xref: /titanic_41/usr/src/uts/common/fs/zfs/spa.c (revision b35c6776bcf599e80d0bcf7e248313c3e5b4847a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/sunddi.h>
63 #include <sys/spa_boot.h>
64 
65 #include "zfs_prop.h"
66 #include "zfs_comutil.h"
67 
68 int zio_taskq_threads = 8;
69 
70 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
71 
72 /*
73  * ==========================================================================
74  * SPA properties routines
75  * ==========================================================================
76  */
77 
78 /*
79  * Add a (source=src, propname=propval) list to an nvlist.
80  */
81 static void
82 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
83     uint64_t intval, zprop_source_t src)
84 {
85 	const char *propname = zpool_prop_to_name(prop);
86 	nvlist_t *propval;
87 
88 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
89 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
90 
91 	if (strval != NULL)
92 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
93 	else
94 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
95 
96 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
97 	nvlist_free(propval);
98 }
99 
100 /*
101  * Get property values from the spa configuration.
102  */
103 static void
104 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
105 {
106 	uint64_t size = spa_get_space(spa);
107 	uint64_t used = spa_get_alloc(spa);
108 	uint64_t cap, version;
109 	zprop_source_t src = ZPROP_SRC_NONE;
110 	spa_config_dirent_t *dp;
111 
112 	/*
113 	 * readonly properties
114 	 */
115 	spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name, 0, src);
116 	spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
117 	spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
118 	spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, size - used, src);
119 
120 	cap = (size == 0) ? 0 : (used * 100 / size);
121 	spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
122 
123 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
124 	spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
125 	    spa->spa_root_vdev->vdev_state, src);
126 
127 	/*
128 	 * settable properties that are not stored in the pool property object.
129 	 */
130 	version = spa_version(spa);
131 	if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
132 		src = ZPROP_SRC_DEFAULT;
133 	else
134 		src = ZPROP_SRC_LOCAL;
135 	spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
136 
137 	if (spa->spa_root != NULL)
138 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
139 		    0, ZPROP_SRC_LOCAL);
140 
141 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
142 		if (dp->scd_path == NULL) {
143 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
144 			    "none", 0, ZPROP_SRC_LOCAL);
145 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
146 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
147 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
148 		}
149 	}
150 }
151 
152 /*
153  * Get zpool property values.
154  */
155 int
156 spa_prop_get(spa_t *spa, nvlist_t **nvp)
157 {
158 	zap_cursor_t zc;
159 	zap_attribute_t za;
160 	objset_t *mos = spa->spa_meta_objset;
161 	int err;
162 
163 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
164 
165 	/*
166 	 * Get properties from the spa config.
167 	 */
168 	spa_prop_get_config(spa, nvp);
169 
170 	mutex_enter(&spa->spa_props_lock);
171 	/* If no pool property object, no more prop to get. */
172 	if (spa->spa_pool_props_object == 0) {
173 		mutex_exit(&spa->spa_props_lock);
174 		return (0);
175 	}
176 
177 	/*
178 	 * Get properties from the MOS pool property object.
179 	 */
180 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
181 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
182 	    zap_cursor_advance(&zc)) {
183 		uint64_t intval = 0;
184 		char *strval = NULL;
185 		zprop_source_t src = ZPROP_SRC_DEFAULT;
186 		zpool_prop_t prop;
187 
188 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
189 			continue;
190 
191 		switch (za.za_integer_length) {
192 		case 8:
193 			/* integer property */
194 			if (za.za_first_integer !=
195 			    zpool_prop_default_numeric(prop))
196 				src = ZPROP_SRC_LOCAL;
197 
198 			if (prop == ZPOOL_PROP_BOOTFS) {
199 				dsl_pool_t *dp;
200 				dsl_dataset_t *ds = NULL;
201 
202 				dp = spa_get_dsl(spa);
203 				rw_enter(&dp->dp_config_rwlock, RW_READER);
204 				if (err = dsl_dataset_open_obj(dp,
205 				    za.za_first_integer, NULL, DS_MODE_NONE,
206 				    FTAG, &ds)) {
207 					rw_exit(&dp->dp_config_rwlock);
208 					break;
209 				}
210 
211 				strval = kmem_alloc(
212 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
213 				    KM_SLEEP);
214 				dsl_dataset_name(ds, strval);
215 				dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
216 				rw_exit(&dp->dp_config_rwlock);
217 			} else {
218 				strval = NULL;
219 				intval = za.za_first_integer;
220 			}
221 
222 			spa_prop_add_list(*nvp, prop, strval, intval, src);
223 
224 			if (strval != NULL)
225 				kmem_free(strval,
226 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
227 
228 			break;
229 
230 		case 1:
231 			/* string property */
232 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
233 			err = zap_lookup(mos, spa->spa_pool_props_object,
234 			    za.za_name, 1, za.za_num_integers, strval);
235 			if (err) {
236 				kmem_free(strval, za.za_num_integers);
237 				break;
238 			}
239 			spa_prop_add_list(*nvp, prop, strval, 0, src);
240 			kmem_free(strval, za.za_num_integers);
241 			break;
242 
243 		default:
244 			break;
245 		}
246 	}
247 	zap_cursor_fini(&zc);
248 	mutex_exit(&spa->spa_props_lock);
249 out:
250 	if (err && err != ENOENT) {
251 		nvlist_free(*nvp);
252 		*nvp = NULL;
253 		return (err);
254 	}
255 
256 	return (0);
257 }
258 
259 /*
260  * Validate the given pool properties nvlist and modify the list
261  * for the property values to be set.
262  */
263 static int
264 spa_prop_validate(spa_t *spa, nvlist_t *props)
265 {
266 	nvpair_t *elem;
267 	int error = 0, reset_bootfs = 0;
268 	uint64_t objnum;
269 
270 	elem = NULL;
271 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
272 		zpool_prop_t prop;
273 		char *propname, *strval;
274 		uint64_t intval;
275 		vdev_t *rvdev;
276 		char *vdev_type;
277 		objset_t *os;
278 		char *slash;
279 
280 		propname = nvpair_name(elem);
281 
282 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
283 			return (EINVAL);
284 
285 		switch (prop) {
286 		case ZPOOL_PROP_VERSION:
287 			error = nvpair_value_uint64(elem, &intval);
288 			if (!error &&
289 			    (intval < spa_version(spa) || intval > SPA_VERSION))
290 				error = EINVAL;
291 			break;
292 
293 		case ZPOOL_PROP_DELEGATION:
294 		case ZPOOL_PROP_AUTOREPLACE:
295 			error = nvpair_value_uint64(elem, &intval);
296 			if (!error && intval > 1)
297 				error = EINVAL;
298 			break;
299 
300 		case ZPOOL_PROP_BOOTFS:
301 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
302 				error = ENOTSUP;
303 				break;
304 			}
305 
306 			/*
307 			 * A bootable filesystem can not be on a RAIDZ pool
308 			 * nor a striped pool with more than 1 device.
309 			 */
310 			rvdev = spa->spa_root_vdev;
311 			vdev_type =
312 			    rvdev->vdev_child[0]->vdev_ops->vdev_op_type;
313 			if (rvdev->vdev_children > 1 ||
314 			    strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
315 			    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
316 				error = ENOTSUP;
317 				break;
318 			}
319 
320 			reset_bootfs = 1;
321 
322 			error = nvpair_value_string(elem, &strval);
323 
324 			if (!error) {
325 				if (strval == NULL || strval[0] == '\0') {
326 					objnum = zpool_prop_default_numeric(
327 					    ZPOOL_PROP_BOOTFS);
328 					break;
329 				}
330 
331 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
332 				    DS_MODE_STANDARD | DS_MODE_READONLY, &os))
333 					break;
334 				objnum = dmu_objset_id(os);
335 				dmu_objset_close(os);
336 			}
337 			break;
338 		case ZPOOL_PROP_FAILUREMODE:
339 			error = nvpair_value_uint64(elem, &intval);
340 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
341 			    intval > ZIO_FAILURE_MODE_PANIC))
342 				error = EINVAL;
343 
344 			/*
345 			 * This is a special case which only occurs when
346 			 * the pool has completely failed. This allows
347 			 * the user to change the in-core failmode property
348 			 * without syncing it out to disk (I/Os might
349 			 * currently be blocked). We do this by returning
350 			 * EIO to the caller (spa_prop_set) to trick it
351 			 * into thinking we encountered a property validation
352 			 * error.
353 			 */
354 			if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) {
355 				spa->spa_failmode = intval;
356 				error = EIO;
357 			}
358 			break;
359 
360 		case ZPOOL_PROP_CACHEFILE:
361 			if ((error = nvpair_value_string(elem, &strval)) != 0)
362 				break;
363 
364 			if (strval[0] == '\0')
365 				break;
366 
367 			if (strcmp(strval, "none") == 0)
368 				break;
369 
370 			if (strval[0] != '/') {
371 				error = EINVAL;
372 				break;
373 			}
374 
375 			slash = strrchr(strval, '/');
376 			ASSERT(slash != NULL);
377 
378 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
379 			    strcmp(slash, "/..") == 0)
380 				error = EINVAL;
381 			break;
382 		}
383 
384 		if (error)
385 			break;
386 	}
387 
388 	if (!error && reset_bootfs) {
389 		error = nvlist_remove(props,
390 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
391 
392 		if (!error) {
393 			error = nvlist_add_uint64(props,
394 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
395 		}
396 	}
397 
398 	return (error);
399 }
400 
401 int
402 spa_prop_set(spa_t *spa, nvlist_t *nvp)
403 {
404 	int error;
405 
406 	if ((error = spa_prop_validate(spa, nvp)) != 0)
407 		return (error);
408 
409 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
410 	    spa, nvp, 3));
411 }
412 
413 /*
414  * If the bootfs property value is dsobj, clear it.
415  */
416 void
417 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
418 {
419 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
420 		VERIFY(zap_remove(spa->spa_meta_objset,
421 		    spa->spa_pool_props_object,
422 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
423 		spa->spa_bootfs = 0;
424 	}
425 }
426 
427 /*
428  * ==========================================================================
429  * SPA state manipulation (open/create/destroy/import/export)
430  * ==========================================================================
431  */
432 
433 static int
434 spa_error_entry_compare(const void *a, const void *b)
435 {
436 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
437 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
438 	int ret;
439 
440 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
441 	    sizeof (zbookmark_t));
442 
443 	if (ret < 0)
444 		return (-1);
445 	else if (ret > 0)
446 		return (1);
447 	else
448 		return (0);
449 }
450 
451 /*
452  * Utility function which retrieves copies of the current logs and
453  * re-initializes them in the process.
