ACTIVE; 1003 cv_broadcast(&spa->spa_proc_cv); 1004 1005 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1006 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1007 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1008 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1009 1010 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1011 spa->spa_proc_state = SPA_PROC_GONE; 1012 spa->spa_proc = &p0; 1013 cv_broadcast(&spa->spa_proc_cv); 1014 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1015 1016 mutex_enter(&curproc->p_lock); 1017 lwp_exit(); 1018 } 1019 #endif 1020 1021 /* 1022 * Activate an uninitialized pool. 1023 */ 1024 static void 1025 spa_activate(spa_t *spa, int mode) 1026 { 1027 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1028 1029 spa->spa_state = POOL_STATE_ACTIVE; 1030 spa->spa_mode = mode; 1031 1032 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1033 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1034 1035 /* Try to create a covering process */ 1036 mutex_enter(&spa->spa_proc_lock); 1037 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1038 ASSERT(spa->spa_proc == &p0); 1039 spa->spa_did = 0; 1040 1041 /* Only create a process if we're going to be around a while. */ 1042 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1043 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1044 NULL, 0) == 0) { 1045 spa->spa_proc_state = SPA_PROC_CREATED; 1046 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1047 cv_wait(&spa->spa_proc_cv, 1048 &spa->spa_proc_lock); 1049 } 1050 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1051 ASSERT(spa->spa_proc != &p0); 1052 ASSERT(spa->spa_did != 0); 1053 } else { 1054 #ifdef _KERNEL 1055 cmn_err(CE_WARN, 1056 "Couldn't create process for zfs pool \"%s\"\n", 1057 spa->spa_name); 1058 #endif 1059 } 1060 } 1061 mutex_exit(&spa->spa_proc_lock); 1062 1063 /* If we didn't create a process, we need to create our taskqs. */ 1064 if (spa->spa_proc == &p0) { 1065 spa_create_zio_taskqs(spa); 1066 } 1067 1068 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1069 offsetof(vdev_t, vdev_config_dirty_node)); 1070 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1071 offsetof(vdev_t, vdev_state_dirty_node)); 1072 1073 txg_list_create(&spa->spa_vdev_txg_list, 1074 offsetof(struct vdev, vdev_txg_node)); 1075 1076 avl_create(&spa->spa_errlist_scrub, 1077 spa_error_entry_compare, sizeof (spa_error_entry_t), 1078 offsetof(spa_error_entry_t, se_avl)); 1079 avl_create(&spa->spa_errlist_last, 1080 spa_error_entry_compare, sizeof (spa_error_entry_t), 1081 offsetof(spa_error_entry_t, se_avl)); 1082 } 1083 1084 /* 1085 * Opposite of spa_activate(). 1086 */ 1087 static void 1088 spa_deactivate(spa_t *spa) 1089 { 1090 ASSERT(spa->spa_sync_on == B_FALSE); 1091 ASSERT(spa->spa_dsl_pool == NULL); 1092 ASSERT(spa->spa_root_vdev == NULL); 1093 ASSERT(spa->spa_async_zio_root == NULL); 1094 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1095 1096 txg_list_destroy(&spa->spa_vdev_txg_list); 1097 1098 list_destroy(&spa->spa_config_dirty_list); 1099 list_destroy(&spa->spa_state_dirty_list); 1100 1101 for (int t = 0; t < ZIO_TYPES; t++) { 1102 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1103 spa_taskqs_fini(spa, t, q); 1104 } 1105 } 1106 1107 metaslab_class_destroy(spa->spa_normal_class); 1108 spa->spa_normal_class = NULL; 1109 1110 metaslab_class_destroy(spa->spa_log_class); 1111 spa->spa_log_class = NULL; 1112 1113 /* 1114 * If this was part of an import or the open otherwise failed, we may 1115 * still have errors left in the queues. Empty them just in case. 1116 */ 1117 spa_errlog_drain(spa); 1118 1119 avl_destroy(&spa->spa_errlist_scrub); 1120 avl_destroy(&spa->spa_errlist_last); 1121 1122 spa->spa_state = POOL_STATE_UNINITIALIZED; 1123 1124 mutex_enter(&spa->spa_proc_lock); 1125 if (spa->spa_proc_state != SPA_PROC_NONE) { 1126 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1127 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1128 cv_broadcast(&spa->spa_proc_cv); 1129 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1130 ASSERT(spa->spa_proc != &p0); 1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1132 } 1133 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1134 spa->spa_proc_state = SPA_PROC_NONE; 1135 } 1136 ASSERT(spa->spa_proc == &p0); 1137 mutex_exit(&spa->spa_proc_lock); 1138 1139 /* 1140 * We want to make sure spa_thread() has actually exited the ZFS 1141 * module, so that the module can't be unloaded out from underneath 1142 * it. 1143 */ 1144 if (spa->spa_did != 0) { 1145 thread_join(spa->spa_did); 1146 spa->spa_did = 0; 1147 } 1148 } 1149 1150 /* 1151 * Verify a pool configuration, and construct the vdev tree appropriately. This 1152 * will create all the necessary vdevs in the appropriate layout, with each vdev 1153 * in the CLOSED state. This will prep the pool before open/creation/import. 1154 * All vdev validation is done by the vdev_alloc() routine. 1155 */ 1156 static int 1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1158 uint_t id, int atype) 1159 { 1160 nvlist_t **child; 1161 uint_t children; 1162 int error; 1163 1164 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1165 return (error); 1166 1167 if ((*vdp)->vdev_ops->vdev_op_leaf) 1168 return (0); 1169 1170 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1171 &child, &children); 1172 1173 if (error == ENOENT) 1174 return (0); 1175 1176 if (error) { 1177 vdev_free(*vdp); 1178 *vdp = NULL; 1179 return (SET_ERROR(EINVAL)); 1180 } 1181 1182 for (int c = 0; c < children; c++) { 1183 vdev_t *vd; 1184 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1185 atype)) != 0) { 1186 vdev_free(*vdp); 1187 *vdp = NULL; 1188 return (error); 1189 } 1190 } 1191 1192 ASSERT(*vdp != NULL); 1193 1194 return (0); 1195 } 1196 1197 /* 1198 * Opposite of spa_load(). 1199 */ 1200 static void 1201 spa_unload(spa_t *spa) 1202 { 1203 int i; 1204 1205 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1206 1207 /* 1208 * Stop async tasks. 1209 */ 1210 spa_async_suspend(spa); 1211 1212 /* 1213 * Stop syncing. 1214 */ 1215 if (spa->spa_sync_on) { 1216 txg_sync_stop(spa->spa_dsl_pool); 1217 spa->spa_sync_on = B_FALSE; 1218 } 1219 1220 /* 1221 * Wait for any outstanding async I/O to complete. 1222 */ 1223 if (spa->spa_async_zio_root != NULL) { 1224 (void) zio_wait(spa->spa_async_zio_root); 1225 spa->spa_async_zio_root = NULL; 1226 } 1227 1228 bpobj_close(&spa->spa_deferred_bpobj); 1229 1230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1231 1232 /* 1233 * Close all vdevs. 1234 */ 1235 if (spa->spa_root_vdev) 1236 vdev_free(spa->spa_root_vdev); 1237 ASSERT(spa->spa_root_vdev == NULL); 1238 1239 /* 1240 * Close the dsl pool. 1241 */ 1242 if (spa->spa_dsl_pool) { 1243 dsl_pool_close(spa->spa_dsl_pool); 1244 spa->spa_dsl_pool = NULL; 1245 spa->spa_meta_objset = NULL; 1246 } 1247 1248 ddt_unload(spa); 1249 1250 1251 /* 1252 * Drop and purge level 2 cache 1253 */ 1254 spa_l2cache_drop(spa); 1255 1256 for (i = 0; i < spa->spa_spares.sav_count; i++) 1257 vdev_free(spa->spa_spares.sav_vdevs[i]); 1258 if (spa->spa_spares.sav_vdevs) { 1259 kmem_free(spa->spa_spares.sav_vdevs, 1260 spa->spa_spares.sav_count * sizeof (void *)); 1261 spa->spa_spares.sav_vdevs = NULL; 1262 } 1263 if (spa->spa_spares.sav_config) { 1264 nvlist_free(spa->spa_spares.sav_config); 1265 spa->spa_spares.sav_config = NULL; 1266 } 1267 spa->spa_spares.sav_count = 0; 1268 1269 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1270 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1271 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1272 } 1273 if (spa->spa_l2cache.sav_vdevs) { 1274 kmem_free(spa->spa_l2cache.sav_vdevs, 1275 spa->spa_l2cache.sav_count * sizeof (void *)); 1276 spa->spa_l2cache.sav_vdevs = NULL; 1277 } 1278 if (spa->spa_l2cache.sav_config) { 1279 nvlist_free(spa->spa_l2cache.sav_config); 1280 spa->spa_l2cache.sav_config = NULL; 1281 } 1282 spa->spa_l2cache.sav_count = 0; 1283 1284 spa->spa_async_suspended = 0; 1285 1286 if (spa->spa_comment != NULL) { 1287 spa_strfree(spa->spa_comment); 1288 spa->spa_comment = NULL; 1289 } 1290 1291 spa_config_exit(spa, SCL_ALL, FTAG); 1292 } 1293 1294 /* 1295 * Load (or re-load) the current list of vdevs describing the active spares for 1296 * this pool. When this is called, we have some form of basic information in 1297 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1298 * then re-generate a more complete list including status information. 1299 */ 1300 static void 1301 spa_load_spares(spa_t *spa) 1302 { 1303 nvlist_t **spares; 1304 uint_t nspares; 1305 int i; 1306 vdev_t *vd, *tvd; 1307 1308 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1309 1310 /* 1311 * First, close and free any existing spare vdevs. 1312 */ 1313 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1314 vd = spa->spa_spares.sav_vdevs[i]; 1315 1316 /* Undo the call to spa_activate() below */ 1317 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1318 B_FALSE)) != NULL && tvd->vdev_isspare) 1319 spa_spare_remove(tvd); 1320 vdev_close(vd); 1321 vdev_free(vd); 1322 } 1323 1324 if (spa->spa_spares.sav_vdevs) 1325 kmem_free(spa->spa_spares.sav_vdevs, 1326 spa->spa_spares.sav_count * sizeof (void *)); 1327 1328 if (spa->spa_spares.sav_config == NULL) 1329 nspares = 0; 1330 else 1331 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1332 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1333 1334 spa->spa_spares.sav_count = (int)nspares; 1335 spa->spa_spares.sav_vdevs = NULL; 1336 1337 if (nspares == 0) 1338 return; 1339 1340 /* 1341 * Construct the array of vdevs, opening them to get status in the 1342 * process. For each spare, there is potentially two different vdev_t 1343 * structures associated with it: one in the list of spares (used only 1344 * for basic validation purposes) and one in the active vdev 1345 * configuration (if it's spared in). During this phase we open and 1346 * validate each vdev on the spare list. If the vdev also exists in the 1347 * active configuration, then we also mark this vdev as an active spare. 1348 */ 1349 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1350 KM_SLEEP); 1351 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1352 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1353 VDEV_ALLOC_SPARE) == 0); 1354 ASSERT(vd != NULL); 1355 1356 spa->spa_spares.sav_vdevs[i] = vd; 1357 1358 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1359 B_FALSE)) != NULL) { 1360 if (!tvd->vdev_isspare) 1361 spa_spare_add(tvd); 1362 1363 /* 1364 * We only mark the spare active if we were successfully 1365 * able to load the vdev. Otherwise, importing a pool 1366 * with a bad active spare would result in strange 1367 * behavior, because multiple pool would think the spare 1368 * is actively in use. 1369 * 1370 * There is a vulnerability here to an equally bizarre 1371 * circumstance, where a dead active spare is later 1372 * brought back to life (onlined or otherwise). Given 1373 * the rarity of this scenario, and the extra complexity 1374 * it adds, we ignore the possibility. 1375 */ 1376 if (!vdev_is_dead(tvd)) 1377 spa_spare_activate(tvd); 1378 } 1379 1380 vd->vdev_top = vd; 1381 vd->vdev_aux = &spa->spa_spares; 1382 1383 if (vdev_open(vd) != 0) 1384 continue; 1385 1386 if (vdev_validate_aux(vd) == 0) 1387 spa_spare_add(vd); 1388 } 1389 1390 /* 1391 * Recompute the stashed list of spares, with status information 1392 * this time. 1393 */ 1394 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1395 DATA_TYPE_NVLIST_ARRAY) == 0); 1396 1397 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1398 KM_SLEEP); 1399 for (i = 0; i < spa->spa_spares.sav_count; i++) 1400 spares[i] = vdev_config_generate(spa, 1401 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1402 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1403 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1404 for (i = 0; i < spa->spa_spares.sav_count; i++) 1405 nvlist_free(spares[i]); 1406 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1407 } 1408 1409 /* 1410 * Load (or re-load) the current list of vdevs describing the active l2cache for 1411 * this pool. When this is called, we have some form of basic information in 1412 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1413 * then re-generate a more complete list including status information. 1414 * Devices which are already active have their details maintained, and are 1415 * not re-opened. 1416 */ 1417 static void 1418 spa_load_l2cache(spa_t *spa) 1419 { 1420 nvlist_t **l2cache; 1421 uint_t nl2cache; 1422 int i, j, oldnvdevs; 1423 uint64_t guid; 1424 vdev_t *vd, **oldvdevs, **newvdevs; 1425 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1426 1427 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1428 1429 if (sav->sav_config != NULL) { 1430 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1431 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1432 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1433 } else { 1434 nl2cache = 0; 1435 newvdevs = NULL; 1436 } 1437 1438 oldvdevs = sav->sav_vdevs; 1439 oldnvdevs = sav->sav_count; 1440 sav->sav_vdevs = NULL; 1441 sav->sav_count = 0; 1442 1443 /* 1444 * Process new nvlist of vdevs. 1445 */ 1446 for (i = 0; i < nl2cache; i++) { 1447 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1448 &guid) == 0); 1449 1450 newvdevs[i] = NULL; 1451 for (j = 0; j < oldnvdevs; j++) { 1452 vd = oldvdevs[j]; 1453 if (vd != NULL && guid == vd->vdev_guid) { 1454 /* 1455 * Retain previous vdev for add/remove ops. 1456 */ 1457 newvdevs[i] = vd; 1458 oldvdevs[j] = NULL; 1459 break; 1460 } 1461 } 1462 1463 if (newvdevs[i] == NULL) { 1464 /* 1465 * Create new vdev 1466 */ 1467 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1468 VDEV_ALLOC_L2CACHE) == 0); 1469 ASSERT(vd != NULL); 1470 newvdevs[i] = vd; 1471 1472 /* 1473 * Commit this vdev as an l2cache device, 1474 * even if it fails to open. 1475 */ 1476 spa_l2cache_add(vd); 1477 1478 vd->vdev_top = vd; 1479 vd->vdev_aux = sav; 1480 1481 spa_l2cache_activate(vd); 1482 1483 if (vdev_open(vd) != 0) 1484 continue; 1485 1486 (void) vdev_validate_aux(vd); 1487 1488 if (!vdev_is_dead(vd)) 1489 l2arc_add_vdev(spa, vd); 1490 } 1491 } 1492 1493 /* 1494 * Purge vdevs that were dropped 1495 */ 1496 for (i = 0; i < oldnvdevs; i++) { 1497 uint64_t pool; 1498 1499 vd = oldvdevs[i]; 1500 if (vd != NULL) { 1501 ASSERT(vd->vdev_isl2cache); 1502 1503 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1504 pool != 0ULL && l2arc_vdev_present(vd)) 1505 l2arc_remove_vdev(vd); 1506 vdev_clear_stats(vd); 1507 vdev_free(vd); 1508 } 1509 } 1510 1511 if (oldvdevs) 1512 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1513 1514 if (sav->sav_config == NULL) 1515 goto out; 1516 1517 sav->sav_vdevs = newvdevs; 1518 sav->sav_count = (int)nl2cache; 1519 1520 /* 1521 * Recompute the stashed list of l2cache devices, with status 1522 * information this time. 1523 */ 1524 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1525 DATA_TYPE_NVLIST_ARRAY) == 0); 1526 1527 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1528 for (i = 0; i < sav->sav_count; i++) 1529 l2cache[i] = vdev_config_generate(spa, 1530 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1531 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1532 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1533 out: 1534 for (i = 0; i < sav->sav_count; i++) 1535 nvlist_free(l2cache[i]); 1536 if (sav->sav_count) 1537 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1538 } 1539 1540 static int 1541 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1542 { 1543 dmu_buf_t *db; 1544 char *packed = NULL; 1545 size_t nvsize = 0; 1546 int error; 1547 *value = NULL; 1548 1549 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1550 nvsize = *(uint64_t *)db->db_data; 1551 dmu_buf_rele(db, FTAG); 1552 1553 packed = kmem_alloc(nvsize, KM_SLEEP); 1554 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1555 DMU_READ_PREFETCH); 1556 if (error == 0) 1557 error = nvlist_unpack(packed, nvsize, value, 0); 1558 kmem_free(packed, nvsize); 1559 1560 return (error); 1561 } 1562 1563 /* 1564 * Checks to see if the given vdev could not be opened, in which case we post a 1565 * sysevent to notify the autoreplace code that the device has been removed. 1566 */ 1567 static void 1568 spa_check_removed(vdev_t *vd) 1569 { 1570 for (int c = 0; c < vd->vdev_children; c++) 1571 spa_check_removed(vd->vdev_child[c]); 1572 1573 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1574 !vd->vdev_ishole) { 1575 zfs_post_autoreplace(vd->vdev_spa, vd); 1576 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1577 } 1578 } 1579 1580 /* 1581 * Validate the current config against the MOS config 1582 */ 1583 static boolean_t 1584 spa_config_valid(spa_t *spa, nvlist_t *config) 1585 { 1586 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1587 nvlist_t *nv; 1588 1589 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1590 1591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1592 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1593 1594 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1595 1596 /* 1597 * If we're doing a normal import, then build up any additional 1598 * diagnostic information about missing devices in this config. 1599 * We'll pass this up to the user for further processing. 1600 */ 1601 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1602 nvlist_t **child, *nv; 1603 uint64_t idx = 0; 1604 1605 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1606 KM_SLEEP); 1607 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1608 1609 for (int c = 0; c < rvd->vdev_children; c++) { 1610 vdev_t *tvd = rvd->vdev_child[c]; 1611 vdev_t *mtvd = mrvd->vdev_child[c]; 1612 1613 if (tvd->vdev_ops == &vdev_missing_ops && 1614 mtvd->vdev_ops != &vdev_missing_ops && 1615 mtvd->vdev_islog) 1616 child[idx++] = vdev_config_generate(spa, mtvd, 1617 B_FALSE, 0); 1618 } 1619 1620 if (idx) { 1621 VERIFY(nvlist_add_nvlist_array(nv, 1622 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1623 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1624 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1625 1626 for (int i = 0; i < idx; i++) 1627 nvlist_free(child[i]); 1628 } 1629 nvlist_free(nv); 1630 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1631 } 1632 1633 /* 1634 * Compare the root vdev tree with the information we have 1635 * from the MOS config (mrvd). Check each top-level vdev 1636 * with the corresponding MOS config top-level (mtvd). 1637 */ 1638 for (int c = 0; c < rvd->vdev_children; c++) { 1639 vdev_t *tvd = rvd->vdev_child[c]; 1640 vdev_t *mtvd = mrvd->vdev_child[c]; 1641 1642 /* 1643 * Resolve any "missing" vdevs in the current configuration. 1644 * If we find that the MOS config has more accurate information 1645 * about the top-level vdev then use that vdev instead. 1646 */ 1647 if (tvd->vdev_ops == &vdev_missing_ops && 1648 mtvd->vdev_ops != &vdev_missing_ops) { 1649 1650 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1651 continue; 1652 1653 /* 1654 * Device specific actions. 1655 */ 1656 if (mtvd->vdev_islog) { 1657 spa_set_log_state(spa, SPA_LOG_CLEAR); 1658 } else { 1659 /* 1660 * XXX - once we have 'readonly' pool 1661 * support we should be able to handle 1662 * missing data devices by transitioning 1663 * the pool to readonly. 1664 */ 1665 continue; 1666 } 1667 1668 /* 1669 * Swap the missing vdev with the data we were 1670 * able to obtain from the MOS config. 1671 */ 1672 vdev_remove_child(rvd, tvd); 1673 vdev_remove_child(mrvd, mtvd); 1674 1675 vdev_add_child(rvd, mtvd); 1676 vdev_add_child(mrvd, tvd); 1677 1678 spa_config_exit(spa, SCL_ALL, FTAG); 1679 vdev_load(mtvd); 1680 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1681 1682 vdev_reopen(rvd); 1683 } else if (mtvd->vdev_islog) { 1684 /* 1685 * Load the slog device's state from the MOS config 1686 * since it's possible that the label does not 1687 * contain the most up-to-date information. 1688 */ 1689 vdev_load_log_state(tvd, mtvd); 1690 vdev_reopen(tvd); 1691 } 1692 } 1693 vdev_free(mrvd); 1694 spa_config_exit(spa, SCL_ALL, FTAG); 1695 1696 /* 1697 * Ensure we were able to validate the config. 