xref: /titanic_41/usr/src/uts/common/fs/zfs/spa.c (revision c7402f0767d7a0360fabd0bd449c6baf9b282074)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/sunddi.h>
61 #include <sys/spa_boot.h>
62 
63 #ifdef	_KERNEL
64 #include <sys/zone.h>
65 #endif	/* _KERNEL */
66 
67 #include "zfs_prop.h"
68 #include "zfs_comutil.h"
69 
70 enum zti_modes {
71 	zti_mode_fixed,			/* value is # of threads (min 1) */
72 	zti_mode_online_percent,	/* value is % of online CPUs */
73 	zti_mode_tune,			/* fill from zio_taskq_tune_* */
74 	zti_nmodes
75 };
76 
77 #define	ZTI_THREAD_FIX(n)	{ zti_mode_fixed, (n) }
78 #define	ZTI_THREAD_PCT(n)	{ zti_mode_online_percent, (n) }
79 #define	ZTI_THREAD_TUNE		{ zti_mode_tune, 0 }
80 
81 #define	ZTI_THREAD_ONE		ZTI_THREAD_FIX(1)
82 
83 typedef struct zio_taskq_info {
84 	const char *zti_name;
85 	struct {
86 		enum zti_modes zti_mode;
87 		uint_t zti_value;
88 	} zti_nthreads[ZIO_TASKQ_TYPES];
89 } zio_taskq_info_t;
90 
91 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
92 				"issue",		"intr"
93 };
94 
95 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = {
96 	/*			ISSUE			INTR		*/
97 	{ "spa_zio_null",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
98 	{ "spa_zio_read",	{ ZTI_THREAD_FIX(8),	ZTI_THREAD_TUNE } },
99 	{ "spa_zio_write",	{ ZTI_THREAD_TUNE,	ZTI_THREAD_FIX(8) } },
100 	{ "spa_zio_free",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
101 	{ "spa_zio_claim",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
102 	{ "spa_zio_ioctl",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
103 };
104 
105 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent;
106 uint_t zio_taskq_tune_value = 80;	/* #threads = 80% of # online CPUs */
107 
108 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
109 static boolean_t spa_has_active_shared_spare(spa_t *spa);
110 
111 /*
112  * ==========================================================================
113  * SPA properties routines
114  * ==========================================================================
115  */
116 
117 /*
118  * Add a (source=src, propname=propval) list to an nvlist.
119  */
120 static void
121 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
122     uint64_t intval, zprop_source_t src)
123 {
124 	const char *propname = zpool_prop_to_name(prop);
125 	nvlist_t *propval;
126 
127 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
128 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
129 
130 	if (strval != NULL)
131 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
132 	else
133 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
134 
135 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
136 	nvlist_free(propval);
137 }
138 
139 /*
140  * Get property values from the spa configuration.
141  */
142 static void
143 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
144 {
145 	uint64_t size;
146 	uint64_t used;
147 	uint64_t cap, version;
148 	zprop_source_t src = ZPROP_SRC_NONE;
149 	spa_config_dirent_t *dp;
150 
151 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
152 
153 	if (spa->spa_root_vdev != NULL) {
154 		size = spa_get_space(spa);
155 		used = spa_get_alloc(spa);
156 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
157 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
158 		spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
159 		spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
160 		    size - used, src);
161 
162 		cap = (size == 0) ? 0 : (used * 100 / size);
163 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
164 
165 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
166 		    spa->spa_root_vdev->vdev_state, src);
167 
168 		version = spa_version(spa);
169 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
170 			src = ZPROP_SRC_DEFAULT;
171 		else
172 			src = ZPROP_SRC_LOCAL;
173 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
174 	}
175 
176 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
177 
178 	if (spa->spa_root != NULL)
179 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
180 		    0, ZPROP_SRC_LOCAL);
181 
182 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
183 		if (dp->scd_path == NULL) {
184 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
185 			    "none", 0, ZPROP_SRC_LOCAL);
186 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
187 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
188 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
189 		}
190 	}
191 }
192 
193 /*
194  * Get zpool property values.
195  */
196 int
197 spa_prop_get(spa_t *spa, nvlist_t **nvp)
198 {
199 	zap_cursor_t zc;
200 	zap_attribute_t za;
201 	objset_t *mos = spa->spa_meta_objset;
202 	int err;
203 
204 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
205 
206 	mutex_enter(&spa->spa_props_lock);
207 
208 	/*
209 	 * Get properties from the spa config.
210 	 */
211 	spa_prop_get_config(spa, nvp);
212 
213 	/* If no pool property object, no more prop to get. */
214 	if (spa->spa_pool_props_object == 0) {
215 		mutex_exit(&spa->spa_props_lock);
216 		return (0);
217 	}
218 
219 	/*
220 	 * Get properties from the MOS pool property object.
221 	 */
222 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
223 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
224 	    zap_cursor_advance(&zc)) {
225 		uint64_t intval = 0;
226 		char *strval = NULL;
227 		zprop_source_t src = ZPROP_SRC_DEFAULT;
228 		zpool_prop_t prop;
229 
230 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
231 			continue;
232 
233 		switch (za.za_integer_length) {
234 		case 8:
235 			/* integer property */
236 			if (za.za_first_integer !=
237 			    zpool_prop_default_numeric(prop))
238 				src = ZPROP_SRC_LOCAL;
239 
240 			if (prop == ZPOOL_PROP_BOOTFS) {
241 				dsl_pool_t *dp;
242 				dsl_dataset_t *ds = NULL;
243 
244 				dp = spa_get_dsl(spa);
245 				rw_enter(&dp->dp_config_rwlock, RW_READER);
246 				if (err = dsl_dataset_hold_obj(dp,
247 				    za.za_first_integer, FTAG, &ds)) {
248 					rw_exit(&dp->dp_config_rwlock);
249 					break;
250 				}
251 
252 				strval = kmem_alloc(
253 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
254 				    KM_SLEEP);
255 				dsl_dataset_name(ds, strval);
256 				dsl_dataset_rele(ds, FTAG);
257 				rw_exit(&dp->dp_config_rwlock);
258 			} else {
259 				strval = NULL;
260 				intval = za.za_first_integer;
261 			}
262 
263 			spa_prop_add_list(*nvp, prop, strval, intval, src);
264 
265 			if (strval != NULL)
266 				kmem_free(strval,
267 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
268 
269 			break;
270 
271 		case 1:
272 			/* string property */
273 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
274 			err = zap_lookup(mos, spa->spa_pool_props_object,
275 			    za.za_name, 1, za.za_num_integers, strval);
276 			if (err) {
277 				kmem_free(strval, za.za_num_integers);
278 				break;
279 			}
280 			spa_prop_add_list(*nvp, prop, strval, 0, src);
281 			kmem_free(strval, za.za_num_integers);
282 			break;
283 
284 		default:
285 			break;
286 		}
287 	}
288 	zap_cursor_fini(&zc);
289 	mutex_exit(&spa->spa_props_lock);
290 out:
291 	if (err && err != ENOENT) {
292 		nvlist_free(*nvp);
293 		*nvp = NULL;
294 		return (err);
295 	}
296 
297 	return (0);
298 }
299 
300 /*
301  * Validate the given pool properties nvlist and modify the list
302  * for the property values to be set.
303  */
304 static int
305 spa_prop_validate(spa_t *spa, nvlist_t *props)
306 {
307 	nvpair_t *elem;
308 	int error = 0, reset_bootfs = 0;
309 	uint64_t objnum;
310 
311 	elem = NULL;
312 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
313 		zpool_prop_t prop;
314 		char *propname, *strval;
315 		uint64_t intval;
316 		objset_t *os;
317 		char *slash;
318 
319 		propname = nvpair_name(elem);
320 
321 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
322 			return (EINVAL);
323 
324 		switch (prop) {
325 		case ZPOOL_PROP_VERSION:
326 			error = nvpair_value_uint64(elem, &intval);
327 			if (!error &&
328 			    (intval < spa_version(spa) || intval > SPA_VERSION))
329 				error = EINVAL;
330 			break;
331 
332 		case ZPOOL_PROP_DELEGATION:
333 		case ZPOOL_PROP_AUTOREPLACE:
334 		case ZPOOL_PROP_LISTSNAPS:
335 			error = nvpair_value_uint64(elem, &intval);
336 			if (!error && intval > 1)
337 				error = EINVAL;
338 			break;
339 
340 		case ZPOOL_PROP_BOOTFS:
341 			/*
342 			 * If the pool version is less than SPA_VERSION_BOOTFS,
343 			 * or the pool is still being created (version == 0),
344 			 * the bootfs property cannot be set.
345 			 */
346 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
347 				error = ENOTSUP;
348 				break;
349 			}
350 
351 			/*
352 			 * Make sure the vdev config is bootable
353 			 */
354 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
355 				error = ENOTSUP;
356 				break;
357 			}
358 
359 			reset_bootfs = 1;
360 
361 			error = nvpair_value_string(elem, &strval);
362 
363 			if (!error) {
364 				uint64_t compress;
365 
366 				if (strval == NULL || strval[0] == '\0') {
367 					objnum = zpool_prop_default_numeric(
368 					    ZPOOL_PROP_BOOTFS);
369 					break;
370 				}
371 
372 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
373 				    DS_MODE_USER | DS_MODE_READONLY, &os))
374 					break;
375 
376 				/* We don't support gzip bootable datasets */
377 				if ((error = dsl_prop_get_integer(strval,
378 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
379 				    &compress, NULL)) == 0 &&
380 				    !BOOTFS_COMPRESS_VALID(compress)) {
381 					error = ENOTSUP;
382 				} else {
383 					objnum = dmu_objset_id(os);
384 				}
385 				dmu_objset_close(os);
386 			}
387 			break;
388 
389 		case ZPOOL_PROP_FAILUREMODE:
390 			error = nvpair_value_uint64(elem, &intval);
391 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
392 			    intval > ZIO_FAILURE_MODE_PANIC))
393 				error = EINVAL;
394 
395 			/*
396 			 * This is a special case which only occurs when
397 			 * the pool has completely failed. This allows
398 			 * the user to change the in-core failmode property
399 			 * without syncing it out to disk (I/Os might
400 			 * currently be blocked). We do this by returning
401 			 * EIO to the caller (spa_prop_set) to trick it
402 			 * into thinking we encountered a property validation
403 			 * error.
404 			 */
405 			if (!error && spa_suspended(spa)) {
406 				spa->spa_failmode = intval;
407 				error = EIO;
408 			}
409 			break;
410 
411 		case ZPOOL_PROP_CACHEFILE:
412 			if ((error = nvpair_value_string(elem, &strval)) != 0)
413 				break;
414 
415 			if (strval[0] == '\0')
416 				break;
417 
418 			if (strcmp(strval, "none") == 0)
419 				break;
420 
421 			if (strval[0] != '/') {
422 				error = EINVAL;
423 				break;
424 			}
425 
426 			slash = strrchr(strval, '/');
427 			ASSERT(slash != NULL);
428 
429 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
430 			    strcmp(slash, "/..") == 0)
431 				error = EINVAL;
432 			break;
433 		}
434 
435 		if (error)
436 			break;
437 	}
438 
439 	if (!error && reset_bootfs) {
440 		error = nvlist_remove(props,
441 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
442 
443 		if (!error) {
444 			error = nvlist_add_uint64(props,
445 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
446 		}
447 	}
448 
449 	return (error);
450 }
451 
452 void
453 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
454 {
455 	char *cachefile;
456 	spa_config_dirent_t *dp;
457 
458 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
459 	    &cachefile) != 0)
460 		return;
461 
462 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
463 	    KM_SLEEP);
464 
465 	if (cachefile[0] == '\0')
466 		dp->scd_path = spa_strdup(spa_config_path);
467 	else if (strcmp(cachefile, "none") == 0)
468 		dp->scd_path = NULL;
469 	else
470 		dp->scd_path = spa_strdup(cachefile);
471 
472 	list_insert_head(&spa->spa_config_list, dp);
473 	if (need_sync)
474 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
475 }
476 
477 int
478 spa_prop_set(spa_t *spa, nvlist_t *nvp)
479 {
480 	int error;
481 	nvpair_t *elem;
482 	boolean_t need_sync = B_FALSE;
483 	zpool_prop_t prop;
484 
485 	if ((error = spa_prop_validate(spa, nvp)) != 0)
486 		return (error);
487 
488 	elem = NULL;
489 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
490 		if ((prop = zpool_name_to_prop(
491 		    nvpair_name(elem))) == ZPROP_INVAL)
492 			return (EINVAL);
493 
494 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
495 			continue;
496 
497 		need_sync = B_TRUE;
498 		break;
499 	}
500 
501 	if (need_sync)
502 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
503 		    spa, nvp, 3));
504 	else
505 		return (0);
506 }
507 
508 /*
509  * If the bootfs property value is dsobj, clear it.
510  */
511 void
512 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
513 {
514 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
515 		VERIFY(zap_remove(spa->spa_meta_objset,
516 		    spa->spa_pool_props_object,
517 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
518 		spa->spa_bootfs = 0;
519 	}
520 }
521 
522 /*
523  * ==========================================================================
524  * SPA state manipulation (open/create/destroy/import/export)
525  * ==========================================================================
526  */
527 
528 static int
529 spa_error_entry_compare(const void *a, const void *b)
530 {
531 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
532 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
533 	int ret;
534 
535 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
536 	    sizeof (zbookmark_t));
537 
538 	if (ret < 0)
539 		return (-1);
540 	else if (ret > 0)
541 		return (1);
542 	else
543 		return (0);
544 }
545 
546 /*
547  * Utility function which retrieves copies of the current logs and
548  * re-initializes them in the process.
549  */
550 void
551 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
552 {
553 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
554 
555 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
556 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
557 
558 	avl_create(&spa->spa_errlist_scrub,
559 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
560 	    offsetof(spa_error_entry_t, se_avl));
561 	avl_create(&spa->spa_errlist_last,
562 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
563 	    offsetof(spa_error_entry_t, se_avl));
564 }
565 
566 /*
567  * Activate an uninitialized pool.
568  */
569 static void
570 spa_activate(spa_t *spa, int mode)
571 {
572 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
573 
574 	spa->spa_state = POOL_STATE_ACTIVE;
575 	spa->spa_mode = mode;
576 
577 	spa->spa_normal_class = metaslab_class_create(zfs_metaslab_ops);
578 	spa->spa_log_class = metaslab_class_create(zfs_metaslab_ops);
579 
580 	for (int t = 0; t < ZIO_TYPES; t++) {
581 		const zio_taskq_info_t *ztip = &zio_taskqs[t];
582 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
583 			enum zti_modes mode = ztip->zti_nthreads[q].zti_mode;
584 			uint_t value = ztip->zti_nthreads[q].zti_value;
585 			char name[32];
586 
587 			(void) snprintf(name, sizeof (name),
588 			    "%s_%s", ztip->zti_name, zio_taskq_types[q]);
589 
590 			if (mode == zti_mode_tune) {
591 				mode = zio_taskq_tune_mode;
592 				value = zio_taskq_tune_value;
593 				if (mode == zti_mode_tune)
594 					mode = zti_mode_online_percent;
595 			}
596 
597 			switch (mode) {
598 			case zti_mode_fixed:
599 				ASSERT3U(value, >=, 1);
600 				value = MAX(value, 1);
601 
602 				spa->spa_zio_taskq[t][q] = taskq_create(name,
603 				    value, maxclsyspri, 50, INT_MAX,
604 				    TASKQ_PREPOPULATE);
605 				break;
606 
607 			case zti_mode_online_percent:
608 				spa->spa_zio_taskq[t][q] = taskq_create(name,
609 				    value, maxclsyspri, 50, INT_MAX,
610 				    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
611 				break;
612 
613 			case zti_mode_tune:
614 			default:
615 				panic("unrecognized mode for "
616 				    "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) "
617 				    "in spa_activate()",
618 				    t, q, mode, value);
619 				break;
620 			}
621 		}
622 	}
623 
624 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
625 	    offsetof(vdev_t, vdev_config_dirty_node));
626 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
627 	    offsetof(vdev_t, vdev_state_dirty_node));
628 
629 	txg_list_create(&spa->spa_vdev_txg_list,
630 	    offsetof(struct vdev, vdev_txg_node));
631 
632 	avl_create(&spa->spa_errlist_scrub,
633 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
634 	    offsetof(spa_error_entry_t, se_avl));
635 	avl_create(&spa->spa_errlist_last,
636 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
637 	    offsetof(spa_error_entry_t, se_avl));
638 }
639 
640 /*
641  * Opposite of spa_activate().