454  */
455 void
456 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
457 {
458 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
459 
460 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
461 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
462 
463 	avl_create(&spa->spa_errlist_scrub,
464 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
465 	    offsetof(spa_error_entry_t, se_avl));
466 	avl_create(&spa->spa_errlist_last,
467 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
468 	    offsetof(spa_error_entry_t, se_avl));
469 }
470 
471 /*
472  * Activate an uninitialized pool.
473  */
474 static void
475 spa_activate(spa_t *spa)
476 {
477 	int t;
478 
479 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
480 
481 	spa->spa_state = POOL_STATE_ACTIVE;
482 
483 	spa->spa_normal_class = metaslab_class_create();
484 	spa->spa_log_class = metaslab_class_create();
485 
486 	for (t = 0; t < ZIO_TYPES; t++) {
487 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
488 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
489 		    TASKQ_PREPOPULATE);
490 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
491 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
492 		    TASKQ_PREPOPULATE);
493 	}
494 
495 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
496 	    offsetof(vdev_t, vdev_dirty_node));
497 	list_create(&spa->spa_zio_list, sizeof (zio_t),
498 	    offsetof(zio_t, zio_link_node));
499 
500 	txg_list_create(&spa->spa_vdev_txg_list,
501 	    offsetof(struct vdev, vdev_txg_node));
502 
503 	avl_create(&spa->spa_errlist_scrub,
504 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
505 	    offsetof(spa_error_entry_t, se_avl));
506 	avl_create(&spa->spa_errlist_last,
507 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
508 	    offsetof(spa_error_entry_t, se_avl));
509 }
510 
511 /*
512  * Opposite of spa_activate().
513  */
514 static void
515 spa_deactivate(spa_t *spa)
516 {
517 	int t;
518 
519 	ASSERT(spa->spa_sync_on == B_FALSE);
520 	ASSERT(spa->spa_dsl_pool == NULL);
521 	ASSERT(spa->spa_root_vdev == NULL);
522 
523 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
524 
525 	txg_list_destroy(&spa->spa_vdev_txg_list);
526 
527 	list_destroy(&spa->spa_dirty_list);
528 	list_destroy(&spa->spa_zio_list);
529 
530 	for (t = 0; t < ZIO_TYPES; t++) {
531 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
532 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
533 		spa->spa_zio_issue_taskq[t] = NULL;
534 		spa->spa_zio_intr_taskq[t] = NULL;
535 	}
536 
537 	metaslab_class_destroy(spa->spa_normal_class);
538 	spa->spa_normal_class = NULL;
539 
540 	metaslab_class_destroy(spa->spa_log_class);
541 	spa->spa_log_class = NULL;
542 
543 	/*
544 	 * If this was part of an import or the open otherwise failed, we may
545 	 * still have errors left in the queues.  Empty them just in case.
546 	 */
547 	spa_errlog_drain(spa);
548 
549 	avl_destroy(&spa->spa_errlist_scrub);
550 	avl_destroy(&spa->spa_errlist_last);
551 
552 	spa->spa_state = POOL_STATE_UNINITIALIZED;
553 }
554 
555 /*
556  * Verify a pool configuration, and construct the vdev tree appropriately.  This
557  * will create all the necessary vdevs in the appropriate layout, with each vdev
558  * in the CLOSED state.  This will prep the pool before open/creation/import.
559  * All vdev validation is done by the vdev_alloc() routine.
560  */
561 static int
562 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
563     uint_t id, int atype)
564 {
565 	nvlist_t **child;
566 	uint_t c, children;
567 	int error;
568 
569 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
570 		return (error);
571 
572 	if ((*vdp)->vdev_ops->vdev_op_leaf)
573 		return (0);
574 
575 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
576 	    &child, &children) != 0) {
577 		vdev_free(*vdp);
578 		*vdp = NULL;
579 		return (EINVAL);
580 	}
581 
582 	for (c = 0; c < children; c++) {
583 		vdev_t *vd;
584 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
585 		    atype)) != 0) {
586 			vdev_free(*vdp);
587 			*vdp = NULL;
588 			return (error);
589 		}
590 	}
591 
592 	ASSERT(*vdp != NULL);
593 
594 	return (0);
595 }
596 
597 /*
598  * Opposite of spa_load().
599  */
600 static void
601 spa_unload(spa_t *spa)
602 {
603 	int i;
604 
605 	/*
606 	 * Stop async tasks.
607 	 */
608 	spa_async_suspend(spa);
609 
610 	/*
611 	 * Stop syncing.
612 	 */
613 	if (spa->spa_sync_on) {
614 		txg_sync_stop(spa->spa_dsl_pool);
615 		spa->spa_sync_on = B_FALSE;
616 	}
617 
618 	/*
619 	 * Wait for any outstanding prefetch I/O to complete.
620 	 */
621 	spa_config_enter(spa, RW_WRITER, FTAG);
622 	spa_config_exit(spa, FTAG);
623 
624 	/*
625 	 * Drop and purge level 2 cache
626 	 */
627 	spa_l2cache_drop(spa);
628 
629 	/*
630 	 * Close the dsl pool.
631 	 */
632 	if (spa->spa_dsl_pool) {
633 		dsl_pool_close(spa->spa_dsl_pool);
634 		spa->spa_dsl_pool = NULL;
635 	}
636 
637 	/*
638 	 * Close all vdevs.
639 	 */
640 	if (spa->spa_root_vdev)
641 		vdev_free(spa->spa_root_vdev);
642 	ASSERT(spa->spa_root_vdev == NULL);
643 
644 	for (i = 0; i < spa->spa_spares.sav_count; i++)
645 		vdev_free(spa->spa_spares.sav_vdevs[i]);
646 	if (spa->spa_spares.sav_vdevs) {
647 		kmem_free(spa->spa_spares.sav_vdevs,
648 		    spa->spa_spares.sav_count * sizeof (void *));
649 		spa->spa_spares.sav_vdevs = NULL;
650 	}
651 	if (spa->spa_spares.sav_config) {
652 		nvlist_free(spa->spa_spares.sav_config);
653 		spa->spa_spares.sav_config = NULL;
654 	}
655 
656 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
657 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
658 	if (spa->spa_l2cache.sav_vdevs) {
659 		kmem_free(spa->spa_l2cache.sav_vdevs,
660 		    spa->spa_l2cache.sav_count * sizeof (void *));
661 		spa->spa_l2cache.sav_vdevs = NULL;
662 	}
663 	if (spa->spa_l2cache.sav_config) {
664 		nvlist_free(spa->spa_l2cache.sav_config);
665 		spa->spa_l2cache.sav_config = NULL;
666 	}
667 
668 	spa->spa_async_suspended = 0;
669 }
670 
671 /*
672  * Load (or re-load) the current list of vdevs describing the active spares for
673  * this pool.  When this is called, we have some form of basic information in
674  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
675  * then re-generate a more complete list including status information.
676  */
677 static void
678 spa_load_spares(spa_t *spa)
679 {
680 	nvlist_t **spares;
681 	uint_t nspares;
682 	int i;
683 	vdev_t *vd, *tvd;
684 
685 	/*
686 	 * First, close and free any existing spare vdevs.
687 	 */
688 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
689 		vd = spa->spa_spares.sav_vdevs[i];
690 
691 		/* Undo the call to spa_activate() below */
692 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
693 		    B_FALSE)) != NULL && tvd->vdev_isspare)
694 			spa_spare_remove(tvd);
695 		vdev_close(vd);
696 		vdev_free(vd);
697 	}
698 
699 	if (spa->spa_spares.sav_vdevs)
700 		kmem_free(spa->spa_spares.sav_vdevs,
701 		    spa->spa_spares.sav_count * sizeof (void *));
702 
703 	if (spa->spa_spares.sav_config == NULL)
704 		nspares = 0;
705 	else
706 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
707 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
708 
709 	spa->spa_spares.sav_count = (int)nspares;
710 	spa->spa_spares.sav_vdevs = NULL;
711 
712 	if (nspares == 0)
713 		return;
714 
715 	/*
716 	 * Construct the array of vdevs, opening them to get status in the
717 	 * process.   For each spare, there is potentially two different vdev_t
718 	 * structures associated with it: one in the list of spares (used only
719 	 * for basic validation purposes) and one in the active vdev
720 	 * configuration (if it's spared in).  During this phase we open and
721 	 * validate each vdev on the spare list.  If the vdev also exists in the
722 	 * active configuration, then we also mark this vdev as an active spare.
723 	 */
724 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
725 	    KM_SLEEP);
726 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
727 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
728 		    VDEV_ALLOC_SPARE) == 0);
729 		ASSERT(vd != NULL);
730 
731 		spa->spa_spares.sav_vdevs[i] = vd;
732 
733 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
734 		    B_FALSE)) != NULL) {
735 			if (!tvd->vdev_isspare)
736 				spa_spare_add(tvd);
737 
738 			/*
739 			 * We only mark the spare active if we were successfully
740 			 * able to load the vdev.  Otherwise, importing a pool
741 			 * with a bad active spare would result in strange
742 			 * behavior, because multiple pool would think the spare
743 			 * is actively in use.
744 			 *
745 			 * There is a vulnerability here to an equally bizarre
746 			 * circumstance, where a dead active spare is later
747 			 * brought back to life (onlined or otherwise).  Given
748 			 * the rarity of this scenario, and the extra complexity
749 			 * it adds, we ignore the possibility.
750 			 */
751 			if (!vdev_is_dead(tvd))
752 				spa_spare_activate(tvd);
753 		}
754 
755 		if (vdev_open(vd) != 0)
756 			continue;
757 
758 		vd->vdev_top = vd;
759 		if (vdev_validate_aux(vd) == 0)
760 			spa_spare_add(vd);
761 	}
762 
763 	/*
764 	 * Recompute the stashed list of spares, with status information
765 	 * this time.