1698 */ 1699 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1700 } 1701 1702 /* 1703 * Check for missing log devices 1704 */ 1705 static boolean_t 1706 spa_check_logs(spa_t *spa) 1707 { 1708 boolean_t rv = B_FALSE; 1709 1710 switch (spa->spa_log_state) { 1711 case SPA_LOG_MISSING: 1712 /* need to recheck in case slog has been restored */ 1713 case SPA_LOG_UNKNOWN: 1714 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1715 NULL, DS_FIND_CHILDREN) != 0); 1716 if (rv) 1717 spa_set_log_state(spa, SPA_LOG_MISSING); 1718 break; 1719 } 1720 return (rv); 1721 } 1722 1723 static boolean_t 1724 spa_passivate_log(spa_t *spa) 1725 { 1726 vdev_t *rvd = spa->spa_root_vdev; 1727 boolean_t slog_found = B_FALSE; 1728 1729 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1730 1731 if (!spa_has_slogs(spa)) 1732 return (B_FALSE); 1733 1734 for (int c = 0; c < rvd->vdev_children; c++) { 1735 vdev_t *tvd = rvd->vdev_child[c]; 1736 metaslab_group_t *mg = tvd->vdev_mg; 1737 1738 if (tvd->vdev_islog) { 1739 metaslab_group_passivate(mg); 1740 slog_found = B_TRUE; 1741 } 1742 } 1743 1744 return (slog_found); 1745 } 1746 1747 static void 1748 spa_activate_log(spa_t *spa) 1749 { 1750 vdev_t *rvd = spa->spa_root_vdev; 1751 1752 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1753 1754 for (int c = 0; c < rvd->vdev_children; c++) { 1755 vdev_t *tvd = rvd->vdev_child[c]; 1756 metaslab_group_t *mg = tvd->vdev_mg; 1757 1758 if (tvd->vdev_islog) 1759 metaslab_group_activate(mg); 1760 } 1761 } 1762 1763 int 1764 spa_offline_log(spa_t *spa) 1765 { 1766 int error; 1767 1768 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1769 NULL, DS_FIND_CHILDREN); 1770 if (error == 0) { 1771 /* 1772 * We successfully offlined the log device, sync out the 1773 * current txg so that the "stubby" block can be removed 1774 * by zil_sync(). 1775 */ 1776 txg_wait_synced(spa->spa_dsl_pool, 0); 1777 } 1778 return (error); 1779 } 1780 1781 static void 1782 spa_aux_check_removed(spa_aux_vdev_t *sav) 1783 { 1784 for (int i = 0; i < sav->sav_count; i++) 1785 spa_check_removed(sav->sav_vdevs[i]); 1786 } 1787 1788 void 1789 spa_claim_notify(zio_t *zio) 1790 { 1791 spa_t *spa = zio->io_spa; 1792 1793 if (zio->io_error) 1794 return; 1795 1796 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1797 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1798 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1799 mutex_exit(&spa->spa_props_lock); 1800 } 1801 1802 typedef struct spa_load_error { 1803 uint64_t sle_meta_count; 1804 uint64_t sle_data_count; 1805 } spa_load_error_t; 1806 1807 static void 1808 spa_load_verify_done(zio_t *zio) 1809 { 1810 blkptr_t *bp = zio->io_bp; 1811 spa_load_error_t *sle = zio->io_private; 1812 dmu_object_type_t type = BP_GET_TYPE(bp); 1813 int error = zio->io_error; 1814 1815 if (error) { 1816 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1817 type != DMU_OT_INTENT_LOG) 1818 atomic_add_64(&sle->sle_meta_count, 1); 1819 else 1820 atomic_add_64(&sle->sle_data_count, 1); 1821 } 1822 zio_data_buf_free(zio->io_data, zio->io_size); 1823 } 1824 1825 /*ARGSUSED*/ 1826 static int 1827 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1828 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1829 { 1830 if (bp != NULL) { 1831 zio_t *rio = arg; 1832 size_t size = BP_GET_PSIZE(bp); 1833 void *data = zio_data_buf_alloc(size); 1834 1835 zio_nowait(zio_read(rio, spa, bp, data, size, 1836 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1837 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1838 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1839 } 1840 return (0); 1841 } 1842 1843 static int 1844 spa_load_verify(spa_t *spa) 1845 { 1846 zio_t *rio; 1847 spa_load_error_t sle = { 0 }; 1848 zpool_rewind_policy_t policy; 1849 boolean_t verify_ok = B_FALSE; 1850 int error; 1851 1852 zpool_get_rewind_policy(spa->spa_config, &policy); 1853 1854 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1855 return (0); 1856 1857 rio = zio_root(spa, NULL, &sle, 1858 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1859 1860 error = traverse_pool(spa, spa->spa_verify_min_txg, 1861 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1862 1863 (void) zio_wait(rio); 1864 1865 spa->spa_load_meta_errors = sle.sle_meta_count; 1866 spa->spa_load_data_errors = sle.sle_data_count; 1867 1868 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1869 sle.sle_data_count <= policy.zrp_maxdata) { 1870 int64_t loss = 0; 1871 1872 verify_ok = B_TRUE; 1873 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1874 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1875 1876 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1877 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1878 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1879 VERIFY(nvlist_add_int64(spa->spa_load_info, 1880 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1881 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1882 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1883 } else { 1884 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1885 } 1886 1887 if (error) { 1888 if (error != ENXIO && error != EIO) 1889 error = SET_ERROR(EIO); 1890 return (error); 1891 } 1892 1893 return (verify_ok ? 0 : EIO); 1894 } 1895 1896 /* 1897 * Find a value in the pool props object. 1898 */ 1899 static void 1900 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1901 { 1902 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1903 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1904 } 1905 1906 /* 1907 * Find a value in the pool directory object. 1908 */ 1909 static int 1910 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1911 { 1912 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1913 name, sizeof (uint64_t), 1, val)); 1914 } 1915 1916 static int 1917 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1918 { 1919 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1920 return (err); 1921 } 1922 1923 /* 1924 * Fix up config after a partly-completed split. This is done with the 1925 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1926 * pool have that entry in their config, but only the splitting one contains 1927 * a list of all the guids of the vdevs that are being split off. 1928 * 1929 * This function determines what to do with that list: either rejoin 1930 * all the disks to the pool, or complete the splitting process. To attempt 1931 * the rejoin, each disk that is offlined is marked online again, and 1932 * we do a reopen() call. If the vdev label for every disk that was 1933 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1934 * then we call vdev_split() on each disk, and complete the split. 1935 * 1936 * Otherwise we leave the config alone, with all the vdevs in place in 1937 * the original pool. 1938 */ 1939 static void 1940 spa_try_repair(spa_t *spa, nvlist_t *config) 1941 { 1942 uint_t extracted; 1943 uint64_t *glist; 1944 uint_t i, gcount; 1945 nvlist_t *nvl; 1946 vdev_t **vd; 1947 boolean_t attempt_reopen; 1948 1949 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1950 return; 1951 1952 /* check that the config is complete */ 1953 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1954 &glist, &gcount) != 0) 1955 return; 1956 1957 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1958 1959 /* attempt to online all the vdevs & validate */ 1960 attempt_reopen = B_TRUE; 1961 for (i = 0; i < gcount; i++) { 1962 if (glist[i] == 0) /* vdev is hole */ 1963 continue; 1964 1965 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1966 if (vd[i] == NULL) { 1967 /* 1968 * Don't bother attempting to reopen the disks; 1969 * just do the split. 1970 */ 1971 attempt_reopen = B_FALSE; 1972 } else { 1973 /* attempt to re-online it */ 1974 vd[i]->vdev_offline = B_FALSE; 1975 } 1976 } 1977 1978 if (attempt_reopen) { 1979 vdev_reopen(spa->spa_root_vdev); 1980 1981 /* check each device to see what state it's in */ 1982 for (extracted = 0, i = 0; i < gcount; i++) { 1983 if (vd[i] != NULL && 1984 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1985 break; 1986 ++extracted; 1987 } 1988 } 1989 1990 /* 1991 * If every disk has been moved to the new pool, or if we never 1992 * even attempted to look at them, then we split them off for 1993 * good. 1994 */ 1995 if (!attempt_reopen || gcount == extracted) { 1996 for (i = 0; i < gcount; i++) 1997 if (vd[i] != NULL) 1998 vdev_split(vd[i]); 1999 vdev_reopen(spa->spa_root_vdev); 2000 } 2001 2002 kmem_free(vd, gcount * sizeof (vdev_t *)); 2003 } 2004 2005 static int 2006 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2007 boolean_t mosconfig) 2008 { 2009 nvlist_t *config = spa->spa_config; 2010 char *ereport = FM_EREPORT_ZFS_POOL; 2011 char *comment; 2012 int error; 2013 uint64_t pool_guid; 2014 nvlist_t *nvl; 2015 2016 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2017 return (SET_ERROR(EINVAL)); 2018 2019 ASSERT(spa->spa_comment == NULL); 2020 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2021 spa->spa_comment = spa_strdup(comment); 2022 2023 /* 2024 * Versioning wasn't explicitly added to the label until later, so if 2025 * it's not present treat it as the initial version. 2026 */ 2027 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2028 &spa->spa_ubsync.ub_version) != 0) 2029 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2030 2031 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2032 &spa->spa_config_txg); 2033 2034 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2035 spa_guid_exists(pool_guid, 0)) { 2036 error = SET_ERROR(EEXIST); 2037 } else { 2038 spa->spa_config_guid = pool_guid; 2039 2040 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2041 &nvl) == 0) { 2042 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2043 KM_SLEEP) == 0); 2044 } 2045 2046 nvlist_free(spa->spa_load_info); 2047 spa->spa_load_info = fnvlist_alloc(); 2048 2049 gethrestime(&spa->spa_loaded_ts); 2050 error = spa_load_impl(spa, pool_guid, config, state, type, 2051 mosconfig, &ereport); 2052 } 2053 2054 spa->spa_minref = refcount_count(&spa->spa_refcount); 2055 if (error) { 2056 if (error != EEXIST) { 2057 spa->spa_loaded_ts.tv_sec = 0; 2058 spa->spa_loaded_ts.tv_nsec = 0; 2059 } 2060 if (error != EBADF) { 2061 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2062 } 2063 } 2064 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2065 spa->spa_ena = 0; 2066 2067 return (error); 2068 } 2069 2070 /* 2071 * Load an existing storage pool, using the pool's builtin spa_config as a 2072 * source of configuration information. 2073 */ 2074 static int 2075 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2076 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2077 char **ereport) 2078 { 2079 int error = 0; 2080 nvlist_t *nvroot = NULL; 2081 nvlist_t *label; 2082 vdev_t *rvd; 2083 uberblock_t *ub = &spa->spa_uberblock; 2084 uint64_t children, config_cache_txg = spa->spa_config_txg; 2085 int orig_mode = spa->spa_mode; 2086 int parse; 2087 uint64_t obj; 2088 boolean_t missing_feat_write = B_FALSE; 2089 2090 /* 2091 * If this is an untrusted config, access the pool in read-only mode. 2092 * This prevents things like resilvering recently removed devices. 2093 */ 2094 if (!mosconfig) 2095 spa->spa_mode = FREAD; 2096 2097 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2098 2099 spa->spa_load_state = state; 2100 2101 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2102 return (SET_ERROR(EINVAL)); 2103 2104 parse = (type == SPA_IMPORT_EXISTING ? 2105 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2106 2107 /* 2108 * Create "The Godfather" zio to hold all async IOs 2109 */ 2110 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2111 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2112 2113 /* 2114 * Parse the configuration into a vdev tree. We explicitly set the 2115 * value that will be returned by spa_version() since parsing the 2116 * configuration requires knowing the version number. 2117 */ 2118 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2119 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2120 spa_config_exit(spa, SCL_ALL, FTAG); 2121 2122 if (error != 0) 2123 return (error); 2124 2125 ASSERT(spa->spa_root_vdev == rvd); 2126 2127 if (type != SPA_IMPORT_ASSEMBLE) { 2128 ASSERT(spa_guid(spa) == pool_guid); 2129 } 2130 2131 /* 2132 * Try to open all vdevs, loading each label in the process. 2133 */ 2134 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2135 error = vdev_open(rvd); 2136 spa_config_exit(spa, SCL_ALL, FTAG); 2137 if (error != 0) 2138 return (error); 2139 2140 /* 2141 * We need to validate the vdev labels against the configuration that 2142 * we have in hand, which is dependent on the setting of mosconfig. If 2143 * mosconfig is true then we're validating the vdev labels based on 2144 * that config. Otherwise, we're validating against the cached config 2145 * (zpool.cache) that was read when we loaded the zfs module, and then 2146 * later we will recursively call spa_load() and validate against 2147 * the vdev config. 2148 * 2149 * If we're assembling a new pool that's been split off from an 2150 * existing pool, the labels haven't yet been updated so we skip 2151 * validation for now. 2152 */ 2153 if (type != SPA_IMPORT_ASSEMBLE) { 2154 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2155 error = vdev_validate(rvd, mosconfig); 2156 spa_config_exit(spa, SCL_ALL, FTAG); 2157 2158 if (error != 0) 2159 return (error); 2160 2161 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2162 return (SET_ERROR(ENXIO)); 2163 } 2164 2165 /* 2166 * Find the best uberblock. 2167 */ 2168 vdev_uberblock_load(rvd, ub, &label); 2169 2170 /* 2171 * If we weren't able to find a single valid uberblock, return failure. 2172 */ 2173 if (ub->ub_txg == 0) { 2174 nvlist_free(label); 2175 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2176 } 2177 2178 /* 2179 * If the pool has an unsupported version we can't open it. 2180 */ 2181 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2182 nvlist_free(label); 2183 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2184 } 2185 2186 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2187 nvlist_t *features; 2188 2189 /* 2190 * If we weren't able to find what's necessary for reading the 2191 * MOS in the label, return failure. 2192 */ 2193 if (label == NULL || nvlist_lookup_nvlist(label, 2194 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2195 nvlist_free(label); 2196 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2197 ENXIO)); 2198 } 2199 2200 /* 2201 * Update our in-core representation with the definitive values 2202 * from the label. 2203 */ 2204 nvlist_free(spa->spa_label_features); 2205 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2206 } 2207 2208 nvlist_free(label); 2209 2210 /* 2211 * Look through entries in the label nvlist's features_for_read. If 2212 * there is a feature listed there which we don't understand then we 2213 * cannot open a pool. 2214 */ 2215 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2216 nvlist_t *unsup_feat; 2217 2218 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2219 0); 2220 2221 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2222 NULL); nvp != NULL; 2223 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2224 if (!zfeature_is_supported(nvpair_name(nvp))) { 2225 VERIFY(nvlist_add_string(unsup_feat, 2226 nvpair_name(nvp), "") == 0); 2227 } 2228 } 2229 2230 if (!nvlist_empty(unsup_feat)) { 2231 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2232 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2233 nvlist_free(unsup_feat); 2234 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2235 ENOTSUP)); 2236 } 2237 2238 nvlist_free(unsup_feat); 2239 } 2240 2241 /* 2242 * If the vdev guid sum doesn't match the uberblock, we have an 2243 * incomplete configuration. We first check to see if the pool 2244 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2245 * If it is, defer the vdev_guid_sum check till later so we 2246 * can handle missing vdevs. 2247 */ 2248 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2249 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2250 rvd->vdev_guid_sum != ub->ub_guid_sum) 2251 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2252 2253 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2255 spa_try_repair(spa, config); 2256 spa_config_exit(spa, SCL_ALL, FTAG); 2257 nvlist_free(spa->spa_config_splitting); 2258 spa->spa_config_splitting = NULL; 2259 } 2260 2261 /* 2262 * Initialize internal SPA structures. 2263 */ 2264 spa->spa_state = POOL_STATE_ACTIVE; 2265 spa->spa_ubsync = spa->spa_uberblock; 2266 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2267 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2268 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2269 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2270 spa->spa_claim_max_txg = spa->spa_first_txg; 2271 spa->spa_prev_software_version = ub->ub_software_version; 2272 2273 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2274 if (error) 2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2276 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2277 2278 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2280 2281 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2282 boolean_t missing_feat_read = B_FALSE; 2283 nvlist_t *unsup_feat, *enabled_feat; 2284 2285 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2286 &spa->spa_feat_for_read_obj) != 0) { 2287 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2288 } 2289 2290 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2291 &spa->spa_feat_for_write_obj) != 0) { 2292 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2293 } 2294 2295 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2296 &spa->spa_feat_desc_obj) != 0) { 2297 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2298 } 2299 2300 enabled_feat = fnvlist_alloc(); 2301 unsup_feat = fnvlist_alloc(); 2302 2303 if (!feature_is_supported(spa->spa_meta_objset, 2304 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2305 unsup_feat, enabled_feat)) 2306 missing_feat_read = B_TRUE; 2307 2308 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2309 if (!feature_is_supported(spa->spa_meta_objset, 2310 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2311 unsup_feat, enabled_feat)) { 2312 missing_feat_write = B_TRUE; 2313 } 2314 } 2315 2316 fnvlist_add_nvlist(spa->spa_load_info, 2317 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2318 2319 if (!nvlist_empty(unsup_feat)) { 2320 fnvlist_add_nvlist(spa->spa_load_info, 2321 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2322 } 2323 2324 fnvlist_free(enabled_feat); 2325 fnvlist_free(unsup_feat); 2326 2327 if (!missing_feat_read) { 2328 fnvlist_add_boolean(spa->spa_load_info, 2329 ZPOOL_CONFIG_CAN_RDONLY); 2330 } 2331 2332 /* 2333 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2334 * twofold: to determine whether the pool is available for 2335 * import in read-write mode and (if it is not) whether the 2336 * pool is available for import in read-only mode. If the pool 2337 * is available for import in read-write mode, it is displayed 2338 * as available in userland; if it is not available for import 2339 * in read-only mode, it is displayed as unavailable in 2340 * userland. If the pool is available for import in read-only 2341 * mode but not read-write mode, it is displayed as unavailable 2342 * in userland with a special note that the pool is actually 2343 * available for open in read-only mode. 2344 * 2345 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2346 * missing a feature for write, we must first determine whether 2347 * the pool can be opened read-only before returning to 2348 * userland in order to know whether to display the 2349 * abovementioned note. 2350 */ 2351 if (missing_feat_read || (missing_feat_write && 2352 spa_writeable(spa))) { 2353 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2354 ENOTSUP)); 2355 } 2356 } 2357 2358 spa->spa_is_initializing = B_TRUE; 2359 error = dsl_pool_open(spa->spa_dsl_pool); 2360 spa->spa_is_initializing = B_FALSE; 2361 if (error != 0) 2362 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2363 2364 if (!mosconfig) { 2365 uint64_t hostid; 2366 nvlist_t *policy = NULL, *nvconfig; 2367 2368 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2369 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2370 2371 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2372 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2373 char *hostname; 2374 unsigned long myhostid = 0; 2375 2376 VERIFY(nvlist_lookup_string(nvconfig, 2377 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2378 2379 #ifdef _KERNEL 2380 myhostid = zone_get_hostid(NULL); 2381 #else /* _KERNEL */ 2382 /* 2383 * We're emulating the system's hostid in userland, so 2384 * we can't use zone_get_hostid(). 