642  */
643 static void
644 spa_deactivate(spa_t *spa)
645 {
646 	ASSERT(spa->spa_sync_on == B_FALSE);
647 	ASSERT(spa->spa_dsl_pool == NULL);
648 	ASSERT(spa->spa_root_vdev == NULL);
649 	ASSERT(spa->spa_async_zio_root == NULL);
650 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
651 
652 	txg_list_destroy(&spa->spa_vdev_txg_list);
653 
654 	list_destroy(&spa->spa_config_dirty_list);
655 	list_destroy(&spa->spa_state_dirty_list);
656 
657 	for (int t = 0; t < ZIO_TYPES; t++) {
658 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
659 			taskq_destroy(spa->spa_zio_taskq[t][q]);
660 			spa->spa_zio_taskq[t][q] = NULL;
661 		}
662 	}
663 
664 	metaslab_class_destroy(spa->spa_normal_class);
665 	spa->spa_normal_class = NULL;
666 
667 	metaslab_class_destroy(spa->spa_log_class);
668 	spa->spa_log_class = NULL;
669 
670 	/*
671 	 * If this was part of an import or the open otherwise failed, we may
672 	 * still have errors left in the queues.  Empty them just in case.
673 	 */
674 	spa_errlog_drain(spa);
675 
676 	avl_destroy(&spa->spa_errlist_scrub);
677 	avl_destroy(&spa->spa_errlist_last);
678 
679 	spa->spa_state = POOL_STATE_UNINITIALIZED;
680 }
681 
682 /*
683  * Verify a pool configuration, and construct the vdev tree appropriately.  This
684  * will create all the necessary vdevs in the appropriate layout, with each vdev
685  * in the CLOSED state.  This will prep the pool before open/creation/import.
686  * All vdev validation is done by the vdev_alloc() routine.
687  */
688 static int
689 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
690     uint_t id, int atype)
691 {
692 	nvlist_t **child;
693 	uint_t c, children;
694 	int error;
695 
696 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
697 		return (error);
698 
699 	if ((*vdp)->vdev_ops->vdev_op_leaf)
700 		return (0);
701 
702 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
703 	    &child, &children);
704 
705 	if (error == ENOENT)
706 		return (0);
707 
708 	if (error) {
709 		vdev_free(*vdp);
710 		*vdp = NULL;
711 		return (EINVAL);
712 	}
713 
714 	for (c = 0; c < children; c++) {
715 		vdev_t *vd;
716 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
717 		    atype)) != 0) {
718 			vdev_free(*vdp);
719 			*vdp = NULL;
720 			return (error);
721 		}
722 	}
723 
724 	ASSERT(*vdp != NULL);
725 
726 	return (0);
727 }
728 
729 /*
730  * Opposite of spa_load().
731  */
732 static void
733 spa_unload(spa_t *spa)
734 {
735 	int i;
736 
737 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
738 
739 	/*
740 	 * Stop async tasks.
741 	 */
742 	spa_async_suspend(spa);
743 
744 	/*
745 	 * Stop syncing.
746 	 */
747 	if (spa->spa_sync_on) {
748 		txg_sync_stop(spa->spa_dsl_pool);
749 		spa->spa_sync_on = B_FALSE;
750 	}
751 
752 	/*
753 	 * Wait for any outstanding async I/O to complete.
754 	 */
755 	if (spa->spa_async_zio_root != NULL) {
756 		(void) zio_wait(spa->spa_async_zio_root);
757 		spa->spa_async_zio_root = NULL;
758 	}
759 
760 	/*
761 	 * Close the dsl pool.
762 	 */
763 	if (spa->spa_dsl_pool) {
764 		dsl_pool_close(spa->spa_dsl_pool);
765 		spa->spa_dsl_pool = NULL;
766 	}
767 
768 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
769 
770 	/*
771 	 * Drop and purge level 2 cache
772 	 */
773 	spa_l2cache_drop(spa);
774 
775 	/*
776 	 * Close all vdevs.
777 	 */
778 	if (spa->spa_root_vdev)
779 		vdev_free(spa->spa_root_vdev);
780 	ASSERT(spa->spa_root_vdev == NULL);
781 
782 	for (i = 0; i < spa->spa_spares.sav_count; i++)
783 		vdev_free(spa->spa_spares.sav_vdevs[i]);
784 	if (spa->spa_spares.sav_vdevs) {
785 		kmem_free(spa->spa_spares.sav_vdevs,
786 		    spa->spa_spares.sav_count * sizeof (void *));
787 		spa->spa_spares.sav_vdevs = NULL;
788 	}
789 	if (spa->spa_spares.sav_config) {
790 		nvlist_free(spa->spa_spares.sav_config);
791 		spa->spa_spares.sav_config = NULL;
792 	}
793 	spa->spa_spares.sav_count = 0;
794 
795 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
796 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
797 	if (spa->spa_l2cache.sav_vdevs) {
798 		kmem_free(spa->spa_l2cache.sav_vdevs,
799 		    spa->spa_l2cache.sav_count * sizeof (void *));
800 		spa->spa_l2cache.sav_vdevs = NULL;
801 	}
802 	if (spa->spa_l2cache.sav_config) {
803 		nvlist_free(spa->spa_l2cache.sav_config);
804 		spa->spa_l2cache.sav_config = NULL;
805 	}
806 	spa->spa_l2cache.sav_count = 0;
807 
808 	spa->spa_async_suspended = 0;
809 
810 	spa_config_exit(spa, SCL_ALL, FTAG);
811 }
812 
813 /*
814  * Load (or re-load) the current list of vdevs describing the active spares for
815  * this pool.  When this is called, we have some form of basic information in
816  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
817  * then re-generate a more complete list including status information.
818  */
819 static void
820 spa_load_spares(spa_t *spa)
821 {
822 	nvlist_t **spares;
823 	uint_t nspares;
824 	int i;
825 	vdev_t *vd, *tvd;
826 
827 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
828 
829 	/*
830 	 * First, close and free any existing spare vdevs.
831 	 */
832 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
833 		vd = spa->spa_spares.sav_vdevs[i];
834 
835 		/* Undo the call to spa_activate() below */
836 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
837 		    B_FALSE)) != NULL && tvd->vdev_isspare)
838 			spa_spare_remove(tvd);
839 		vdev_close(vd);
840 		vdev_free(vd);
841 	}
842 
843 	if (spa->spa_spares.sav_vdevs)
844 		kmem_free(spa->spa_spares.sav_vdevs,
845 		    spa->spa_spares.sav_count * sizeof (void *));
846 
847 	if (spa->spa_spares.sav_config == NULL)
848 		nspares = 0;
849 	else
850 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
851 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
852 
853 	spa->spa_spares.sav_count = (int)nspares;
854 	spa->spa_spares.sav_vdevs = NULL;
855 
856 	if (nspares == 0)
857 		return;
858 
859 	/*
860 	 * Construct the array of vdevs, opening them to get status in the
861 	 * process.   For each spare, there is potentially two different vdev_t
862 	 * structures associated with it: one in the list of spares (used only
863 	 * for basic validation purposes) and one in the active vdev
864 	 * configuration (if it's spared in).  During this phase we open and
865 	 * validate each vdev on the spare list.  If the vdev also exists in the
866 	 * active configuration, then we also mark this vdev as an active spare.
867 	 */
868 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
869 	    KM_SLEEP);
870 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
871 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
872 		    VDEV_ALLOC_SPARE) == 0);
873 		ASSERT(vd != NULL);
874 
875 		spa->spa_spares.sav_vdevs[i] = vd;
876 
877 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
878 		    B_FALSE)) != NULL) {
879 			if (!tvd->vdev_isspare)
880 				spa_spare_add(tvd);
881 
882 			/*
883 			 * We only mark the spare active if we were successfully
884 			 * able to load the vdev.  Otherwise, importing a pool
885 			 * with a bad active spare would result in strange
886 			 * behavior, because multiple pool would think the spare
887 			 * is actively in use.
888 			 *
889 			 * There is a vulnerability here to an equally bizarre
890 			 * circumstance, where a dead active spare is later
891 			 * brought back to life (onlined or otherwise).  Given
892 			 * the rarity of this scenario, and the extra complexity
893 			 * it adds, we ignore the possibility.
894 			 */
895 			if (!vdev_is_dead(tvd))
896 				spa_spare_activate(tvd);
897 		}
898 
899 		vd->vdev_top = vd;
900 		vd->vdev_aux = &spa->spa_spares;
901 
902 		if (vdev_open(vd) != 0)
903 			continue;
904 
905 		if (vdev_validate_aux(vd) == 0)
906 			spa_spare_add(vd);
907 	}
908 
909 	/*
910 	 * Recompute the stashed list of spares, with status information
911 	 * this time.
912 	 */
913 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
914 	    DATA_TYPE_NVLIST_ARRAY) == 0);
915 
916 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
917 	    KM_SLEEP);
918 	for (i = 0; i < spa->spa_spares.sav_count; i++)
919 		spares[i] = vdev_config_generate(spa,
920 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
921 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
922 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
923 	for (i = 0; i < spa->spa_spares.sav_count; i++)
924 		nvlist_free(spares[i]);
925 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
926 }
927 
928 /*
929  * Load (or re-load) the current list of vdevs describing the active l2cache for
930  * this pool.  When this is called, we have some form of basic information in
931  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
932  * then re-generate a more complete list including status information.
933  * Devices which are already active have their details maintained, and are
934  * not re-opened.
935  */
936 static void
937 spa_load_l2cache(spa_t *spa)
938 {
939 	nvlist_t **l2cache;
940 	uint_t nl2cache;
941 	int i, j, oldnvdevs;
942 	uint64_t guid, size;
943 	vdev_t *vd, **oldvdevs, **newvdevs;
944 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
945 
946 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
947 
948 	if (sav->sav_config != NULL) {
949 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
950 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
951 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
952 	} else {
953 		nl2cache = 0;
954 	}
955 
956 	oldvdevs = sav->sav_vdevs;
957 	oldnvdevs = sav->sav_count;
958 	sav->sav_vdevs = NULL;
959 	sav->sav_count = 0;
960 
961 	/*
962 	 * Process new nvlist of vdevs.
963 	 */
964 	for (i = 0; i < nl2cache; i++) {
965 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
966 		    &guid) == 0);
967 
968 		newvdevs[i] = NULL;
969 		for (j = 0; j < oldnvdevs; j++) {
970 			vd = oldvdevs[j];
971 			if (vd != NULL && guid == vd->vdev_guid) {
972 				/*
973 				 * Retain previous vdev for add/remove ops.
974 				 */
975 				newvdevs[i] = vd;
976 				oldvdevs[j] = NULL;
977 				break;
978 			}
979 		}
980 
981 		if (newvdevs[i] == NULL) {
982 			/*
983 			 * Create new vdev
984 			 */
985 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
986 			    VDEV_ALLOC_L2CACHE) == 0);
987 			ASSERT(vd != NULL);
988 			newvdevs[i] = vd;
989 
990 			/*
991 			 * Commit this vdev as an l2cache device,
992 			 * even if it fails to open.
993 			 */
994 			spa_l2cache_add(vd);
995 
996 			vd->vdev_top = vd;
997 			vd->vdev_aux = sav;
998 
999 			spa_l2cache_activate(vd);
1000 
1001 			if (vdev_open(vd) != 0)
1002 				continue;
1003 
1004 			(void) vdev_validate_aux(vd);
1005 
1006 			if (!vdev_is_dead(vd)) {
1007 				size = vdev_get_rsize(vd);
1008 				l2arc_add_vdev(spa, vd,
1009 				    VDEV_LABEL_START_SIZE,
1010 				    size - VDEV_LABEL_START_SIZE);
1011 			}
1012 		}
1013 	}
1014 
1015 	/*
1016 	 * Purge vdevs that were dropped
1017 	 */
1018 	for (i = 0; i < oldnvdevs; i++) {
1019 		uint64_t pool;
1020 
1021 		vd = oldvdevs[i];
1022 		if (vd != NULL) {
1023 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1024 			    pool != 0ULL && l2arc_vdev_present(vd))
1025 				l2arc_remove_vdev(vd);
1026 			(void) vdev_close(vd);
1027 			spa_l2cache_remove(vd);
1028 		}
1029 	}
1030 
1031 	if (oldvdevs)
1032 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1033 
1034 	if (sav->sav_config == NULL)
1035 		goto out;
1036 
1037 	sav->sav_vdevs = newvdevs;
1038 	sav->sav_count = (int)nl2cache;
1039 
1040 	/*
1041 	 * Recompute the stashed list of l2cache devices, with status
1042 	 * information this time.
1043 	 */
1044 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1045 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1046 
1047 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1048 	for (i = 0; i < sav->sav_count; i++)
1049 		l2cache[i] = vdev_config_generate(spa,
1050 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1051 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1052 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1053 out:
1054 	for (i = 0; i < sav->sav_count; i++)
1055 		nvlist_free(l2cache[i]);
1056 	if (sav->sav_count)
1057 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1058 }
1059 
1060 static int
1061 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1062 {
1063 	dmu_buf_t *db;
1064 	char *packed = NULL;
1065 	size_t nvsize = 0;
1066 	int error;
1067 	*value = NULL;
1068 
1069 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1070 	nvsize = *(uint64_t *)db->db_data;
1071 	dmu_buf_rele(db, FTAG);
1072 
1073 	packed = kmem_alloc(nvsize, KM_SLEEP);
1074 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1075 	    DMU_READ_PREFETCH);
1076 	if (error == 0)
1077 		error = nvlist_unpack(packed, nvsize, value, 0);
1078 	kmem_free(packed, nvsize);
1079 
1080 	return (error);
1081 }
1082 
1083 /*
1084  * Checks to see if the given vdev could not be opened, in which case we post a
1085  * sysevent to notify the autoreplace code that the device has been removed.
1086  */
1087 static void
1088 spa_check_removed(vdev_t *vd)
1089 {
1090 	int c;
1091 
1092 	for (c = 0; c < vd->vdev_children; c++)
1093 		spa_check_removed(vd->vdev_child[c]);
1094 
1095 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1096 		zfs_post_autoreplace(vd->vdev_spa, vd);
1097 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1098 	}
1099 }
1100 
1101 /*
1102  * Load the slog device state from the config object since it's possible
1103  * that the label does not contain the most up-to-date information.
1104  */
1105 void
1106 spa_load_log_state(spa_t *spa)
1107 {
1108 	nvlist_t *nv, *nvroot, **child;
1109 	uint64_t is_log;
1110 	uint_t children, c;
1111 	vdev_t *rvd = spa->spa_root_vdev;
1112 
1113 	VERIFY(load_nvlist(spa, spa->spa_config_object, &nv) == 0);
1114 	VERIFY(nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1115 	VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1116 	    &child, &children) == 0);
1117 
1118 	for (c = 0; c < children; c++) {
1119 		vdev_t *tvd = rvd->vdev_child[c];
1120 
1121 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1122 		    &is_log) == 0 && is_log)
1123 			vdev_load_log_state(tvd, child[c]);
1124 	}
1125 	nvlist_free(nv);
1126 }
1127 
1128 /*
1129  * Check for missing log devices
1130  */
1131 int
1132 spa_check_logs(spa_t *spa)
1133 {
1134 	switch (spa->spa_log_state) {
1135 	case SPA_LOG_MISSING:
1136 		/* need to recheck in case slog has been restored */
1137 	case SPA_LOG_UNKNOWN:
1138 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1139 		    DS_FIND_CHILDREN)) {
1140 			spa->spa_log_state = SPA_LOG_MISSING;
1141 			return (1);
1142 		}
1143 		break;
1144 	}
1145 	return (0);
1146 }
1147 
1148 /*
1149  * Load an existing storage pool, using the pool's builtin spa_config as a
1150  * source of configuration information.
1151  */
1152 static int
1153 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1154 {
1155 	int error = 0;
1156 	nvlist_t *nvroot = NULL;
1157 	vdev_t *rvd;
1158 	uberblock_t *ub = &spa->spa_uberblock;
1159 	uint64_t config_cache_txg = spa->spa_config_txg;
1160 	uint64_t pool_guid;
1161 	uint64_t version;
1162 	uint64_t autoreplace = 0;
1163 	int orig_mode = spa->spa_mode;
1164 	char *ereport = FM_EREPORT_ZFS_POOL;
1165 
1166 	/*
1167 	 * If this is an untrusted config, access the pool in read-only mode.
1168 	 * This prevents things like resilvering recently removed devices.
1169 	 */
1170 	if (!mosconfig)
1171 		spa->spa_mode = FREAD;
1172 
1173 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1174 
1175 	spa->spa_load_state = state;
1176 
1177 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1178 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1179 		error = EINVAL;
1180 		goto out;
1181 	}
1182 
1183 	/*
1184 	 * Versioning wasn't explicitly added to the label until later, so if
1185 	 * it's not present treat it as the initial version.