766 	 */
767 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
768 	    DATA_TYPE_NVLIST_ARRAY) == 0);
769 
770 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
771 	    KM_SLEEP);
772 	for (i = 0; i < spa->spa_spares.sav_count; i++)
773 		spares[i] = vdev_config_generate(spa,
774 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
775 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
776 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
777 	for (i = 0; i < spa->spa_spares.sav_count; i++)
778 		nvlist_free(spares[i]);
779 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
780 }
781 
782 /*
783  * Load (or re-load) the current list of vdevs describing the active l2cache for
784  * this pool.  When this is called, we have some form of basic information in
785  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
786  * then re-generate a more complete list including status information.
787  * Devices which are already active have their details maintained, and are
788  * not re-opened.
789  */
790 static void
791 spa_load_l2cache(spa_t *spa)
792 {
793 	nvlist_t **l2cache;
794 	uint_t nl2cache;
795 	int i, j, oldnvdevs;
796 	uint64_t guid, size;
797 	vdev_t *vd, **oldvdevs, **newvdevs;
798 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
799 
800 	if (sav->sav_config != NULL) {
801 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
802 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
803 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
804 	} else {
805 		nl2cache = 0;
806 	}
807 
808 	oldvdevs = sav->sav_vdevs;
809 	oldnvdevs = sav->sav_count;
810 	sav->sav_vdevs = NULL;
811 	sav->sav_count = 0;
812 
813 	/*
814 	 * Process new nvlist of vdevs.
815 	 */
816 	for (i = 0; i < nl2cache; i++) {
817 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
818 		    &guid) == 0);
819 
820 		newvdevs[i] = NULL;
821 		for (j = 0; j < oldnvdevs; j++) {
822 			vd = oldvdevs[j];
823 			if (vd != NULL && guid == vd->vdev_guid) {
824 				/*
825 				 * Retain previous vdev for add/remove ops.
826 				 */
827 				newvdevs[i] = vd;
828 				oldvdevs[j] = NULL;
829 				break;
830 			}
831 		}
832 
833 		if (newvdevs[i] == NULL) {
834 			/*
835 			 * Create new vdev
836 			 */
837 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
838 			    VDEV_ALLOC_L2CACHE) == 0);
839 			ASSERT(vd != NULL);
840 			newvdevs[i] = vd;
841 
842 			/*
843 			 * Commit this vdev as an l2cache device,
844 			 * even if it fails to open.
845 			 */
846 			spa_l2cache_add(vd);
847 
848 			vd->vdev_top = vd;
849 			vd->vdev_aux = sav;
850 
851 			spa_l2cache_activate(vd);
852 
853 			if (vdev_open(vd) != 0)
854 				continue;
855 
856 			(void) vdev_validate_aux(vd);
857 
858 			if (!vdev_is_dead(vd)) {
859 				size = vdev_get_rsize(vd);
860 				l2arc_add_vdev(spa, vd,
861 				    VDEV_LABEL_START_SIZE,
862 				    size - VDEV_LABEL_START_SIZE);
863 			}
864 		}
865 	}
866 
867 	/*
868 	 * Purge vdevs that were dropped
869 	 */
870 	for (i = 0; i < oldnvdevs; i++) {
871 		uint64_t pool;
872 
873 		vd = oldvdevs[i];
874 		if (vd != NULL) {
875 			if (spa_mode & FWRITE &&
876 			    spa_l2cache_exists(vd->vdev_guid, &pool) &&
877 			    pool != 0ULL &&
878 			    l2arc_vdev_present(vd)) {
879 				l2arc_remove_vdev(vd);
880 			}
881 			(void) vdev_close(vd);
882 			spa_l2cache_remove(vd);
883 		}
884 	}
885 
886 	if (oldvdevs)
887 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
888 
889 	if (sav->sav_config == NULL)
890 		goto out;
891 
892 	sav->sav_vdevs = newvdevs;
893 	sav->sav_count = (int)nl2cache;
894 
895 	/*
896 	 * Recompute the stashed list of l2cache devices, with status
897 	 * information this time.
898 	 */
899 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
900 	    DATA_TYPE_NVLIST_ARRAY) == 0);
901 
902 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
903 	for (i = 0; i < sav->sav_count; i++)
904 		l2cache[i] = vdev_config_generate(spa,
905 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
906 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
907 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
908 out:
909 	for (i = 0; i < sav->sav_count; i++)
910 		nvlist_free(l2cache[i]);
911 	if (sav->sav_count)
912 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
913 }
914 
915 static int
916 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
917 {
918 	dmu_buf_t *db;
919 	char *packed = NULL;
920 	size_t nvsize = 0;
921 	int error;
922 	*value = NULL;
923 
924 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
925 	nvsize = *(uint64_t *)db->db_data;
926 	dmu_buf_rele(db, FTAG);
927 
928 	packed = kmem_alloc(nvsize, KM_SLEEP);
929 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
930 	if (error == 0)
931 		error = nvlist_unpack(packed, nvsize, value, 0);
932 	kmem_free(packed, nvsize);
933 
934 	return (error);
935 }
936 
937 /*
938  * Checks to see if the given vdev could not be opened, in which case we post a
939  * sysevent to notify the autoreplace code that the device has been removed.
940  */
941 static void
942 spa_check_removed(vdev_t *vd)
943 {
944 	int c;
945 
946 	for (c = 0; c < vd->vdev_children; c++)
947 		spa_check_removed(vd->vdev_child[c]);
948 
949 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
950 		zfs_post_autoreplace(vd->vdev_spa, vd);
951 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
952 	}
953 }
954 
955 /*
956  * Load an existing storage pool, using the pool's builtin spa_config as a
957  * source of configuration information.
958  */
959 static int
960 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
961 {
962 	int error = 0;
963 	nvlist_t *nvroot = NULL;
964 	vdev_t *rvd;
965 	uberblock_t *ub = &spa->spa_uberblock;
966 	uint64_t config_cache_txg = spa->spa_config_txg;
967 	uint64_t pool_guid;
968 	uint64_t version;
969 	zio_t *zio;
970 	uint64_t autoreplace = 0;
971 
972 	spa->spa_load_state = state;
973 
974 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
975 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
976 		error = EINVAL;
977 		goto out;
978 	}
979 
980 	/*
981 	 * Versioning wasn't explicitly added to the label until later, so if
982 	 * it's not present treat it as the initial version.
983 	 */
984 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
985 		version = SPA_VERSION_INITIAL;
986 
987 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
988 	    &spa->spa_config_txg);
989 
990 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
991 	    spa_guid_exists(pool_guid, 0)) {
992 		error = EEXIST;
993 		goto out;
994 	}
995 
996 	spa->spa_load_guid = pool_guid;
997 
998 	/*
999 	 * Parse the configuration into a vdev tree.  We explicitly set the
1000 	 * value that will be returned by spa_version() since parsing the
1001 	 * configuration requires knowing the version number.
1002 	 */
1003 	spa_config_enter(spa, RW_WRITER, FTAG);
1004 	spa->spa_ubsync.ub_version = version;
1005 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1006 	spa_config_exit(spa, FTAG);
1007 
1008 	if (error != 0)
1009 		goto out;
1010 
1011 	ASSERT(spa->spa_root_vdev == rvd);
1012 	ASSERT(spa_guid(spa) == pool_guid);
1013 
1014 	/*
1015 	 * Try to open all vdevs, loading each label in the process.
1016 	 */
1017 	error = vdev_open(rvd);
1018 	if (error != 0)
1019 		goto out;
1020 
1021 	/*
1022 	 * Validate the labels for all leaf vdevs.  We need to grab the config
1023 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
1024 	 * flag.
1025 	 */
1026 	spa_config_enter(spa, RW_READER, FTAG);
1027 	error = vdev_validate(rvd);
1028 	spa_config_exit(spa, FTAG);
1029 
1030 	if (error != 0)
1031 		goto out;
1032 
1033 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1034 		error = ENXIO;
1035 		goto out;
1036 	}
1037 
1038 	/*
1039 	 * Find the best uberblock.
1040 	 */
1041 	bzero(ub, sizeof (uberblock_t));
1042 
1043 	zio = zio_root(spa, NULL, NULL,
1044 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1045 	vdev_uberblock_load(zio, rvd, ub);
1046 	error = zio_wait(zio);
1047 
1048 	/*
1049 	 * If we weren't able to find a single valid uberblock, return failure.
1050 	 */
1051 	if (ub->ub_txg == 0) {
1052 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1053 		    VDEV_AUX_CORRUPT_DATA);
1054 		error = ENXIO;
1055 		goto out;
1056 	}
1057 
1058 	/*
1059 	 * If the pool is newer than the code, we can't open it.
1060 	 */
1061 	if (ub->ub_version > SPA_VERSION) {
1062 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1063 		    VDEV_AUX_VERSION_NEWER);
1064 		error = ENOTSUP;
1065 		goto out;
1066 	}
1067 
1068 	/*
1069 	 * If the vdev guid sum doesn't match the uberblock, we have an
1070 	 * incomplete configuration.
1071 	 */
1072 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1073 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1074 		    VDEV_AUX_BAD_GUID_SUM);
1075 		error = ENXIO;
1076 		goto out;
1077 	}
1078 
1079 	/*
1080 	 * Initialize internal SPA structures.
1081 	 */
1082 	spa->spa_state = POOL_STATE_ACTIVE;
1083 	spa->spa_ubsync = spa->spa_uberblock;
1084 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1085 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1086 	if (error) {
1087 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1088 		    VDEV_AUX_CORRUPT_DATA);
1089 		goto out;
1090 	}
1091 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1092 
1093 	if (zap_lookup(spa->spa_meta_objset,
1094 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1095 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1096 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1097 		    VDEV_AUX_CORRUPT_DATA);
1098 		error = EIO;
1099 		goto out;
1100 	}
1101 
1102 	if (!mosconfig) {
1103 		nvlist_t *newconfig;
1104 		uint64_t hostid;
1105 
1106 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1107 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1108 			    VDEV_AUX_CORRUPT_DATA);
1109 			error = EIO;
1110 			goto out;
1111 		}
1112 
1113 		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
1114 		    &hostid) == 0) {
1115 			char *hostname;
1116 			unsigned long myhostid = 0;
1117 
1118 			VERIFY(nvlist_lookup_string(newconfig,
1119 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1120 
1121 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1122 			if (hostid != 0 && myhostid != 0 &&
1123 			    (unsigned long)hostid != myhostid) {
1124 				cmn_err(CE_WARN, "pool '%s' could not be "
1125 				    "loaded as it was last accessed by "
1126 				    "another system (host: %s hostid: 0x%lx).  "
1127 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1128 				    spa->spa_name, hostname,
1129 				    (unsigned long)hostid);
1130 				error = EBADF;
1131 				goto out;
1132 			}
1133 		}
1134 
1135 		spa_config_set(spa, newconfig);
1136 		spa_unload(spa);
1137 		spa_deactivate(spa);
1138 		spa_activate(spa);
1139 
1140 		return (spa_load(spa, newconfig, state, B_TRUE));
1141 	}
1142 
1143 	if (zap_lookup(spa->spa_meta_objset,
1144 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1145 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1146 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1147 		    VDEV_AUX_CORRUPT_DATA);
1148 		error = EIO;
1149 		goto out;
1150 	}
1151 
1152 	/*
1153 	 * Load the bit that tells us to use the new accounting function
1154 	 * (raid-z deflation).  If we have an older pool, this will not
1155 	 * be present.