2385 */ 2386 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2387 #endif /* _KERNEL */ 2388 if (hostid != 0 && myhostid != 0 && 2389 hostid != myhostid) { 2390 nvlist_free(nvconfig); 2391 cmn_err(CE_WARN, "pool '%s' could not be " 2392 "loaded as it was last accessed by " 2393 "another system (host: %s hostid: 0x%lx). " 2394 "See: http://illumos.org/msg/ZFS-8000-EY", 2395 spa_name(spa), hostname, 2396 (unsigned long)hostid); 2397 return (SET_ERROR(EBADF)); 2398 } 2399 } 2400 if (nvlist_lookup_nvlist(spa->spa_config, 2401 ZPOOL_REWIND_POLICY, &policy) == 0) 2402 VERIFY(nvlist_add_nvlist(nvconfig, 2403 ZPOOL_REWIND_POLICY, policy) == 0); 2404 2405 spa_config_set(spa, nvconfig); 2406 spa_unload(spa); 2407 spa_deactivate(spa); 2408 spa_activate(spa, orig_mode); 2409 2410 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2411 } 2412 2413 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2414 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2415 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2416 if (error != 0) 2417 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2418 2419 /* 2420 * Load the bit that tells us to use the new accounting function 2421 * (raid-z deflation). If we have an older pool, this will not 2422 * be present. 2423 */ 2424 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2425 if (error != 0 && error != ENOENT) 2426 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2427 2428 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2429 &spa->spa_creation_version); 2430 if (error != 0 && error != ENOENT) 2431 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2432 2433 /* 2434 * Load the persistent error log. If we have an older pool, this will 2435 * not be present. 2436 */ 2437 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2438 if (error != 0 && error != ENOENT) 2439 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2440 2441 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2442 &spa->spa_errlog_scrub); 2443 if (error != 0 && error != ENOENT) 2444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2445 2446 /* 2447 * Load the history object. If we have an older pool, this 2448 * will not be present. 2449 */ 2450 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2451 if (error != 0 && error != ENOENT) 2452 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2453 2454 /* 2455 * If we're assembling the pool from the split-off vdevs of 2456 * an existing pool, we don't want to attach the spares & cache 2457 * devices. 2458 */ 2459 2460 /* 2461 * Load any hot spares for this pool. 2462 */ 2463 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2464 if (error != 0 && error != ENOENT) 2465 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2466 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2467 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2468 if (load_nvlist(spa, spa->spa_spares.sav_object, 2469 &spa->spa_spares.sav_config) != 0) 2470 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2471 2472 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2473 spa_load_spares(spa); 2474 spa_config_exit(spa, SCL_ALL, FTAG); 2475 } else if (error == 0) { 2476 spa->spa_spares.sav_sync = B_TRUE; 2477 } 2478 2479 /* 2480 * Load any level 2 ARC devices for this pool. 2481 */ 2482 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2483 &spa->spa_l2cache.sav_object); 2484 if (error != 0 && error != ENOENT) 2485 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2486 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2487 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2488 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2489 &spa->spa_l2cache.sav_config) != 0) 2490 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2491 2492 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2493 spa_load_l2cache(spa); 2494 spa_config_exit(spa, SCL_ALL, FTAG); 2495 } else if (error == 0) { 2496 spa->spa_l2cache.sav_sync = B_TRUE; 2497 } 2498 2499 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2500 2501 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2502 if (error && error != ENOENT) 2503 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2504 2505 if (error == 0) { 2506 uint64_t autoreplace; 2507 2508 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2509 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2510 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2511 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2512 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2513 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2514 &spa->spa_dedup_ditto); 2515 2516 spa->spa_autoreplace = (autoreplace != 0); 2517 } 2518 2519 /* 2520 * If the 'autoreplace' property is set, then post a resource notifying 2521 * the ZFS DE that it should not issue any faults for unopenable 2522 * devices. We also iterate over the vdevs, and post a sysevent for any 2523 * unopenable vdevs so that the normal autoreplace handler can take 2524 * over. 2525 */ 2526 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2527 spa_check_removed(spa->spa_root_vdev); 2528 /* 2529 * For the import case, this is done in spa_import(), because 2530 * at this point we're using the spare definitions from 2531 * the MOS config, not necessarily from the userland config. 2532 */ 2533 if (state != SPA_LOAD_IMPORT) { 2534 spa_aux_check_removed(&spa->spa_spares); 2535 spa_aux_check_removed(&spa->spa_l2cache); 2536 } 2537 } 2538 2539 /* 2540 * Load the vdev state for all toplevel vdevs. 2541 */ 2542 vdev_load(rvd); 2543 2544 /* 2545 * Propagate the leaf DTLs we just loaded all the way up the tree. 2546 */ 2547 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2548 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2549 spa_config_exit(spa, SCL_ALL, FTAG); 2550 2551 /* 2552 * Load the DDTs (dedup tables). 2553 */ 2554 error = ddt_load(spa); 2555 if (error != 0) 2556 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2557 2558 spa_update_dspace(spa); 2559 2560 /* 2561 * Validate the config, using the MOS config to fill in any 2562 * information which might be missing. If we fail to validate 2563 * the config then declare the pool unfit for use. If we're 2564 * assembling a pool from a split, the log is not transferred 2565 * over. 2566 */ 2567 if (type != SPA_IMPORT_ASSEMBLE) { 2568 nvlist_t *nvconfig; 2569 2570 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2571 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2572 2573 if (!spa_config_valid(spa, nvconfig)) { 2574 nvlist_free(nvconfig); 2575 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2576 ENXIO)); 2577 } 2578 nvlist_free(nvconfig); 2579 2580 /* 2581 * Now that we've validated the config, check the state of the 2582 * root vdev. If it can't be opened, it indicates one or 2583 * more toplevel vdevs are faulted. 2584 */ 2585 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2586 return (SET_ERROR(ENXIO)); 2587 2588 if (spa_check_logs(spa)) { 2589 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2590 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2591 } 2592 } 2593 2594 if (missing_feat_write) { 2595 ASSERT(state == SPA_LOAD_TRYIMPORT); 2596 2597 /* 2598 * At this point, we know that we can open the pool in 2599 * read-only mode but not read-write mode. We now have enough 2600 * information and can return to userland. 2601 */ 2602 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2603 } 2604 2605 /* 2606 * We've successfully opened the pool, verify that we're ready 2607 * to start pushing transactions. 2608 */ 2609 if (state != SPA_LOAD_TRYIMPORT) { 2610 if (error = spa_load_verify(spa)) 2611 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2612 error)); 2613 } 2614 2615 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2616 spa->spa_load_max_txg == UINT64_MAX)) { 2617 dmu_tx_t *tx; 2618 int need_update = B_FALSE; 2619 2620 ASSERT(state != SPA_LOAD_TRYIMPORT); 2621 2622 /* 2623 * Claim log blocks that haven't been committed yet. 2624 * This must all happen in a single txg. 2625 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2626 * invoked from zil_claim_log_block()'s i/o done callback. 2627 * Price of rollback is that we abandon the log. 2628 */ 2629 spa->spa_claiming = B_TRUE; 2630 2631 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2632 spa_first_txg(spa)); 2633 (void) dmu_objset_find(spa_name(spa), 2634 zil_claim, tx, DS_FIND_CHILDREN); 2635 dmu_tx_commit(tx); 2636 2637 spa->spa_claiming = B_FALSE; 2638 2639 spa_set_log_state(spa, SPA_LOG_GOOD); 2640 spa->spa_sync_on = B_TRUE; 2641 txg_sync_start(spa->spa_dsl_pool); 2642 2643 /* 2644 * Wait for all claims to sync. We sync up to the highest 2645 * claimed log block birth time so that claimed log blocks 2646 * don't appear to be from the future. spa_claim_max_txg 2647 * will have been set for us by either zil_check_log_chain() 2648 * (invoked from spa_check_logs()) or zil_claim() above. 2649 */ 2650 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2651 2652 /* 2653 * If the config cache is stale, or we have uninitialized 2654 * metaslabs (see spa_vdev_add()), then update the config. 2655 * 2656 * If this is a verbatim import, trust the current 2657 * in-core spa_config and update the disk labels. 2658 */ 2659 if (config_cache_txg != spa->spa_config_txg || 2660 state == SPA_LOAD_IMPORT || 2661 state == SPA_LOAD_RECOVER || 2662 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2663 need_update = B_TRUE; 2664 2665 for (int c = 0; c < rvd->vdev_children; c++) 2666 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2667 need_update = B_TRUE; 2668 2669 /* 2670 * Update the config cache asychronously in case we're the 2671 * root pool, in which case the config cache isn't writable yet. 2672 */ 2673 if (need_update) 2674 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2675 2676 /* 2677 * Check all DTLs to see if anything needs resilvering. 2678 */ 2679 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2680 vdev_resilver_needed(rvd, NULL, NULL)) 2681 spa_async_request(spa, SPA_ASYNC_RESILVER); 2682 2683 /* 2684 * Log the fact that we booted up (so that we can detect if 2685 * we rebooted in the middle of an operation). 2686 */ 2687 spa_history_log_version(spa, "open"); 2688 2689 /* 2690 * Delete any inconsistent datasets. 2691 */ 2692 (void) dmu_objset_find(spa_name(spa), 2693 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2694 2695 /* 2696 * Clean up any stale temporary dataset userrefs. 2697 */ 2698 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2699 } 2700 2701 return (0); 2702 } 2703 2704 static int 2705 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2706 { 2707 int mode = spa->spa_mode; 2708 2709 spa_unload(spa); 2710 spa_deactivate(spa); 2711 2712 spa->spa_load_max_txg--; 2713 2714 spa_activate(spa, mode); 2715 spa_async_suspend(spa); 2716 2717 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2718 } 2719 2720 /* 2721 * If spa_load() fails this function will try loading prior txg's. If 2722 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2723 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2724 * function will not rewind the pool and will return the same error as 2725 * spa_load(). 2726 */ 2727 static int 2728 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2729 uint64_t max_request, int rewind_flags) 2730 { 2731 nvlist_t *loadinfo = NULL; 2732 nvlist_t *config = NULL; 2733 int load_error, rewind_error; 2734 uint64_t safe_rewind_txg; 2735 uint64_t min_txg; 2736 2737 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2738 spa->spa_load_max_txg = spa->spa_load_txg; 2739 spa_set_log_state(spa, SPA_LOG_CLEAR); 2740 } else { 2741 spa->spa_load_max_txg = max_request; 2742 } 2743 2744 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2745 mosconfig); 2746 if (load_error == 0) 2747 return (0); 2748 2749 if (spa->spa_root_vdev != NULL) 2750 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2751 2752 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2753 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2754 2755 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2756 nvlist_free(config); 2757 return (load_error); 2758 } 2759 2760 if (state == SPA_LOAD_RECOVER) { 2761 /* Price of rolling back is discarding txgs, including log */ 2762 spa_set_log_state(spa, SPA_LOG_CLEAR); 2763 } else { 2764 /* 2765 * If we aren't rolling back save the load info from our first 2766 * import attempt so that we can restore it after attempting 2767 * to rewind. 2768 */ 2769 loadinfo = spa->spa_load_info; 2770 spa->spa_load_info = fnvlist_alloc(); 2771 } 2772 2773 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2774 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2775 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2776 TXG_INITIAL : safe_rewind_txg; 2777 2778 /* 2779 * Continue as long as we're finding errors, we're still within 2780 * the acceptable rewind range, and we're still finding uberblocks 2781 */ 2782 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2783 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2784 if (spa->spa_load_max_txg < safe_rewind_txg) 2785 spa->spa_extreme_rewind = B_TRUE; 2786 rewind_error = spa_load_retry(spa, state, mosconfig); 2787 } 2788 2789 spa->spa_extreme_rewind = B_FALSE; 2790 spa->spa_load_max_txg = UINT64_MAX; 2791 2792 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2793 spa_config_set(spa, config); 2794 2795 if (state == SPA_LOAD_RECOVER) { 2796 ASSERT3P(loadinfo, ==, NULL); 2797 return (rewind_error); 2798 } else { 2799 /* Store the rewind info as part of the initial load info */ 2800 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2801 spa->spa_load_info); 2802 2803 /* Restore the initial load info */ 2804 fnvlist_free(spa->spa_load_info); 2805 spa->spa_load_info = loadinfo; 2806 2807 return (load_error); 2808 } 2809 } 2810 2811 /* 2812 * Pool Open/Import 2813 * 2814 * The import case is identical to an open except that the configuration is sent 2815 * down from userland, instead of grabbed from the configuration cache. For the 2816 * case of an open, the pool configuration will exist in the 2817 * POOL_STATE_UNINITIALIZED state. 2818 * 2819 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2820 * the same time open the pool, without having to keep around the spa_t in some 2821 * ambiguous state. 2822 */ 2823 static int 2824 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2825 nvlist_t **config) 2826 { 2827 spa_t *spa; 2828 spa_load_state_t state = SPA_LOAD_OPEN; 2829 int error; 2830 int locked = B_FALSE; 2831 2832 *spapp = NULL; 2833 2834 /* 2835 * As disgusting as this is, we need to support recursive calls to this 2836 * function because dsl_dir_open() is called during spa_load(), and ends 2837 * up calling spa_open() again. The real fix is to figure out how to 2838 * avoid dsl_dir_open() calling this in the first place. 2839 */ 2840 if (mutex_owner(&spa_namespace_lock) != curthread) { 2841 mutex_enter(&spa_namespace_lock); 2842 locked = B_TRUE; 2843 } 2844 2845 if ((spa = spa_lookup(pool)) == NULL) { 2846 if (locked) 2847 mutex_exit(&spa_namespace_lock); 2848 return (SET_ERROR(ENOENT)); 2849 } 2850 2851 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2852 zpool_rewind_policy_t policy; 2853 2854 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2855 &policy); 2856 if (policy.zrp_request & ZPOOL_DO_REWIND) 2857 state = SPA_LOAD_RECOVER; 2858 2859 spa_activate(spa, spa_mode_global); 2860 2861 if (state != SPA_LOAD_RECOVER) 2862 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2863 2864 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2865 policy.zrp_request); 2866 2867 if (error == EBADF) { 2868 /* 2869 * If vdev_validate() returns failure (indicated by 2870 * EBADF), it indicates that one of the vdevs indicates 2871 * that the pool has been exported or destroyed. If 2872 * this is the case, the config cache is out of sync and 2873 * we should remove the pool from the namespace. 2874 */ 2875 spa_unload(spa); 2876 spa_deactivate(spa); 2877 spa_config_sync(spa, B_TRUE, B_TRUE); 2878 spa_remove(spa); 2879 if (locked) 2880 mutex_exit(&spa_namespace_lock); 2881 return (SET_ERROR(ENOENT)); 2882 } 2883 2884 if (error) { 2885 /* 2886 * We can't open the pool, but we still have useful 2887 * information: the state of each vdev after the 2888 * attempted vdev_open(). Return this to the user. 2889 */ 2890 if (config != NULL && spa->spa_config) { 2891 VERIFY(nvlist_dup(spa->spa_config, config, 2892 KM_SLEEP) == 0); 2893 VERIFY(nvlist_add_nvlist(*config, 2894 ZPOOL_CONFIG_LOAD_INFO, 2895 spa->spa_load_info) == 0); 2896 } 2897 spa_unload(spa); 2898 spa_deactivate(spa); 2899 spa->spa_last_open_failed = error; 2900 if (locked) 2901 mutex_exit(&spa_namespace_lock); 2902 *spapp = NULL; 2903 return (error); 2904 } 2905 } 2906 2907 spa_open_ref(spa, tag); 2908 2909 if (config != NULL) 2910 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2911 2912 /* 2913 * If we've recovered the pool, pass back any information we 2914 * gathered while doing the load. 2915 */ 2916 if (state == SPA_LOAD_RECOVER) { 2917 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2918 spa->spa_load_info) == 0); 2919 } 2920 2921 if (locked) { 2922 spa->spa_last_open_failed = 0; 2923 spa->spa_last_ubsync_txg = 0; 2924 spa->spa_load_txg = 0; 2925 mutex_exit(&spa_namespace_lock); 2926 } 2927 2928 *spapp = spa; 2929 2930 return (0); 2931 } 2932 2933 int 2934 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2935 nvlist_t **config) 2936 { 2937 return (spa_open_common(name, spapp, tag, policy, config)); 2938 } 2939 2940 int 2941 spa_open(const char *name, spa_t **spapp, void *tag) 2942 { 2943 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2944 } 2945 2946 /* 2947 * Lookup the given spa_t, incrementing the inject count in the process, 2948 * preventing it from being exported or destroyed. 2949 */ 2950 spa_t * 2951 spa_inject_addref(char *name) 2952 { 2953 spa_t *spa; 2954 2955 mutex_enter(&spa_namespace_lock); 2956 if ((spa = spa_lookup(name)) == NULL) { 2957 mutex_exit(&spa_namespace_lock); 2958 return (NULL); 2959 } 2960 spa->spa_inject_ref++; 2961 mutex_exit(&spa_namespace_lock); 2962 2963 return (spa); 2964 } 2965 2966 void 2967 spa_inject_delref(spa_t *spa) 2968 { 2969 mutex_enter(&spa_namespace_lock); 2970 spa->spa_inject_ref--; 2971 mutex_exit(&spa_namespace_lock); 2972 } 2973 2974 /* 2975 * Add spares device information to the nvlist. 2976 */ 2977 static void 2978 spa_add_spares(spa_t *spa, nvlist_t *config) 2979 { 2980 nvlist_t **spares; 2981 uint_t i, nspares; 2982 nvlist_t *nvroot; 2983 uint64_t guid; 2984 vdev_stat_t *vs; 2985 uint_t vsc; 2986 uint64_t pool; 2987 2988 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2989 2990 if (spa->spa_spares.sav_count == 0) 2991 return; 2992 2993 VERIFY(nvlist_lookup_nvlist(config, 2994 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2995 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2996 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2997 if (nspares != 0) { 2998 VERIFY(nvlist_add_nvlist_array(nvroot, 2999 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3000 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3001 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3002 3003 /* 3004 * Go through and find any spares which have since been 3005 * repurposed as an active spare. If this is the case, update 3006 * their status appropriately. 3007 */ 3008 for (i = 0; i < nspares; i++) { 3009 VERIFY(nvlist_lookup_uint64(spares[i], 3010 ZPOOL_CONFIG_GUID, &guid) == 0); 3011 if (spa_spare_exists(guid, &pool, NULL) && 3012 pool != 0ULL) { 3013 VERIFY(nvlist_lookup_uint64_array( 3014 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3015 (uint64_t **)&vs, &vsc) == 0); 3016 vs->vs_state = VDEV_STATE_CANT_OPEN; 3017 vs->vs_aux = VDEV_AUX_SPARED; 3018 } 3019 } 3020 } 3021 } 3022 3023 /* 3024 * Add l2cache device information to the nvlist, including vdev stats. 3025 */ 3026 static void 3027 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3028 { 3029 nvlist_t **l2cache; 3030 uint_t i, j, nl2cache; 3031 nvlist_t *nvroot; 3032 uint64_t guid; 3033 vdev_t *vd; 3034 vdev_stat_t *vs; 3035 uint_t vsc; 3036 3037 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3038 3039 if (spa->spa_l2cache.sav_count == 0) 3040 return; 3041 3042 VERIFY(nvlist_lookup_nvlist(config, 3043 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3044 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3045 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3046 if (nl2cache != 0) { 3047 VERIFY(nvlist_add_nvlist_array(nvroot, 3048 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3049 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3050 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3051 3052 /* 3053 * Update level 2 cache device stats. 