1186 	 */
1187 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1188 		version = SPA_VERSION_INITIAL;
1189 
1190 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1191 	    &spa->spa_config_txg);
1192 
1193 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1194 	    spa_guid_exists(pool_guid, 0)) {
1195 		error = EEXIST;
1196 		goto out;
1197 	}
1198 
1199 	spa->spa_load_guid = pool_guid;
1200 
1201 	/*
1202 	 * Create "The Godfather" zio to hold all async IOs
1203 	 */
1204 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1205 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1206 
1207 	/*
1208 	 * Parse the configuration into a vdev tree.  We explicitly set the
1209 	 * value that will be returned by spa_version() since parsing the
1210 	 * configuration requires knowing the version number.
1211 	 */
1212 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1213 	spa->spa_ubsync.ub_version = version;
1214 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1215 	spa_config_exit(spa, SCL_ALL, FTAG);
1216 
1217 	if (error != 0)
1218 		goto out;
1219 
1220 	ASSERT(spa->spa_root_vdev == rvd);
1221 	ASSERT(spa_guid(spa) == pool_guid);
1222 
1223 	/*
1224 	 * Try to open all vdevs, loading each label in the process.
1225 	 */
1226 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1227 	error = vdev_open(rvd);
1228 	spa_config_exit(spa, SCL_ALL, FTAG);
1229 	if (error != 0)
1230 		goto out;
1231 
1232 	/*
1233 	 * We need to validate the vdev labels against the configuration that
1234 	 * we have in hand, which is dependent on the setting of mosconfig. If
1235 	 * mosconfig is true then we're validating the vdev labels based on
1236 	 * that config. Otherwise, we're validating against the cached config
1237 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1238 	 * later we will recursively call spa_load() and validate against
1239 	 * the vdev config.
1240 	 */
1241 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1242 	error = vdev_validate(rvd);
1243 	spa_config_exit(spa, SCL_ALL, FTAG);
1244 	if (error != 0)
1245 		goto out;
1246 
1247 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1248 		error = ENXIO;
1249 		goto out;
1250 	}
1251 
1252 	/*
1253 	 * Find the best uberblock.
1254 	 */
1255 	vdev_uberblock_load(NULL, rvd, ub);
1256 
1257 	/*
1258 	 * If we weren't able to find a single valid uberblock, return failure.
1259 	 */
1260 	if (ub->ub_txg == 0) {
1261 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1262 		    VDEV_AUX_CORRUPT_DATA);
1263 		error = ENXIO;
1264 		goto out;
1265 	}
1266 
1267 	/*
1268 	 * If the pool is newer than the code, we can't open it.
1269 	 */
1270 	if (ub->ub_version > SPA_VERSION) {
1271 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1272 		    VDEV_AUX_VERSION_NEWER);
1273 		error = ENOTSUP;
1274 		goto out;
1275 	}
1276 
1277 	/*
1278 	 * If the vdev guid sum doesn't match the uberblock, we have an
1279 	 * incomplete configuration.
1280 	 */
1281 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1282 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1283 		    VDEV_AUX_BAD_GUID_SUM);
1284 		error = ENXIO;
1285 		goto out;
1286 	}
1287 
1288 	/*
1289 	 * Initialize internal SPA structures.
1290 	 */
1291 	spa->spa_state = POOL_STATE_ACTIVE;
1292 	spa->spa_ubsync = spa->spa_uberblock;
1293 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1294 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1295 	if (error) {
1296 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1297 		    VDEV_AUX_CORRUPT_DATA);
1298 		goto out;
1299 	}
1300 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1301 
1302 	if (zap_lookup(spa->spa_meta_objset,
1303 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1304 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1305 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1306 		    VDEV_AUX_CORRUPT_DATA);
1307 		error = EIO;
1308 		goto out;
1309 	}
1310 
1311 	if (!mosconfig) {
1312 		nvlist_t *newconfig;
1313 		uint64_t hostid;
1314 
1315 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1316 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1317 			    VDEV_AUX_CORRUPT_DATA);
1318 			error = EIO;
1319 			goto out;
1320 		}
1321 
1322 		if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1323 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1324 			char *hostname;
1325 			unsigned long myhostid = 0;
1326 
1327 			VERIFY(nvlist_lookup_string(newconfig,
1328 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1329 
1330 #ifdef	_KERNEL
1331 			myhostid = zone_get_hostid(NULL);
1332 #else	/* _KERNEL */
1333 			/*
1334 			 * We're emulating the system's hostid in userland, so
1335 			 * we can't use zone_get_hostid().
1336 			 */
1337 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1338 #endif	/* _KERNEL */
1339 			if (hostid != 0 && myhostid != 0 &&
1340 			    hostid != myhostid) {
1341 				cmn_err(CE_WARN, "pool '%s' could not be "
1342 				    "loaded as it was last accessed by "
1343 				    "another system (host: %s hostid: 0x%lx). "
1344 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1345 				    spa_name(spa), hostname,
1346 				    (unsigned long)hostid);
1347 				error = EBADF;
1348 				goto out;
1349 			}
1350 		}
1351 
1352 		spa_config_set(spa, newconfig);
1353 		spa_unload(spa);
1354 		spa_deactivate(spa);
1355 		spa_activate(spa, orig_mode);
1356 
1357 		return (spa_load(spa, newconfig, state, B_TRUE));
1358 	}
1359 
1360 	if (zap_lookup(spa->spa_meta_objset,
1361 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1362 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1363 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1364 		    VDEV_AUX_CORRUPT_DATA);
1365 		error = EIO;
1366 		goto out;
1367 	}
1368 
1369 	/*
1370 	 * Load the bit that tells us to use the new accounting function
1371 	 * (raid-z deflation).  If we have an older pool, this will not
1372 	 * be present.
1373 	 */
1374 	error = zap_lookup(spa->spa_meta_objset,
1375 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1376 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1377 	if (error != 0 && error != ENOENT) {
1378 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1379 		    VDEV_AUX_CORRUPT_DATA);
1380 		error = EIO;
1381 		goto out;
1382 	}
1383 
1384 	/*
1385 	 * Load the persistent error log.  If we have an older pool, this will
1386 	 * not be present.
1387 	 */
1388 	error = zap_lookup(spa->spa_meta_objset,
1389 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1390 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1391 	if (error != 0 && error != ENOENT) {
1392 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1393 		    VDEV_AUX_CORRUPT_DATA);
1394 		error = EIO;
1395 		goto out;
1396 	}
1397 
1398 	error = zap_lookup(spa->spa_meta_objset,
1399 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1400 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1401 	if (error != 0 && error != ENOENT) {
1402 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1403 		    VDEV_AUX_CORRUPT_DATA);
1404 		error = EIO;
1405 		goto out;
1406 	}
1407 
1408 	/*
1409 	 * Load the history object.  If we have an older pool, this
1410 	 * will not be present.
1411 	 */
1412 	error = zap_lookup(spa->spa_meta_objset,
1413 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1414 	    sizeof (uint64_t), 1, &spa->spa_history);
1415 	if (error != 0 && error != ENOENT) {
1416 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1417 		    VDEV_AUX_CORRUPT_DATA);
1418 		error = EIO;
1419 		goto out;
1420 	}
1421 
1422 	/*
1423 	 * Load any hot spares for this pool.
1424 	 */
1425 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1426 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1427 	if (error != 0 && error != ENOENT) {
1428 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1429 		    VDEV_AUX_CORRUPT_DATA);
1430 		error = EIO;
1431 		goto out;
1432 	}
1433 	if (error == 0) {
1434 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1435 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1436 		    &spa->spa_spares.sav_config) != 0) {
1437 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1438 			    VDEV_AUX_CORRUPT_DATA);
1439 			error = EIO;
1440 			goto out;
1441 		}
1442 
1443 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1444 		spa_load_spares(spa);
1445 		spa_config_exit(spa, SCL_ALL, FTAG);
1446 	}
1447 
1448 	/*
1449 	 * Load any level 2 ARC devices for this pool.
1450 	 */
1451 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1452 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1453 	    &spa->spa_l2cache.sav_object);
1454 	if (error != 0 && error != ENOENT) {
1455 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1456 		    VDEV_AUX_CORRUPT_DATA);
1457 		error = EIO;
1458 		goto out;
1459 	}
1460 	if (error == 0) {
1461 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1462 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1463 		    &spa->spa_l2cache.sav_config) != 0) {
1464 			vdev_set_state(rvd, B_TRUE,
1465 			    VDEV_STATE_CANT_OPEN,
1466 			    VDEV_AUX_CORRUPT_DATA);
1467 			error = EIO;
1468 			goto out;
1469 		}
1470 
1471 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1472 		spa_load_l2cache(spa);
1473 		spa_config_exit(spa, SCL_ALL, FTAG);
1474 	}
1475 
1476 	spa_load_log_state(spa);
1477 
1478 	if (spa_check_logs(spa)) {
1479 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1480 		    VDEV_AUX_BAD_LOG);
1481 		error = ENXIO;
1482 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1483 		goto out;
1484 	}
1485 
1486 
1487 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1488 
1489 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1490 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1491 
1492 	if (error && error != ENOENT) {
1493 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1494 		    VDEV_AUX_CORRUPT_DATA);
1495 		error = EIO;
1496 		goto out;
1497 	}
1498 
1499 	if (error == 0) {
1500 		(void) zap_lookup(spa->spa_meta_objset,
1501 		    spa->spa_pool_props_object,
1502 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1503 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1504 		(void) zap_lookup(spa->spa_meta_objset,
1505 		    spa->spa_pool_props_object,
1506 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1507 		    sizeof (uint64_t), 1, &autoreplace);
1508 		(void) zap_lookup(spa->spa_meta_objset,
1509 		    spa->spa_pool_props_object,
1510 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1511 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1512 		(void) zap_lookup(spa->spa_meta_objset,
1513 		    spa->spa_pool_props_object,
1514 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1515 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1516 	}
1517 
1518 	/*
1519 	 * If the 'autoreplace' property is set, then post a resource notifying
1520 	 * the ZFS DE that it should not issue any faults for unopenable
1521 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1522 	 * unopenable vdevs so that the normal autoreplace handler can take
1523 	 * over.
1524 	 */
1525 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1526 		spa_check_removed(spa->spa_root_vdev);
1527 
1528 	/*
1529 	 * Load the vdev state for all toplevel vdevs.
1530 	 */
1531 	vdev_load(rvd);
1532 
1533 	/*
1534 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1535 	 */
1536 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1537 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1538 	spa_config_exit(spa, SCL_ALL, FTAG);
1539 
1540 	/*
1541 	 * Check the state of the root vdev.  If it can't be opened, it
1542 	 * indicates one or more toplevel vdevs are faulted.
1543 	 */
1544 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1545 		error = ENXIO;
1546 		goto out;
1547 	}
1548 
1549 	if (spa_writeable(spa)) {
1550 		dmu_tx_t *tx;
1551 		int need_update = B_FALSE;
1552 
1553 		ASSERT(state != SPA_LOAD_TRYIMPORT);
1554 
1555 		/*
1556 		 * Claim log blocks that haven't been committed yet.
1557 		 * This must all happen in a single txg.
1558 		 */
1559 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1560 		    spa_first_txg(spa));
1561 		(void) dmu_objset_find(spa_name(spa),
1562 		    zil_claim, tx, DS_FIND_CHILDREN);
1563 		dmu_tx_commit(tx);
1564 
1565 		spa->spa_log_state = SPA_LOG_GOOD;
1566 		spa->spa_sync_on = B_TRUE;
1567 		txg_sync_start(spa->spa_dsl_pool);
1568 
1569 		/*
1570 		 * Wait for all claims to sync.
1571 		 */
1572 		txg_wait_synced(spa->spa_dsl_pool, 0);
1573 
1574 		/*
1575 		 * If the config cache is stale, or we have uninitialized
1576 		 * metaslabs (see spa_vdev_add()), then update the config.
1577 		 */
1578 		if (config_cache_txg != spa->spa_config_txg ||
1579 		    state == SPA_LOAD_IMPORT)
1580 			need_update = B_TRUE;
1581 
1582 		for (int c = 0; c < rvd->vdev_children; c++)
1583 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1584 				need_update = B_TRUE;
1585 
1586 		/*
1587 		 * Update the config cache asychronously in case we're the
1588 		 * root pool, in which case the config cache isn't writable yet.
1589 		 */
1590 		if (need_update)
1591 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1592 
1593 		/*
1594 		 * Check all DTLs to see if anything needs resilvering.
1595 		 */
1596 		if (vdev_resilver_needed(rvd, NULL, NULL))
1597 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1598 	}
1599 
1600 	error = 0;
1601 out:
1602 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1603 	if (error && error != EBADF)
1604 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1605 	spa->spa_load_state = SPA_LOAD_NONE;
1606 	spa->spa_ena = 0;
1607 
1608 	return (error);
1609 }
1610 
1611 /*
1612  * Pool Open/Import
1613  *
1614  * The import case is identical to an open except that the configuration is sent
1615  * down from userland, instead of grabbed from the configuration cache.  For the
1616  * case of an open, the pool configuration will exist in the
1617  * POOL_STATE_UNINITIALIZED state.
1618  *
1619  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1620  * the same time open the pool, without having to keep around the spa_t in some
1621  * ambiguous state.
1622  */
1623 static int
1624 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1625 {
1626 	spa_t *spa;
1627 	int error;
1628 	int locked = B_FALSE;
1629 
1630 	*spapp = NULL;
1631 
1632 	/*
1633 	 * As disgusting as this is, we need to support recursive calls to this
1634 	 * function because dsl_dir_open() is called during spa_load(), and ends
1635 	 * up calling spa_open() again.  The real fix is to figure out how to
1636 	 * avoid dsl_dir_open() calling this in the first place.
1637 	 */
1638 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1639 		mutex_enter(&spa_namespace_lock);
1640 		locked = B_TRUE;
1641 	}
1642 
1643 	if ((spa = spa_lookup(pool)) == NULL) {
1644 		if (locked)
1645 			mutex_exit(&spa_namespace_lock);
1646 		return (ENOENT);
1647 	}
1648 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1649 
1650 		spa_activate(spa, spa_mode_global);
1651 
1652 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1653 
1654 		if (error == EBADF) {
1655 			/*
1656 			 * If vdev_validate() returns failure (indicated by
1657 			 * EBADF), it indicates that one of the vdevs indicates
1658 			 * that the pool has been exported or destroyed.  If
1659 			 * this is the case, the config cache is out of sync and
1660 			 * we should remove the pool from the namespace.
1661 			 */
1662 			spa_unload(spa);
1663 			spa_deactivate(spa);
1664 			spa_config_sync(spa, B_TRUE, B_TRUE);
1665 			spa_remove(spa);
1666 			if (locked)
1667 				mutex_exit(&spa_namespace_lock);
1668 			return (ENOENT);
1669 		}
1670 
1671 		if (error) {
1672 			/*
1673 			 * We can't open the pool, but we still have useful
1674 			 * information: the state of each vdev after the
1675 			 * attempted vdev_open().  Return this to the user.
1676 			 */
1677 			if (config != NULL && spa->spa_root_vdev != NULL)
1678 				*config = spa_config_generate(spa, NULL, -1ULL,
1679 				    B_TRUE);
1680 			spa_unload(spa);
1681 			spa_deactivate(spa);
1682 			spa->spa_last_open_failed = B_TRUE;
1683 			if (locked)
1684 				mutex_exit(&spa_namespace_lock);
1685 			*spapp = NULL;
1686 			return (error);
1687 		} else {
1688 			spa->spa_last_open_failed = B_FALSE;
1689 		}
1690 	}
1691 
1692 	spa_open_ref(spa, tag);
1693 
1694 	if (locked)
1695 		mutex_exit(&spa_namespace_lock);
1696 
1697 	*spapp = spa;
1698 
1699 	if (config != NULL)
1700 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1701 
1702 	return (0);
1703 }
1704 
1705 int
1706 spa_open(const char *name, spa_t **spapp, void *tag)
1707 {
1708 	return (spa_open_common(name, spapp, tag, NULL));
1709 }
1710 
1711 /*
1712  * Lookup the given spa_t, incrementing the inject count in the process,
1713  * preventing it from being exported or destroyed.