1156 	 */
1157 	error = zap_lookup(spa->spa_meta_objset,
1158 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1159 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1160 	if (error != 0 && error != ENOENT) {
1161 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1162 		    VDEV_AUX_CORRUPT_DATA);
1163 		error = EIO;
1164 		goto out;
1165 	}
1166 
1167 	/*
1168 	 * Load the persistent error log.  If we have an older pool, this will
1169 	 * not be present.
1170 	 */
1171 	error = zap_lookup(spa->spa_meta_objset,
1172 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1173 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1174 	if (error != 0 && error != ENOENT) {
1175 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1176 		    VDEV_AUX_CORRUPT_DATA);
1177 		error = EIO;
1178 		goto out;
1179 	}
1180 
1181 	error = zap_lookup(spa->spa_meta_objset,
1182 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1183 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1184 	if (error != 0 && error != ENOENT) {
1185 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1186 		    VDEV_AUX_CORRUPT_DATA);
1187 		error = EIO;
1188 		goto out;
1189 	}
1190 
1191 	/*
1192 	 * Load the history object.  If we have an older pool, this
1193 	 * will not be present.
1194 	 */
1195 	error = zap_lookup(spa->spa_meta_objset,
1196 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1197 	    sizeof (uint64_t), 1, &spa->spa_history);
1198 	if (error != 0 && error != ENOENT) {
1199 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1200 		    VDEV_AUX_CORRUPT_DATA);
1201 		error = EIO;
1202 		goto out;
1203 	}
1204 
1205 	/*
1206 	 * Load any hot spares for this pool.
1207 	 */
1208 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1209 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1210 	if (error != 0 && error != ENOENT) {
1211 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1212 		    VDEV_AUX_CORRUPT_DATA);
1213 		error = EIO;
1214 		goto out;
1215 	}
1216 	if (error == 0) {
1217 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1218 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1219 		    &spa->spa_spares.sav_config) != 0) {
1220 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1221 			    VDEV_AUX_CORRUPT_DATA);
1222 			error = EIO;
1223 			goto out;
1224 		}
1225 
1226 		spa_config_enter(spa, RW_WRITER, FTAG);
1227 		spa_load_spares(spa);
1228 		spa_config_exit(spa, FTAG);
1229 	}
1230 
1231 	/*
1232 	 * Load any level 2 ARC devices for this pool.
1233 	 */
1234 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1235 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1236 	    &spa->spa_l2cache.sav_object);
1237 	if (error != 0 && error != ENOENT) {
1238 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1239 		    VDEV_AUX_CORRUPT_DATA);
1240 		error = EIO;
1241 		goto out;
1242 	}
1243 	if (error == 0) {
1244 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1245 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1246 		    &spa->spa_l2cache.sav_config) != 0) {
1247 			vdev_set_state(rvd, B_TRUE,
1248 			    VDEV_STATE_CANT_OPEN,
1249 			    VDEV_AUX_CORRUPT_DATA);
1250 			error = EIO;
1251 			goto out;
1252 		}
1253 
1254 		spa_config_enter(spa, RW_WRITER, FTAG);
1255 		spa_load_l2cache(spa);
1256 		spa_config_exit(spa, FTAG);
1257 	}
1258 
1259 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1260 
1261 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1262 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1263 
1264 	if (error && error != ENOENT) {
1265 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1266 		    VDEV_AUX_CORRUPT_DATA);
1267 		error = EIO;
1268 		goto out;
1269 	}
1270 
1271 	if (error == 0) {
1272 		(void) zap_lookup(spa->spa_meta_objset,
1273 		    spa->spa_pool_props_object,
1274 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1275 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1276 		(void) zap_lookup(spa->spa_meta_objset,
1277 		    spa->spa_pool_props_object,
1278 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1279 		    sizeof (uint64_t), 1, &autoreplace);
1280 		(void) zap_lookup(spa->spa_meta_objset,
1281 		    spa->spa_pool_props_object,
1282 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1283 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1284 		(void) zap_lookup(spa->spa_meta_objset,
1285 		    spa->spa_pool_props_object,
1286 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1287 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1288 	}
1289 
1290 	/*
1291 	 * If the 'autoreplace' property is set, then post a resource notifying
1292 	 * the ZFS DE that it should not issue any faults for unopenable
1293 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1294 	 * unopenable vdevs so that the normal autoreplace handler can take
1295 	 * over.
1296 	 */
1297 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1298 		spa_check_removed(spa->spa_root_vdev);
1299 
1300 	/*
1301 	 * Load the vdev state for all toplevel vdevs.
1302 	 */
1303 	vdev_load(rvd);
1304 
1305 	/*
1306 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1307 	 */
1308 	spa_config_enter(spa, RW_WRITER, FTAG);
1309 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1310 	spa_config_exit(spa, FTAG);
1311 
1312 	/*
1313 	 * Check the state of the root vdev.  If it can't be opened, it
1314 	 * indicates one or more toplevel vdevs are faulted.
1315 	 */
1316 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1317 		error = ENXIO;
1318 		goto out;
1319 	}
1320 
1321 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
1322 		dmu_tx_t *tx;
1323 		int need_update = B_FALSE;
1324 		int c;
1325 
1326 		/*
1327 		 * Claim log blocks that haven't been committed yet.
1328 		 * This must all happen in a single txg.
1329 		 */
1330 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1331 		    spa_first_txg(spa));
1332 		(void) dmu_objset_find(spa->spa_name,
1333 		    zil_claim, tx, DS_FIND_CHILDREN);
1334 		dmu_tx_commit(tx);
1335 
1336 		spa->spa_sync_on = B_TRUE;
1337 		txg_sync_start(spa->spa_dsl_pool);
1338 
1339 		/*
1340 		 * Wait for all claims to sync.
1341 		 */
1342 		txg_wait_synced(spa->spa_dsl_pool, 0);
1343 
1344 		/*
1345 		 * If the config cache is stale, or we have uninitialized
1346 		 * metaslabs (see spa_vdev_add()), then update the config.
1347 		 */
1348 		if (config_cache_txg != spa->spa_config_txg ||
1349 		    state == SPA_LOAD_IMPORT)
1350 			need_update = B_TRUE;
1351 
1352 		for (c = 0; c < rvd->vdev_children; c++)
1353 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1354 				need_update = B_TRUE;
1355 
1356 		/*
1357 		 * Update the config cache asychronously in case we're the
1358 		 * root pool, in which case the config cache isn't writable yet.
1359 		 */
1360 		if (need_update)
1361 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1362 	}
1363 
1364 	error = 0;
1365 out:
1366 	if (error && error != EBADF)
1367 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
1368 	spa->spa_load_state = SPA_LOAD_NONE;
1369 	spa->spa_ena = 0;
1370 
1371 	return (error);
1372 }
1373 
1374 /*
1375  * Pool Open/Import
1376  *
1377  * The import case is identical to an open except that the configuration is sent
1378  * down from userland, instead of grabbed from the configuration cache.  For the
1379  * case of an open, the pool configuration will exist in the
1380  * POOL_STATE_UNINITIALIZED state.
1381  *
1382  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1383  * the same time open the pool, without having to keep around the spa_t in some
1384  * ambiguous state.
1385  */
1386 static int
1387 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1388 {
1389 	spa_t *spa;
1390 	int error;
1391 	int loaded = B_FALSE;
1392 	int locked = B_FALSE;
1393 
1394 	*spapp = NULL;
1395 
1396 	/*
1397 	 * As disgusting as this is, we need to support recursive calls to this
1398 	 * function because dsl_dir_open() is called during spa_load(), and ends
1399 	 * up calling spa_open() again.  The real fix is to figure out how to
1400 	 * avoid dsl_dir_open() calling this in the first place.
1401 	 */
1402 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1403 		mutex_enter(&spa_namespace_lock);
1404 		locked = B_TRUE;
1405 	}
1406 
1407 	if ((spa = spa_lookup(pool)) == NULL) {
1408 		if (locked)
1409 			mutex_exit(&spa_namespace_lock);
1410 		return (ENOENT);
1411 	}
1412 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1413 
1414 		spa_activate(spa);
1415 
1416 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1417 
1418 		if (error == EBADF) {
1419 			/*
1420 			 * If vdev_validate() returns failure (indicated by
1421 			 * EBADF), it indicates that one of the vdevs indicates
1422 			 * that the pool has been exported or destroyed.  If
1423 			 * this is the case, the config cache is out of sync and
1424 			 * we should remove the pool from the namespace.
1425 			 */
1426 			spa_unload(spa);
1427 			spa_deactivate(spa);
1428 			spa_config_sync(spa, B_TRUE, B_TRUE);
1429 			spa_remove(spa);
1430 			if (locked)
1431 				mutex_exit(&spa_namespace_lock);
1432 			return (ENOENT);
1433 		}
1434 
1435 		if (error) {
1436 			/*
1437 			 * We can't open the pool, but we still have useful
1438 			 * information: the state of each vdev after the
1439 			 * attempted vdev_open().  Return this to the user.