3054 */ 3055 3056 for (i = 0; i < nl2cache; i++) { 3057 VERIFY(nvlist_lookup_uint64(l2cache[i], 3058 ZPOOL_CONFIG_GUID, &guid) == 0); 3059 3060 vd = NULL; 3061 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3062 if (guid == 3063 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3064 vd = spa->spa_l2cache.sav_vdevs[j]; 3065 break; 3066 } 3067 } 3068 ASSERT(vd != NULL); 3069 3070 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3071 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3072 == 0); 3073 vdev_get_stats(vd, vs); 3074 } 3075 } 3076 } 3077 3078 static void 3079 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3080 { 3081 nvlist_t *features; 3082 zap_cursor_t zc; 3083 zap_attribute_t za; 3084 3085 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3086 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3087 3088 if (spa->spa_feat_for_read_obj != 0) { 3089 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3090 spa->spa_feat_for_read_obj); 3091 zap_cursor_retrieve(&zc, &za) == 0; 3092 zap_cursor_advance(&zc)) { 3093 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3094 za.za_num_integers == 1); 3095 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3096 za.za_first_integer)); 3097 } 3098 zap_cursor_fini(&zc); 3099 } 3100 3101 if (spa->spa_feat_for_write_obj != 0) { 3102 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3103 spa->spa_feat_for_write_obj); 3104 zap_cursor_retrieve(&zc, &za) == 0; 3105 zap_cursor_advance(&zc)) { 3106 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3107 za.za_num_integers == 1); 3108 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3109 za.za_first_integer)); 3110 } 3111 zap_cursor_fini(&zc); 3112 } 3113 3114 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3115 features) == 0); 3116 nvlist_free(features); 3117 } 3118 3119 int 3120 spa_get_stats(const char *name, nvlist_t **config, 3121 char *altroot, size_t buflen) 3122 { 3123 int error; 3124 spa_t *spa; 3125 3126 *config = NULL; 3127 error = spa_open_common(name, &spa, FTAG, NULL, config); 3128 3129 if (spa != NULL) { 3130 /* 3131 * This still leaves a window of inconsistency where the spares 3132 * or l2cache devices could change and the config would be 3133 * self-inconsistent. 3134 */ 3135 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3136 3137 if (*config != NULL) { 3138 uint64_t loadtimes[2]; 3139 3140 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3141 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3142 VERIFY(nvlist_add_uint64_array(*config, 3143 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3144 3145 VERIFY(nvlist_add_uint64(*config, 3146 ZPOOL_CONFIG_ERRCOUNT, 3147 spa_get_errlog_size(spa)) == 0); 3148 3149 if (spa_suspended(spa)) 3150 VERIFY(nvlist_add_uint64(*config, 3151 ZPOOL_CONFIG_SUSPENDED, 3152 spa->spa_failmode) == 0); 3153 3154 spa_add_spares(spa, *config); 3155 spa_add_l2cache(spa, *config); 3156 spa_add_feature_stats(spa, *config); 3157 } 3158 } 3159 3160 /* 3161 * We want to get the alternate root even for faulted pools, so we cheat 3162 * and call spa_lookup() directly. 3163 */ 3164 if (altroot) { 3165 if (spa == NULL) { 3166 mutex_enter(&spa_namespace_lock); 3167 spa = spa_lookup(name); 3168 if (spa) 3169 spa_altroot(spa, altroot, buflen); 3170 else 3171 altroot[0] = '\0'; 3172 spa = NULL; 3173 mutex_exit(&spa_namespace_lock); 3174 } else { 3175 spa_altroot(spa, altroot, buflen); 3176 } 3177 } 3178 3179 if (spa != NULL) { 3180 spa_config_exit(spa, SCL_CONFIG, FTAG); 3181 spa_close(spa, FTAG); 3182 } 3183 3184 return (error); 3185 } 3186 3187 /* 3188 * Validate that the auxiliary device array is well formed. We must have an 3189 * array of nvlists, each which describes a valid leaf vdev. If this is an 3190 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3191 * specified, as long as they are well-formed. 3192 */ 3193 static int 3194 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3195 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3196 vdev_labeltype_t label) 3197 { 3198 nvlist_t **dev; 3199 uint_t i, ndev; 3200 vdev_t *vd; 3201 int error; 3202 3203 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3204 3205 /* 3206 * It's acceptable to have no devs specified. 3207 */ 3208 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3209 return (0); 3210 3211 if (ndev == 0) 3212 return (SET_ERROR(EINVAL)); 3213 3214 /* 3215 * Make sure the pool is formatted with a version that supports this 3216 * device type. 3217 */ 3218 if (spa_version(spa) < version) 3219 return (SET_ERROR(ENOTSUP)); 3220 3221 /* 3222 * Set the pending device list so we correctly handle device in-use 3223 * checking. 3224 */ 3225 sav->sav_pending = dev; 3226 sav->sav_npending = ndev; 3227 3228 for (i = 0; i < ndev; i++) { 3229 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3230 mode)) != 0) 3231 goto out; 3232 3233 if (!vd->vdev_ops->vdev_op_leaf) { 3234 vdev_free(vd); 3235 error = SET_ERROR(EINVAL); 3236 goto out; 3237 } 3238 3239 /* 3240 * The L2ARC currently only supports disk devices in 3241 * kernel context. For user-level testing, we allow it. 3242 */ 3243 #ifdef _KERNEL 3244 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3245 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3246 error = SET_ERROR(ENOTBLK); 3247 vdev_free(vd); 3248 goto out; 3249 } 3250 #endif 3251 vd->vdev_top = vd; 3252 3253 if ((error = vdev_open(vd)) == 0 && 3254 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3255 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3256 vd->vdev_guid) == 0); 3257 } 3258 3259 vdev_free(vd); 3260 3261 if (error && 3262 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3263 goto out; 3264 else 3265 error = 0; 3266 } 3267 3268 out: 3269 sav->sav_pending = NULL; 3270 sav->sav_npending = 0; 3271 return (error); 3272 } 3273 3274 static int 3275 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3276 { 3277 int error; 3278 3279 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3280 3281 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3282 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3283 VDEV_LABEL_SPARE)) != 0) { 3284 return (error); 3285 } 3286 3287 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3288 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3289 VDEV_LABEL_L2CACHE)); 3290 } 3291 3292 static void 3293 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3294 const char *config) 3295 { 3296 int i; 3297 3298 if (sav->sav_config != NULL) { 3299 nvlist_t **olddevs; 3300 uint_t oldndevs; 3301 nvlist_t **newdevs; 3302 3303 /* 3304 * Generate new dev list by concatentating with the 3305 * current dev list. 3306 */ 3307 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3308 &olddevs, &oldndevs) == 0); 3309 3310 newdevs = kmem_alloc(sizeof (void *) * 3311 (ndevs + oldndevs), KM_SLEEP); 3312 for (i = 0; i < oldndevs; i++) 3313 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3314 KM_SLEEP) == 0); 3315 for (i = 0; i < ndevs; i++) 3316 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3317 KM_SLEEP) == 0); 3318 3319 VERIFY(nvlist_remove(sav->sav_config, config, 3320 DATA_TYPE_NVLIST_ARRAY) == 0); 3321 3322 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3323 config, newdevs, ndevs + oldndevs) == 0); 3324 for (i = 0; i < oldndevs + ndevs; i++) 3325 nvlist_free(newdevs[i]); 3326 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3327 } else { 3328 /* 3329 * Generate a new dev list. 3330 */ 3331 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3332 KM_SLEEP) == 0); 3333 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3334 devs, ndevs) == 0); 3335 } 3336 } 3337 3338 /* 3339 * Stop and drop level 2 ARC devices 3340 */ 3341 void 3342 spa_l2cache_drop(spa_t *spa) 3343 { 3344 vdev_t *vd; 3345 int i; 3346 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3347 3348 for (i = 0; i < sav->sav_count; i++) { 3349 uint64_t pool; 3350 3351 vd = sav->sav_vdevs[i]; 3352 ASSERT(vd != NULL); 3353 3354 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3355 pool != 0ULL && l2arc_vdev_present(vd)) 3356 l2arc_remove_vdev(vd); 3357 } 3358 } 3359 3360 /* 3361 * Pool Creation 3362 */ 3363 int 3364 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3365 nvlist_t *zplprops) 3366 { 3367 spa_t *spa; 3368 char *altroot = NULL; 3369 vdev_t *rvd; 3370 dsl_pool_t *dp; 3371 dmu_tx_t *tx; 3372 int error = 0; 3373 uint64_t txg = TXG_INITIAL; 3374 nvlist_t **spares, **l2cache; 3375 uint_t nspares, nl2cache; 3376 uint64_t version, obj; 3377 boolean_t has_features; 3378 3379 /* 3380 * If this pool already exists, return failure. 3381 */ 3382 mutex_enter(&spa_namespace_lock); 3383 if (spa_lookup(pool) != NULL) { 3384 mutex_exit(&spa_namespace_lock); 3385 return (SET_ERROR(EEXIST)); 3386 } 3387 3388 /* 3389 * Allocate a new spa_t structure. 3390 */ 3391 (void) nvlist_lookup_string(props, 3392 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3393 spa = spa_add(pool, NULL, altroot); 3394 spa_activate(spa, spa_mode_global); 3395 3396 if (props && (error = spa_prop_validate(spa, props))) { 3397 spa_deactivate(spa); 3398 spa_remove(spa); 3399 mutex_exit(&spa_namespace_lock); 3400 return (error); 3401 } 3402 3403 has_features = B_FALSE; 3404 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3405 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3406 if (zpool_prop_feature(nvpair_name(elem))) 3407 has_features = B_TRUE; 3408 } 3409 3410 if (has_features || nvlist_lookup_uint64(props, 3411 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3412 version = SPA_VERSION; 3413 } 3414 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3415 3416 spa->spa_first_txg = txg; 3417 spa->spa_uberblock.ub_txg = txg - 1; 3418 spa->spa_uberblock.ub_version = version; 3419 spa->spa_ubsync = spa->spa_uberblock; 3420 3421 /* 3422 * Create "The Godfather" zio to hold all async IOs 3423 */ 3424 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3425 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3426 3427 /* 3428 * Create the root vdev. 3429 */ 3430 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3431 3432 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3433 3434 ASSERT(error != 0 || rvd != NULL); 3435 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3436 3437 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3438 error = SET_ERROR(EINVAL); 3439 3440 if (error == 0 && 3441 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3442 (error = spa_validate_aux(spa, nvroot, txg, 3443 VDEV_ALLOC_ADD)) == 0) { 3444 for (int c = 0; c < rvd->vdev_children; c++) { 3445 vdev_metaslab_set_size(rvd->vdev_child[c]); 3446 vdev_expand(rvd->vdev_child[c], txg); 3447 } 3448 } 3449 3450 spa_config_exit(spa, SCL_ALL, FTAG); 3451 3452 if (error != 0) { 3453 spa_unload(spa); 3454 spa_deactivate(spa); 3455 spa_remove(spa); 3456 mutex_exit(&spa_namespace_lock); 3457 return (error); 3458 } 3459 3460 /* 3461 * Get the list of spares, if specified. 3462 */ 3463 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3464 &spares, &nspares) == 0) { 3465 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3466 KM_SLEEP) == 0); 3467 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3468 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3469 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3470 spa_load_spares(spa); 3471 spa_config_exit(spa, SCL_ALL, FTAG); 3472 spa->spa_spares.sav_sync = B_TRUE; 3473 } 3474 3475 /* 3476 * Get the list of level 2 cache devices, if specified. 3477 */ 3478 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3479 &l2cache, &nl2cache) == 0) { 3480 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3481 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3482 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3483 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3484 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3485 spa_load_l2cache(spa); 3486 spa_config_exit(spa, SCL_ALL, FTAG); 3487 spa->spa_l2cache.sav_sync = B_TRUE; 3488 } 3489 3490 spa->spa_is_initializing = B_TRUE; 3491 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3492 spa->spa_meta_objset = dp->dp_meta_objset; 3493 spa->spa_is_initializing = B_FALSE; 3494 3495 /* 3496 * Create DDTs (dedup tables). 3497 */ 3498 ddt_create(spa); 3499 3500 spa_update_dspace(spa); 3501 3502 tx = dmu_tx_create_assigned(dp, txg); 3503 3504 /* 3505 * Create the pool config object. 3506 */ 3507 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3508 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3509 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3510 3511 if (zap_add(spa->spa_meta_objset, 3512 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3513 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3514 cmn_err(CE_PANIC, "failed to add pool config"); 3515 } 3516 3517 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3518 spa_feature_create_zap_objects(spa, tx); 3519 3520 if (zap_add(spa->spa_meta_objset, 3521 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3522 sizeof (uint64_t), 1, &version, tx) != 0) { 3523 cmn_err(CE_PANIC, "failed to add pool version"); 3524 } 3525 3526 /* Newly created pools with the right version are always deflated. */ 3527 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3528 spa->spa_deflate = TRUE; 3529 if (zap_add(spa->spa_meta_objset, 3530 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3531 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3532 cmn_err(CE_PANIC, "failed to add deflate"); 3533 } 3534 } 3535 3536 /* 3537 * Create the deferred-free bpobj. Turn off compression 3538 * because sync-to-convergence takes longer if the blocksize 3539 * keeps changing. 3540 */ 3541 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3542 dmu_object_set_compress(spa->spa_meta_objset, obj, 3543 ZIO_COMPRESS_OFF, tx); 3544 if (zap_add(spa->spa_meta_objset, 3545 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3546 sizeof (uint64_t), 1, &obj, tx) != 0) { 3547 cmn_err(CE_PANIC, "failed to add bpobj"); 3548 } 3549 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3550 spa->spa_meta_objset, obj)); 3551 3552 /* 3553 * Create the pool's history object. 3554 */ 3555 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3556 spa_history_create_obj(spa, tx); 3557 3558 /* 3559 * Set pool properties. 3560 */ 3561 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3562 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3563 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3564 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3565 3566 if (props != NULL) { 3567 spa_configfile_set(spa, props, B_FALSE); 3568 spa_sync_props(props, tx); 3569 } 3570 3571 dmu_tx_commit(tx); 3572 3573 spa->spa_sync_on = B_TRUE; 3574 txg_sync_start(spa->spa_dsl_pool); 3575 3576 /* 3577 * We explicitly wait for the first transaction to complete so that our 3578 * bean counters are appropriately updated. 3579 */ 3580 txg_wait_synced(spa->spa_dsl_pool, txg); 3581 3582 spa_config_sync(spa, B_FALSE, B_TRUE); 3583 3584 spa_history_log_version(spa, "create"); 3585 3586 spa->spa_minref = refcount_count(&spa->spa_refcount); 3587 3588 mutex_exit(&spa_namespace_lock); 3589 3590 return (0); 3591 } 3592 3593 #ifdef _KERNEL 3594 /* 3595 * Get the root pool information from the root disk, then import the root pool 3596 * during the system boot up time. 3597 */ 3598 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3599 3600 static nvlist_t * 3601 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3602 { 3603 nvlist_t *config; 3604 nvlist_t *nvtop, *nvroot; 3605 uint64_t pgid; 3606 3607 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3608 return (NULL); 3609 3610 /* 3611 * Add this top-level vdev to the child array. 3612 */ 3613 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3614 &nvtop) == 0); 3615 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3616 &pgid) == 0); 3617 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3618 3619 /* 3620 * Put this pool's top-level vdevs into a root vdev. 3621 */ 3622 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3623 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3624 VDEV_TYPE_ROOT) == 0); 3625 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3626 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3627 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3628 &nvtop, 1) == 0); 3629 3630 /* 3631 * Replace the existing vdev_tree with the new root vdev in 3632 * this pool's configuration (remove the old, add the new). 3633 */ 3634 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3635 nvlist_free(nvroot); 3636 return (config); 3637 } 3638 3639 /* 3640 * Walk the vdev tree and see if we can find a device with "better" 3641 * configuration. A configuration is "better" if the label on that 3642 * device has a more recent txg. 3643 */ 3644 static void 3645 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3646 { 3647 for (int c = 0; c < vd->vdev_children; c++) 3648 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3649 3650 if (vd->vdev_ops->vdev_op_leaf) { 3651 nvlist_t *label; 3652 uint64_t label_txg; 3653 3654 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3655 &label) != 0) 3656 return; 3657 3658 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3659 &label_txg) == 0); 3660 3661 /* 3662 * Do we have a better boot device? 3663 */ 3664 if (label_txg > *txg) { 3665 *txg = label_txg; 3666 *avd = vd; 3667 } 3668 nvlist_free(label); 3669 } 3670 } 3671 3672 /* 3673 * Import a root pool. 3674 * 3675 * For x86. devpath_list will consist of devid and/or physpath name of 3676 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3677 * The GRUB "findroot" command will return the vdev we should boot. 3678 * 3679 * For Sparc, devpath_list consists the physpath name of the booting device 3680 * no matter the rootpool is a single device pool or a mirrored pool. 3681 * e.g. 3682 * "/pci@1f,0/ide@d/disk@0,0:a" 3683 */ 3684 int 3685 spa_import_rootpool(char *devpath, char *devid) 3686 { 3687 spa_t *spa; 3688 vdev_t *rvd, *bvd, *avd = NULL; 3689 nvlist_t *config, *nvtop; 3690 uint64_t guid, txg; 3691 char *pname; 3692 int error; 3693 3694 /* 3695 * Read the label from the boot device and generate a configuration. 3696 */ 3697 config = spa_generate_rootconf(devpath, devid, &guid); 3698 #if defined(_OBP) && defined(_KERNEL) 3699 if (config == NULL) { 3700 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3701 /* iscsi boot */ 3702 get_iscsi_bootpath_phy(devpath); 3703 config = spa_generate_rootconf(devpath, devid, &guid); 3704 } 3705 } 3706 #endif 3707 if (config == NULL) { 3708 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3709 devpath); 3710 return (SET_ERROR(EIO)); 3711 } 3712 3713 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3714 &pname) == 0); 3715 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3716 3717 mutex_enter(&spa_namespace_lock); 3718 if ((spa = spa_lookup(pname)) != NULL) { 3719 /* 3720 * Remove the existing root pool from the namespace so that we 3721 * can replace it with the correct config we just read in. 3722 */ 3723 spa_remove(spa); 3724 } 3725 3726 spa = spa_add(pname, config, NULL); 3727 spa->spa_is_root = B_TRUE; 3728 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3729 3730 /* 3731 * Build up a vdev tree based on the boot device's label config. 3732 */ 3733 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3734 &nvtop) == 0); 3735 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3736 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3737 VDEV_ALLOC_ROOTPOOL); 3738 spa_config_exit(spa, SCL_ALL, FTAG); 3739 if (error) { 3740 mutex_exit(&spa_namespace_lock); 3741 nvlist_free(config); 3742 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3743 pname); 3744 return (error); 3745 } 3746 3747 /* 3748 * Get the boot vdev. 3749 */ 3750 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3751 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3752 (u_longlong_t)guid); 3753 error = SET_ERROR(ENOENT); 3754 goto out; 3755 } 3756 3757 /* 3758 * Determine if there is a better boot device. 3759 */ 3760 avd = bvd; 3761 spa_alt_rootvdev(rvd, &avd, &txg); 3762 if (avd != bvd) { 3763 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3764 "try booting from '%s'", avd->vdev_path); 3765 error = SET_ERROR(EINVAL); 3766 goto out; 3767 } 3768 3769 /* 3770 * If the boot device is part of a spare vdev then ensure that 3771 * we're booting off the active spare. 