1714  */
1715 spa_t *
1716 spa_inject_addref(char *name)
1717 {
1718 	spa_t *spa;
1719 
1720 	mutex_enter(&spa_namespace_lock);
1721 	if ((spa = spa_lookup(name)) == NULL) {
1722 		mutex_exit(&spa_namespace_lock);
1723 		return (NULL);
1724 	}
1725 	spa->spa_inject_ref++;
1726 	mutex_exit(&spa_namespace_lock);
1727 
1728 	return (spa);
1729 }
1730 
1731 void
1732 spa_inject_delref(spa_t *spa)
1733 {
1734 	mutex_enter(&spa_namespace_lock);
1735 	spa->spa_inject_ref--;
1736 	mutex_exit(&spa_namespace_lock);
1737 }
1738 
1739 /*
1740  * Add spares device information to the nvlist.
1741  */
1742 static void
1743 spa_add_spares(spa_t *spa, nvlist_t *config)
1744 {
1745 	nvlist_t **spares;
1746 	uint_t i, nspares;
1747 	nvlist_t *nvroot;
1748 	uint64_t guid;
1749 	vdev_stat_t *vs;
1750 	uint_t vsc;
1751 	uint64_t pool;
1752 
1753 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1754 
1755 	if (spa->spa_spares.sav_count == 0)
1756 		return;
1757 
1758 	VERIFY(nvlist_lookup_nvlist(config,
1759 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1760 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1761 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1762 	if (nspares != 0) {
1763 		VERIFY(nvlist_add_nvlist_array(nvroot,
1764 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1765 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1766 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1767 
1768 		/*
1769 		 * Go through and find any spares which have since been
1770 		 * repurposed as an active spare.  If this is the case, update
1771 		 * their status appropriately.
1772 		 */
1773 		for (i = 0; i < nspares; i++) {
1774 			VERIFY(nvlist_lookup_uint64(spares[i],
1775 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1776 			if (spa_spare_exists(guid, &pool, NULL) &&
1777 			    pool != 0ULL) {
1778 				VERIFY(nvlist_lookup_uint64_array(
1779 				    spares[i], ZPOOL_CONFIG_STATS,
1780 				    (uint64_t **)&vs, &vsc) == 0);
1781 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1782 				vs->vs_aux = VDEV_AUX_SPARED;
1783 			}
1784 		}
1785 	}
1786 }
1787 
1788 /*
1789  * Add l2cache device information to the nvlist, including vdev stats.
1790  */
1791 static void
1792 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1793 {
1794 	nvlist_t **l2cache;
1795 	uint_t i, j, nl2cache;
1796 	nvlist_t *nvroot;
1797 	uint64_t guid;
1798 	vdev_t *vd;
1799 	vdev_stat_t *vs;
1800 	uint_t vsc;
1801 
1802 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1803 
1804 	if (spa->spa_l2cache.sav_count == 0)
1805 		return;
1806 
1807 	VERIFY(nvlist_lookup_nvlist(config,
1808 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1809 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1810 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1811 	if (nl2cache != 0) {
1812 		VERIFY(nvlist_add_nvlist_array(nvroot,
1813 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1814 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1815 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1816 
1817 		/*
1818 		 * Update level 2 cache device stats.
1819 		 */
1820 
1821 		for (i = 0; i < nl2cache; i++) {
1822 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1823 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1824 
1825 			vd = NULL;
1826 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1827 				if (guid ==
1828 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1829 					vd = spa->spa_l2cache.sav_vdevs[j];
1830 					break;
1831 				}
1832 			}
1833 			ASSERT(vd != NULL);
1834 
1835 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1836 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1837 			vdev_get_stats(vd, vs);
1838 		}
1839 	}
1840 }
1841 
1842 int
1843 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1844 {
1845 	int error;
1846 	spa_t *spa;
1847 
1848 	*config = NULL;
1849 	error = spa_open_common(name, &spa, FTAG, config);
1850 
1851 	if (spa != NULL) {
1852 		/*
1853 		 * This still leaves a window of inconsistency where the spares
1854 		 * or l2cache devices could change and the config would be
1855 		 * self-inconsistent.
1856 		 */
1857 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1858 
1859 		if (*config != NULL) {
1860 			VERIFY(nvlist_add_uint64(*config,
1861 			    ZPOOL_CONFIG_ERRCOUNT,
1862 			    spa_get_errlog_size(spa)) == 0);
1863 
1864 			if (spa_suspended(spa))
1865 				VERIFY(nvlist_add_uint64(*config,
1866 				    ZPOOL_CONFIG_SUSPENDED,
1867 				    spa->spa_failmode) == 0);
1868 
1869 			spa_add_spares(spa, *config);
1870 			spa_add_l2cache(spa, *config);
1871 		}
1872 	}
1873 
1874 	/*
1875 	 * We want to get the alternate root even for faulted pools, so we cheat
1876 	 * and call spa_lookup() directly.
1877 	 */
1878 	if (altroot) {
1879 		if (spa == NULL) {
1880 			mutex_enter(&spa_namespace_lock);
1881 			spa = spa_lookup(name);
1882 			if (spa)
1883 				spa_altroot(spa, altroot, buflen);
1884 			else
1885 				altroot[0] = '\0';
1886 			spa = NULL;
1887 			mutex_exit(&spa_namespace_lock);
1888 		} else {
1889 			spa_altroot(spa, altroot, buflen);
1890 		}
1891 	}
1892 
1893 	if (spa != NULL) {
1894 		spa_config_exit(spa, SCL_CONFIG, FTAG);
1895 		spa_close(spa, FTAG);
1896 	}
1897 
1898 	return (error);
1899 }
1900 
1901 /*
1902  * Validate that the auxiliary device array is well formed.  We must have an
1903  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1904  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1905  * specified, as long as they are well-formed.
1906  */
1907 static int
1908 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1909     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1910     vdev_labeltype_t label)
1911 {
1912 	nvlist_t **dev;
1913 	uint_t i, ndev;
1914 	vdev_t *vd;
1915 	int error;
1916 
1917 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1918 
1919 	/*
1920 	 * It's acceptable to have no devs specified.
1921 	 */
1922 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1923 		return (0);
1924 
1925 	if (ndev == 0)
1926 		return (EINVAL);
1927 
1928 	/*
1929 	 * Make sure the pool is formatted with a version that supports this
1930 	 * device type.
1931 	 */
1932 	if (spa_version(spa) < version)
1933 		return (ENOTSUP);
1934 
1935 	/*
1936 	 * Set the pending device list so we correctly handle device in-use
1937 	 * checking.
1938 	 */
1939 	sav->sav_pending = dev;
1940 	sav->sav_npending = ndev;
1941 
1942 	for (i = 0; i < ndev; i++) {
1943 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1944 		    mode)) != 0)
1945 			goto out;
1946 
1947 		if (!vd->vdev_ops->vdev_op_leaf) {
1948 			vdev_free(vd);
1949 			error = EINVAL;
1950 			goto out;
1951 		}
1952 
1953 		/*
1954 		 * The L2ARC currently only supports disk devices in
1955 		 * kernel context.  For user-level testing, we allow it.
1956 		 */
1957 #ifdef _KERNEL
1958 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1959 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1960 			error = ENOTBLK;
1961 			goto out;
1962 		}
1963 #endif
1964 		vd->vdev_top = vd;
1965 
1966 		if ((error = vdev_open(vd)) == 0 &&
1967 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1968 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1969 			    vd->vdev_guid) == 0);
1970 		}
1971 
1972 		vdev_free(vd);
1973 
1974 		if (error &&
1975 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1976 			goto out;
1977 		else
1978 			error = 0;
1979 	}
1980 
1981 out:
1982 	sav->sav_pending = NULL;
1983 	sav->sav_npending = 0;
1984 	return (error);
1985 }
1986 
1987 static int
1988 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1989 {
1990 	int error;
1991 
1992 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1993 
1994 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1995 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1996 	    VDEV_LABEL_SPARE)) != 0) {
1997 		return (error);
1998 	}
1999 
2000 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2001 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2002 	    VDEV_LABEL_L2CACHE));
2003 }
2004 
2005 static void
2006 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2007     const char *config)
2008 {
2009 	int i;
2010 
2011 	if (sav->sav_config != NULL) {
2012 		nvlist_t **olddevs;
2013 		uint_t oldndevs;
2014 		nvlist_t **newdevs;
2015 
2016 		/*
2017 		 * Generate new dev list by concatentating with the
2018 		 * current dev list.
2019 		 */
2020 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2021 		    &olddevs, &oldndevs) == 0);
2022 
2023 		newdevs = kmem_alloc(sizeof (void *) *
2024 		    (ndevs + oldndevs), KM_SLEEP);
2025 		for (i = 0; i < oldndevs; i++)
2026 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2027 			    KM_SLEEP) == 0);
2028 		for (i = 0; i < ndevs; i++)
2029 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2030 			    KM_SLEEP) == 0);
2031 
2032 		VERIFY(nvlist_remove(sav->sav_config, config,
2033 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2034 
2035 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2036 		    config, newdevs, ndevs + oldndevs) == 0);
2037 		for (i = 0; i < oldndevs + ndevs; i++)
2038 			nvlist_free(newdevs[i]);
2039 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2040 	} else {
2041 		/*
2042 		 * Generate a new dev list.
2043 		 */
2044 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2045 		    KM_SLEEP) == 0);
2046 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2047 		    devs, ndevs) == 0);
2048 	}
2049 }
2050 
2051 /*
2052  * Stop and drop level 2 ARC devices
2053  */
2054 void
2055 spa_l2cache_drop(spa_t *spa)
2056 {
2057 	vdev_t *vd;
2058 	int i;
2059 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2060 
2061 	for (i = 0; i < sav->sav_count; i++) {
2062 		uint64_t pool;
2063 
2064 		vd = sav->sav_vdevs[i];
2065 		ASSERT(vd != NULL);
2066 
2067 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2068 		    pool != 0ULL && l2arc_vdev_present(vd))
2069 			l2arc_remove_vdev(vd);
2070 		if (vd->vdev_isl2cache)
2071 			spa_l2cache_remove(vd);
2072 		vdev_clear_stats(vd);
2073 		(void) vdev_close(vd);
2074 	}
2075 }
2076 
2077 /*
2078  * Pool Creation
2079  */
2080 int
2081 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2082     const char *history_str, nvlist_t *zplprops)
2083 {
2084 	spa_t *spa;
2085 	char *altroot = NULL;
2086 	vdev_t *rvd;
2087 	dsl_pool_t *dp;
2088 	dmu_tx_t *tx;
2089 	int c, error = 0;
2090 	uint64_t txg = TXG_INITIAL;
2091 	nvlist_t **spares, **l2cache;
2092 	uint_t nspares, nl2cache;
2093 	uint64_t version;
2094 
2095 	/*
2096 	 * If this pool already exists, return failure.
2097 	 */
2098 	mutex_enter(&spa_namespace_lock);
2099 	if (spa_lookup(pool) != NULL) {
2100 		mutex_exit(&spa_namespace_lock);
2101 		return (EEXIST);
2102 	}
2103 
2104 	/*
2105 	 * Allocate a new spa_t structure.
2106 	 */
2107 	(void) nvlist_lookup_string(props,
2108 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2109 	spa = spa_add(pool, altroot);
2110 	spa_activate(spa, spa_mode_global);
2111 
2112 	spa->spa_uberblock.ub_txg = txg - 1;
2113 
2114 	if (props && (error = spa_prop_validate(spa, props))) {
2115 		spa_deactivate(spa);
2116 		spa_remove(spa);
2117 		mutex_exit(&spa_namespace_lock);
2118 		return (error);
2119 	}
2120 
2121 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2122 	    &version) != 0)
2123 		version = SPA_VERSION;
2124 	ASSERT(version <= SPA_VERSION);
2125 	spa->spa_uberblock.ub_version = version;
2126 	spa->spa_ubsync = spa->spa_uberblock;
2127 
2128 	/*
2129 	 * Create "The Godfather" zio to hold all async IOs
2130 	 */
2131 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2132 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2133 
2134 	/*
2135 	 * Create the root vdev.
2136 	 */
2137 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2138 
2139 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2140 
2141 	ASSERT(error != 0 || rvd != NULL);
2142 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2143 
2144 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2145 		error = EINVAL;
2146 
2147 	if (error == 0 &&
2148 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2149 	    (error = spa_validate_aux(spa, nvroot, txg,
2150 	    VDEV_ALLOC_ADD)) == 0) {
2151 		for (c = 0; c < rvd->vdev_children; c++)
2152 			vdev_init(rvd->vdev_child[c], txg);
2153 		vdev_config_dirty(rvd);
2154 	}
2155 
2156 	spa_config_exit(spa, SCL_ALL, FTAG);
2157 
2158 	if (error != 0) {
2159 		spa_unload(spa);
2160 		spa_deactivate(spa);
2161 		spa_remove(spa);
2162 		mutex_exit(&spa_namespace_lock);
2163 		return (error);
2164 	}
2165 
2166 	/*
2167 	 * Get the list of spares, if specified.
2168 	 */
2169 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2170 	    &spares, &nspares) == 0) {
2171 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2172 		    KM_SLEEP) == 0);
2173 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2174 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2175 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2176 		spa_load_spares(spa);
2177 		spa_config_exit(spa, SCL_ALL, FTAG);
2178 		spa->spa_spares.sav_sync = B_TRUE;
2179 	}
2180 
2181 	/*
2182 	 * Get the list of level 2 cache devices, if specified.
2183 	 */
2184 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2185 	    &l2cache, &nl2cache) == 0) {
2186 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2187 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2188 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2189 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2190 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2191 		spa_load_l2cache(spa);
2192 		spa_config_exit(spa, SCL_ALL, FTAG);
2193 		spa->spa_l2cache.sav_sync = B_TRUE;
2194 	}
2195 
2196 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2197 	spa->spa_meta_objset = dp->dp_meta_objset;
2198 
2199 	tx = dmu_tx_create_assigned(dp, txg);
2200 
2201 	/*
2202 	 * Create the pool config object.
2203 	 */
2204 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2205 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2206 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2207 
2208 	if (zap_add(spa->spa_meta_objset,
2209 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2210 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2211 		cmn_err(CE_PANIC, "failed to add pool config");
2212 	}
2213 
2214 	/* Newly created pools with the right version are always deflated. */
2215 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2216 		spa->spa_deflate = TRUE;
2217 		if (zap_add(spa->spa_meta_objset,
2218 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2219 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2220 			cmn_err(CE_PANIC, "failed to add deflate");
2221 		}
2222 	}
2223 
2224 	/*
2225 	 * Create the deferred-free bplist object.  Turn off compression
2226 	 * because sync-to-convergence takes longer if the blocksize
2227 	 * keeps changing.
2228 	 */
2229 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2230 	    1 << 14, tx);
2231 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2232 	    ZIO_COMPRESS_OFF, tx);
2233 
2234 	if (zap_add(spa->spa_meta_objset,
2235 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2236 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2237 		cmn_err(CE_PANIC, "failed to add bplist");
2238 	}
2239 
2240 	/*
2241 	 * Create the pool's history object.
2242 	 */
2243 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2244 		spa_history_create_obj(spa, tx);
2245 
2246 	/*
2247 	 * Set pool properties.
2248 	 */
2249 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2250 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2251 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2252 	if (props != NULL) {
2253 		spa_configfile_set(spa, props, B_FALSE);
2254 		spa_sync_props(spa, props, CRED(), tx);
2255 	}
2256 
2257 	dmu_tx_commit(tx);
2258 
2259 	spa->spa_sync_on = B_TRUE;
2260 	txg_sync_start(spa->spa_dsl_pool);
2261 
2262 	/*
2263 	 * We explicitly wait for the first transaction to complete so that our
2264 	 * bean counters are appropriately updated.
2265 	 */
2266 	txg_wait_synced(spa->spa_dsl_pool, txg);
2267 
2268 	spa_config_sync(spa, B_FALSE, B_TRUE);
2269 
2270 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2271 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2272 
2273 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2274 
2275 	mutex_exit(&spa_namespace_lock);
2276 
2277 	return (0);
2278 }
2279 
2280 #ifdef _KERNEL
2281 /*
2282  * Get the root pool information from the root disk, then import the root pool
2283  * during the system boot up time.
2284  */
2285 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2286 
2287 static nvlist_t *
2288 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2289 {
2290 	nvlist_t *config;
2291 	nvlist_t *nvtop, *nvroot;
2292 	uint64_t pgid;
2293 
2294 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2295 		return (NULL);
2296 
2297 	/*
2298 	 * Add this top-level vdev to the child array.
2299 	 */
2300 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2301 	    &nvtop) == 0);
2302 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2303 	    &pgid) == 0);
2304 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2305 
2306 	/*
2307 	 * Put this pool's top-level vdevs into a root vdev.