1440 			 */
1441 			if (config != NULL && spa->spa_root_vdev != NULL) {
1442 				spa_config_enter(spa, RW_READER, FTAG);
1443 				*config = spa_config_generate(spa, NULL, -1ULL,
1444 				    B_TRUE);
1445 				spa_config_exit(spa, FTAG);
1446 			}
1447 			spa_unload(spa);
1448 			spa_deactivate(spa);
1449 			spa->spa_last_open_failed = B_TRUE;
1450 			if (locked)
1451 				mutex_exit(&spa_namespace_lock);
1452 			*spapp = NULL;
1453 			return (error);
1454 		} else {
1455 			spa->spa_last_open_failed = B_FALSE;
1456 		}
1457 
1458 		loaded = B_TRUE;
1459 	}
1460 
1461 	spa_open_ref(spa, tag);
1462 
1463 	/*
1464 	 * If we just loaded the pool, resilver anything that's out of date.
1465 	 */
1466 	if (loaded && (spa_mode & FWRITE))
1467 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1468 
1469 	if (locked)
1470 		mutex_exit(&spa_namespace_lock);
1471 
1472 	*spapp = spa;
1473 
1474 	if (config != NULL) {
1475 		spa_config_enter(spa, RW_READER, FTAG);
1476 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1477 		spa_config_exit(spa, FTAG);
1478 	}
1479 
1480 	return (0);
1481 }
1482 
1483 int
1484 spa_open(const char *name, spa_t **spapp, void *tag)
1485 {
1486 	return (spa_open_common(name, spapp, tag, NULL));
1487 }
1488 
1489 /*
1490  * Lookup the given spa_t, incrementing the inject count in the process,
1491  * preventing it from being exported or destroyed.
1492  */
1493 spa_t *
1494 spa_inject_addref(char *name)
1495 {
1496 	spa_t *spa;
1497 
1498 	mutex_enter(&spa_namespace_lock);
1499 	if ((spa = spa_lookup(name)) == NULL) {
1500 		mutex_exit(&spa_namespace_lock);
1501 		return (NULL);
1502 	}
1503 	spa->spa_inject_ref++;
1504 	mutex_exit(&spa_namespace_lock);
1505 
1506 	return (spa);
1507 }
1508 
1509 void
1510 spa_inject_delref(spa_t *spa)
1511 {
1512 	mutex_enter(&spa_namespace_lock);
1513 	spa->spa_inject_ref--;
1514 	mutex_exit(&spa_namespace_lock);
1515 }
1516 
1517 /*
1518  * Add spares device information to the nvlist.
1519  */
1520 static void
1521 spa_add_spares(spa_t *spa, nvlist_t *config)
1522 {
1523 	nvlist_t **spares;
1524 	uint_t i, nspares;
1525 	nvlist_t *nvroot;
1526 	uint64_t guid;
1527 	vdev_stat_t *vs;
1528 	uint_t vsc;
1529 	uint64_t pool;
1530 
1531 	if (spa->spa_spares.sav_count == 0)
1532 		return;
1533 
1534 	VERIFY(nvlist_lookup_nvlist(config,
1535 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1536 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1537 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1538 	if (nspares != 0) {
1539 		VERIFY(nvlist_add_nvlist_array(nvroot,
1540 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1541 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1542 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1543 
1544 		/*
1545 		 * Go through and find any spares which have since been
1546 		 * repurposed as an active spare.  If this is the case, update
1547 		 * their status appropriately.
1548 		 */
1549 		for (i = 0; i < nspares; i++) {
1550 			VERIFY(nvlist_lookup_uint64(spares[i],
1551 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1552 			if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
1553 				VERIFY(nvlist_lookup_uint64_array(
1554 				    spares[i], ZPOOL_CONFIG_STATS,
1555 				    (uint64_t **)&vs, &vsc) == 0);
1556 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1557 				vs->vs_aux = VDEV_AUX_SPARED;
1558 			}
1559 		}
1560 	}
1561 }
1562 
1563 /*
1564  * Add l2cache device information to the nvlist, including vdev stats.
1565  */
1566 static void
1567 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1568 {
1569 	nvlist_t **l2cache;
1570 	uint_t i, j, nl2cache;
1571 	nvlist_t *nvroot;
1572 	uint64_t guid;
1573 	vdev_t *vd;
1574 	vdev_stat_t *vs;
1575 	uint_t vsc;
1576 
1577 	if (spa->spa_l2cache.sav_count == 0)
1578 		return;
1579 
1580 	spa_config_enter(spa, RW_READER, FTAG);
1581 
1582 	VERIFY(nvlist_lookup_nvlist(config,
1583 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1584 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1585 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1586 	if (nl2cache != 0) {
1587 		VERIFY(nvlist_add_nvlist_array(nvroot,
1588 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1589 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1590 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1591 
1592 		/*
1593 		 * Update level 2 cache device stats.
1594 		 */
1595 
1596 		for (i = 0; i < nl2cache; i++) {
1597 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1598 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1599 
1600 			vd = NULL;
1601 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1602 				if (guid ==
1603 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1604 					vd = spa->spa_l2cache.sav_vdevs[j];
1605 					break;
1606 				}
1607 			}
1608 			ASSERT(vd != NULL);
1609 
1610 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1611 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1612 			vdev_get_stats(vd, vs);
1613 		}
1614 	}
1615 
1616 	spa_config_exit(spa, FTAG);
1617 }
1618 
1619 int
1620 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1621 {
1622 	int error;
1623 	spa_t *spa;
1624 
1625 	*config = NULL;
1626 	error = spa_open_common(name, &spa, FTAG, config);
1627 
1628 	if (spa && *config != NULL) {
1629 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1630 		    spa_get_errlog_size(spa)) == 0);
1631 
1632 		spa_add_spares(spa, *config);
1633 		spa_add_l2cache(spa, *config);
1634 	}
1635 
1636 	/*
1637 	 * We want to get the alternate root even for faulted pools, so we cheat
1638 	 * and call spa_lookup() directly.
1639 	 */
1640 	if (altroot) {
1641 		if (spa == NULL) {
1642 			mutex_enter(&spa_namespace_lock);
1643 			spa = spa_lookup(name);
1644 			if (spa)
1645 				spa_altroot(spa, altroot, buflen);
1646 			else
1647 				altroot[0] = '\0';
1648 			spa = NULL;
1649 			mutex_exit(&spa_namespace_lock);
1650 		} else {
1651 			spa_altroot(spa, altroot, buflen);
1652 		}
1653 	}
1654 
1655 	if (spa != NULL)
1656 		spa_close(spa, FTAG);
1657 
1658 	return (error);
1659 }
1660 
1661 /*
1662  * Validate that the auxiliary device array is well formed.  We must have an
1663  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1664  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1665  * specified, as long as they are well-formed.
1666  */
1667 static int
1668 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1669     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1670     vdev_labeltype_t label)
1671 {
1672 	nvlist_t **dev;
1673 	uint_t i, ndev;
1674 	vdev_t *vd;
1675 	int error;
1676 
1677 	/*
1678 	 * It's acceptable to have no devs specified.
1679 	 */
1680 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1681 		return (0);
1682 
1683 	if (ndev == 0)
1684 		return (EINVAL);
1685 
1686 	/*
1687 	 * Make sure the pool is formatted with a version that supports this
1688 	 * device type.
1689 	 */
1690 	if (spa_version(spa) < version)
1691 		return (ENOTSUP);
1692 
1693 	/*
1694 	 * Set the pending device list so we correctly handle device in-use
1695 	 * checking.
1696 	 */
1697 	sav->sav_pending = dev;
1698 	sav->sav_npending = ndev;
1699 
1700 	for (i = 0; i < ndev; i++) {
1701 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1702 		    mode)) != 0)
1703 			goto out;
1704 
1705 		if (!vd->vdev_ops->vdev_op_leaf) {
1706 			vdev_free(vd);
1707 			error = EINVAL;
1708 			goto out;
1709 		}
1710 
1711 		/*
1712 		 * The L2ARC currently only supports disk devices.
1713 		 */
1714 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1715 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1716 			error = ENOTBLK;
1717 			goto out;
1718 		}
1719 
1720 		vd->vdev_top = vd;
1721 
1722 		if ((error = vdev_open(vd)) == 0 &&
1723 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1724 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1725 			    vd->vdev_guid) == 0);
1726 		}
1727 
1728 		vdev_free(vd);
1729 
1730 		if (error &&
1731 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1732 			goto out;
1733 		else
1734 			error = 0;
1735 	}
1736 
1737 out:
1738 	sav->sav_pending = NULL;
1739 	sav->sav_npending = 0;
1740 	return (error);
1741 }
1742 
1743 static int
1744 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1745 {
1746 	int error;
1747 
1748 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1749 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1750 	    VDEV_LABEL_SPARE)) != 0) {
1751 		return (error);
1752 	}
1753 
1754 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1755 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
1756 	    VDEV_LABEL_L2CACHE));
1757 }
1758 
1759 static void
1760 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
1761     const char *config)
1762 {
1763 	int i;
1764 
1765 	if (sav->sav_config != NULL) {
1766 		nvlist_t **olddevs;
1767 		uint_t oldndevs;
1768 		nvlist_t **newdevs;
1769 
1770 		/*
1771 		 * Generate new dev list by concatentating with the
1772 		 * current dev list.
1773 		 */
1774 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
1775 		    &olddevs, &oldndevs) == 0);
1776 
1777 		newdevs = kmem_alloc(sizeof (void *) *
1778 		    (ndevs + oldndevs), KM_SLEEP);
1779 		for (i = 0; i < oldndevs; i++)
1780 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
1781 			    KM_SLEEP) == 0);
1782 		for (i = 0; i < ndevs; i++)
1783 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
1784 			    KM_SLEEP) == 0);
1785 
1786 		VERIFY(nvlist_remove(sav->sav_config, config,
1787 		    DATA_TYPE_NVLIST_ARRAY) == 0);
1788 
1789 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1790 		    config, newdevs, ndevs + oldndevs) == 0);
1791 		for (i = 0; i < oldndevs + ndevs; i++)
1792 			nvlist_free(newdevs[i]);
1793 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
1794 	} else {
1795 		/*
1796 		 * Generate a new dev list.