3772 */ 3773 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3774 !bvd->vdev_isspare) { 3775 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3776 "try booting from '%s'", 3777 bvd->vdev_parent-> 3778 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3779 error = SET_ERROR(EINVAL); 3780 goto out; 3781 } 3782 3783 error = 0; 3784 out: 3785 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3786 vdev_free(rvd); 3787 spa_config_exit(spa, SCL_ALL, FTAG); 3788 mutex_exit(&spa_namespace_lock); 3789 3790 nvlist_free(config); 3791 return (error); 3792 } 3793 3794 #endif 3795 3796 /* 3797 * Import a non-root pool into the system. 3798 */ 3799 int 3800 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3801 { 3802 spa_t *spa; 3803 char *altroot = NULL; 3804 spa_load_state_t state = SPA_LOAD_IMPORT; 3805 zpool_rewind_policy_t policy; 3806 uint64_t mode = spa_mode_global; 3807 uint64_t readonly = B_FALSE; 3808 int error; 3809 nvlist_t *nvroot; 3810 nvlist_t **spares, **l2cache; 3811 uint_t nspares, nl2cache; 3812 3813 /* 3814 * If a pool with this name exists, return failure. 3815 */ 3816 mutex_enter(&spa_namespace_lock); 3817 if (spa_lookup(pool) != NULL) { 3818 mutex_exit(&spa_namespace_lock); 3819 return (SET_ERROR(EEXIST)); 3820 } 3821 3822 /* 3823 * Create and initialize the spa structure. 3824 */ 3825 (void) nvlist_lookup_string(props, 3826 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3827 (void) nvlist_lookup_uint64(props, 3828 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3829 if (readonly) 3830 mode = FREAD; 3831 spa = spa_add(pool, config, altroot); 3832 spa->spa_import_flags = flags; 3833 3834 /* 3835 * Verbatim import - Take a pool and insert it into the namespace 3836 * as if it had been loaded at boot. 3837 */ 3838 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3839 if (props != NULL) 3840 spa_configfile_set(spa, props, B_FALSE); 3841 3842 spa_config_sync(spa, B_FALSE, B_TRUE); 3843 3844 mutex_exit(&spa_namespace_lock); 3845 return (0); 3846 } 3847 3848 spa_activate(spa, mode); 3849 3850 /* 3851 * Don't start async tasks until we know everything is healthy. 3852 */ 3853 spa_async_suspend(spa); 3854 3855 zpool_get_rewind_policy(config, &policy); 3856 if (policy.zrp_request & ZPOOL_DO_REWIND) 3857 state = SPA_LOAD_RECOVER; 3858 3859 /* 3860 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3861 * because the user-supplied config is actually the one to trust when 3862 * doing an import. 3863 */ 3864 if (state != SPA_LOAD_RECOVER) 3865 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3866 3867 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3868 policy.zrp_request); 3869 3870 /* 3871 * Propagate anything learned while loading the pool and pass it 3872 * back to caller (i.e. rewind info, missing devices, etc). 3873 */ 3874 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3875 spa->spa_load_info) == 0); 3876 3877 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3878 /* 3879 * Toss any existing sparelist, as it doesn't have any validity 3880 * anymore, and conflicts with spa_has_spare(). 3881 */ 3882 if (spa->spa_spares.sav_config) { 3883 nvlist_free(spa->spa_spares.sav_config); 3884 spa->spa_spares.sav_config = NULL; 3885 spa_load_spares(spa); 3886 } 3887 if (spa->spa_l2cache.sav_config) { 3888 nvlist_free(spa->spa_l2cache.sav_config); 3889 spa->spa_l2cache.sav_config = NULL; 3890 spa_load_l2cache(spa); 3891 } 3892 3893 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3894 &nvroot) == 0); 3895 if (error == 0) 3896 error = spa_validate_aux(spa, nvroot, -1ULL, 3897 VDEV_ALLOC_SPARE); 3898 if (error == 0) 3899 error = spa_validate_aux(spa, nvroot, -1ULL, 3900 VDEV_ALLOC_L2CACHE); 3901 spa_config_exit(spa, SCL_ALL, FTAG); 3902 3903 if (props != NULL) 3904 spa_configfile_set(spa, props, B_FALSE); 3905 3906 if (error != 0 || (props && spa_writeable(spa) && 3907 (error = spa_prop_set(spa, props)))) { 3908 spa_unload(spa); 3909 spa_deactivate(spa); 3910 spa_remove(spa); 3911 mutex_exit(&spa_namespace_lock); 3912 return (error); 3913 } 3914 3915 spa_async_resume(spa); 3916 3917 /* 3918 * Override any spares and level 2 cache devices as specified by 3919 * the user, as these may have correct device names/devids, etc. 3920 */ 3921 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3922 &spares, &nspares) == 0) { 3923 if (spa->spa_spares.sav_config) 3924 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3925 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3926 else 3927 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3928 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3929 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3930 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3931 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3932 spa_load_spares(spa); 3933 spa_config_exit(spa, SCL_ALL, FTAG); 3934 spa->spa_spares.sav_sync = B_TRUE; 3935 } 3936 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3937 &l2cache, &nl2cache) == 0) { 3938 if (spa->spa_l2cache.sav_config) 3939 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3940 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3941 else 3942 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3943 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3944 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3945 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3946 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3947 spa_load_l2cache(spa); 3948 spa_config_exit(spa, SCL_ALL, FTAG); 3949 spa->spa_l2cache.sav_sync = B_TRUE; 3950 } 3951 3952 /* 3953 * Check for any removed devices. 3954 */ 3955 if (spa->spa_autoreplace) { 3956 spa_aux_check_removed(&spa->spa_spares); 3957 spa_aux_check_removed(&spa->spa_l2cache); 3958 } 3959 3960 if (spa_writeable(spa)) { 3961 /* 3962 * Update the config cache to include the newly-imported pool. 3963 */ 3964 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3965 } 3966 3967 /* 3968 * It's possible that the pool was expanded while it was exported. 3969 * We kick off an async task to handle this for us. 3970 */ 3971 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3972 3973 mutex_exit(&spa_namespace_lock); 3974 spa_history_log_version(spa, "import"); 3975 3976 return (0); 3977 } 3978 3979 nvlist_t * 3980 spa_tryimport(nvlist_t *tryconfig) 3981 { 3982 nvlist_t *config = NULL; 3983 char *poolname; 3984 spa_t *spa; 3985 uint64_t state; 3986 int error; 3987 3988 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3989 return (NULL); 3990 3991 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3992 return (NULL); 3993 3994 /* 3995 * Create and initialize the spa structure. 3996 */ 3997 mutex_enter(&spa_namespace_lock); 3998 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3999 spa_activate(spa, FREAD); 4000 4001 /* 4002 * Pass off the heavy lifting to spa_load(). 4003 * Pass TRUE for mosconfig because the user-supplied config 4004 * is actually the one to trust when doing an import. 4005 */ 4006 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4007 4008 /* 4009 * If 'tryconfig' was at least parsable, return the current config. 4010 */ 4011 if (spa->spa_root_vdev != NULL) { 4012 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4013 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4014 poolname) == 0); 4015 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4016 state) == 0); 4017 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4018 spa->spa_uberblock.ub_timestamp) == 0); 4019 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4020 spa->spa_load_info) == 0); 4021 4022 /* 4023 * If the bootfs property exists on this pool then we 4024 * copy it out so that external consumers can tell which 4025 * pools are bootable. 4026 */ 4027 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4028 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4029 4030 /* 4031 * We have to play games with the name since the 4032 * pool was opened as TRYIMPORT_NAME. 4033 */ 4034 if (dsl_dsobj_to_dsname(spa_name(spa), 4035 spa->spa_bootfs, tmpname) == 0) { 4036 char *cp; 4037 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4038 4039 cp = strchr(tmpname, '/'); 4040 if (cp == NULL) { 4041 (void) strlcpy(dsname, tmpname, 4042 MAXPATHLEN); 4043 } else { 4044 (void) snprintf(dsname, MAXPATHLEN, 4045 "%s/%s", poolname, ++cp); 4046 } 4047 VERIFY(nvlist_add_string(config, 4048 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4049 kmem_free(dsname, MAXPATHLEN); 4050 } 4051 kmem_free(tmpname, MAXPATHLEN); 4052 } 4053 4054 /* 4055 * Add the list of hot spares and level 2 cache devices. 4056 */ 4057 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4058 spa_add_spares(spa, config); 4059 spa_add_l2cache(spa, config); 4060 spa_config_exit(spa, SCL_CONFIG, FTAG); 4061 } 4062 4063 spa_unload(spa); 4064 spa_deactivate(spa); 4065 spa_remove(spa); 4066 mutex_exit(&spa_namespace_lock); 4067 4068 return (config); 4069 } 4070 4071 /* 4072 * Pool export/destroy 4073 * 4074 * The act of destroying or exporting a pool is very simple. We make sure there 4075 * is no more pending I/O and any references to the pool are gone. Then, we 4076 * update the pool state and sync all the labels to disk, removing the 4077 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4078 * we don't sync the labels or remove the configuration cache. 4079 */ 4080 static int 4081 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4082 boolean_t force, boolean_t hardforce) 4083 { 4084 spa_t *spa; 4085 4086 if (oldconfig) 4087 *oldconfig = NULL; 4088 4089 if (!(spa_mode_global & FWRITE)) 4090 return (SET_ERROR(EROFS)); 4091 4092 mutex_enter(&spa_namespace_lock); 4093 if ((spa = spa_lookup(pool)) == NULL) { 4094 mutex_exit(&spa_namespace_lock); 4095 return (SET_ERROR(ENOENT)); 4096 } 4097 4098 /* 4099 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4100 * reacquire the namespace lock, and see if we can export. 4101 */ 4102 spa_open_ref(spa, FTAG); 4103 mutex_exit(&spa_namespace_lock); 4104 spa_async_suspend(spa); 4105 mutex_enter(&spa_namespace_lock); 4106 spa_close(spa, FTAG); 4107 4108 /* 4109 * The pool will be in core if it's openable, 4110 * in which case we can modify its state. 4111 */ 4112 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4113 /* 4114 * Objsets may be open only because they're dirty, so we 4115 * have to force it to sync before checking spa_refcnt. 4116 */ 4117 txg_wait_synced(spa->spa_dsl_pool, 0); 4118 4119 /* 4120 * A pool cannot be exported or destroyed if there are active 4121 * references. If we are resetting a pool, allow references by 4122 * fault injection handlers. 4123 */ 4124 if (!spa_refcount_zero(spa) || 4125 (spa->spa_inject_ref != 0 && 4126 new_state != POOL_STATE_UNINITIALIZED)) { 4127 spa_async_resume(spa); 4128 mutex_exit(&spa_namespace_lock); 4129 return (SET_ERROR(EBUSY)); 4130 } 4131 4132 /* 4133 * A pool cannot be exported if it has an active shared spare. 4134 * This is to prevent other pools stealing the active spare 4135 * from an exported pool. At user's own will, such pool can 4136 * be forcedly exported. 4137 */ 4138 if (!force && new_state == POOL_STATE_EXPORTED && 4139 spa_has_active_shared_spare(spa)) { 4140 spa_async_resume(spa); 4141 mutex_exit(&spa_namespace_lock); 4142 return (SET_ERROR(EXDEV)); 4143 } 4144 4145 /* 4146 * We want this to be reflected on every label, 4147 * so mark them all dirty. spa_unload() will do the 4148 * final sync that pushes these changes out. 4149 */ 4150 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4151 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4152 spa->spa_state = new_state; 4153 spa->spa_final_txg = spa_last_synced_txg(spa) + 4154 TXG_DEFER_SIZE + 1; 4155 vdev_config_dirty(spa->spa_root_vdev); 4156 spa_config_exit(spa, SCL_ALL, FTAG); 4157 } 4158 } 4159 4160 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4161 4162 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4163 spa_unload(spa); 4164 spa_deactivate(spa); 4165 } 4166 4167 if (oldconfig && spa->spa_config) 4168 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4169 4170 if (new_state != POOL_STATE_UNINITIALIZED) { 4171 if (!hardforce) 4172 spa_config_sync(spa, B_TRUE, B_TRUE); 4173 spa_remove(spa); 4174 } 4175 mutex_exit(&spa_namespace_lock); 4176 4177 return (0); 4178 } 4179 4180 /* 4181 * Destroy a storage pool. 4182 */ 4183 int 4184 spa_destroy(char *pool) 4185 { 4186 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4187 B_FALSE, B_FALSE)); 4188 } 4189 4190 /* 4191 * Export a storage pool. 4192 */ 4193 int 4194 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4195 boolean_t hardforce) 4196 { 4197 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4198 force, hardforce)); 4199 } 4200 4201 /* 4202 * Similar to spa_export(), this unloads the spa_t without actually removing it 4203 * from the namespace in any way. 4204 */ 4205 int 4206 spa_reset(char *pool) 4207 { 4208 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4209 B_FALSE, B_FALSE)); 4210 } 4211 4212 /* 4213 * ========================================================================== 4214 * Device manipulation 4215 * ========================================================================== 4216 */ 4217 4218 /* 4219 * Add a device to a storage pool. 4220 */ 4221 int 4222 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4223 { 4224 uint64_t txg, id; 4225 int error; 4226 vdev_t *rvd = spa->spa_root_vdev; 4227 vdev_t *vd, *tvd; 4228 nvlist_t **spares, **l2cache; 4229 uint_t nspares, nl2cache; 4230 4231 ASSERT(spa_writeable(spa)); 4232 4233 txg = spa_vdev_enter(spa); 4234 4235 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4236 VDEV_ALLOC_ADD)) != 0) 4237 return (spa_vdev_exit(spa, NULL, txg, error)); 4238 4239 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4240 4241 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4242 &nspares) != 0) 4243 nspares = 0; 4244 4245 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4246 &nl2cache) != 0) 4247 nl2cache = 0; 4248 4249 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4250 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4251 4252 if (vd->vdev_children != 0 && 4253 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4254 return (spa_vdev_exit(spa, vd, txg, error)); 4255 4256 /* 4257 * We must validate the spares and l2cache devices after checking the 4258 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4259 */ 4260 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4261 return (spa_vdev_exit(spa, vd, txg, error)); 4262 4263 /* 4264 * Transfer each new top-level vdev from vd to rvd. 4265 */ 4266 for (int c = 0; c < vd->vdev_children; c++) { 4267 4268 /* 4269 * Set the vdev id to the first hole, if one exists. 4270 */ 4271 for (id = 0; id < rvd->vdev_children; id++) { 4272 if (rvd->vdev_child[id]->vdev_ishole) { 4273 vdev_free(rvd->vdev_child[id]); 4274 break; 4275 } 4276 } 4277 tvd = vd->vdev_child[c]; 4278 vdev_remove_child(vd, tvd); 4279 tvd->vdev_id = id; 4280 vdev_add_child(rvd, tvd); 4281 vdev_config_dirty(tvd); 4282 } 4283 4284 if (nspares != 0) { 4285 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4286 ZPOOL_CONFIG_SPARES); 4287 spa_load_spares(spa); 4288 spa->spa_spares.sav_sync = B_TRUE; 4289 } 4290 4291 if (nl2cache != 0) { 4292 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4293 ZPOOL_CONFIG_L2CACHE); 4294 spa_load_l2cache(spa); 4295 spa->spa_l2cache.sav_sync = B_TRUE; 4296 } 4297 4298 /* 4299 * We have to be careful when adding new vdevs to an existing pool. 4300 * If other threads start allocating from these vdevs before we 4301 * sync the config cache, and we lose power, then upon reboot we may 4302 * fail to open the pool because there are DVAs that the config cache 4303 * can't translate. Therefore, we first add the vdevs without 4304 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4305 * and then let spa_config_update() initialize the new metaslabs. 4306 * 4307 * spa_load() checks for added-but-not-initialized vdevs, so that 4308 * if we lose power at any point in this sequence, the remaining 4309 * steps will be completed the next time we load the pool. 4310 */ 4311 (void) spa_vdev_exit(spa, vd, txg, 0); 4312 4313 mutex_enter(&spa_namespace_lock); 4314 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4315 mutex_exit(&spa_namespace_lock); 4316 4317 return (0); 4318 } 4319 4320 /* 4321 * Attach a device to a mirror. The arguments are the path to any device 4322 * in the mirror, and the nvroot for the new device. If the path specifies 4323 * a device that is not mirrored, we automatically insert the mirror vdev. 4324 * 4325 * If 'replacing' is specified, the new device is intended to replace the 4326 * existing device; in this case the two devices are made into their own 4327 * mirror using the 'replacing' vdev, which is functionally identical to 4328 * the mirror vdev (it actually reuses all the same ops) but has a few 4329 * extra rules: you can't attach to it after it's been created, and upon 4330 * completion of resilvering, the first disk (the one being replaced) 4331 * is automatically detached. 4332 */ 4333 int 4334 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4335 { 4336 uint64_t txg, dtl_max_txg; 4337 vdev_t *rvd = spa->spa_root_vdev; 4338 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4339 vdev_ops_t *pvops; 4340 char *oldvdpath, *newvdpath; 4341 int newvd_isspare; 4342 int error; 4343 4344 ASSERT(spa_writeable(spa)); 4345 4346 txg = spa_vdev_enter(spa); 4347 4348 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4349 4350 if (oldvd == NULL) 4351 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4352 4353 if (!oldvd->vdev_ops->vdev_op_leaf) 4354 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4355 4356 pvd = oldvd->vdev_parent; 4357 4358 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4359 VDEV_ALLOC_ATTACH)) != 0) 4360 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4361 4362 if (newrootvd->vdev_children != 1) 4363 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4364 4365 newvd = newrootvd->vdev_child[0]; 4366 4367 if (!newvd->vdev_ops->vdev_op_leaf) 4368 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4369 4370 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4371 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4372 4373 /* 4374 * Spares can't replace logs 4375 */ 4376 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4377 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4378 4379 if (!replacing) { 4380 /* 4381 * For attach, the only allowable parent is a mirror or the root 4382 * vdev. 4383 */ 4384 if (pvd->vdev_ops != &vdev_mirror_ops && 4385 pvd->vdev_ops != &vdev_root_ops) 4386 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4387 4388 pvops = &vdev_mirror_ops; 4389 } else { 4390 /* 4391 * Active hot spares can only be replaced by inactive hot 4392 * spares. 4393 */ 4394 if (pvd->vdev_ops == &vdev_spare_ops && 4395 oldvd->vdev_isspare && 4396 !spa_has_spare(spa, newvd->vdev_guid)) 4397 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4398 4399 /* 4400 * If the source is a hot spare, and the parent isn't already a 4401 * spare, then we want to create a new hot spare. Otherwise, we 4402 * want to create a replacing vdev. The user is not allowed to 4403 * attach to a spared vdev child unless the 'isspare' state is 4404 * the same (spare replaces spare, non-spare replaces 4405 * non-spare). 4406 */ 4407 if (pvd->vdev_ops == &vdev_replacing_ops && 4408 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4409 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4410 } else if (pvd->vdev_ops == &vdev_spare_ops && 4411 newvd->vdev_isspare != oldvd->vdev_isspare) { 4412 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4413 } 4414 4415 if (newvd->vdev_isspare) 4416 pvops = &vdev_spare_ops; 4417 else 4418 pvops = &vdev_replacing_ops; 4419 } 4420 4421 /* 4422 * Make sure the new device is big enough. 4423 */ 4424 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4425 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4426 4427 /* 4428 * The new device cannot have a higher alignment requirement 4429 * than the top-level vdev. 4430 */ 4431 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4432 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4433 4434 /* 4435 * If this is an in-place replacement, update oldvd's path and devid 4436 * to make it distinguishable from newvd, and unopenable from now on. 4437 */ 4438 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4439 spa_strfree(oldvd->vdev_path); 4440 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4441 KM_SLEEP); 4442 (void) sprintf(oldvd->vdev_path, "%s/%s", 4443 newvd->vdev_path, "old"); 4444 if (oldvd->vdev_devid != NULL) { 4445 spa_strfree(oldvd->vdev_devid); 4446 oldvd->vdev_devid = NULL; 4447 } 4448 } 4449 4450 /* mark the device being resilvered */ 4451 newvd->vdev_resilver_txg = txg; 4452 4453 /* 4454 * If the parent is not a mirror, or if we're replacing, insert the new 4455 * mirror/replacing/spare vdev above oldvd. 