2308 	 */
2309 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2310 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2311 	    VDEV_TYPE_ROOT) == 0);
2312 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2313 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2314 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2315 	    &nvtop, 1) == 0);
2316 
2317 	/*
2318 	 * Replace the existing vdev_tree with the new root vdev in
2319 	 * this pool's configuration (remove the old, add the new).
2320 	 */
2321 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2322 	nvlist_free(nvroot);
2323 	return (config);
2324 }
2325 
2326 /*
2327  * Walk the vdev tree and see if we can find a device with "better"
2328  * configuration. A configuration is "better" if the label on that
2329  * device has a more recent txg.
2330  */
2331 static void
2332 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2333 {
2334 	int c;
2335 
2336 	for (c = 0; c < vd->vdev_children; c++)
2337 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2338 
2339 	if (vd->vdev_ops->vdev_op_leaf) {
2340 		nvlist_t *label;
2341 		uint64_t label_txg;
2342 
2343 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2344 		    &label) != 0)
2345 			return;
2346 
2347 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2348 		    &label_txg) == 0);
2349 
2350 		/*
2351 		 * Do we have a better boot device?
2352 		 */
2353 		if (label_txg > *txg) {
2354 			*txg = label_txg;
2355 			*avd = vd;
2356 		}
2357 		nvlist_free(label);
2358 	}
2359 }
2360 
2361 /*
2362  * Import a root pool.
2363  *
2364  * For x86. devpath_list will consist of devid and/or physpath name of
2365  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2366  * The GRUB "findroot" command will return the vdev we should boot.
2367  *
2368  * For Sparc, devpath_list consists the physpath name of the booting device
2369  * no matter the rootpool is a single device pool or a mirrored pool.
2370  * e.g.
2371  *	"/pci@1f,0/ide@d/disk@0,0:a"
2372  */
2373 int
2374 spa_import_rootpool(char *devpath, char *devid)
2375 {
2376 	spa_t *spa;
2377 	vdev_t *rvd, *bvd, *avd = NULL;
2378 	nvlist_t *config, *nvtop;
2379 	uint64_t guid, txg;
2380 	char *pname;
2381 	int error;
2382 
2383 	/*
2384 	 * Read the label from the boot device and generate a configuration.
2385 	 */
2386 	if ((config = spa_generate_rootconf(devpath, devid, &guid)) == NULL) {
2387 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2388 		    devpath);
2389 		return (EIO);
2390 	}
2391 
2392 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2393 	    &pname) == 0);
2394 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2395 
2396 	mutex_enter(&spa_namespace_lock);
2397 	if ((spa = spa_lookup(pname)) != NULL) {
2398 		/*
2399 		 * Remove the existing root pool from the namespace so that we
2400 		 * can replace it with the correct config we just read in.
2401 		 */
2402 		spa_remove(spa);
2403 	}
2404 
2405 	spa = spa_add(pname, NULL);
2406 	spa->spa_is_root = B_TRUE;
2407 
2408 	/*
2409 	 * Build up a vdev tree based on the boot device's label config.
2410 	 */
2411 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2412 	    &nvtop) == 0);
2413 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2414 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
2415 	    VDEV_ALLOC_ROOTPOOL);
2416 	spa_config_exit(spa, SCL_ALL, FTAG);
2417 	if (error) {
2418 		mutex_exit(&spa_namespace_lock);
2419 		nvlist_free(config);
2420 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
2421 		    pname);
2422 		return (error);
2423 	}
2424 
2425 	/*
2426 	 * Get the boot vdev.
2427 	 */
2428 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2429 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
2430 		    (u_longlong_t)guid);
2431 		error = ENOENT;
2432 		goto out;
2433 	}
2434 
2435 	/*
2436 	 * Determine if there is a better boot device.
2437 	 */
2438 	avd = bvd;
2439 	spa_alt_rootvdev(rvd, &avd, &txg);
2440 	if (avd != bvd) {
2441 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
2442 		    "try booting from '%s'", avd->vdev_path);
2443 		error = EINVAL;
2444 		goto out;
2445 	}
2446 
2447 	/*
2448 	 * If the boot device is part of a spare vdev then ensure that
2449 	 * we're booting off the active spare.
2450 	 */
2451 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2452 	    !bvd->vdev_isspare) {
2453 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
2454 		    "try booting from '%s'",
2455 		    bvd->vdev_parent->vdev_child[1]->vdev_path);
2456 		error = EINVAL;
2457 		goto out;
2458 	}
2459 
2460 	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2461 	error = 0;
2462 out:
2463 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2464 	vdev_free(rvd);
2465 	spa_config_exit(spa, SCL_ALL, FTAG);
2466 	mutex_exit(&spa_namespace_lock);
2467 
2468 	nvlist_free(config);
2469 	return (error);
2470 }
2471 
2472 #endif
2473 
2474 /*
2475  * Take a pool and insert it into the namespace as if it had been loaded at
2476  * boot.
2477  */
2478 int
2479 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2480 {
2481 	spa_t *spa;
2482 	char *altroot = NULL;
2483 
2484 	mutex_enter(&spa_namespace_lock);
2485 	if (spa_lookup(pool) != NULL) {
2486 		mutex_exit(&spa_namespace_lock);
2487 		return (EEXIST);
2488 	}
2489 
2490 	(void) nvlist_lookup_string(props,
2491 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2492 	spa = spa_add(pool, altroot);
2493 
2494 	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2495 
2496 	if (props != NULL)
2497 		spa_configfile_set(spa, props, B_FALSE);
2498 
2499 	spa_config_sync(spa, B_FALSE, B_TRUE);
2500 
2501 	mutex_exit(&spa_namespace_lock);
2502 
2503 	return (0);
2504 }
2505 
2506 /*
2507  * Import a non-root pool into the system.
2508  */
2509 int
2510 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2511 {
2512 	spa_t *spa;
2513 	char *altroot = NULL;
2514 	int error;
2515 	nvlist_t *nvroot;
2516 	nvlist_t **spares, **l2cache;
2517 	uint_t nspares, nl2cache;
2518 
2519 	/*
2520 	 * If a pool with this name exists, return failure.
2521 	 */
2522 	mutex_enter(&spa_namespace_lock);
2523 	if ((spa = spa_lookup(pool)) != NULL) {
2524 		mutex_exit(&spa_namespace_lock);
2525 		return (EEXIST);
2526 	}
2527 
2528 	/*
2529 	 * Create and initialize the spa structure.
2530 	 */
2531 	(void) nvlist_lookup_string(props,
2532 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2533 	spa = spa_add(pool, altroot);
2534 	spa_activate(spa, spa_mode_global);
2535 
2536 	/*
2537 	 * Don't start async tasks until we know everything is healthy.
2538 	 */
2539 	spa_async_suspend(spa);
2540 
2541 	/*
2542 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
2543 	 * because the user-supplied config is actually the one to trust when
2544 	 * doing an import.
2545 	 */
2546 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
2547 
2548 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2549 	/*
2550 	 * Toss any existing sparelist, as it doesn't have any validity
2551 	 * anymore, and conflicts with spa_has_spare().
2552 	 */
2553 	if (spa->spa_spares.sav_config) {
2554 		nvlist_free(spa->spa_spares.sav_config);
2555 		spa->spa_spares.sav_config = NULL;
2556 		spa_load_spares(spa);
2557 	}
2558 	if (spa->spa_l2cache.sav_config) {
2559 		nvlist_free(spa->spa_l2cache.sav_config);
2560 		spa->spa_l2cache.sav_config = NULL;
2561 		spa_load_l2cache(spa);
2562 	}
2563 
2564 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2565 	    &nvroot) == 0);
2566 	if (error == 0)
2567 		error = spa_validate_aux(spa, nvroot, -1ULL,
2568 		    VDEV_ALLOC_SPARE);
2569 	if (error == 0)
2570 		error = spa_validate_aux(spa, nvroot, -1ULL,
2571 		    VDEV_ALLOC_L2CACHE);
2572 	spa_config_exit(spa, SCL_ALL, FTAG);
2573 
2574 	if (props != NULL)
2575 		spa_configfile_set(spa, props, B_FALSE);
2576 
2577 	if (error != 0 || (props && spa_writeable(spa) &&
2578 	    (error = spa_prop_set(spa, props)))) {
2579 		spa_unload(spa);
2580 		spa_deactivate(spa);
2581 		spa_remove(spa);
2582 		mutex_exit(&spa_namespace_lock);
2583 		return (error);
2584 	}
2585 
2586 	spa_async_resume(spa);
2587 
2588 	/*
2589 	 * Override any spares and level 2 cache devices as specified by
2590 	 * the user, as these may have correct device names/devids, etc.
2591 	 */
2592 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2593 	    &spares, &nspares) == 0) {
2594 		if (spa->spa_spares.sav_config)
2595 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2596 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2597 		else
2598 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2599 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2600 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2601 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2602 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2603 		spa_load_spares(spa);
2604 		spa_config_exit(spa, SCL_ALL, FTAG);
2605 		spa->spa_spares.sav_sync = B_TRUE;
2606 	}
2607 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2608 	    &l2cache, &nl2cache) == 0) {
2609 		if (spa->spa_l2cache.sav_config)
2610 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2611 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2612 		else
2613 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2614 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2615 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2616 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2617 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2618 		spa_load_l2cache(spa);
2619 		spa_config_exit(spa, SCL_ALL, FTAG);
2620 		spa->spa_l2cache.sav_sync = B_TRUE;
2621 	}
2622 
2623 	if (spa_writeable(spa)) {
2624 		/*
2625 		 * Update the config cache to include the newly-imported pool.
2626 		 */
2627 		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, B_FALSE);
2628 	}
2629 
2630 	mutex_exit(&spa_namespace_lock);
2631 
2632 	return (0);
2633 }
2634 
2635 
2636 /*
2637  * This (illegal) pool name is used when temporarily importing a spa_t in order
2638  * to get the vdev stats associated with the imported devices.
2639  */
2640 #define	TRYIMPORT_NAME	"$import"
2641 
2642 nvlist_t *
2643 spa_tryimport(nvlist_t *tryconfig)
2644 {
2645 	nvlist_t *config = NULL;
2646 	char *poolname;
2647 	spa_t *spa;
2648 	uint64_t state;
2649 	int error;
2650 
2651 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2652 		return (NULL);
2653 
2654 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2655 		return (NULL);
2656 
2657 	/*
2658 	 * Create and initialize the spa structure.
2659 	 */
2660 	mutex_enter(&spa_namespace_lock);
2661 	spa = spa_add(TRYIMPORT_NAME, NULL);
2662 	spa_activate(spa, FREAD);
2663 
2664 	/*
2665 	 * Pass off the heavy lifting to spa_load().
2666 	 * Pass TRUE for mosconfig because the user-supplied config
2667 	 * is actually the one to trust when doing an import.
2668 	 */
2669 	error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2670 
2671 	/*
2672 	 * If 'tryconfig' was at least parsable, return the current config.
2673 	 */
2674 	if (spa->spa_root_vdev != NULL) {
2675 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2676 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2677 		    poolname) == 0);
2678 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2679 		    state) == 0);
2680 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2681 		    spa->spa_uberblock.ub_timestamp) == 0);
2682 
2683 		/*
2684 		 * If the bootfs property exists on this pool then we
2685 		 * copy it out so that external consumers can tell which
2686 		 * pools are bootable.
2687 		 */
2688 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
2689 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2690 
2691 			/*
2692 			 * We have to play games with the name since the
2693 			 * pool was opened as TRYIMPORT_NAME.
2694 			 */
2695 			if (dsl_dsobj_to_dsname(spa_name(spa),
2696 			    spa->spa_bootfs, tmpname) == 0) {
2697 				char *cp;
2698 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2699 
2700 				cp = strchr(tmpname, '/');
2701 				if (cp == NULL) {
2702 					(void) strlcpy(dsname, tmpname,
2703 					    MAXPATHLEN);
2704 				} else {
2705 					(void) snprintf(dsname, MAXPATHLEN,
2706 					    "%s/%s", poolname, ++cp);
2707 				}
2708 				VERIFY(nvlist_add_string(config,
2709 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2710 				kmem_free(dsname, MAXPATHLEN);
2711 			}
2712 			kmem_free(tmpname, MAXPATHLEN);
2713 		}
2714 
2715 		/*
2716 		 * Add the list of hot spares and level 2 cache devices.
2717 		 */
2718 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2719 		spa_add_spares(spa, config);
2720 		spa_add_l2cache(spa, config);
2721 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2722 	}
2723 
2724 	spa_unload(spa);
2725 	spa_deactivate(spa);
2726 	spa_remove(spa);
2727 	mutex_exit(&spa_namespace_lock);
2728 
2729 	return (config);
2730 }
2731 
2732 /*
2733  * Pool export/destroy
2734  *
2735  * The act of destroying or exporting a pool is very simple.  We make sure there
2736  * is no more pending I/O and any references to the pool are gone.  Then, we
2737  * update the pool state and sync all the labels to disk, removing the
2738  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
2739  * we don't sync the labels or remove the configuration cache.
2740  */
2741 static int
2742 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2743     boolean_t force, boolean_t hardforce)
2744 {
2745 	spa_t *spa;
2746 
2747 	if (oldconfig)
2748 		*oldconfig = NULL;
2749 
2750 	if (!(spa_mode_global & FWRITE))
2751 		return (EROFS);
2752 
2753 	mutex_enter(&spa_namespace_lock);
2754 	if ((spa = spa_lookup(pool)) == NULL) {
2755 		mutex_exit(&spa_namespace_lock);
2756 		return (ENOENT);
2757 	}
2758 
2759 	/*
2760 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2761 	 * reacquire the namespace lock, and see if we can export.
2762 	 */
2763 	spa_open_ref(spa, FTAG);
2764 	mutex_exit(&spa_namespace_lock);
2765 	spa_async_suspend(spa);
2766 	mutex_enter(&spa_namespace_lock);
2767 	spa_close(spa, FTAG);
2768 
2769 	/*
2770 	 * The pool will be in core if it's openable,
2771 	 * in which case we can modify its state.
2772 	 */
2773 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2774 		/*
2775 		 * Objsets may be open only because they're dirty, so we
2776 		 * have to force it to sync before checking spa_refcnt.
2777 		 */
2778 		txg_wait_synced(spa->spa_dsl_pool, 0);
2779 
2780 		/*
2781 		 * A pool cannot be exported or destroyed if there are active
2782 		 * references.  If we are resetting a pool, allow references by
2783 		 * fault injection handlers.
2784 		 */
2785 		if (!spa_refcount_zero(spa) ||
2786 		    (spa->spa_inject_ref != 0 &&
2787 		    new_state != POOL_STATE_UNINITIALIZED)) {
2788 			spa_async_resume(spa);
2789 			mutex_exit(&spa_namespace_lock);
2790 			return (EBUSY);
2791 		}
2792 
2793 		/*
2794 		 * A pool cannot be exported if it has an active shared spare.
2795 		 * This is to prevent other pools stealing the active spare
2796 		 * from an exported pool. At user's own will, such pool can
2797 		 * be forcedly exported.
2798 		 */
2799 		if (!force && new_state == POOL_STATE_EXPORTED &&
2800 		    spa_has_active_shared_spare(spa)) {
2801 			spa_async_resume(spa);
2802 			mutex_exit(&spa_namespace_lock);
2803 			return (EXDEV);
2804 		}
2805 
2806 		/*
2807 		 * We want this to be reflected on every label,
2808 		 * so mark them all dirty.  spa_unload() will do the
2809 		 * final sync that pushes these changes out.
2810 		 */
2811 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
2812 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2813 			spa->spa_state = new_state;
2814 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2815 			vdev_config_dirty(spa->spa_root_vdev);
2816 			spa_config_exit(spa, SCL_ALL, FTAG);
2817 		}
2818 	}
2819 
2820 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2821 
2822 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2823 		spa_unload(spa);
2824 		spa_deactivate(spa);
2825 	}
2826 
2827 	if (oldconfig && spa->spa_config)
2828 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2829 
2830 	if (new_state != POOL_STATE_UNINITIALIZED) {
2831 		if (!hardforce)
2832 			spa_config_sync(spa, B_TRUE, B_TRUE);
2833 		spa_remove(spa);
2834 	}
2835 	mutex_exit(&spa_namespace_lock);
2836 
2837 	return (0);
2838 }
2839 
2840 /*
2841  * Destroy a storage pool.
2842  */
2843 int
2844 spa_destroy(char *pool)
2845 {
2846 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
2847 	    B_FALSE, B_FALSE));
2848 }
2849 
2850 /*
2851  * Export a storage pool.