1797 		 */
1798 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
1799 		    KM_SLEEP) == 0);
1800 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
1801 		    devs, ndevs) == 0);
1802 	}
1803 }
1804 
1805 /*
1806  * Stop and drop level 2 ARC devices
1807  */
1808 void
1809 spa_l2cache_drop(spa_t *spa)
1810 {
1811 	vdev_t *vd;
1812 	int i;
1813 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1814 
1815 	for (i = 0; i < sav->sav_count; i++) {
1816 		uint64_t pool;
1817 
1818 		vd = sav->sav_vdevs[i];
1819 		ASSERT(vd != NULL);
1820 
1821 		if (spa_mode & FWRITE &&
1822 		    spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL &&
1823 		    l2arc_vdev_present(vd)) {
1824 			l2arc_remove_vdev(vd);
1825 		}
1826 		if (vd->vdev_isl2cache)
1827 			spa_l2cache_remove(vd);
1828 		vdev_clear_stats(vd);
1829 		(void) vdev_close(vd);
1830 	}
1831 }
1832 
1833 /*
1834  * Pool Creation
1835  */
1836 int
1837 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1838     const char *history_str)
1839 {
1840 	spa_t *spa;
1841 	char *altroot = NULL;
1842 	vdev_t *rvd;
1843 	dsl_pool_t *dp;
1844 	dmu_tx_t *tx;
1845 	int c, error = 0;
1846 	uint64_t txg = TXG_INITIAL;
1847 	nvlist_t **spares, **l2cache;
1848 	uint_t nspares, nl2cache;
1849 	uint64_t version;
1850 
1851 	/*
1852 	 * If this pool already exists, return failure.
1853 	 */
1854 	mutex_enter(&spa_namespace_lock);
1855 	if (spa_lookup(pool) != NULL) {
1856 		mutex_exit(&spa_namespace_lock);
1857 		return (EEXIST);
1858 	}
1859 
1860 	/*
1861 	 * Allocate a new spa_t structure.
1862 	 */
1863 	(void) nvlist_lookup_string(props,
1864 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1865 	spa = spa_add(pool, altroot);
1866 	spa_activate(spa);
1867 
1868 	spa->spa_uberblock.ub_txg = txg - 1;
1869 
1870 	if (props && (error = spa_prop_validate(spa, props))) {
1871 		spa_unload(spa);
1872 		spa_deactivate(spa);
1873 		spa_remove(spa);
1874 		mutex_exit(&spa_namespace_lock);
1875 		return (error);
1876 	}
1877 
1878 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
1879 	    &version) != 0)
1880 		version = SPA_VERSION;
1881 	ASSERT(version <= SPA_VERSION);
1882 	spa->spa_uberblock.ub_version = version;
1883 	spa->spa_ubsync = spa->spa_uberblock;
1884 
1885 	/*
1886 	 * Create the root vdev.
1887 	 */
1888 	spa_config_enter(spa, RW_WRITER, FTAG);
1889 
1890 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1891 
1892 	ASSERT(error != 0 || rvd != NULL);
1893 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1894 
1895 	if (error == 0 && !zfs_allocatable_devs(nvroot))
1896 		error = EINVAL;
1897 
1898 	if (error == 0 &&
1899 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1900 	    (error = spa_validate_aux(spa, nvroot, txg,
1901 	    VDEV_ALLOC_ADD)) == 0) {
1902 		for (c = 0; c < rvd->vdev_children; c++)
1903 			vdev_init(rvd->vdev_child[c], txg);
1904 		vdev_config_dirty(rvd);
1905 	}
1906 
1907 	spa_config_exit(spa, FTAG);
1908 
1909 	if (error != 0) {
1910 		spa_unload(spa);
1911 		spa_deactivate(spa);
1912 		spa_remove(spa);
1913 		mutex_exit(&spa_namespace_lock);
1914 		return (error);
1915 	}
1916 
1917 	/*
1918 	 * Get the list of spares, if specified.
1919 	 */
1920 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1921 	    &spares, &nspares) == 0) {
1922 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
1923 		    KM_SLEEP) == 0);
1924 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1925 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1926 		spa_config_enter(spa, RW_WRITER, FTAG);
1927 		spa_load_spares(spa);
1928 		spa_config_exit(spa, FTAG);
1929 		spa->spa_spares.sav_sync = B_TRUE;
1930 	}
1931 
1932 	/*
1933 	 * Get the list of level 2 cache devices, if specified.
1934 	 */
1935 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1936 	    &l2cache, &nl2cache) == 0) {
1937 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
1938 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1939 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
1940 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1941 		spa_config_enter(spa, RW_WRITER, FTAG);
1942 		spa_load_l2cache(spa);
1943 		spa_config_exit(spa, FTAG);
1944 		spa->spa_l2cache.sav_sync = B_TRUE;
1945 	}
1946 
1947 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1948 	spa->spa_meta_objset = dp->dp_meta_objset;
1949 
1950 	tx = dmu_tx_create_assigned(dp, txg);
1951 
1952 	/*
1953 	 * Create the pool config object.
1954 	 */
1955 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1956 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1957 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1958 
1959 	if (zap_add(spa->spa_meta_objset,
1960 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1961 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1962 		cmn_err(CE_PANIC, "failed to add pool config");
1963 	}
1964 
1965 	/* Newly created pools with the right version are always deflated. */
1966 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
1967 		spa->spa_deflate = TRUE;
1968 		if (zap_add(spa->spa_meta_objset,
1969 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1970 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1971 			cmn_err(CE_PANIC, "failed to add deflate");
1972 		}
1973 	}
1974 
1975 	/*
1976 	 * Create the deferred-free bplist object.  Turn off compression
1977 	 * because sync-to-convergence takes longer if the blocksize
1978 	 * keeps changing.
1979 	 */
1980 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1981 	    1 << 14, tx);
1982 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1983 	    ZIO_COMPRESS_OFF, tx);
1984 
1985 	if (zap_add(spa->spa_meta_objset,
1986 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1987 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1988 		cmn_err(CE_PANIC, "failed to add bplist");
1989 	}
1990 
1991 	/*
1992 	 * Create the pool's history object.
1993 	 */
1994 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
1995 		spa_history_create_obj(spa, tx);
1996 
1997 	/*
1998 	 * Set pool properties.
1999 	 */
2000 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2001 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2002 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2003 	if (props)
2004 		spa_sync_props(spa, props, CRED(), tx);
2005 
2006 	dmu_tx_commit(tx);
2007 
2008 	spa->spa_sync_on = B_TRUE;
2009 	txg_sync_start(spa->spa_dsl_pool);
2010 
2011 	/*
2012 	 * We explicitly wait for the first transaction to complete so that our
2013 	 * bean counters are appropriately updated.
2014 	 */
2015 	txg_wait_synced(spa->spa_dsl_pool, txg);
2016 
2017 	spa_config_sync(spa, B_FALSE, B_TRUE);
2018 
2019 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2020 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2021 
2022 	mutex_exit(&spa_namespace_lock);
2023 
2024 	return (0);
2025 }
2026 
2027 /*
2028  * Import the given pool into the system.  We set up the necessary spa_t and
2029  * then call spa_load() to do the dirty work.
2030  */
2031 static int
2032 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props,
2033     boolean_t isroot, boolean_t allowfaulted)
2034 {
2035 	spa_t *spa;
2036 	char *altroot = NULL;
2037 	int error, loaderr;
2038 	nvlist_t *nvroot;
2039 	nvlist_t **spares, **l2cache;
2040 	uint_t nspares, nl2cache;
2041 	int mosconfig = isroot? B_FALSE : B_TRUE;
2042 
2043 	/*
2044 	 * If a pool with this name exists, return failure.
2045 	 */
2046 	mutex_enter(&spa_namespace_lock);
2047 	if (spa_lookup(pool) != NULL) {
2048 		mutex_exit(&spa_namespace_lock);
2049 		return (EEXIST);
2050 	}
2051 
2052 	/*
2053 	 * Create and initialize the spa structure.
2054 	 */
2055 	(void) nvlist_lookup_string(props,
2056 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2057 	spa = spa_add(pool, altroot);
2058 	spa_activate(spa);
2059 
2060 	if (allowfaulted)
2061 		spa->spa_import_faulted = B_TRUE;
2062 
2063 	/*
2064 	 * Pass off the heavy lifting to spa_load().
2065 	 * Pass TRUE for mosconfig because the user-supplied config
2066 	 * is actually the one to trust when doing an import.
2067 	 */
2068 	loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, mosconfig);
2069 
2070 	spa_config_enter(spa, RW_WRITER, FTAG);
2071 	/*
2072 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
2073 	 * and conflicts with spa_has_spare().
2074 	 */
2075 	if (!isroot && spa->spa_spares.sav_config) {
2076 		nvlist_free(spa->spa_spares.sav_config);
2077 		spa->spa_spares.sav_config = NULL;
2078 		spa_load_spares(spa);
2079 	}
2080 	if (!isroot && spa->spa_l2cache.sav_config) {
2081 		nvlist_free(spa->spa_l2cache.sav_config);
2082 		spa->spa_l2cache.sav_config = NULL;
2083 		spa_load_l2cache(spa);
2084 	}
2085 
2086 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2087 	    &nvroot) == 0);
2088 	if (error == 0)
2089 		error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE);
2090 	if (error == 0)
2091 		error = spa_validate_aux(spa, nvroot, -1ULL,
2092 		    VDEV_ALLOC_L2CACHE);
2093 	spa_config_exit(spa, FTAG);
2094 
2095 	if (error != 0 || (props && (error = spa_prop_set(spa, props)))) {
2096 		if (loaderr != 0 && loaderr != EINVAL && allowfaulted) {
2097 			/*
2098 			 * If we failed to load the pool, but 'allowfaulted' is
2099 			 * set, then manually set the config as if the config
2100 			 * passed in was specified in the cache file.
2101 			 */
2102 			error = 0;
2103 			spa->spa_import_faulted = B_FALSE;
2104 			if (spa->spa_config == NULL) {
2105 				spa_config_enter(spa, RW_READER, FTAG);
2106 				spa->spa_config = spa_config_generate(spa,
2107 				    NULL, -1ULL, B_TRUE);
2108 				spa_config_exit(spa, FTAG);
2109 			}
2110 			spa_unload(spa);
2111 			spa_deactivate(spa);
2112 			spa_config_sync(spa, B_FALSE, B_TRUE);
2113 		} else {
2114 			spa_unload(spa);
2115 			spa_deactivate(spa);
2116 			spa_remove(spa);
2117 		}
2118 		mutex_exit(&spa_namespace_lock);
2119 		return (error);
2120 	}
2121 
2122 	/*
2123 	 * Override any spares and level 2 cache devices as specified by
2124 	 * the user, as these may have correct device names/devids, etc.