4456 */ 4457 if (pvd->vdev_ops != pvops) 4458 pvd = vdev_add_parent(oldvd, pvops); 4459 4460 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4461 ASSERT(pvd->vdev_ops == pvops); 4462 ASSERT(oldvd->vdev_parent == pvd); 4463 4464 /* 4465 * Extract the new device from its root and add it to pvd. 4466 */ 4467 vdev_remove_child(newrootvd, newvd); 4468 newvd->vdev_id = pvd->vdev_children; 4469 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4470 vdev_add_child(pvd, newvd); 4471 4472 tvd = newvd->vdev_top; 4473 ASSERT(pvd->vdev_top == tvd); 4474 ASSERT(tvd->vdev_parent == rvd); 4475 4476 vdev_config_dirty(tvd); 4477 4478 /* 4479 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4480 * for any dmu_sync-ed blocks. It will propagate upward when 4481 * spa_vdev_exit() calls vdev_dtl_reassess(). 4482 */ 4483 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4484 4485 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4486 dtl_max_txg - TXG_INITIAL); 4487 4488 if (newvd->vdev_isspare) { 4489 spa_spare_activate(newvd); 4490 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4491 } 4492 4493 oldvdpath = spa_strdup(oldvd->vdev_path); 4494 newvdpath = spa_strdup(newvd->vdev_path); 4495 newvd_isspare = newvd->vdev_isspare; 4496 4497 /* 4498 * Mark newvd's DTL dirty in this txg. 4499 */ 4500 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4501 4502 /* 4503 * Schedule the resilver to restart in the future. We do this to 4504 * ensure that dmu_sync-ed blocks have been stitched into the 4505 * respective datasets. 4506 */ 4507 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4508 4509 /* 4510 * Commit the config 4511 */ 4512 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4513 4514 spa_history_log_internal(spa, "vdev attach", NULL, 4515 "%s vdev=%s %s vdev=%s", 4516 replacing && newvd_isspare ? "spare in" : 4517 replacing ? "replace" : "attach", newvdpath, 4518 replacing ? "for" : "to", oldvdpath); 4519 4520 spa_strfree(oldvdpath); 4521 spa_strfree(newvdpath); 4522 4523 if (spa->spa_bootfs) 4524 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4525 4526 return (0); 4527 } 4528 4529 /* 4530 * Detach a device from a mirror or replacing vdev. 4531 * 4532 * If 'replace_done' is specified, only detach if the parent 4533 * is a replacing vdev. 4534 */ 4535 int 4536 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4537 { 4538 uint64_t txg; 4539 int error; 4540 vdev_t *rvd = spa->spa_root_vdev; 4541 vdev_t *vd, *pvd, *cvd, *tvd; 4542 boolean_t unspare = B_FALSE; 4543 uint64_t unspare_guid = 0; 4544 char *vdpath; 4545 4546 ASSERT(spa_writeable(spa)); 4547 4548 txg = spa_vdev_enter(spa); 4549 4550 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4551 4552 if (vd == NULL) 4553 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4554 4555 if (!vd->vdev_ops->vdev_op_leaf) 4556 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4557 4558 pvd = vd->vdev_parent; 4559 4560 /* 4561 * If the parent/child relationship is not as expected, don't do it. 4562 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4563 * vdev that's replacing B with C. The user's intent in replacing 4564 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4565 * the replace by detaching C, the expected behavior is to end up 4566 * M(A,B). But suppose that right after deciding to detach C, 4567 * the replacement of B completes. We would have M(A,C), and then 4568 * ask to detach C, which would leave us with just A -- not what 4569 * the user wanted. To prevent this, we make sure that the 4570 * parent/child relationship hasn't changed -- in this example, 4571 * that C's parent is still the replacing vdev R. 4572 */ 4573 if (pvd->vdev_guid != pguid && pguid != 0) 4574 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4575 4576 /* 4577 * Only 'replacing' or 'spare' vdevs can be replaced. 4578 */ 4579 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4580 pvd->vdev_ops != &vdev_spare_ops) 4581 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4582 4583 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4584 spa_version(spa) >= SPA_VERSION_SPARES); 4585 4586 /* 4587 * Only mirror, replacing, and spare vdevs support detach. 4588 */ 4589 if (pvd->vdev_ops != &vdev_replacing_ops && 4590 pvd->vdev_ops != &vdev_mirror_ops && 4591 pvd->vdev_ops != &vdev_spare_ops) 4592 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4593 4594 /* 4595 * If this device has the only valid copy of some data, 4596 * we cannot safely detach it. 4597 */ 4598 if (vdev_dtl_required(vd)) 4599 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4600 4601 ASSERT(pvd->vdev_children >= 2); 4602 4603 /* 4604 * If we are detaching the second disk from a replacing vdev, then 4605 * check to see if we changed the original vdev's path to have "/old" 4606 * at the end in spa_vdev_attach(). If so, undo that change now. 4607 */ 4608 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4609 vd->vdev_path != NULL) { 4610 size_t len = strlen(vd->vdev_path); 4611 4612 for (int c = 0; c < pvd->vdev_children; c++) { 4613 cvd = pvd->vdev_child[c]; 4614 4615 if (cvd == vd || cvd->vdev_path == NULL) 4616 continue; 4617 4618 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4619 strcmp(cvd->vdev_path + len, "/old") == 0) { 4620 spa_strfree(cvd->vdev_path); 4621 cvd->vdev_path = spa_strdup(vd->vdev_path); 4622 break; 4623 } 4624 } 4625 } 4626 4627 /* 4628 * If we are detaching the original disk from a spare, then it implies 4629 * that the spare should become a real disk, and be removed from the 4630 * active spare list for the pool. 4631 */ 4632 if (pvd->vdev_ops == &vdev_spare_ops && 4633 vd->vdev_id == 0 && 4634 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4635 unspare = B_TRUE; 4636 4637 /* 4638 * Erase the disk labels so the disk can be used for other things. 4639 * This must be done after all other error cases are handled, 4640 * but before we disembowel vd (so we can still do I/O to it). 4641 * But if we can't do it, don't treat the error as fatal -- 4642 * it may be that the unwritability of the disk is the reason 4643 * it's being detached! 4644 */ 4645 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4646 4647 /* 4648 * Remove vd from its parent and compact the parent's children. 4649 */ 4650 vdev_remove_child(pvd, vd); 4651 vdev_compact_children(pvd); 4652 4653 /* 4654 * Remember one of the remaining children so we can get tvd below. 4655 */ 4656 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4657 4658 /* 4659 * If we need to remove the remaining child from the list of hot spares, 4660 * do it now, marking the vdev as no longer a spare in the process. 4661 * We must do this before vdev_remove_parent(), because that can 4662 * change the GUID if it creates a new toplevel GUID. For a similar 4663 * reason, we must remove the spare now, in the same txg as the detach; 4664 * otherwise someone could attach a new sibling, change the GUID, and 4665 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4666 */ 4667 if (unspare) { 4668 ASSERT(cvd->vdev_isspare); 4669 spa_spare_remove(cvd); 4670 unspare_guid = cvd->vdev_guid; 4671 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4672 cvd->vdev_unspare = B_TRUE; 4673 } 4674 4675 /* 4676 * If the parent mirror/replacing vdev only has one child, 4677 * the parent is no longer needed. Remove it from the tree. 4678 */ 4679 if (pvd->vdev_children == 1) { 4680 if (pvd->vdev_ops == &vdev_spare_ops) 4681 cvd->vdev_unspare = B_FALSE; 4682 vdev_remove_parent(cvd); 4683 } 4684 4685 4686 /* 4687 * We don't set tvd until now because the parent we just removed 4688 * may have been the previous top-level vdev. 4689 */ 4690 tvd = cvd->vdev_top; 4691 ASSERT(tvd->vdev_parent == rvd); 4692 4693 /* 4694 * Reevaluate the parent vdev state. 4695 */ 4696 vdev_propagate_state(cvd); 4697 4698 /* 4699 * If the 'autoexpand' property is set on the pool then automatically 4700 * try to expand the size of the pool. For example if the device we 4701 * just detached was smaller than the others, it may be possible to 4702 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4703 * first so that we can obtain the updated sizes of the leaf vdevs. 4704 */ 4705 if (spa->spa_autoexpand) { 4706 vdev_reopen(tvd); 4707 vdev_expand(tvd, txg); 4708 } 4709 4710 vdev_config_dirty(tvd); 4711 4712 /* 4713 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4714 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4715 * But first make sure we're not on any *other* txg's DTL list, to 4716 * prevent vd from being accessed after it's freed. 4717 */ 4718 vdpath = spa_strdup(vd->vdev_path); 4719 for (int t = 0; t < TXG_SIZE; t++) 4720 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4721 vd->vdev_detached = B_TRUE; 4722 vdev_dirty(tvd, VDD_DTL, vd, txg); 4723 4724 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4725 4726 /* hang on to the spa before we release the lock */ 4727 spa_open_ref(spa, FTAG); 4728 4729 error = spa_vdev_exit(spa, vd, txg, 0); 4730 4731 spa_history_log_internal(spa, "detach", NULL, 4732 "vdev=%s", vdpath); 4733 spa_strfree(vdpath); 4734 4735 /* 4736 * If this was the removal of the original device in a hot spare vdev, 4737 * then we want to go through and remove the device from the hot spare 4738 * list of every other pool. 4739 */ 4740 if (unspare) { 4741 spa_t *altspa = NULL; 4742 4743 mutex_enter(&spa_namespace_lock); 4744 while ((altspa = spa_next(altspa)) != NULL) { 4745 if (altspa->spa_state != POOL_STATE_ACTIVE || 4746 altspa == spa) 4747 continue; 4748 4749 spa_open_ref(altspa, FTAG); 4750 mutex_exit(&spa_namespace_lock); 4751 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4752 mutex_enter(&spa_namespace_lock); 4753 spa_close(altspa, FTAG); 4754 } 4755 mutex_exit(&spa_namespace_lock); 4756 4757 /* search the rest of the vdevs for spares to remove */ 4758 spa_vdev_resilver_done(spa); 4759 } 4760 4761 /* all done with the spa; OK to release */ 4762 mutex_enter(&spa_namespace_lock); 4763 spa_close(spa, FTAG); 4764 mutex_exit(&spa_namespace_lock); 4765 4766 return (error); 4767 } 4768 4769 /* 4770 * Split a set of devices from their mirrors, and create a new pool from them. 4771 */ 4772 int 4773 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4774 nvlist_t *props, boolean_t exp) 4775 { 4776 int error = 0; 4777 uint64_t txg, *glist; 4778 spa_t *newspa; 4779 uint_t c, children, lastlog; 4780 nvlist_t **child, *nvl, *tmp; 4781 dmu_tx_t *tx; 4782 char *altroot = NULL; 4783 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4784 boolean_t activate_slog; 4785 4786 ASSERT(spa_writeable(spa)); 4787 4788 txg = spa_vdev_enter(spa); 4789 4790 /* clear the log and flush everything up to now */ 4791 activate_slog = spa_passivate_log(spa); 4792 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4793 error = spa_offline_log(spa); 4794 txg = spa_vdev_config_enter(spa); 4795 4796 if (activate_slog) 4797 spa_activate_log(spa); 4798 4799 if (error != 0) 4800 return (spa_vdev_exit(spa, NULL, txg, error)); 4801 4802 /* check new spa name before going any further */ 4803 if (spa_lookup(newname) != NULL) 4804 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4805 4806 /* 4807 * scan through all the children to ensure they're all mirrors 4808 */ 4809 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4810 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4811 &children) != 0) 4812 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4813 4814 /* first, check to ensure we've got the right child count */ 4815 rvd = spa->spa_root_vdev; 4816 lastlog = 0; 4817 for (c = 0; c < rvd->vdev_children; c++) { 4818 vdev_t *vd = rvd->vdev_child[c]; 4819 4820 /* don't count the holes & logs as children */ 4821 if (vd->vdev_islog || vd->vdev_ishole) { 4822 if (lastlog == 0) 4823 lastlog = c; 4824 continue; 4825 } 4826 4827 lastlog = 0; 4828 } 4829 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4830 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4831 4832 /* next, ensure no spare or cache devices are part of the split */ 4833 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4834 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4835 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4836 4837 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4838 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4839 4840 /* then, loop over each vdev and validate it */ 4841 for (c = 0; c < children; c++) { 4842 uint64_t is_hole = 0; 4843 4844 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4845 &is_hole); 4846 4847 if (is_hole != 0) { 4848 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4849 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4850 continue; 4851 } else { 4852 error = SET_ERROR(EINVAL); 4853 break; 4854 } 4855 } 4856 4857 /* which disk is going to be split? */ 4858 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4859 &glist[c]) != 0) { 4860 error = SET_ERROR(EINVAL); 4861 break; 4862 } 4863 4864 /* look it up in the spa */ 4865 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4866 if (vml[c] == NULL) { 4867 error = SET_ERROR(ENODEV); 4868 break; 4869 } 4870 4871 /* make sure there's nothing stopping the split */ 4872 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4873 vml[c]->vdev_islog || 4874 vml[c]->vdev_ishole || 4875 vml[c]->vdev_isspare || 4876 vml[c]->vdev_isl2cache || 4877 !vdev_writeable(vml[c]) || 4878 vml[c]->vdev_children != 0 || 4879 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4880 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4881 error = SET_ERROR(EINVAL); 4882 break; 4883 } 4884 4885 if (vdev_dtl_required(vml[c])) { 4886 error = SET_ERROR(EBUSY); 4887 break; 4888 } 4889 4890 /* we need certain info from the top level */ 4891 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4892 vml[c]->vdev_top->vdev_ms_array) == 0); 4893 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4894 vml[c]->vdev_top->vdev_ms_shift) == 0); 4895 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4896 vml[c]->vdev_top->vdev_asize) == 0); 4897 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4898 vml[c]->vdev_top->vdev_ashift) == 0); 4899 } 4900 4901 if (error != 0) { 4902 kmem_free(vml, children * sizeof (vdev_t *)); 4903 kmem_free(glist, children * sizeof (uint64_t)); 4904 return (spa_vdev_exit(spa, NULL, txg, error)); 4905 } 4906 4907 /* stop writers from using the disks */ 4908 for (c = 0; c < children; c++) { 4909 if (vml[c] != NULL) 4910 vml[c]->vdev_offline = B_TRUE; 4911 } 4912 vdev_reopen(spa->spa_root_vdev); 4913 4914 /* 4915 * Temporarily record the splitting vdevs in the spa config. This 4916 * will disappear once the config is regenerated. 4917 */ 4918 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4919 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4920 glist, children) == 0); 4921 kmem_free(glist, children * sizeof (uint64_t)); 4922 4923 mutex_enter(&spa->spa_props_lock); 4924 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4925 nvl) == 0); 4926 mutex_exit(&spa->spa_props_lock); 4927 spa->spa_config_splitting = nvl; 4928 vdev_config_dirty(spa->spa_root_vdev); 4929 4930 /* configure and create the new pool */ 4931 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4932 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4933 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4934 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4935 spa_version(spa)) == 0); 4936 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4937 spa->spa_config_txg) == 0); 4938 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4939 spa_generate_guid(NULL)) == 0); 4940 (void) nvlist_lookup_string(props, 4941 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4942 4943 /* add the new pool to the namespace */ 4944 newspa = spa_add(newname, config, altroot); 4945 newspa->spa_config_txg = spa->spa_config_txg; 4946 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4947 4948 /* release the spa config lock, retaining the namespace lock */ 4949 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4950 4951 if (zio_injection_enabled) 4952 zio_handle_panic_injection(spa, FTAG, 1); 4953 4954 spa_activate(newspa, spa_mode_global); 4955 spa_async_suspend(newspa); 4956 4957 /* create the new pool from the disks of the original pool */ 4958 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4959 if (error) 4960 goto out; 4961 4962 /* if that worked, generate a real config for the new pool */ 4963 if (newspa->spa_root_vdev != NULL) { 4964 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4965 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4966 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4967 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4968 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4969 B_TRUE)); 4970 } 4971 4972 /* set the props */ 4973 if (props != NULL) { 4974 spa_configfile_set(newspa, props, B_FALSE); 4975 error = spa_prop_set(newspa, props); 4976 if (error) 4977 goto out; 4978 } 4979 4980 /* flush everything */ 4981 txg = spa_vdev_config_enter(newspa); 4982 vdev_config_dirty(newspa->spa_root_vdev); 4983 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4984 4985 if (zio_injection_enabled) 4986 zio_handle_panic_injection(spa, FTAG, 2); 4987 4988 spa_async_resume(newspa); 4989 4990 /* finally, update the original pool's config */ 4991 txg = spa_vdev_config_enter(spa); 4992 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4993 error = dmu_tx_assign(tx, TXG_WAIT); 4994 if (error != 0) 4995 dmu_tx_abort(tx); 4996 for (c = 0; c < children; c++) { 4997 if (vml[c] != NULL) { 4998 vdev_split(vml[c]); 4999 if (error == 0) 5000 spa_history_log_internal(spa, "detach", tx, 5001 "vdev=%s", vml[c]->vdev_path); 5002 vdev_free(vml[c]); 5003 } 5004 } 5005 vdev_config_dirty(spa->spa_root_vdev); 5006 spa->spa_config_splitting = NULL; 5007 nvlist_free(nvl); 5008 if (error == 0) 5009 dmu_tx_commit(tx); 5010 (void) spa_vdev_exit(spa, NULL, txg, 0); 5011 5012 if (zio_injection_enabled) 5013 zio_handle_panic_injection(spa, FTAG, 3); 5014 5015 /* split is complete; log a history record */ 5016 spa_history_log_internal(newspa, "split", NULL, 5017 "from pool %s", spa_name(spa)); 5018 5019 kmem_free(vml, children * sizeof (vdev_t *)); 5020 5021 /* if we're not going to mount the filesystems in userland, export */ 5022 if (exp) 5023 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5024 B_FALSE, B_FALSE); 5025 5026 return (error); 5027 5028 out: 5029 spa_unload(newspa); 5030 spa_deactivate(newspa); 5031 spa_remove(newspa); 5032 5033 txg = spa_vdev_config_enter(spa); 5034 5035 /* re-online all offlined disks */ 5036 for (c = 0; c < children; c++) { 5037 if (vml[c] != NULL) 5038 vml[c]->vdev_offline = B_FALSE; 5039 } 5040 vdev_reopen(spa->spa_root_vdev); 5041 5042 nvlist_free(spa->spa_config_splitting); 5043 spa->spa_config_splitting = NULL; 5044 (void) spa_vdev_exit(spa, NULL, txg, error); 5045 5046 kmem_free(vml, children * sizeof (vdev_t *)); 5047 return (error); 5048 } 5049 5050 static nvlist_t * 5051 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5052 { 5053 for (int i = 0; i < count; i++) { 5054 uint64_t guid; 5055 5056 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5057 &guid) == 0); 5058 5059 if (guid == target_guid) 5060 return (nvpp[i]); 5061 } 5062 5063 return (NULL); 5064 } 5065 5066 static void 5067 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5068 nvlist_t *dev_to_remove) 5069 { 5070 nvlist_t **newdev = NULL; 5071 5072 if (count > 1) 5073 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5074 5075 for (int i = 0, j = 0; i < count; i++) { 5076 if (dev[i] == dev_to_remove) 5077 continue; 5078 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5079 } 5080 5081 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5082 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5083 5084 for (int i = 0; i < count - 1; i++) 5085 nvlist_free(newdev[i]); 5086 5087 if (count > 1) 5088 kmem_free(newdev, (count - 1) * sizeof (void *)); 5089 } 5090 5091 /* 5092 * Evacuate the device. 