2852  */
2853 int
2854 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
2855     boolean_t hardforce)
2856 {
2857 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
2858 	    force, hardforce));
2859 }
2860 
2861 /*
2862  * Similar to spa_export(), this unloads the spa_t without actually removing it
2863  * from the namespace in any way.
2864  */
2865 int
2866 spa_reset(char *pool)
2867 {
2868 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2869 	    B_FALSE, B_FALSE));
2870 }
2871 
2872 /*
2873  * ==========================================================================
2874  * Device manipulation
2875  * ==========================================================================
2876  */
2877 
2878 /*
2879  * Add a device to a storage pool.
2880  */
2881 int
2882 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2883 {
2884 	uint64_t txg;
2885 	int error;
2886 	vdev_t *rvd = spa->spa_root_vdev;
2887 	vdev_t *vd, *tvd;
2888 	nvlist_t **spares, **l2cache;
2889 	uint_t nspares, nl2cache;
2890 
2891 	txg = spa_vdev_enter(spa);
2892 
2893 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2894 	    VDEV_ALLOC_ADD)) != 0)
2895 		return (spa_vdev_exit(spa, NULL, txg, error));
2896 
2897 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
2898 
2899 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2900 	    &nspares) != 0)
2901 		nspares = 0;
2902 
2903 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2904 	    &nl2cache) != 0)
2905 		nl2cache = 0;
2906 
2907 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2908 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2909 
2910 	if (vd->vdev_children != 0 &&
2911 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
2912 		return (spa_vdev_exit(spa, vd, txg, error));
2913 
2914 	/*
2915 	 * We must validate the spares and l2cache devices after checking the
2916 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2917 	 */
2918 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2919 		return (spa_vdev_exit(spa, vd, txg, error));
2920 
2921 	/*
2922 	 * Transfer each new top-level vdev from vd to rvd.
2923 	 */
2924 	for (int c = 0; c < vd->vdev_children; c++) {
2925 		tvd = vd->vdev_child[c];
2926 		vdev_remove_child(vd, tvd);
2927 		tvd->vdev_id = rvd->vdev_children;
2928 		vdev_add_child(rvd, tvd);
2929 		vdev_config_dirty(tvd);
2930 	}
2931 
2932 	if (nspares != 0) {
2933 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2934 		    ZPOOL_CONFIG_SPARES);
2935 		spa_load_spares(spa);
2936 		spa->spa_spares.sav_sync = B_TRUE;
2937 	}
2938 
2939 	if (nl2cache != 0) {
2940 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2941 		    ZPOOL_CONFIG_L2CACHE);
2942 		spa_load_l2cache(spa);
2943 		spa->spa_l2cache.sav_sync = B_TRUE;
2944 	}
2945 
2946 	/*
2947 	 * We have to be careful when adding new vdevs to an existing pool.
2948 	 * If other threads start allocating from these vdevs before we
2949 	 * sync the config cache, and we lose power, then upon reboot we may
2950 	 * fail to open the pool because there are DVAs that the config cache
2951 	 * can't translate.  Therefore, we first add the vdevs without
2952 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2953 	 * and then let spa_config_update() initialize the new metaslabs.
2954 	 *
2955 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2956 	 * if we lose power at any point in this sequence, the remaining
2957 	 * steps will be completed the next time we load the pool.
2958 	 */
2959 	(void) spa_vdev_exit(spa, vd, txg, 0);
2960 
2961 	mutex_enter(&spa_namespace_lock);
2962 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2963 	mutex_exit(&spa_namespace_lock);
2964 
2965 	return (0);
2966 }
2967 
2968 /*
2969  * Attach a device to a mirror.  The arguments are the path to any device
2970  * in the mirror, and the nvroot for the new device.  If the path specifies
2971  * a device that is not mirrored, we automatically insert the mirror vdev.
2972  *
2973  * If 'replacing' is specified, the new device is intended to replace the
2974  * existing device; in this case the two devices are made into their own
2975  * mirror using the 'replacing' vdev, which is functionally identical to
2976  * the mirror vdev (it actually reuses all the same ops) but has a few
2977  * extra rules: you can't attach to it after it's been created, and upon
2978  * completion of resilvering, the first disk (the one being replaced)
2979  * is automatically detached.
2980  */
2981 int
2982 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2983 {
2984 	uint64_t txg, open_txg;
2985 	vdev_t *rvd = spa->spa_root_vdev;
2986 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2987 	vdev_ops_t *pvops;
2988 	dmu_tx_t *tx;
2989 	char *oldvdpath, *newvdpath;
2990 	int newvd_isspare;
2991 	int error;
2992 
2993 	txg = spa_vdev_enter(spa);
2994 
2995 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
2996 
2997 	if (oldvd == NULL)
2998 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2999 
3000 	if (!oldvd->vdev_ops->vdev_op_leaf)
3001 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3002 
3003 	pvd = oldvd->vdev_parent;
3004 
3005 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3006 	    VDEV_ALLOC_ADD)) != 0)
3007 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3008 
3009 	if (newrootvd->vdev_children != 1)
3010 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3011 
3012 	newvd = newrootvd->vdev_child[0];
3013 
3014 	if (!newvd->vdev_ops->vdev_op_leaf)
3015 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3016 
3017 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3018 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3019 
3020 	/*
3021 	 * Spares can't replace logs
3022 	 */
3023 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3024 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3025 
3026 	if (!replacing) {
3027 		/*
3028 		 * For attach, the only allowable parent is a mirror or the root
3029 		 * vdev.
3030 		 */
3031 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3032 		    pvd->vdev_ops != &vdev_root_ops)
3033 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3034 
3035 		pvops = &vdev_mirror_ops;
3036 	} else {
3037 		/*
3038 		 * Active hot spares can only be replaced by inactive hot
3039 		 * spares.
3040 		 */
3041 		if (pvd->vdev_ops == &vdev_spare_ops &&
3042 		    pvd->vdev_child[1] == oldvd &&
3043 		    !spa_has_spare(spa, newvd->vdev_guid))
3044 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3045 
3046 		/*
3047 		 * If the source is a hot spare, and the parent isn't already a
3048 		 * spare, then we want to create a new hot spare.  Otherwise, we
3049 		 * want to create a replacing vdev.  The user is not allowed to
3050 		 * attach to a spared vdev child unless the 'isspare' state is
3051 		 * the same (spare replaces spare, non-spare replaces
3052 		 * non-spare).
3053 		 */
3054 		if (pvd->vdev_ops == &vdev_replacing_ops)
3055 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3056 		else if (pvd->vdev_ops == &vdev_spare_ops &&
3057 		    newvd->vdev_isspare != oldvd->vdev_isspare)
3058 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3059 		else if (pvd->vdev_ops != &vdev_spare_ops &&
3060 		    newvd->vdev_isspare)
3061 			pvops = &vdev_spare_ops;
3062 		else
3063 			pvops = &vdev_replacing_ops;
3064 	}
3065 
3066 	/*
3067 	 * Compare the new device size with the replaceable/attachable
3068 	 * device size.
3069 	 */
3070 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
3071 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3072 
3073 	/*
3074 	 * The new device cannot have a higher alignment requirement
3075 	 * than the top-level vdev.
3076 	 */
3077 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3078 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3079 
3080 	/*
3081 	 * If this is an in-place replacement, update oldvd's path and devid
3082 	 * to make it distinguishable from newvd, and unopenable from now on.
3083 	 */
3084 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3085 		spa_strfree(oldvd->vdev_path);
3086 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3087 		    KM_SLEEP);
3088 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3089 		    newvd->vdev_path, "old");
3090 		if (oldvd->vdev_devid != NULL) {
3091 			spa_strfree(oldvd->vdev_devid);
3092 			oldvd->vdev_devid = NULL;
3093 		}
3094 	}
3095 
3096 	/*
3097 	 * If the parent is not a mirror, or if we're replacing, insert the new
3098 	 * mirror/replacing/spare vdev above oldvd.
3099 	 */
3100 	if (pvd->vdev_ops != pvops)
3101 		pvd = vdev_add_parent(oldvd, pvops);
3102 
3103 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3104 	ASSERT(pvd->vdev_ops == pvops);
3105 	ASSERT(oldvd->vdev_parent == pvd);
3106 
3107 	/*
3108 	 * Extract the new device from its root and add it to pvd.
3109 	 */
3110 	vdev_remove_child(newrootvd, newvd);
3111 	newvd->vdev_id = pvd->vdev_children;
3112 	vdev_add_child(pvd, newvd);
3113 
3114 	/*
3115 	 * If newvd is smaller than oldvd, but larger than its rsize,
3116 	 * the addition of newvd may have decreased our parent's asize.
3117 	 */
3118 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
3119 
3120 	tvd = newvd->vdev_top;
3121 	ASSERT(pvd->vdev_top == tvd);
3122 	ASSERT(tvd->vdev_parent == rvd);
3123 
3124 	vdev_config_dirty(tvd);
3125 
3126 	/*
3127 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3128 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3129 	 */
3130 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3131 
3132 	vdev_dtl_dirty(newvd, DTL_MISSING,
3133 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3134 
3135 	if (newvd->vdev_isspare) {
3136 		spa_spare_activate(newvd);
3137 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3138 	}
3139 
3140 	oldvdpath = spa_strdup(oldvd->vdev_path);
3141 	newvdpath = spa_strdup(newvd->vdev_path);
3142 	newvd_isspare = newvd->vdev_isspare;
3143 
3144 	/*
3145 	 * Mark newvd's DTL dirty in this txg.
3146 	 */
3147 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3148 
3149 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3150 
3151 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3152 	if (dmu_tx_assign(tx, TXG_WAIT) == 0) {
3153 		spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, tx,
3154 		    CRED(),  "%s vdev=%s %s vdev=%s",
3155 		    replacing && newvd_isspare ? "spare in" :
3156 		    replacing ? "replace" : "attach", newvdpath,
3157 		    replacing ? "for" : "to", oldvdpath);
3158 		dmu_tx_commit(tx);
3159 	} else {
3160 		dmu_tx_abort(tx);
3161 	}
3162 
3163 	spa_strfree(oldvdpath);
3164 	spa_strfree(newvdpath);
3165 
3166 	/*
3167 	 * Kick off a resilver to update newvd.
3168 	 */
3169 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3170 
3171 	return (0);
3172 }
3173 
3174 /*
3175  * Detach a device from a mirror or replacing vdev.
3176  * If 'replace_done' is specified, only detach if the parent
3177  * is a replacing vdev.
3178  */
3179 int
3180 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3181 {
3182 	uint64_t txg;
3183 	int error;
3184 	vdev_t *rvd = spa->spa_root_vdev;
3185 	vdev_t *vd, *pvd, *cvd, *tvd;
3186 	boolean_t unspare = B_FALSE;
3187 	uint64_t unspare_guid;
3188 	size_t len;
3189 
3190 	txg = spa_vdev_enter(spa);
3191 
3192 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3193 
3194 	if (vd == NULL)
3195 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3196 
3197 	if (!vd->vdev_ops->vdev_op_leaf)
3198 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3199 
3200 	pvd = vd->vdev_parent;
3201 
3202 	/*
3203 	 * If the parent/child relationship is not as expected, don't do it.
3204 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3205 	 * vdev that's replacing B with C.  The user's intent in replacing
3206 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3207 	 * the replace by detaching C, the expected behavior is to end up
3208 	 * M(A,B).  But suppose that right after deciding to detach C,
3209 	 * the replacement of B completes.  We would have M(A,C), and then
3210 	 * ask to detach C, which would leave us with just A -- not what
3211 	 * the user wanted.  To prevent this, we make sure that the
3212 	 * parent/child relationship hasn't changed -- in this example,
3213 	 * that C's parent is still the replacing vdev R.
3214 	 */
3215 	if (pvd->vdev_guid != pguid && pguid != 0)
3216 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3217 
3218 	/*
3219 	 * If replace_done is specified, only remove this device if it's
3220 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3221 	 * disk can be removed.
3222 	 */
3223 	if (replace_done) {
3224 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3225 			if (vd->vdev_id != 0)
3226 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3227 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3228 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3229 		}
3230 	}
3231 
3232 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3233 	    spa_version(spa) >= SPA_VERSION_SPARES);
3234 
3235 	/*
3236 	 * Only mirror, replacing, and spare vdevs support detach.
3237 	 */
3238 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3239 	    pvd->vdev_ops != &vdev_mirror_ops &&
3240 	    pvd->vdev_ops != &vdev_spare_ops)
3241 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3242 
3243 	/*
3244 	 * If this device has the only valid copy of some data,
3245 	 * we cannot safely detach it.
3246 	 */
3247 	if (vdev_dtl_required(vd))
3248 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3249 
3250 	ASSERT(pvd->vdev_children >= 2);
3251 
3252 	/*
3253 	 * If we are detaching the second disk from a replacing vdev, then
3254 	 * check to see if we changed the original vdev's path to have "/old"
3255 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3256 	 */
3257 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3258 	    pvd->vdev_child[0]->vdev_path != NULL &&
3259 	    pvd->vdev_child[1]->vdev_path != NULL) {
3260 		ASSERT(pvd->vdev_child[1] == vd);
3261 		cvd = pvd->vdev_child[0];
3262 		len = strlen(vd->vdev_path);
3263 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3264 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3265 			spa_strfree(cvd->vdev_path);
3266 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3267 		}
3268 	}
3269 
3270 	/*
3271 	 * If we are detaching the original disk from a spare, then it implies
3272 	 * that the spare should become a real disk, and be removed from the
3273 	 * active spare list for the pool.
3274 	 */
3275 	if (pvd->vdev_ops == &vdev_spare_ops &&
3276 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3277 		unspare = B_TRUE;
3278 
3279 	/*
3280 	 * Erase the disk labels so the disk can be used for other things.
3281 	 * This must be done after all other error cases are handled,
3282 	 * but before we disembowel vd (so we can still do I/O to it).
3283 	 * But if we can't do it, don't treat the error as fatal --
3284 	 * it may be that the unwritability of the disk is the reason
3285 	 * it's being detached!
3286 	 */
3287 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3288 
3289 	/*
3290 	 * Remove vd from its parent and compact the parent's children.
3291 	 */
3292 	vdev_remove_child(pvd, vd);
3293 	vdev_compact_children(pvd);
3294 
3295 	/*
3296 	 * Remember one of the remaining children so we can get tvd below.
3297 	 */
3298 	cvd = pvd->vdev_child[0];
3299 
3300 	/*
3301 	 * If we need to remove the remaining child from the list of hot spares,
3302 	 * do it now, marking the vdev as no longer a spare in the process.
3303 	 * We must do this before vdev_remove_parent(), because that can
3304 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3305 	 * reason, we must remove the spare now, in the same txg as the detach;
3306 	 * otherwise someone could attach a new sibling, change the GUID, and
3307 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3308 	 */
3309 	if (unspare) {
3310 		ASSERT(cvd->vdev_isspare);
3311 		spa_spare_remove(cvd);
3312 		unspare_guid = cvd->vdev_guid;
3313 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3314 	}
3315 
3316 	/*
3317 	 * If the parent mirror/replacing vdev only has one child,
3318 	 * the parent is no longer needed.  Remove it from the tree.
3319 	 */
3320 	if (pvd->vdev_children == 1)
3321 		vdev_remove_parent(cvd);
3322 
3323 	/*
3324 	 * We don't set tvd until now because the parent we just removed
3325 	 * may have been the previous top-level vdev.
3326 	 */
3327 	tvd = cvd->vdev_top;
3328 	ASSERT(tvd->vdev_parent == rvd);
3329 
3330 	/*
3331 	 * Reevaluate the parent vdev state.
3332 	 */
3333 	vdev_propagate_state(cvd);
3334 
3335 	/*
3336 	 * If the device we just detached was smaller than the others, it may be
3337 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
3338 	 * can't fail because the existing metaslabs are already in core, so
3339 	 * there's nothing to read from disk.
3340 	 */
3341 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
3342 
3343 	vdev_config_dirty(tvd);
3344 
3345 	/*
3346 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3347 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3348 	 * But first make sure we're not on any *other* txg's DTL list, to
3349 	 * prevent vd from being accessed after it's freed.
3350 	 */
3351 	for (int t = 0; t < TXG_SIZE; t++)
3352 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3353 	vd->vdev_detached = B_TRUE;
3354 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3355 
3356 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3357 
3358 	error = spa_vdev_exit(spa, vd, txg, 0);
3359 
3360 	/*
3361 	 * If this was the removal of the original device in a hot spare vdev,
3362 	 * then we want to go through and remove the device from the hot spare
3363 	 * list of every other pool.