2125 	 */
2126 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2127 	    &spares, &nspares) == 0) {
2128 		if (spa->spa_spares.sav_config)
2129 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2130 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2131 		else
2132 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2133 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2134 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2135 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2136 		spa_config_enter(spa, RW_WRITER, FTAG);
2137 		spa_load_spares(spa);
2138 		spa_config_exit(spa, FTAG);
2139 		spa->spa_spares.sav_sync = B_TRUE;
2140 	}
2141 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2142 	    &l2cache, &nl2cache) == 0) {
2143 		if (spa->spa_l2cache.sav_config)
2144 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2145 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2146 		else
2147 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2148 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2149 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2150 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2151 		spa_config_enter(spa, RW_WRITER, FTAG);
2152 		spa_load_l2cache(spa);
2153 		spa_config_exit(spa, FTAG);
2154 		spa->spa_l2cache.sav_sync = B_TRUE;
2155 	}
2156 
2157 	if (spa_mode & FWRITE) {
2158 		/*
2159 		 * Update the config cache to include the newly-imported pool.
2160 		 */
2161 		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot);
2162 
2163 		/*
2164 		 * Resilver anything that's out of date.
2165 		 */
2166 		if (!isroot)
2167 			VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER,
2168 			    B_TRUE) == 0);
2169 	}
2170 
2171 	spa->spa_import_faulted = B_FALSE;
2172 	mutex_exit(&spa_namespace_lock);
2173 
2174 	return (0);
2175 }
2176 
2177 #ifdef _KERNEL
2178 /*
2179  * Build a "root" vdev for a top level vdev read in from a rootpool
2180  * device label.
2181  */
2182 static void
2183 spa_build_rootpool_config(nvlist_t *config)
2184 {
2185 	nvlist_t *nvtop, *nvroot;
2186 	uint64_t pgid;
2187 
2188 	/*
2189 	 * Add this top-level vdev to the child array.
2190 	 */
2191 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
2192 	    == 0);
2193 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
2194 	    == 0);
2195 
2196 	/*
2197 	 * Put this pool's top-level vdevs into a root vdev.
2198 	 */
2199 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2200 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
2201 	    == 0);
2202 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2203 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2204 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2205 	    &nvtop, 1) == 0);
2206 
2207 	/*
2208 	 * Replace the existing vdev_tree with the new root vdev in
2209 	 * this pool's configuration (remove the old, add the new).
2210 	 */
2211 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2212 	nvlist_free(nvroot);
2213 }
2214 
2215 /*
2216  * Get the root pool information from the root disk, then import the root pool
2217  * during the system boot up time.
2218  */
2219 extern nvlist_t *vdev_disk_read_rootlabel(char *);
2220 
2221 void
2222 spa_check_rootconf(char *devpath, char **bestdev, nvlist_t **bestconf,
2223     uint64_t *besttxg)
2224 {
2225 	nvlist_t *config;
2226 	uint64_t txg;
2227 
2228 	if ((config = vdev_disk_read_rootlabel(devpath)) == NULL)
2229 		return;
2230 
2231 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2232 
2233 	if (txg > *besttxg) {
2234 		*besttxg = txg;
2235 		if (*bestconf != NULL)
2236 			nvlist_free(*bestconf);
2237 		*bestconf = config;
2238 		*bestdev = devpath;
2239 	}
2240 }
2241 
2242 boolean_t
2243 spa_rootdev_validate(nvlist_t *nv)
2244 {
2245 	uint64_t ival;
2246 
2247 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
2248 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
2249 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, &ival) == 0 ||
2250 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
2251 		return (B_FALSE);
2252 
2253 	return (B_TRUE);
2254 }
2255 
2256 /*
2257  * Import a root pool.
2258  *
2259  * For x86. devpath_list will consist the physpath name of the vdev in a single
2260  * disk root pool or a list of physnames for the vdevs in a mirrored rootpool.
2261  * e.g.
2262  *	"/pci@1f,0/ide@d/disk@0,0:a /pci@1f,o/ide@d/disk@2,0:a"
2263  *
2264  * For Sparc, devpath_list consists the physpath name of the booting device
2265  * no matter the rootpool is a single device pool or a mirrored pool.
2266  * e.g.
2267  *	"/pci@1f,0/ide@d/disk@0,0:a"
2268  */
2269 int
2270 spa_import_rootpool(char *devpath_list)
2271 {
2272 	nvlist_t *conf = NULL;
2273 	char *dev = NULL;
2274 	char *pname;
2275 	int error;
2276 
2277 	/*
2278 	 * Get the vdev pathname and configuation from the most
2279 	 * recently updated vdev (highest txg).
2280 	 */
2281 	if (error = spa_get_rootconf(devpath_list, &dev, &conf))
2282 		goto msg_out;
2283 
2284 	/*
2285 	 * Add type "root" vdev to the config.
2286 	 */
2287 	spa_build_rootpool_config(conf);
2288 
2289 	VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
2290 
2291 	error = spa_import_common(pname, conf, NULL, B_TRUE, B_FALSE);
2292 	if (error == EEXIST)
2293 		error = 0;
2294 
2295 	nvlist_free(conf);
2296 	return (error);
2297 
2298 msg_out:
2299 	cmn_err(CE_NOTE, "\n\n"
2300 	    "  ***************************************************  \n"
2301 	    "  *  This device is not bootable!                   *  \n"
2302 	    "  *  It is either offlined or detached or faulted.  *  \n"
2303 	    "  *  Please try to boot from a different device.    *  \n"
2304 	    "  ***************************************************  \n\n");
2305 
2306 	return (error);
2307 }
2308 #endif
2309 
2310 /*
2311  * Import a non-root pool into the system.
2312  */
2313 int
2314 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2315 {
2316 	return (spa_import_common(pool, config, props, B_FALSE, B_FALSE));
2317 }
2318 
2319 int
2320 spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props)
2321 {
2322 	return (spa_import_common(pool, config, props, B_FALSE, B_TRUE));
2323 }
2324 
2325 
2326 /*
2327  * This (illegal) pool name is used when temporarily importing a spa_t in order
2328  * to get the vdev stats associated with the imported devices.
2329  */
2330 #define	TRYIMPORT_NAME	"$import"
2331 
2332 nvlist_t *
2333 spa_tryimport(nvlist_t *tryconfig)
2334 {
2335 	nvlist_t *config = NULL;
2336 	char *poolname;
2337 	spa_t *spa;
2338 	uint64_t state;
2339 
2340 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2341 		return (NULL);
2342 
2343 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2344 		return (NULL);
2345 
2346 	/*
2347 	 * Create and initialize the spa structure.
2348 	 */
2349 	mutex_enter(&spa_namespace_lock);
2350 	spa = spa_add(TRYIMPORT_NAME, NULL);
2351 	spa_activate(spa);
2352 
2353 	/*
2354 	 * Pass off the heavy lifting to spa_load().
2355 	 * Pass TRUE for mosconfig because the user-supplied config
2356 	 * is actually the one to trust when doing an import.
2357 	 */
2358 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2359 
2360 	/*
2361 	 * If 'tryconfig' was at least parsable, return the current config.
2362 	 */
2363 	if (spa->spa_root_vdev != NULL) {
2364 		spa_config_enter(spa, RW_READER, FTAG);
2365 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2366 		spa_config_exit(spa, FTAG);
2367 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2368 		    poolname) == 0);
2369 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2370 		    state) == 0);
2371 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2372 		    spa->spa_uberblock.ub_timestamp) == 0);
2373 
2374 		/*
2375 		 * If the bootfs property exists on this pool then we
2376 		 * copy it out so that external consumers can tell which
2377 		 * pools are bootable.
2378 		 */
2379 		if (spa->spa_bootfs) {
2380 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2381 
2382 			/*
2383 			 * We have to play games with the name since the
2384 			 * pool was opened as TRYIMPORT_NAME.
2385 			 */
2386 			if (dsl_dsobj_to_dsname(spa->spa_name,
2387 			    spa->spa_bootfs, tmpname) == 0) {
2388 				char *cp;
2389 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2390 
2391 				cp = strchr(tmpname, '/');
2392 				if (cp == NULL) {
2393 					(void) strlcpy(dsname, tmpname,
2394 					    MAXPATHLEN);
2395 				} else {
2396 					(void) snprintf(dsname, MAXPATHLEN,
2397 					    "%s/%s", poolname, ++cp);
2398 				}
2399 				VERIFY(nvlist_add_string(config,
2400 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2401 				kmem_free(dsname, MAXPATHLEN);
2402 			}
2403 			kmem_free(tmpname, MAXPATHLEN);
2404 		}
2405 
2406 		/*
2407 		 * Add the list of hot spares and level 2 cache devices.
2408 		 */
2409 		spa_add_spares(spa, config);
2410 		spa_add_l2cache(spa, config);
2411 	}
2412 
2413 	spa_unload(spa);
2414 	spa_deactivate(spa);
2415 	spa_remove(spa);
2416 	mutex_exit(&spa_namespace_lock);
2417 
2418 	return (config);
2419 }
2420 
2421 /*
2422  * Pool export/destroy
2423  *
2424  * The act of destroying or exporting a pool is very simple.  We make sure there
2425  * is no more pending I/O and any references to the pool are gone.  Then, we
2426  * update the pool state and sync all the labels to disk, removing the
2427  * configuration from the cache afterwards.
2428  */
2429 static int
2430 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
2431 {
2432 	spa_t *spa;
2433 
2434 	if (oldconfig)
2435 		*oldconfig = NULL;
2436 
2437 	if (!(spa_mode & FWRITE))
2438 		return (EROFS);
2439 
2440 	mutex_enter(&spa_namespace_lock);
2441 	if ((spa = spa_lookup(pool)) == NULL) {
2442 		mutex_exit(&spa_namespace_lock);
2443 		return (ENOENT);
2444 	}
2445 
2446 	/*
2447 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2448 	 * reacquire the namespace lock, and see if we can export.
2449 	 */
2450 	spa_open_ref(spa, FTAG);
2451 	mutex_exit(&spa_namespace_lock);
2452 	spa_async_suspend(spa);
2453 	mutex_enter(&spa_namespace_lock);
2454 	spa_close(spa, FTAG);
2455 
2456 	/*
2457 	 * The pool will be in core if it's openable,
2458 	 * in which case we can modify its state.