5093 */ 5094 static int 5095 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5096 { 5097 uint64_t txg; 5098 int error = 0; 5099 5100 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5101 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5102 ASSERT(vd == vd->vdev_top); 5103 5104 /* 5105 * Evacuate the device. We don't hold the config lock as writer 5106 * since we need to do I/O but we do keep the 5107 * spa_namespace_lock held. Once this completes the device 5108 * should no longer have any blocks allocated on it. 5109 */ 5110 if (vd->vdev_islog) { 5111 if (vd->vdev_stat.vs_alloc != 0) 5112 error = spa_offline_log(spa); 5113 } else { 5114 error = SET_ERROR(ENOTSUP); 5115 } 5116 5117 if (error) 5118 return (error); 5119 5120 /* 5121 * The evacuation succeeded. Remove any remaining MOS metadata 5122 * associated with this vdev, and wait for these changes to sync. 5123 */ 5124 ASSERT0(vd->vdev_stat.vs_alloc); 5125 txg = spa_vdev_config_enter(spa); 5126 vd->vdev_removing = B_TRUE; 5127 vdev_dirty_leaves(vd, VDD_DTL, txg); 5128 vdev_config_dirty(vd); 5129 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5130 5131 return (0); 5132 } 5133 5134 /* 5135 * Complete the removal by cleaning up the namespace. 5136 */ 5137 static void 5138 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5139 { 5140 vdev_t *rvd = spa->spa_root_vdev; 5141 uint64_t id = vd->vdev_id; 5142 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5143 5144 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5145 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5146 ASSERT(vd == vd->vdev_top); 5147 5148 /* 5149 * Only remove any devices which are empty. 5150 */ 5151 if (vd->vdev_stat.vs_alloc != 0) 5152 return; 5153 5154 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5155 5156 if (list_link_active(&vd->vdev_state_dirty_node)) 5157 vdev_state_clean(vd); 5158 if (list_link_active(&vd->vdev_config_dirty_node)) 5159 vdev_config_clean(vd); 5160 5161 vdev_free(vd); 5162 5163 if (last_vdev) { 5164 vdev_compact_children(rvd); 5165 } else { 5166 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5167 vdev_add_child(rvd, vd); 5168 } 5169 vdev_config_dirty(rvd); 5170 5171 /* 5172 * Reassess the health of our root vdev. 5173 */ 5174 vdev_reopen(rvd); 5175 } 5176 5177 /* 5178 * Remove a device from the pool - 5179 * 5180 * Removing a device from the vdev namespace requires several steps 5181 * and can take a significant amount of time. As a result we use 5182 * the spa_vdev_config_[enter/exit] functions which allow us to 5183 * grab and release the spa_config_lock while still holding the namespace 5184 * lock. During each step the configuration is synced out. 5185 * 5186 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5187 * devices. 5188 */ 5189 int 5190 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5191 { 5192 vdev_t *vd; 5193 metaslab_group_t *mg; 5194 nvlist_t **spares, **l2cache, *nv; 5195 uint64_t txg = 0; 5196 uint_t nspares, nl2cache; 5197 int error = 0; 5198 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5199 5200 ASSERT(spa_writeable(spa)); 5201 5202 if (!locked) 5203 txg = spa_vdev_enter(spa); 5204 5205 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5206 5207 if (spa->spa_spares.sav_vdevs != NULL && 5208 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5209 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5210 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5211 /* 5212 * Only remove the hot spare if it's not currently in use 5213 * in this pool. 5214 */ 5215 if (vd == NULL || unspare) { 5216 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5217 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5218 spa_load_spares(spa); 5219 spa->spa_spares.sav_sync = B_TRUE; 5220 } else { 5221 error = SET_ERROR(EBUSY); 5222 } 5223 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5224 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5225 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5226 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5227 /* 5228 * Cache devices can always be removed. 5229 */ 5230 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5231 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5232 spa_load_l2cache(spa); 5233 spa->spa_l2cache.sav_sync = B_TRUE; 5234 } else if (vd != NULL && vd->vdev_islog) { 5235 ASSERT(!locked); 5236 ASSERT(vd == vd->vdev_top); 5237 5238 /* 5239 * XXX - Once we have bp-rewrite this should 5240 * become the common case. 5241 */ 5242 5243 mg = vd->vdev_mg; 5244 5245 /* 5246 * Stop allocating from this vdev. 5247 */ 5248 metaslab_group_passivate(mg); 5249 5250 /* 5251 * Wait for the youngest allocations and frees to sync, 5252 * and then wait for the deferral of those frees to finish. 5253 */ 5254 spa_vdev_config_exit(spa, NULL, 5255 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5256 5257 /* 5258 * Attempt to evacuate the vdev. 5259 */ 5260 error = spa_vdev_remove_evacuate(spa, vd); 5261 5262 txg = spa_vdev_config_enter(spa); 5263 5264 /* 5265 * If we couldn't evacuate the vdev, unwind. 5266 */ 5267 if (error) { 5268 metaslab_group_activate(mg); 5269 return (spa_vdev_exit(spa, NULL, txg, error)); 5270 } 5271 5272 /* 5273 * Clean up the vdev namespace. 5274 */ 5275 spa_vdev_remove_from_namespace(spa, vd); 5276 5277 } else if (vd != NULL) { 5278 /* 5279 * Normal vdevs cannot be removed (yet). 5280 */ 5281 error = SET_ERROR(ENOTSUP); 5282 } else { 5283 /* 5284 * There is no vdev of any kind with the specified guid. 5285 */ 5286 error = SET_ERROR(ENOENT); 5287 } 5288 5289 if (!locked) 5290 return (spa_vdev_exit(spa, NULL, txg, error)); 5291 5292 return (error); 5293 } 5294 5295 /* 5296 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5297 * currently spared, so we can detach it. 5298 */ 5299 static vdev_t * 5300 spa_vdev_resilver_done_hunt(vdev_t *vd) 5301 { 5302 vdev_t *newvd, *oldvd; 5303 5304 for (int c = 0; c < vd->vdev_children; c++) { 5305 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5306 if (oldvd != NULL) 5307 return (oldvd); 5308 } 5309 5310 /* 5311 * Check for a completed replacement. We always consider the first 5312 * vdev in the list to be the oldest vdev, and the last one to be 5313 * the newest (see spa_vdev_attach() for how that works). In 5314 * the case where the newest vdev is faulted, we will not automatically 5315 * remove it after a resilver completes. This is OK as it will require 5316 * user intervention to determine which disk the admin wishes to keep. 5317 */ 5318 if (vd->vdev_ops == &vdev_replacing_ops) { 5319 ASSERT(vd->vdev_children > 1); 5320 5321 newvd = vd->vdev_child[vd->vdev_children - 1]; 5322 oldvd = vd->vdev_child[0]; 5323 5324 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5325 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5326 !vdev_dtl_required(oldvd)) 5327 return (oldvd); 5328 } 5329 5330 /* 5331 * Check for a completed resilver with the 'unspare' flag set. 5332 */ 5333 if (vd->vdev_ops == &vdev_spare_ops) { 5334 vdev_t *first = vd->vdev_child[0]; 5335 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5336 5337 if (last->vdev_unspare) { 5338 oldvd = first; 5339 newvd = last; 5340 } else if (first->vdev_unspare) { 5341 oldvd = last; 5342 newvd = first; 5343 } else { 5344 oldvd = NULL; 5345 } 5346 5347 if (oldvd != NULL && 5348 vdev_dtl_empty(newvd, DTL_MISSING) && 5349 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5350 !vdev_dtl_required(oldvd)) 5351 return (oldvd); 5352 5353 /* 5354 * If there are more than two spares attached to a disk, 5355 * and those spares are not required, then we want to 5356 * attempt to free them up now so that they can be used 5357 * by other pools. Once we're back down to a single 5358 * disk+spare, we stop removing them. 5359 */ 5360 if (vd->vdev_children > 2) { 5361 newvd = vd->vdev_child[1]; 5362 5363 if (newvd->vdev_isspare && last->vdev_isspare && 5364 vdev_dtl_empty(last, DTL_MISSING) && 5365 vdev_dtl_empty(last, DTL_OUTAGE) && 5366 !vdev_dtl_required(newvd)) 5367 return (newvd); 5368 } 5369 } 5370 5371 return (NULL); 5372 } 5373 5374 static void 5375 spa_vdev_resilver_done(spa_t *spa) 5376 { 5377 vdev_t *vd, *pvd, *ppvd; 5378 uint64_t guid, sguid, pguid, ppguid; 5379 5380 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5381 5382 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5383 pvd = vd->vdev_parent; 5384 ppvd = pvd->vdev_parent; 5385 guid = vd->vdev_guid; 5386 pguid = pvd->vdev_guid; 5387 ppguid = ppvd->vdev_guid; 5388 sguid = 0; 5389 /* 5390 * If we have just finished replacing a hot spared device, then 5391 * we need to detach the parent's first child (the original hot 5392 * spare) as well. 5393 */ 5394 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5395 ppvd->vdev_children == 2) { 5396 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5397 sguid = ppvd->vdev_child[1]->vdev_guid; 5398 } 5399 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5400 5401 spa_config_exit(spa, SCL_ALL, FTAG); 5402 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5403 return; 5404 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5405 return; 5406 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5407 } 5408 5409 spa_config_exit(spa, SCL_ALL, FTAG); 5410 } 5411 5412 /* 5413 * Update the stored path or FRU for this vdev. 5414 */ 5415 int 5416 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5417 boolean_t ispath) 5418 { 5419 vdev_t *vd; 5420 boolean_t sync = B_FALSE; 5421 5422 ASSERT(spa_writeable(spa)); 5423 5424 spa_vdev_state_enter(spa, SCL_ALL); 5425 5426 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5427 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5428 5429 if (!vd->vdev_ops->vdev_op_leaf) 5430 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5431 5432 if (ispath) { 5433 if (strcmp(value, vd->vdev_path) != 0) { 5434 spa_strfree(vd->vdev_path); 5435 vd->vdev_path = spa_strdup(value); 5436 sync = B_TRUE; 5437 } 5438 } else { 5439 if (vd->vdev_fru == NULL) { 5440 vd->vdev_fru = spa_strdup(value); 5441 sync = B_TRUE; 5442 } else if (strcmp(value, vd->vdev_fru) != 0) { 5443 spa_strfree(vd->vdev_fru); 5444 vd->vdev_fru = spa_strdup(value); 5445 sync = B_TRUE; 5446 } 5447 } 5448 5449 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5450 } 5451 5452 int 5453 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5454 { 5455 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5456 } 5457 5458 int 5459 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5460 { 5461 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5462 } 5463 5464 /* 5465 * ========================================================================== 5466 * SPA Scanning 5467 * ========================================================================== 5468 */ 5469 5470 int 5471 spa_scan_stop(spa_t *spa) 5472 { 5473 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5474 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5475 return (SET_ERROR(EBUSY)); 5476 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5477 } 5478 5479 int 5480 spa_scan(spa_t *spa, pool_scan_func_t func) 5481 { 5482 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5483 5484 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5485 return (SET_ERROR(ENOTSUP)); 5486 5487 /* 5488 * If a resilver was requested, but there is no DTL on a 5489 * writeable leaf device, we have nothing to do. 5490 */ 5491 if (func == POOL_SCAN_RESILVER && 5492 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5493 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5494 return (0); 5495 } 5496 5497 return (dsl_scan(spa->spa_dsl_pool, func)); 5498 } 5499 5500 /* 5501 * ========================================================================== 5502 * SPA async task processing 5503 * ========================================================================== 5504 */ 5505 5506 static void 5507 spa_async_remove(spa_t *spa, vdev_t *vd) 5508 { 5509 if (vd->vdev_remove_wanted) { 5510 vd->vdev_remove_wanted = B_FALSE; 5511 vd->vdev_delayed_close = B_FALSE; 5512 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5513 5514 /* 5515 * We want to clear the stats, but we don't want to do a full 5516 * vdev_clear() as that will cause us to throw away 5517 * degraded/faulted state as well as attempt to reopen the 5518 * device, all of which is a waste. 5519 */ 5520 vd->vdev_stat.vs_read_errors = 0; 5521 vd->vdev_stat.vs_write_errors = 0; 5522 vd->vdev_stat.vs_checksum_errors = 0; 5523 5524 vdev_state_dirty(vd->vdev_top); 5525 } 5526 5527 for (int c = 0; c < vd->vdev_children; c++) 5528 spa_async_remove(spa, vd->vdev_child[c]); 5529 } 5530 5531 static void 5532 spa_async_probe(spa_t *spa, vdev_t *vd) 5533 { 5534 if (vd->vdev_probe_wanted) { 5535 vd->vdev_probe_wanted = B_FALSE; 5536 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5537 } 5538 5539 for (int c = 0; c < vd->vdev_children; c++) 5540 spa_async_probe(spa, vd->vdev_child[c]); 5541 } 5542 5543 static void 5544 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5545 { 5546 sysevent_id_t eid; 5547 nvlist_t *attr; 5548 char *physpath; 5549 5550 if (!spa->spa_autoexpand) 5551 return; 5552 5553 for (int c = 0; c < vd->vdev_children; c++) { 5554 vdev_t *cvd = vd->vdev_child[c]; 5555 spa_async_autoexpand(spa, cvd); 5556 } 5557 5558 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5559 return; 5560 5561 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5562 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5563 5564 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5565 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5566 5567 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5568 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5569 5570 nvlist_free(attr); 5571 kmem_free(physpath, MAXPATHLEN); 5572 } 5573 5574 static void 5575 spa_async_thread(spa_t *spa) 5576 { 5577 int tasks; 5578 5579 ASSERT(spa->spa_sync_on); 5580 5581 mutex_enter(&spa->spa_async_lock); 5582 tasks = spa->spa_async_tasks; 5583 spa->spa_async_tasks = 0; 5584 mutex_exit(&spa->spa_async_lock); 5585 5586 /* 5587 * See if the config needs to be updated. 5588 */ 5589 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5590 uint64_t old_space, new_space; 5591 5592 mutex_enter(&spa_namespace_lock); 5593 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5594 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5595 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5596 mutex_exit(&spa_namespace_lock); 5597 5598 /* 5599 * If the pool grew as a result of the config update, 5600 * then log an internal history event. 5601 */ 5602 if (new_space != old_space) { 5603 spa_history_log_internal(spa, "vdev online", NULL, 5604 "pool '%s' size: %llu(+%llu)", 5605 spa_name(spa), new_space, new_space - old_space); 5606 } 5607 } 5608 5609 /* 5610 * See if any devices need to be marked REMOVED. 5611 */ 5612 if (tasks & SPA_ASYNC_REMOVE) { 5613 spa_vdev_state_enter(spa, SCL_NONE); 5614 spa_async_remove(spa, spa->spa_root_vdev); 5615 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5616 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5617 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5618 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5619 (void) spa_vdev_state_exit(spa, NULL, 0); 5620 } 5621 5622 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5623 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5624 spa_async_autoexpand(spa, spa->spa_root_vdev); 5625 spa_config_exit(spa, SCL_CONFIG, FTAG); 5626 } 5627 5628 /* 5629 * See if any devices need to be probed. 5630 */ 5631 if (tasks & SPA_ASYNC_PROBE) { 5632 spa_vdev_state_enter(spa, SCL_NONE); 5633 spa_async_probe(spa, spa->spa_root_vdev); 5634 (void) spa_vdev_state_exit(spa, NULL, 0); 5635 } 5636 5637 /* 5638 * If any devices are done replacing, detach them. 5639 */ 5640 if (tasks & SPA_ASYNC_RESILVER_DONE) 5641 spa_vdev_resilver_done(spa); 5642 5643 /* 5644 * Kick off a resilver. 5645 */ 5646 if (tasks & SPA_ASYNC_RESILVER) 5647 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5648 5649 /* 5650 * Let the world know that we're done. 5651 */ 5652 mutex_enter(&spa->spa_async_lock); 5653 spa->spa_async_thread = NULL; 5654 cv_broadcast(&spa->spa_async_cv); 5655 mutex_exit(&spa->spa_async_lock); 5656 thread_exit(); 5657 } 5658 5659 void 5660 spa_async_suspend(spa_t *spa) 5661 { 5662 mutex_enter(&spa->spa_async_lock); 5663 spa->spa_async_suspended++; 5664 while (spa->spa_async_thread != NULL) 5665 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5666 mutex_exit(&spa->spa_async_lock); 5667 } 5668 5669 void 5670 spa_async_resume(spa_t *spa) 5671 { 5672 mutex_enter(&spa->spa_async_lock); 5673 ASSERT(spa->spa_async_suspended != 0); 5674 spa->spa_async_suspended--; 5675 mutex_exit(&spa->spa_async_lock); 5676 } 5677 5678 static boolean_t 5679 spa_async_tasks_pending(spa_t *spa) 5680 { 5681 uint_t non_config_tasks; 5682 uint_t config_task; 5683 boolean_t config_task_suspended; 5684 5685 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5686 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5687 if (spa->spa_ccw_fail_time == 0) { 5688 config_task_suspended = B_FALSE; 5689 } else { 5690 config_task_suspended = 5691 (gethrtime() - spa->spa_ccw_fail_time) < 5692 (zfs_ccw_retry_interval * NANOSEC); 5693 } 5694 5695 return (non_config_tasks || (config_task && !config_task_suspended)); 5696 } 5697 5698 static void 5699 spa_async_dispatch(spa_t *spa) 5700 { 5701 mutex_enter(&spa->spa_async_lock); 5702 if (spa_async_tasks_pending(spa) && 5703 !spa->spa_async_suspended && 5704 spa->spa_async_thread == NULL && 5705 rootdir != NULL) 5706 spa->spa_async_thread = thread_create(NULL, 0, 5707 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5708 mutex_exit(&spa->spa_async_lock); 5709 } 5710 5711 void 5712 spa_async_request(spa_t *spa, int task) 5713 { 5714 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5715 mutex_enter(&spa->spa_async_lock); 5716 spa->spa_async_tasks |= task; 5717 mutex_exit(&spa->spa_async_lock); 5718 } 5719 5720 /* 5721 * ========================================================================== 5722 * SPA syncing routines 5723 * ========================================================================== 5724 */ 5725 5726 static int 5727 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5728 { 5729 bpobj_t *bpo = arg; 5730 bpobj_enqueue(bpo, bp, tx); 5731 return (0); 5732 } 5733 5734 static int 5735 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5736 { 5737 zio_t *zio = arg; 5738 5739 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5740 zio->io_flags)); 5741 return (0); 5742 } 5743 5744 /* 5745 * Note: this simple function is not inlined to make it easier to dtrace the 5746 * amount of time spent syncing frees. 5747 */ 5748 static void 5749 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5750 { 5751 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5752 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5753 VERIFY(zio_wait(zio) == 0); 5754 } 5755 5756 /* 5757 * Note: this simple function is not inlined to make it easier to dtrace the 5758 * amount of time spent syncing deferred frees. 5759 */ 5760 static void 5761 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5762 { 5763 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5764 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5765 spa_free_sync_cb, zio, tx), ==, 0); 5766 VERIFY0(zio_wait(zio)); 5767 } 5768 5769 5770 static void 5771 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5772 { 5773 char *packed = NULL; 5774 size_t bufsize; 5775 size_t nvsize = 0; 5776 dmu_buf_t *db; 5777 5778 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5779 5780 /* 5781 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5782 * information. This avoids the dbuf_will_dirty() path and 5783 * saves us a pre-read to get data we don't actually care about. 5784 */ 5785 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5786 packed = kmem_alloc(bufsize, KM_SLEEP); 5787 5788 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5789 KM_SLEEP) == 0); 5790 bzero(packed + nvsize, bufsize - nvsize); 5791 5792 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5793 5794 kmem_free(packed, bufsize); 5795 5796 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5797 dmu_buf_will_dirty(db, tx); 5798 *(uint64_t *)db->db_data = nvsize; 5799 dmu_buf_rele(db, FTAG); 5800 } 5801 5802 static void 5803 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5804 const char *config, const char *entry) 5805 { 5806 nvlist_t *nvroot; 5807 nvlist_t **list; 5808 int i; 5809 5810 if (!sav->sav_sync) 5811 return; 5812 5813 /* 5814 * Update the MOS nvlist describing the list of available devices. 5815 * spa_validate_aux() will have already made sure this nvlist is 5816 * valid and the vdevs are labeled appropriately. 