3364 	 */
3365 	if (unspare) {
3366 		spa_t *myspa = spa;
3367 		spa = NULL;
3368 		mutex_enter(&spa_namespace_lock);
3369 		while ((spa = spa_next(spa)) != NULL) {
3370 			if (spa->spa_state != POOL_STATE_ACTIVE)
3371 				continue;
3372 			if (spa == myspa)
3373 				continue;
3374 			spa_open_ref(spa, FTAG);
3375 			mutex_exit(&spa_namespace_lock);
3376 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3377 			mutex_enter(&spa_namespace_lock);
3378 			spa_close(spa, FTAG);
3379 		}
3380 		mutex_exit(&spa_namespace_lock);
3381 	}
3382 
3383 	return (error);
3384 }
3385 
3386 static nvlist_t *
3387 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3388 {
3389 	for (int i = 0; i < count; i++) {
3390 		uint64_t guid;
3391 
3392 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3393 		    &guid) == 0);
3394 
3395 		if (guid == target_guid)
3396 			return (nvpp[i]);
3397 	}
3398 
3399 	return (NULL);
3400 }
3401 
3402 static void
3403 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3404 	nvlist_t *dev_to_remove)
3405 {
3406 	nvlist_t **newdev = NULL;
3407 
3408 	if (count > 1)
3409 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3410 
3411 	for (int i = 0, j = 0; i < count; i++) {
3412 		if (dev[i] == dev_to_remove)
3413 			continue;
3414 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3415 	}
3416 
3417 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3418 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3419 
3420 	for (int i = 0; i < count - 1; i++)
3421 		nvlist_free(newdev[i]);
3422 
3423 	if (count > 1)
3424 		kmem_free(newdev, (count - 1) * sizeof (void *));
3425 }
3426 
3427 /*
3428  * Remove a device from the pool.  Currently, this supports removing only hot
3429  * spares and level 2 ARC devices.
3430  */
3431 int
3432 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3433 {
3434 	vdev_t *vd;
3435 	nvlist_t **spares, **l2cache, *nv;
3436 	uint_t nspares, nl2cache;
3437 	uint64_t txg = 0;
3438 	int error = 0;
3439 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3440 
3441 	if (!locked)
3442 		txg = spa_vdev_enter(spa);
3443 
3444 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3445 
3446 	if (spa->spa_spares.sav_vdevs != NULL &&
3447 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3448 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3449 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3450 		/*
3451 		 * Only remove the hot spare if it's not currently in use
3452 		 * in this pool.
3453 		 */
3454 		if (vd == NULL || unspare) {
3455 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3456 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3457 			spa_load_spares(spa);
3458 			spa->spa_spares.sav_sync = B_TRUE;
3459 		} else {
3460 			error = EBUSY;
3461 		}
3462 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3463 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3464 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3465 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3466 		/*
3467 		 * Cache devices can always be removed.
3468 		 */
3469 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3470 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3471 		spa_load_l2cache(spa);
3472 		spa->spa_l2cache.sav_sync = B_TRUE;
3473 	} else if (vd != NULL) {
3474 		/*
3475 		 * Normal vdevs cannot be removed (yet).
3476 		 */
3477 		error = ENOTSUP;
3478 	} else {
3479 		/*
3480 		 * There is no vdev of any kind with the specified guid.
3481 		 */
3482 		error = ENOENT;
3483 	}
3484 
3485 	if (!locked)
3486 		return (spa_vdev_exit(spa, NULL, txg, error));
3487 
3488 	return (error);
3489 }
3490 
3491 /*
3492  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3493  * current spared, so we can detach it.
3494  */
3495 static vdev_t *
3496 spa_vdev_resilver_done_hunt(vdev_t *vd)
3497 {
3498 	vdev_t *newvd, *oldvd;
3499 	int c;
3500 
3501 	for (c = 0; c < vd->vdev_children; c++) {
3502 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3503 		if (oldvd != NULL)
3504 			return (oldvd);
3505 	}
3506 
3507 	/*
3508 	 * Check for a completed replacement.
3509 	 */
3510 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3511 		oldvd = vd->vdev_child[0];
3512 		newvd = vd->vdev_child[1];
3513 
3514 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3515 		    !vdev_dtl_required(oldvd))
3516 			return (oldvd);
3517 	}
3518 
3519 	/*
3520 	 * Check for a completed resilver with the 'unspare' flag set.
3521 	 */
3522 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3523 		newvd = vd->vdev_child[0];
3524 		oldvd = vd->vdev_child[1];
3525 
3526 		if (newvd->vdev_unspare &&
3527 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
3528 		    !vdev_dtl_required(oldvd)) {
3529 			newvd->vdev_unspare = 0;
3530 			return (oldvd);
3531 		}
3532 	}
3533 
3534 	return (NULL);
3535 }
3536 
3537 static void
3538 spa_vdev_resilver_done(spa_t *spa)
3539 {
3540 	vdev_t *vd, *pvd, *ppvd;
3541 	uint64_t guid, sguid, pguid, ppguid;
3542 
3543 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3544 
3545 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3546 		pvd = vd->vdev_parent;
3547 		ppvd = pvd->vdev_parent;
3548 		guid = vd->vdev_guid;
3549 		pguid = pvd->vdev_guid;
3550 		ppguid = ppvd->vdev_guid;
3551 		sguid = 0;
3552 		/*
3553 		 * If we have just finished replacing a hot spared device, then
3554 		 * we need to detach the parent's first child (the original hot
3555 		 * spare) as well.
3556 		 */
3557 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3558 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3559 			ASSERT(ppvd->vdev_children == 2);
3560 			sguid = ppvd->vdev_child[1]->vdev_guid;
3561 		}
3562 		spa_config_exit(spa, SCL_ALL, FTAG);
3563 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3564 			return;
3565 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3566 			return;
3567 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3568 	}
3569 
3570 	spa_config_exit(spa, SCL_ALL, FTAG);
3571 }
3572 
3573 /*
3574  * Update the stored path or FRU for this vdev.  Dirty the vdev configuration,
3575  * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
3576  */
3577 int
3578 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
3579     boolean_t ispath)
3580 {
3581 	vdev_t *vd;
3582 	uint64_t txg;
3583 
3584 	txg = spa_vdev_enter(spa);
3585 
3586 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3587 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3588 
3589 	if (!vd->vdev_ops->vdev_op_leaf)
3590 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3591 
3592 	if (ispath) {
3593 		spa_strfree(vd->vdev_path);
3594 		vd->vdev_path = spa_strdup(value);
3595 	} else {
3596 		if (vd->vdev_fru != NULL)
3597 			spa_strfree(vd->vdev_fru);
3598 		vd->vdev_fru = spa_strdup(value);
3599 	}
3600 
3601 	vdev_config_dirty(vd->vdev_top);
3602 
3603 	return (spa_vdev_exit(spa, NULL, txg, 0));
3604 }
3605 
3606 int
3607 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3608 {
3609 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
3610 }
3611 
3612 int
3613 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
3614 {
3615 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
3616 }
3617 
3618 /*
3619  * ==========================================================================
3620  * SPA Scrubbing
3621  * ==========================================================================
3622  */
3623 
3624 int
3625 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3626 {
3627 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3628 
3629 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3630 		return (ENOTSUP);
3631 
3632 	/*
3633 	 * If a resilver was requested, but there is no DTL on a
3634 	 * writeable leaf device, we have nothing to do.
3635 	 */
3636 	if (type == POOL_SCRUB_RESILVER &&
3637 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3638 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3639 		return (0);
3640 	}
3641 
3642 	if (type == POOL_SCRUB_EVERYTHING &&
3643 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3644 	    spa->spa_dsl_pool->dp_scrub_isresilver)
3645 		return (EBUSY);
3646 
3647 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3648 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3649 	} else if (type == POOL_SCRUB_NONE) {
3650 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3651 	} else {
3652 		return (EINVAL);
3653 	}
3654 }
3655 
3656 /*
3657  * ==========================================================================
3658  * SPA async task processing
3659  * ==========================================================================
3660  */
3661 
3662 static void
3663 spa_async_remove(spa_t *spa, vdev_t *vd)
3664 {
3665 	if (vd->vdev_remove_wanted) {
3666 		vd->vdev_remove_wanted = 0;
3667 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3668 		vdev_clear(spa, vd);
3669 		vdev_state_dirty(vd->vdev_top);
3670 	}
3671 
3672 	for (int c = 0; c < vd->vdev_children; c++)
3673 		spa_async_remove(spa, vd->vdev_child[c]);
3674 }
3675 
3676 static void
3677 spa_async_probe(spa_t *spa, vdev_t *vd)
3678 {
3679 	if (vd->vdev_probe_wanted) {
3680 		vd->vdev_probe_wanted = 0;
3681 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
3682 	}
3683 
3684 	for (int c = 0; c < vd->vdev_children; c++)
3685 		spa_async_probe(spa, vd->vdev_child[c]);
3686 }
3687 
3688 static void
3689 spa_async_thread(spa_t *spa)
3690 {
3691 	int tasks;
3692 
3693 	ASSERT(spa->spa_sync_on);
3694 
3695 	mutex_enter(&spa->spa_async_lock);
3696 	tasks = spa->spa_async_tasks;
3697 	spa->spa_async_tasks = 0;
3698 	mutex_exit(&spa->spa_async_lock);
3699 
3700 	/*
3701 	 * See if the config needs to be updated.
3702 	 */
3703 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3704 		mutex_enter(&spa_namespace_lock);
3705 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3706 		mutex_exit(&spa_namespace_lock);
3707 	}
3708 
3709 	/*
3710 	 * See if any devices need to be marked REMOVED.
3711 	 */
3712 	if (tasks & SPA_ASYNC_REMOVE) {
3713 		spa_vdev_state_enter(spa);
3714 		spa_async_remove(spa, spa->spa_root_vdev);
3715 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3716 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3717 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
3718 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3719 		(void) spa_vdev_state_exit(spa, NULL, 0);
3720 	}
3721 
3722 	/*
3723 	 * See if any devices need to be probed.
3724 	 */
3725 	if (tasks & SPA_ASYNC_PROBE) {
3726 		spa_vdev_state_enter(spa);
3727 		spa_async_probe(spa, spa->spa_root_vdev);
3728 		(void) spa_vdev_state_exit(spa, NULL, 0);
3729 	}
3730 
3731 	/*
3732 	 * If any devices are done replacing, detach them.
3733 	 */
3734 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3735 		spa_vdev_resilver_done(spa);
3736 
3737 	/*
3738 	 * Kick off a resilver.
3739 	 */
3740 	if (tasks & SPA_ASYNC_RESILVER)
3741 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3742 
3743 	/*
3744 	 * Let the world know that we're done.
3745 	 */
3746 	mutex_enter(&spa->spa_async_lock);
3747 	spa->spa_async_thread = NULL;
3748 	cv_broadcast(&spa->spa_async_cv);
3749 	mutex_exit(&spa->spa_async_lock);
3750 	thread_exit();
3751 }
3752 
3753 void
3754 spa_async_suspend(spa_t *spa)
3755 {
3756 	mutex_enter(&spa->spa_async_lock);
3757 	spa->spa_async_suspended++;
3758 	while (spa->spa_async_thread != NULL)
3759 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3760 	mutex_exit(&spa->spa_async_lock);
3761 }
3762 
3763 void
3764 spa_async_resume(spa_t *spa)
3765 {
3766 	mutex_enter(&spa->spa_async_lock);
3767 	ASSERT(spa->spa_async_suspended != 0);
3768 	spa->spa_async_suspended--;
3769 	mutex_exit(&spa->spa_async_lock);
3770 }
3771 
3772 static void
3773 spa_async_dispatch(spa_t *spa)
3774 {
3775 	mutex_enter(&spa->spa_async_lock);
3776 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3777 	    spa->spa_async_thread == NULL &&
3778 	    rootdir != NULL && !vn_is_readonly(rootdir))
3779 		spa->spa_async_thread = thread_create(NULL, 0,
3780 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3781 	mutex_exit(&spa->spa_async_lock);
3782 }
3783 
3784 void
3785 spa_async_request(spa_t *spa, int task)
3786 {
3787 	mutex_enter(&spa->spa_async_lock);
3788 	spa->spa_async_tasks |= task;
3789 	mutex_exit(&spa->spa_async_lock);
3790 }
3791 
3792 /*
3793  * ==========================================================================
3794  * SPA syncing routines
3795  * ==========================================================================
3796  */
3797 
3798 static void
3799 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3800 {
3801 	bplist_t *bpl = &spa->spa_sync_bplist;
3802 	dmu_tx_t *tx;
3803 	blkptr_t blk;
3804 	uint64_t itor = 0;
3805 	zio_t *zio;
3806 	int error;
3807 	uint8_t c = 1;
3808 
3809 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3810 
3811 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
3812 		ASSERT(blk.blk_birth < txg);
3813 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3814 		    ZIO_FLAG_MUSTSUCCEED));
3815 	}
3816 
3817 	error = zio_wait(zio);
3818 	ASSERT3U(error, ==, 0);
3819 
3820 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3821 	bplist_vacate(bpl, tx);
3822 
3823 	/*
3824 	 * Pre-dirty the first block so we sync to convergence faster.
3825 	 * (Usually only the first block is needed.)
3826 	 */
3827 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3828 	dmu_tx_commit(tx);
3829 }
3830 
3831 static void
3832 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3833 {
3834 	char *packed = NULL;
3835 	size_t bufsize;
3836 	size_t nvsize = 0;
3837 	dmu_buf_t *db;
3838 
3839 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3840 
3841 	/*
3842 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3843 	 * information.  This avoids the dbuf_will_dirty() path and
3844 	 * saves us a pre-read to get data we don't actually care about.
3845 	 */
3846 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3847 	packed = kmem_alloc(bufsize, KM_SLEEP);
3848 
3849 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3850 	    KM_SLEEP) == 0);
3851 	bzero(packed + nvsize, bufsize - nvsize);
3852 
3853 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3854 
3855 	kmem_free(packed, bufsize);
3856 
3857 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3858 	dmu_buf_will_dirty(db, tx);
3859 	*(uint64_t *)db->db_data = nvsize;
3860 	dmu_buf_rele(db, FTAG);
3861 }
3862 
3863 static void
3864 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3865     const char *config, const char *entry)
3866 {
3867 	nvlist_t *nvroot;
3868 	nvlist_t **list;
3869 	int i;
3870 
3871 	if (!sav->sav_sync)
3872 		return;
3873 
3874 	/*
3875 	 * Update the MOS nvlist describing the list of available devices.
3876 	 * spa_validate_aux() will have already made sure this nvlist is
3877 	 * valid and the vdevs are labeled appropriately.
3878 	 */
3879 	if (sav->sav_object == 0) {
3880 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3881 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3882 		    sizeof (uint64_t), tx);
3883 		VERIFY(zap_update(spa->spa_meta_objset,
3884 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3885 		    &sav->sav_object, tx) == 0);
3886 	}
3887 
3888 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3889 	if (sav->sav_count == 0) {
3890 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3891 	} else {
3892 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3893 		for (i = 0; i < sav->sav_count; i++)
3894 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3895 			    B_FALSE, B_FALSE, B_TRUE);
3896 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3897 		    sav->sav_count) == 0);
3898 		for (i = 0; i < sav->sav_count; i++)
3899 			nvlist_free(list[i]);
3900 		kmem_free(list, sav->sav_count * sizeof (void *));
3901 	}
3902 
3903 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3904 	nvlist_free(nvroot);
3905 
3906 	sav->sav_sync = B_FALSE;
3907 }
3908 
3909 static void
3910 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3911 {
3912 	nvlist_t *config;
3913 
3914 	if (list_is_empty(&spa->spa_config_dirty_list))
3915 		return;
3916 
3917 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3918 
3919 	config = spa_config_generate(spa, spa->spa_root_vdev,
3920 	    dmu_tx_get_txg(tx), B_FALSE);
3921 
3922 	spa_config_exit(spa, SCL_STATE, FTAG);
3923 
3924 	if (spa->spa_config_syncing)
3925 		nvlist_free(spa->spa_config_syncing);
3926 	spa->spa_config_syncing = config;
3927 
3928 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3929 }
3930 
3931 /*
3932  * Set zpool properties.
3933  */
3934 static void
3935 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3936 {
3937 	spa_t *spa = arg1;
3938 	objset_t *mos = spa->spa_meta_objset;
3939 	nvlist_t *nvp = arg2;
3940 	nvpair_t *elem;
3941 	uint64_t intval;
3942 	char *strval;
3943 	zpool_prop_t prop;
3944 	const char *propname;
3945 	zprop_type_t proptype;
3946 
3947 	mutex_enter(&spa->spa_props_lock);
3948 
3949 	elem = NULL;
3950 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3951 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3952 		case ZPOOL_PROP_VERSION:
3953 			/*
3954 			 * Only set version for non-zpool-creation cases
3955 			 * (set/import). spa_create() needs special care
3956 			 * for version setting.