5817 */ 5818 if (sav->sav_object == 0) { 5819 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5820 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5821 sizeof (uint64_t), tx); 5822 VERIFY(zap_update(spa->spa_meta_objset, 5823 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5824 &sav->sav_object, tx) == 0); 5825 } 5826 5827 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5828 if (sav->sav_count == 0) { 5829 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5830 } else { 5831 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5832 for (i = 0; i < sav->sav_count; i++) 5833 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5834 B_FALSE, VDEV_CONFIG_L2CACHE); 5835 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5836 sav->sav_count) == 0); 5837 for (i = 0; i < sav->sav_count; i++) 5838 nvlist_free(list[i]); 5839 kmem_free(list, sav->sav_count * sizeof (void *)); 5840 } 5841 5842 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5843 nvlist_free(nvroot); 5844 5845 sav->sav_sync = B_FALSE; 5846 } 5847 5848 static void 5849 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5850 { 5851 nvlist_t *config; 5852 5853 if (list_is_empty(&spa->spa_config_dirty_list)) 5854 return; 5855 5856 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5857 5858 config = spa_config_generate(spa, spa->spa_root_vdev, 5859 dmu_tx_get_txg(tx), B_FALSE); 5860 5861 /* 5862 * If we're upgrading the spa version then make sure that 5863 * the config object gets updated with the correct version. 5864 */ 5865 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5866 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5867 spa->spa_uberblock.ub_version); 5868 5869 spa_config_exit(spa, SCL_STATE, FTAG); 5870 5871 if (spa->spa_config_syncing) 5872 nvlist_free(spa->spa_config_syncing); 5873 spa->spa_config_syncing = config; 5874 5875 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5876 } 5877 5878 static void 5879 spa_sync_version(void *arg, dmu_tx_t *tx) 5880 { 5881 uint64_t *versionp = arg; 5882 uint64_t version = *versionp; 5883 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5884 5885 /* 5886 * Setting the version is special cased when first creating the pool. 5887 */ 5888 ASSERT(tx->tx_txg != TXG_INITIAL); 5889 5890 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5891 ASSERT(version >= spa_version(spa)); 5892 5893 spa->spa_uberblock.ub_version = version; 5894 vdev_config_dirty(spa->spa_root_vdev); 5895 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5896 } 5897 5898 /* 5899 * Set zpool properties. 5900 */ 5901 static void 5902 spa_sync_props(void *arg, dmu_tx_t *tx) 5903 { 5904 nvlist_t *nvp = arg; 5905 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5906 objset_t *mos = spa->spa_meta_objset; 5907 nvpair_t *elem = NULL; 5908 5909 mutex_enter(&spa->spa_props_lock); 5910 5911 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5912 uint64_t intval; 5913 char *strval, *fname; 5914 zpool_prop_t prop; 5915 const char *propname; 5916 zprop_type_t proptype; 5917 zfeature_info_t *feature; 5918 5919 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5920 case ZPROP_INVAL: 5921 /* 5922 * We checked this earlier in spa_prop_validate(). 5923 */ 5924 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5925 5926 fname = strchr(nvpair_name(elem), '@') + 1; 5927 VERIFY0(zfeature_lookup_name(fname, &feature)); 5928 5929 spa_feature_enable(spa, feature, tx); 5930 spa_history_log_internal(spa, "set", tx, 5931 "%s=enabled", nvpair_name(elem)); 5932 break; 5933 5934 case ZPOOL_PROP_VERSION: 5935 intval = fnvpair_value_uint64(elem); 5936 /* 5937 * The version is synced seperatly before other 5938 * properties and should be correct by now. 5939 */ 5940 ASSERT3U(spa_version(spa), >=, intval); 5941 break; 5942 5943 case ZPOOL_PROP_ALTROOT: 5944 /* 5945 * 'altroot' is a non-persistent property. It should 5946 * have been set temporarily at creation or import time. 5947 */ 5948 ASSERT(spa->spa_root != NULL); 5949 break; 5950 5951 case ZPOOL_PROP_READONLY: 5952 case ZPOOL_PROP_CACHEFILE: 5953 /* 5954 * 'readonly' and 'cachefile' are also non-persisitent 5955 * properties. 5956 */ 5957 break; 5958 case ZPOOL_PROP_COMMENT: 5959 strval = fnvpair_value_string(elem); 5960 if (spa->spa_comment != NULL) 5961 spa_strfree(spa->spa_comment); 5962 spa->spa_comment = spa_strdup(strval); 5963 /* 5964 * We need to dirty the configuration on all the vdevs 5965 * so that their labels get updated. It's unnecessary 5966 * to do this for pool creation since the vdev's 5967 * configuratoin has already been dirtied. 5968 */ 5969 if (tx->tx_txg != TXG_INITIAL) 5970 vdev_config_dirty(spa->spa_root_vdev); 5971 spa_history_log_internal(spa, "set", tx, 5972 "%s=%s", nvpair_name(elem), strval); 5973 break; 5974 default: 5975 /* 5976 * Set pool property values in the poolprops mos object. 5977 */ 5978 if (spa->spa_pool_props_object == 0) { 5979 spa->spa_pool_props_object = 5980 zap_create_link(mos, DMU_OT_POOL_PROPS, 5981 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5982 tx); 5983 } 5984 5985 /* normalize the property name */ 5986 propname = zpool_prop_to_name(prop); 5987 proptype = zpool_prop_get_type(prop); 5988 5989 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5990 ASSERT(proptype == PROP_TYPE_STRING); 5991 strval = fnvpair_value_string(elem); 5992 VERIFY0(zap_update(mos, 5993 spa->spa_pool_props_object, propname, 5994 1, strlen(strval) + 1, strval, tx)); 5995 spa_history_log_internal(spa, "set", tx, 5996 "%s=%s", nvpair_name(elem), strval); 5997 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5998 intval = fnvpair_value_uint64(elem); 5999 6000 if (proptype == PROP_TYPE_INDEX) { 6001 const char *unused; 6002 VERIFY0(zpool_prop_index_to_string( 6003 prop, intval, &unused)); 6004 } 6005 VERIFY0(zap_update(mos, 6006 spa->spa_pool_props_object, propname, 6007 8, 1, &intval, tx)); 6008 spa_history_log_internal(spa, "set", tx, 6009 "%s=%lld", nvpair_name(elem), intval); 6010 } else { 6011 ASSERT(0); /* not allowed */ 6012 } 6013 6014 switch (prop) { 6015 case ZPOOL_PROP_DELEGATION: 6016 spa->spa_delegation = intval; 6017 break; 6018 case ZPOOL_PROP_BOOTFS: 6019 spa->spa_bootfs = intval; 6020 break; 6021 case ZPOOL_PROP_FAILUREMODE: 6022 spa->spa_failmode = intval; 6023 break; 6024 case ZPOOL_PROP_AUTOEXPAND: 6025 spa->spa_autoexpand = intval; 6026 if (tx->tx_txg != TXG_INITIAL) 6027 spa_async_request(spa, 6028 SPA_ASYNC_AUTOEXPAND); 6029 break; 6030 case ZPOOL_PROP_DEDUPDITTO: 6031 spa->spa_dedup_ditto = intval; 6032 break; 6033 default: 6034 break; 6035 } 6036 } 6037 6038 } 6039 6040 mutex_exit(&spa->spa_props_lock); 6041 } 6042 6043 /* 6044 * Perform one-time upgrade on-disk changes. spa_version() does not 6045 * reflect the new version this txg, so there must be no changes this 6046 * txg to anything that the upgrade code depends on after it executes. 6047 * Therefore this must be called after dsl_pool_sync() does the sync 6048 * tasks. 6049 */ 6050 static void 6051 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6052 { 6053 dsl_pool_t *dp = spa->spa_dsl_pool; 6054 6055 ASSERT(spa->spa_sync_pass == 1); 6056 6057 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6058 6059 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6060 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6061 dsl_pool_create_origin(dp, tx); 6062 6063 /* Keeping the origin open increases spa_minref */ 6064 spa->spa_minref += 3; 6065 } 6066 6067 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6068 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6069 dsl_pool_upgrade_clones(dp, tx); 6070 } 6071 6072 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6073 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6074 dsl_pool_upgrade_dir_clones(dp, tx); 6075 6076 /* Keeping the freedir open increases spa_minref */ 6077 spa->spa_minref += 3; 6078 } 6079 6080 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6081 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6082 spa_feature_create_zap_objects(spa, tx); 6083 } 6084 rrw_exit(&dp->dp_config_rwlock, FTAG); 6085 } 6086 6087 /* 6088 * Sync the specified transaction group. New blocks may be dirtied as 6089 * part of the process, so we iterate until it converges. 6090 */ 6091 void 6092 spa_sync(spa_t *spa, uint64_t txg) 6093 { 6094 dsl_pool_t *dp = spa->spa_dsl_pool; 6095 objset_t *mos = spa->spa_meta_objset; 6096 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6097 vdev_t *rvd = spa->spa_root_vdev; 6098 vdev_t *vd; 6099 dmu_tx_t *tx; 6100 int error; 6101 6102 VERIFY(spa_writeable(spa)); 6103 6104 /* 6105 * Lock out configuration changes. 6106 */ 6107 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6108 6109 spa->spa_syncing_txg = txg; 6110 spa->spa_sync_pass = 0; 6111 6112 /* 6113 * If there are any pending vdev state changes, convert them 6114 * into config changes that go out with this transaction group. 6115 */ 6116 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6117 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6118 /* 6119 * We need the write lock here because, for aux vdevs, 6120 * calling vdev_config_dirty() modifies sav_config. 6121 * This is ugly and will become unnecessary when we 6122 * eliminate the aux vdev wart by integrating all vdevs 6123 * into the root vdev tree. 6124 */ 6125 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6126 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6127 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6128 vdev_state_clean(vd); 6129 vdev_config_dirty(vd); 6130 } 6131 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6132 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6133 } 6134 spa_config_exit(spa, SCL_STATE, FTAG); 6135 6136 tx = dmu_tx_create_assigned(dp, txg); 6137 6138 spa->spa_sync_starttime = gethrtime(); 6139 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6140 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6141 6142 /* 6143 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6144 * set spa_deflate if we have no raid-z vdevs. 6145 */ 6146 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6147 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6148 int i; 6149 6150 for (i = 0; i < rvd->vdev_children; i++) { 6151 vd = rvd->vdev_child[i]; 6152 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6153 break; 6154 } 6155 if (i == rvd->vdev_children) { 6156 spa->spa_deflate = TRUE; 6157 VERIFY(0 == zap_add(spa->spa_meta_objset, 6158 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6159 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6160 } 6161 } 6162 6163 /* 6164 * If anything has changed in this txg, or if someone is waiting 6165 * for this txg to sync (eg, spa_vdev_remove()), push the 6166 * deferred frees from the previous txg. If not, leave them 6167 * alone so that we don't generate work on an otherwise idle 6168 * system. 6169 */ 6170 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6171 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6172 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6173 ((dsl_scan_active(dp->dp_scan) || 6174 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6175 spa_sync_deferred_frees(spa, tx); 6176 } 6177 6178 /* 6179 * Iterate to convergence. 6180 */ 6181 do { 6182 int pass = ++spa->spa_sync_pass; 6183 6184 spa_sync_config_object(spa, tx); 6185 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6186 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6187 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6188 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6189 spa_errlog_sync(spa, txg); 6190 dsl_pool_sync(dp, txg); 6191 6192 if (pass < zfs_sync_pass_deferred_free) { 6193 spa_sync_frees(spa, free_bpl, tx); 6194 } else { 6195 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6196 &spa->spa_deferred_bpobj, tx); 6197 } 6198 6199 ddt_sync(spa, txg); 6200 dsl_scan_sync(dp, tx); 6201 6202 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6203 vdev_sync(vd, txg); 6204 6205 if (pass == 1) 6206 spa_sync_upgrades(spa, tx); 6207 6208 } while (dmu_objset_is_dirty(mos, txg)); 6209 6210 /* 6211 * Rewrite the vdev configuration (which includes the uberblock) 6212 * to commit the transaction group. 6213 * 6214 * If there are no dirty vdevs, we sync the uberblock to a few 6215 * random top-level vdevs that are known to be visible in the 6216 * config cache (see spa_vdev_add() for a complete description). 6217 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6218 */ 6219 for (;;) { 6220 /* 6221 * We hold SCL_STATE to prevent vdev open/close/etc. 6222 * while we're attempting to write the vdev labels. 6223 */ 6224 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6225 6226 if (list_is_empty(&spa->spa_config_dirty_list)) { 6227 vdev_t *svd[SPA_DVAS_PER_BP]; 6228 int svdcount = 0; 6229 int children = rvd->vdev_children; 6230 int c0 = spa_get_random(children); 6231 6232 for (int c = 0; c < children; c++) { 6233 vd = rvd->vdev_child[(c0 + c) % children]; 6234 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6235 continue; 6236 svd[svdcount++] = vd; 6237 if (svdcount == SPA_DVAS_PER_BP) 6238 break; 6239 } 6240 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6241 if (error != 0) 6242 error = vdev_config_sync(svd, svdcount, txg, 6243 B_TRUE); 6244 } else { 6245 error = vdev_config_sync(rvd->vdev_child, 6246 rvd->vdev_children, txg, B_FALSE); 6247 if (error != 0) 6248 error = vdev_config_sync(rvd->vdev_child, 6249 rvd->vdev_children, txg, B_TRUE); 6250 } 6251 6252 if (error == 0) 6253 spa->spa_last_synced_guid = rvd->vdev_guid; 6254 6255 spa_config_exit(spa, SCL_STATE, FTAG); 6256 6257 if (error == 0) 6258 break; 6259 zio_suspend(spa, NULL); 6260 zio_resume_wait(spa); 6261 } 6262 dmu_tx_commit(tx); 6263 6264 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6265 6266 /* 6267 * Clear the dirty config list. 6268 */ 6269 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6270 vdev_config_clean(vd); 6271 6272 /* 6273 * Now that the new config has synced transactionally, 6274 * let it become visible to the config cache. 6275 */ 6276 if (spa->spa_config_syncing != NULL) { 6277 spa_config_set(spa, spa->spa_config_syncing); 6278 spa->spa_config_txg = txg; 6279 spa->spa_config_syncing = NULL; 6280 } 6281 6282 spa->spa_ubsync = spa->spa_uberblock; 6283 6284 dsl_pool_sync_done(dp, txg); 6285 6286 /* 6287 * Update usable space statistics. 6288 */ 6289 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6290 vdev_sync_done(vd, txg); 6291 6292 spa_update_dspace(spa); 6293 6294 /* 6295 * It had better be the case that we didn't dirty anything 6296 * since vdev_config_sync(). 6297 */ 6298 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6299 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6300 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6301 6302 spa->spa_sync_pass = 0; 6303 6304 spa_config_exit(spa, SCL_CONFIG, FTAG); 6305 6306 spa_handle_ignored_writes(spa); 6307 6308 /* 6309 * If any async tasks have been requested, kick them off. 6310 */ 6311 spa_async_dispatch(spa); 6312 } 6313 6314 /* 6315 * Sync all pools. We don't want to hold the namespace lock across these 6316 * operations, so we take a reference on the spa_t and drop the lock during the 6317 * sync. 6318 */ 6319 void 6320 spa_sync_allpools(void) 6321 { 6322 spa_t *spa = NULL; 6323 mutex_enter(&spa_namespace_lock); 6324 while ((spa = spa_next(spa)) != NULL) { 6325 if (spa_state(spa) != POOL_STATE_ACTIVE || 6326 !spa_writeable(spa) || spa_suspended(spa)) 6327 continue; 6328 spa_open_ref(spa, FTAG); 6329 mutex_exit(&spa_namespace_lock); 6330 txg_wait_synced(spa_get_dsl(spa), 0); 6331 mutex_enter(&spa_namespace_lock); 6332 spa_close(spa, FTAG); 6333 } 6334 mutex_exit(&spa_namespace_lock); 6335 } 6336 6337 /* 6338 * ========================================================================== 6339 * Miscellaneous routines 6340 * ========================================================================== 6341 */ 6342 6343 /* 6344 * Remove all pools in the system. 6345 */ 6346 void 6347 spa_evict_all(void) 6348 { 6349 spa_t *spa; 6350 6351 /* 6352 * Remove all cached state. All pools should be closed now, 6353 * so every spa in the AVL tree should be unreferenced. 6354 */ 6355 mutex_enter(&spa_namespace_lock); 6356 while ((spa = spa_next(NULL)) != NULL) { 6357 /* 6358 * Stop async tasks. The async thread may need to detach 6359 * a device that's been replaced, which requires grabbing 6360 * spa_namespace_lock, so we must drop it here. 6361 */ 6362 spa_open_ref(spa, FTAG); 6363 mutex_exit(&spa_namespace_lock); 6364 spa_async_suspend(spa); 6365 mutex_enter(&spa_namespace_lock); 6366 spa_close(spa, FTAG); 6367 6368 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6369 spa_unload(spa); 6370 spa_deactivate(spa); 6371 } 6372 spa_remove(spa); 6373 } 6374 mutex_exit(&spa_namespace_lock); 6375 } 6376 6377 vdev_t * 6378 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6379 { 6380 vdev_t *vd; 6381 int i; 6382 6383 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6384 return (vd); 6385 6386 if (aux) { 6387 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6388 vd = spa->spa_l2cache.sav_vdevs[i]; 6389 if (vd->vdev_guid == guid) 6390 return (vd); 6391 } 6392 6393 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6394 vd = spa->spa_spares.sav_vdevs[i]; 6395 if (vd->vdev_guid == guid) 6396 return (vd); 6397 } 6398 } 6399 6400 return (NULL); 6401 } 6402 6403 void 6404 spa_upgrade(spa_t *spa, uint64_t version) 6405 { 6406 ASSERT(spa_writeable(spa)); 6407 6408 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6409 6410 /* 6411 * This should only be called for a non-faulted pool, and since a 6412 * future version would result in an unopenable pool, this shouldn't be 6413 * possible. 6414 */ 6415 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6416 ASSERT(version >= spa->spa_uberblock.ub_version); 6417 6418 spa->spa_uberblock.ub_version = version; 6419 vdev_config_dirty(spa->spa_root_vdev); 6420 6421 spa_config_exit(spa, SCL_ALL, FTAG); 6422 6423 txg_wait_synced(spa_get_dsl(spa), 0); 6424 } 6425 6426 boolean_t 6427 spa_has_spare(spa_t *spa, uint64_t guid) 6428 { 6429 int i; 6430 uint64_t spareguid; 6431 spa_aux_vdev_t *sav = &spa->spa_spares; 6432 6433 for (i = 0; i < sav->sav_count; i++) 6434 if (sav->sav_vdevs[i]->vdev_guid == guid) 6435 return (B_TRUE); 6436 6437 for (i = 0; i < sav->sav_npending; i++) { 6438 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6439 &spareguid) == 0 && spareguid == guid) 6440 return (B_TRUE); 6441 } 6442 6443 return (B_FALSE); 6444 } 6445 6446 /* 6447 * Check if a pool has an active shared spare device. 6448 * Note: reference count of an active spare is 2, as a spare and as a replace 6449 */ 6450 static boolean_t 6451 spa_has_active_shared_spare(spa_t *spa) 6452 { 6453 int i, refcnt; 6454 uint64_t pool; 6455 spa_aux_vdev_t *sav = &spa->spa_spares; 6456 6457 for (i = 0; i < sav->sav_count; i++) { 6458 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6459 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6460 refcnt > 2) 6461 return (B_TRUE); 6462 } 6463 6464 return (B_FALSE); 6465 } 6466 6467 /* 6468 * Post a sysevent corresponding to the given event. The 'name' must be one of 6469 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6470 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6471 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6472 * or zdb as real changes. 6473 */ 6474 void 6475 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6476 { 6477 #ifdef _KERNEL 6478 sysevent_t *ev; 6479 sysevent_attr_list_t *attr = NULL; 6480 sysevent_value_t value; 6481 sysevent_id_t eid; 6482 6483 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6484 SE_SLEEP); 6485 6486 value.value_type = SE_DATA_TYPE_STRING; 6487 value.value.sv_string = spa_name(spa); 6488 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6489 goto done; 6490 6491 value.value_type = SE_DATA_TYPE_UINT64; 6492 value.value.sv_uint64 = spa_guid(spa); 6493 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6494 goto done; 6495 6496 if (vd) { 6497 value.value_type = SE_DATA_TYPE_UINT64; 6498 value.value.sv_uint64 = vd->vdev_guid; 6499 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6500 SE_SLEEP) != 0) 6501 goto done; 6502 6503 if (vd->vdev_path) { 6504 value.value_type = SE_DATA_TYPE_STRING; 6505 value.value.sv_string = vd->vdev_path; 6506 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6507 &value, SE_SLEEP) != 0) 6508 goto done; 6509 } 6510 } 6511 6512 if (sysevent_attach_attributes(ev, attr) != 0) 6513 goto done; 6514 attr = NULL; 6515 6516 (void) log_sysevent(ev, SE_SLEEP, &eid); 6517 6518 done: 6519 if (attr) 6520 sysevent_free_attr(attr); 6521 sysevent_free(ev); 6522 #endif 6523 } 6524