3957 			 */
3958 			if (tx->tx_txg != TXG_INITIAL) {
3959 				VERIFY(nvpair_value_uint64(elem,
3960 				    &intval) == 0);
3961 				ASSERT(intval <= SPA_VERSION);
3962 				ASSERT(intval >= spa_version(spa));
3963 				spa->spa_uberblock.ub_version = intval;
3964 				vdev_config_dirty(spa->spa_root_vdev);
3965 			}
3966 			break;
3967 
3968 		case ZPOOL_PROP_ALTROOT:
3969 			/*
3970 			 * 'altroot' is a non-persistent property. It should
3971 			 * have been set temporarily at creation or import time.
3972 			 */
3973 			ASSERT(spa->spa_root != NULL);
3974 			break;
3975 
3976 		case ZPOOL_PROP_CACHEFILE:
3977 			/*
3978 			 * 'cachefile' is also a non-persisitent property.
3979 			 */
3980 			break;
3981 		default:
3982 			/*
3983 			 * Set pool property values in the poolprops mos object.
3984 			 */
3985 			if (spa->spa_pool_props_object == 0) {
3986 				objset_t *mos = spa->spa_meta_objset;
3987 
3988 				VERIFY((spa->spa_pool_props_object =
3989 				    zap_create(mos, DMU_OT_POOL_PROPS,
3990 				    DMU_OT_NONE, 0, tx)) > 0);
3991 
3992 				VERIFY(zap_update(mos,
3993 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3994 				    8, 1, &spa->spa_pool_props_object, tx)
3995 				    == 0);
3996 			}
3997 
3998 			/* normalize the property name */
3999 			propname = zpool_prop_to_name(prop);
4000 			proptype = zpool_prop_get_type(prop);
4001 
4002 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
4003 				ASSERT(proptype == PROP_TYPE_STRING);
4004 				VERIFY(nvpair_value_string(elem, &strval) == 0);
4005 				VERIFY(zap_update(mos,
4006 				    spa->spa_pool_props_object, propname,
4007 				    1, strlen(strval) + 1, strval, tx) == 0);
4008 
4009 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4010 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4011 
4012 				if (proptype == PROP_TYPE_INDEX) {
4013 					const char *unused;
4014 					VERIFY(zpool_prop_index_to_string(
4015 					    prop, intval, &unused) == 0);
4016 				}
4017 				VERIFY(zap_update(mos,
4018 				    spa->spa_pool_props_object, propname,
4019 				    8, 1, &intval, tx) == 0);
4020 			} else {
4021 				ASSERT(0); /* not allowed */
4022 			}
4023 
4024 			switch (prop) {
4025 			case ZPOOL_PROP_DELEGATION:
4026 				spa->spa_delegation = intval;
4027 				break;
4028 			case ZPOOL_PROP_BOOTFS:
4029 				spa->spa_bootfs = intval;
4030 				break;
4031 			case ZPOOL_PROP_FAILUREMODE:
4032 				spa->spa_failmode = intval;
4033 				break;
4034 			default:
4035 				break;
4036 			}
4037 		}
4038 
4039 		/* log internal history if this is not a zpool create */
4040 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4041 		    tx->tx_txg != TXG_INITIAL) {
4042 			spa_history_internal_log(LOG_POOL_PROPSET,
4043 			    spa, tx, cr, "%s %lld %s",
4044 			    nvpair_name(elem), intval, spa_name(spa));
4045 		}
4046 	}
4047 
4048 	mutex_exit(&spa->spa_props_lock);
4049 }
4050 
4051 /*
4052  * Sync the specified transaction group.  New blocks may be dirtied as
4053  * part of the process, so we iterate until it converges.
4054  */
4055 void
4056 spa_sync(spa_t *spa, uint64_t txg)
4057 {
4058 	dsl_pool_t *dp = spa->spa_dsl_pool;
4059 	objset_t *mos = spa->spa_meta_objset;
4060 	bplist_t *bpl = &spa->spa_sync_bplist;
4061 	vdev_t *rvd = spa->spa_root_vdev;
4062 	vdev_t *vd;
4063 	dmu_tx_t *tx;
4064 	int dirty_vdevs;
4065 	int error;
4066 
4067 	/*
4068 	 * Lock out configuration changes.
4069 	 */
4070 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4071 
4072 	spa->spa_syncing_txg = txg;
4073 	spa->spa_sync_pass = 0;
4074 
4075 	/*
4076 	 * If there are any pending vdev state changes, convert them
4077 	 * into config changes that go out with this transaction group.
4078 	 */
4079 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4080 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
4081 		/*
4082 		 * We need the write lock here because, for aux vdevs,
4083 		 * calling vdev_config_dirty() modifies sav_config.
4084 		 * This is ugly and will become unnecessary when we
4085 		 * eliminate the aux vdev wart by integrating all vdevs
4086 		 * into the root vdev tree.
4087 		 */
4088 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4089 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4090 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4091 			vdev_state_clean(vd);
4092 			vdev_config_dirty(vd);
4093 		}
4094 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4095 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4096 	}
4097 	spa_config_exit(spa, SCL_STATE, FTAG);
4098 
4099 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4100 
4101 	tx = dmu_tx_create_assigned(dp, txg);
4102 
4103 	/*
4104 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4105 	 * set spa_deflate if we have no raid-z vdevs.
4106 	 */
4107 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4108 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4109 		int i;
4110 
4111 		for (i = 0; i < rvd->vdev_children; i++) {
4112 			vd = rvd->vdev_child[i];
4113 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4114 				break;
4115 		}
4116 		if (i == rvd->vdev_children) {
4117 			spa->spa_deflate = TRUE;
4118 			VERIFY(0 == zap_add(spa->spa_meta_objset,
4119 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4120 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4121 		}
4122 	}
4123 
4124 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4125 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4126 		dsl_pool_create_origin(dp, tx);
4127 
4128 		/* Keeping the origin open increases spa_minref */
4129 		spa->spa_minref += 3;
4130 	}
4131 
4132 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4133 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4134 		dsl_pool_upgrade_clones(dp, tx);
4135 	}
4136 
4137 	/*
4138 	 * If anything has changed in this txg, push the deferred frees
4139 	 * from the previous txg.  If not, leave them alone so that we
4140 	 * don't generate work on an otherwise idle system.
4141 	 */
4142 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4143 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4144 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4145 		spa_sync_deferred_frees(spa, txg);
4146 
4147 	/*
4148 	 * Iterate to convergence.
4149 	 */
4150 	do {
4151 		spa->spa_sync_pass++;
4152 
4153 		spa_sync_config_object(spa, tx);
4154 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4155 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4156 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4157 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4158 		spa_errlog_sync(spa, txg);
4159 		dsl_pool_sync(dp, txg);
4160 
4161 		dirty_vdevs = 0;
4162 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4163 			vdev_sync(vd, txg);
4164 			dirty_vdevs++;
4165 		}
4166 
4167 		bplist_sync(bpl, tx);
4168 	} while (dirty_vdevs);
4169 
4170 	bplist_close(bpl);
4171 
4172 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4173 
4174 	/*
4175 	 * Rewrite the vdev configuration (which includes the uberblock)
4176 	 * to commit the transaction group.
4177 	 *
4178 	 * If there are no dirty vdevs, we sync the uberblock to a few
4179 	 * random top-level vdevs that are known to be visible in the
4180 	 * config cache (see spa_vdev_add() for a complete description).
4181 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4182 	 */
4183 	for (;;) {
4184 		/*
4185 		 * We hold SCL_STATE to prevent vdev open/close/etc.
4186 		 * while we're attempting to write the vdev labels.
4187 		 */
4188 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4189 
4190 		if (list_is_empty(&spa->spa_config_dirty_list)) {
4191 			vdev_t *svd[SPA_DVAS_PER_BP];
4192 			int svdcount = 0;
4193 			int children = rvd->vdev_children;
4194 			int c0 = spa_get_random(children);
4195 			int c;
4196 
4197 			for (c = 0; c < children; c++) {
4198 				vd = rvd->vdev_child[(c0 + c) % children];
4199 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4200 					continue;
4201 				svd[svdcount++] = vd;
4202 				if (svdcount == SPA_DVAS_PER_BP)
4203 					break;
4204 			}
4205 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
4206 			if (error != 0)
4207 				error = vdev_config_sync(svd, svdcount, txg,
4208 				    B_TRUE);
4209 		} else {
4210 			error = vdev_config_sync(rvd->vdev_child,
4211 			    rvd->vdev_children, txg, B_FALSE);
4212 			if (error != 0)
4213 				error = vdev_config_sync(rvd->vdev_child,
4214 				    rvd->vdev_children, txg, B_TRUE);
4215 		}
4216 
4217 		spa_config_exit(spa, SCL_STATE, FTAG);
4218 
4219 		if (error == 0)
4220 			break;
4221 		zio_suspend(spa, NULL);
4222 		zio_resume_wait(spa);
4223 	}
4224 	dmu_tx_commit(tx);
4225 
4226 	/*
4227 	 * Clear the dirty config list.
4228 	 */
4229 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4230 		vdev_config_clean(vd);
4231 
4232 	/*
4233 	 * Now that the new config has synced transactionally,
4234 	 * let it become visible to the config cache.
4235 	 */
4236 	if (spa->spa_config_syncing != NULL) {
4237 		spa_config_set(spa, spa->spa_config_syncing);
4238 		spa->spa_config_txg = txg;
4239 		spa->spa_config_syncing = NULL;
4240 	}
4241 
4242 	spa->spa_ubsync = spa->spa_uberblock;
4243 
4244 	/*
4245 	 * Clean up the ZIL records for the synced txg.
4246 	 */
4247 	dsl_pool_zil_clean(dp);
4248 
4249 	/*
4250 	 * Update usable space statistics.
4251 	 */
4252 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4253 		vdev_sync_done(vd, txg);
4254 
4255 	/*
4256 	 * It had better be the case that we didn't dirty anything
4257 	 * since vdev_config_sync().
4258 	 */
4259 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4260 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4261 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4262 	ASSERT(bpl->bpl_queue == NULL);
4263 
4264 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4265 
4266 	/*
4267 	 * If any async tasks have been requested, kick them off.
4268 	 */
4269 	spa_async_dispatch(spa);
4270 }
4271 
4272 /*
4273  * Sync all pools.  We don't want to hold the namespace lock across these
4274  * operations, so we take a reference on the spa_t and drop the lock during the
4275  * sync.
4276  */
4277 void
4278 spa_sync_allpools(void)
4279 {
4280 	spa_t *spa = NULL;
4281 	mutex_enter(&spa_namespace_lock);
4282 	while ((spa = spa_next(spa)) != NULL) {
4283 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4284 			continue;
4285 		spa_open_ref(spa, FTAG);
4286 		mutex_exit(&spa_namespace_lock);
4287 		txg_wait_synced(spa_get_dsl(spa), 0);
4288 		mutex_enter(&spa_namespace_lock);
4289 		spa_close(spa, FTAG);
4290 	}
4291 	mutex_exit(&spa_namespace_lock);
4292 }
4293 
4294 /*
4295  * ==========================================================================
4296  * Miscellaneous routines
4297  * ==========================================================================
4298  */
4299 
4300 /*
4301  * Remove all pools in the system.
4302  */
4303 void
4304 spa_evict_all(void)
4305 {
4306 	spa_t *spa;
4307 
4308 	/*
4309 	 * Remove all cached state.  All pools should be closed now,
4310 	 * so every spa in the AVL tree should be unreferenced.
4311 	 */
4312 	mutex_enter(&spa_namespace_lock);
4313 	while ((spa = spa_next(NULL)) != NULL) {
4314 		/*
4315 		 * Stop async tasks.  The async thread may need to detach
4316 		 * a device that's been replaced, which requires grabbing
4317 		 * spa_namespace_lock, so we must drop it here.
4318 		 */
4319 		spa_open_ref(spa, FTAG);
4320 		mutex_exit(&spa_namespace_lock);
4321 		spa_async_suspend(spa);
4322 		mutex_enter(&spa_namespace_lock);
4323 		spa_close(spa, FTAG);
4324 
4325 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4326 			spa_unload(spa);
4327 			spa_deactivate(spa);
4328 		}
4329 		spa_remove(spa);
4330 	}
4331 	mutex_exit(&spa_namespace_lock);
4332 }
4333 
4334 vdev_t *
4335 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4336 {
4337 	vdev_t *vd;
4338 	int i;
4339 
4340 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4341 		return (vd);
4342 
4343 	if (aux) {
4344 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4345 			vd = spa->spa_l2cache.sav_vdevs[i];
4346 			if (vd->vdev_guid == guid)
4347 				return (vd);
4348 		}
4349 
4350 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
4351 			vd = spa->spa_spares.sav_vdevs[i];
4352 			if (vd->vdev_guid == guid)
4353 				return (vd);
4354 		}
4355 	}
4356 
4357 	return (NULL);
4358 }
4359 
4360 void
4361 spa_upgrade(spa_t *spa, uint64_t version)
4362 {
4363 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4364 
4365 	/*
4366 	 * This should only be called for a non-faulted pool, and since a
4367 	 * future version would result in an unopenable pool, this shouldn't be
4368 	 * possible.
4369 	 */
4370 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4371 	ASSERT(version >= spa->spa_uberblock.ub_version);
4372 
4373 	spa->spa_uberblock.ub_version = version;
4374 	vdev_config_dirty(spa->spa_root_vdev);
4375 
4376 	spa_config_exit(spa, SCL_ALL, FTAG);
4377 
4378 	txg_wait_synced(spa_get_dsl(spa), 0);
4379 }
4380 
4381 boolean_t
4382 spa_has_spare(spa_t *spa, uint64_t guid)
4383 {
4384 	int i;
4385 	uint64_t spareguid;
4386 	spa_aux_vdev_t *sav = &spa->spa_spares;
4387 
4388 	for (i = 0; i < sav->sav_count; i++)
4389 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4390 			return (B_TRUE);
4391 
4392 	for (i = 0; i < sav->sav_npending; i++) {
4393 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4394 		    &spareguid) == 0 && spareguid == guid)
4395 			return (B_TRUE);
4396 	}
4397 
4398 	return (B_FALSE);
4399 }
4400 
4401 /*
4402  * Check if a pool has an active shared spare device.
4403  * Note: reference count of an active spare is 2, as a spare and as a replace
4404  */
4405 static boolean_t
4406 spa_has_active_shared_spare(spa_t *spa)
4407 {
4408 	int i, refcnt;
4409 	uint64_t pool;
4410 	spa_aux_vdev_t *sav = &spa->spa_spares;
4411 
4412 	for (i = 0; i < sav->sav_count; i++) {
4413 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4414 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4415 		    refcnt > 2)
4416 			return (B_TRUE);
4417 	}
4418 
4419 	return (B_FALSE);
4420 }
4421 
4422 /*
4423  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4424  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4425  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4426  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4427  * or zdb as real changes.
4428  */
4429 void
4430 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4431 {
4432 #ifdef _KERNEL
4433 	sysevent_t		*ev;
4434 	sysevent_attr_list_t	*attr = NULL;
4435 	sysevent_value_t	value;
4436 	sysevent_id_t		eid;
4437 
4438 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4439 	    SE_SLEEP);
4440 
4441 	value.value_type = SE_DATA_TYPE_STRING;
4442 	value.value.sv_string = spa_name(spa);
4443 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4444 		goto done;
4445 
4446 	value.value_type = SE_DATA_TYPE_UINT64;
4447 	value.value.sv_uint64 = spa_guid(spa);
4448 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4449 		goto done;
4450 
4451 	if (vd) {
4452 		value.value_type = SE_DATA_TYPE_UINT64;
4453 		value.value.sv_uint64 = vd->vdev_guid;
4454 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4455 		    SE_SLEEP) != 0)
4456 			goto done;
4457 
4458 		if (vd->vdev_path) {
4459 			value.value_type = SE_DATA_TYPE_STRING;
4460 			value.value.sv_string = vd->vdev_path;
4461 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4462 			    &value, SE_SLEEP) != 0)
4463 				goto done;
4464 		}
4465 	}
4466 
4467 	if (sysevent_attach_attributes(ev, attr) != 0)
4468 		goto done;
4469 	attr = NULL;
4470 
4471 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4472 
4473 done:
4474 	if (attr)
4475 		sysevent_free_attr(attr);
4476 	sysevent_free(ev);
4477 #endif
4478 }
4479