2459 	 */
2460 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2461 		/*
2462 		 * Objsets may be open only because they're dirty, so we
2463 		 * have to force it to sync before checking spa_refcnt.
2464 		 */
2465 		spa_scrub_suspend(spa);
2466 		txg_wait_synced(spa->spa_dsl_pool, 0);
2467 
2468 		/*
2469 		 * A pool cannot be exported or destroyed if there are active
2470 		 * references.  If we are resetting a pool, allow references by
2471 		 * fault injection handlers.
2472 		 */
2473 		if (!spa_refcount_zero(spa) ||
2474 		    (spa->spa_inject_ref != 0 &&
2475 		    new_state != POOL_STATE_UNINITIALIZED)) {
2476 			spa_scrub_resume(spa);
2477 			spa_async_resume(spa);
2478 			mutex_exit(&spa_namespace_lock);
2479 			return (EBUSY);
2480 		}
2481 
2482 		spa_scrub_resume(spa);
2483 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2484 
2485 		/*
2486 		 * We want this to be reflected on every label,
2487 		 * so mark them all dirty.  spa_unload() will do the
2488 		 * final sync that pushes these changes out.
2489 		 */
2490 		if (new_state != POOL_STATE_UNINITIALIZED) {
2491 			spa_config_enter(spa, RW_WRITER, FTAG);
2492 			spa->spa_state = new_state;
2493 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2494 			vdev_config_dirty(spa->spa_root_vdev);
2495 			spa_config_exit(spa, FTAG);
2496 		}
2497 	}
2498 
2499 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2500 
2501 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2502 		spa_unload(spa);
2503 		spa_deactivate(spa);
2504 	}
2505 
2506 	if (oldconfig && spa->spa_config)
2507 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2508 
2509 	if (new_state != POOL_STATE_UNINITIALIZED) {
2510 		spa_config_sync(spa, B_TRUE, B_TRUE);
2511 		spa_remove(spa);
2512 	}
2513 	mutex_exit(&spa_namespace_lock);
2514 
2515 	return (0);
2516 }
2517 
2518 /*
2519  * Destroy a storage pool.
2520  */
2521 int
2522 spa_destroy(char *pool)
2523 {
2524 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
2525 }
2526 
2527 /*
2528  * Export a storage pool.
2529  */
2530 int
2531 spa_export(char *pool, nvlist_t **oldconfig)
2532 {
2533 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
2534 }
2535 
2536 /*
2537  * Similar to spa_export(), this unloads the spa_t without actually removing it
2538  * from the namespace in any way.
2539  */
2540 int
2541 spa_reset(char *pool)
2542 {
2543 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
2544 }
2545 
2546 
2547 /*
2548  * ==========================================================================
2549  * Device manipulation
2550  * ==========================================================================
2551  */
2552 
2553 /*
2554  * Add a device to a storage pool.
2555  */
2556 int
2557 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2558 {
2559 	uint64_t txg;
2560 	int c, error;
2561 	vdev_t *rvd = spa->spa_root_vdev;
2562 	vdev_t *vd, *tvd;
2563 	nvlist_t **spares, **l2cache;
2564 	uint_t nspares, nl2cache;
2565 
2566 	txg = spa_vdev_enter(spa);
2567 
2568 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2569 	    VDEV_ALLOC_ADD)) != 0)
2570 		return (spa_vdev_exit(spa, NULL, txg, error));
2571 
2572 	spa->spa_pending_vdev = vd;
2573 
2574 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2575 	    &nspares) != 0)
2576 		nspares = 0;
2577 
2578 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2579 	    &nl2cache) != 0)
2580 		nl2cache = 0;
2581 
2582 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) {
2583 		spa->spa_pending_vdev = NULL;
2584 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2585 	}
2586 
2587 	if (vd->vdev_children != 0) {
2588 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
2589 			spa->spa_pending_vdev = NULL;
2590 			return (spa_vdev_exit(spa, vd, txg, error));
2591 		}
2592 	}
2593 
2594 	/*
2595 	 * We must validate the spares and l2cache devices after checking the
2596 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2597 	 */
2598 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) {
2599 		spa->spa_pending_vdev = NULL;
2600 		return (spa_vdev_exit(spa, vd, txg, error));
2601 	}
2602 
2603 	spa->spa_pending_vdev = NULL;
2604 
2605 	/*
2606 	 * Transfer each new top-level vdev from vd to rvd.
2607 	 */
2608 	for (c = 0; c < vd->vdev_children; c++) {
2609 		tvd = vd->vdev_child[c];
2610 		vdev_remove_child(vd, tvd);
2611 		tvd->vdev_id = rvd->vdev_children;
2612 		vdev_add_child(rvd, tvd);
2613 		vdev_config_dirty(tvd);
2614 	}
2615 
2616 	if (nspares != 0) {
2617 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2618 		    ZPOOL_CONFIG_SPARES);
2619 		spa_load_spares(spa);
2620 		spa->spa_spares.sav_sync = B_TRUE;
2621 	}
2622 
2623 	if (nl2cache != 0) {
2624 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2625 		    ZPOOL_CONFIG_L2CACHE);
2626 		spa_load_l2cache(spa);
2627 		spa->spa_l2cache.sav_sync = B_TRUE;
2628 	}
2629 
2630 	/*
2631 	 * We have to be careful when adding new vdevs to an existing pool.
2632 	 * If other threads start allocating from these vdevs before we
2633 	 * sync the config cache, and we lose power, then upon reboot we may
2634 	 * fail to open the pool because there are DVAs that the config cache
2635 	 * can't translate.  Therefore, we first add the vdevs without
2636 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2637 	 * and then let spa_config_update() initialize the new metaslabs.
2638 	 *
2639 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2640 	 * if we lose power at any point in this sequence, the remaining
2641 	 * steps will be completed the next time we load the pool.
2642 	 */
2643 	(void) spa_vdev_exit(spa, vd, txg, 0);
2644 
2645 	mutex_enter(&spa_namespace_lock);
2646 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2647 	mutex_exit(&spa_namespace_lock);
2648 
2649 	return (0);
2650 }
2651 
2652 /*
2653  * Attach a device to a mirror.  The arguments are the path to any device
2654  * in the mirror, and the nvroot for the new device.  If the path specifies
2655  * a device that is not mirrored, we automatically insert the mirror vdev.
2656  *
2657  * If 'replacing' is specified, the new device is intended to replace the
2658  * existing device; in this case the two devices are made into their own
2659  * mirror using the 'replacing' vdev, which is functionally identical to
2660  * the mirror vdev (it actually reuses all the same ops) but has a few
2661  * extra rules: you can't attach to it after it's been created, and upon
2662  * completion of resilvering, the first disk (the one being replaced)
2663  * is automatically detached.
2664  */
2665 int
2666 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2667 {
2668 	uint64_t txg, open_txg;
2669 	int error;
2670 	vdev_t *rvd = spa->spa_root_vdev;
2671 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2672 	vdev_ops_t *pvops;
2673 	int is_log;
2674 
2675 	txg = spa_vdev_enter(spa);
2676 
2677 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
2678 
2679 	if (oldvd == NULL)
2680 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2681 
2682 	if (!oldvd->vdev_ops->vdev_op_leaf)
2683 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2684 
2685 	pvd = oldvd->vdev_parent;
2686 
2687 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2688 	    VDEV_ALLOC_ADD)) != 0)
2689 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2690 
2691 	if (newrootvd->vdev_children != 1)
2692 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2693 
2694 	newvd = newrootvd->vdev_child[0];
2695 
2696 	if (!newvd->vdev_ops->vdev_op_leaf)
2697 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2698 
2699 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2700 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2701 
2702 	/*
2703 	 * Spares can't replace logs
2704 	 */
2705 	is_log = oldvd->vdev_islog;
2706 	if (is_log && newvd->vdev_isspare)
2707 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2708 
2709 	if (!replacing) {
2710 		/*
2711 		 * For attach, the only allowable parent is a mirror or the root
2712 		 * vdev.
2713 		 */
2714 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2715 		    pvd->vdev_ops != &vdev_root_ops)
2716 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2717 
2718 		pvops = &vdev_mirror_ops;
2719 	} else {
2720 		/*
2721 		 * Active hot spares can only be replaced by inactive hot
2722 		 * spares.
2723 		 */
2724 		if (pvd->vdev_ops == &vdev_spare_ops &&
2725 		    pvd->vdev_child[1] == oldvd &&
2726 		    !spa_has_spare(spa, newvd->vdev_guid))
2727 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2728 
2729 		/*
2730 		 * If the source is a hot spare, and the parent isn't already a
2731 		 * spare, then we want to create a new hot spare.  Otherwise, we
2732 		 * want to create a replacing vdev.  The user is not allowed to
2733 		 * attach to a spared vdev child unless the 'isspare' state is
2734 		 * the same (spare replaces spare, non-spare replaces
2735 		 * non-spare).
2736 		 */
2737 		if (pvd->vdev_ops == &vdev_replacing_ops)
2738 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2739 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2740 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2741 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2742 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2743 		    newvd->vdev_isspare)
2744 			pvops = &vdev_spare_ops;
2745 		else
2746 			pvops = &vdev_replacing_ops;
2747 	}
2748 
2749 	/*
2750 	 * Compare the new device size with the replaceable/attachable
2751 	 * device size.
2752 	 */
2753 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2754 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2755 
2756 	/*
2757 	 * The new device cannot have a higher alignment requirement
2758 	 * than the top-level vdev.
2759 	 */
2760 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2761 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2762 
2763 	/*
2764 	 * If this is an in-place replacement, update oldvd's path and devid
2765 	 * to make it distinguishable from newvd, and unopenable from now on.
2766 	 */
2767 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2768 		spa_strfree(oldvd->vdev_path);
2769 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2770 		    KM_SLEEP);
2771 		(void) sprintf(oldvd->vdev_path, "%s/%s",
2772 		    newvd->vdev_path, "old");
2773 		if (oldvd->vdev_devid != NULL) {
2774 			spa_strfree(oldvd->vdev_devid);
2775 			oldvd->vdev_devid = NULL;
2776 		}
2777 	}
2778 
2779 	/*
2780 	 * If the parent is not a mirror, or if we're replacing, insert the new
2781 	 * mirror/replacing/spare vdev above oldvd.
2782 	 */
2783 	if (pvd->vdev_ops != pvops)
2784 		pvd = vdev_add_parent(oldvd, pvops);
2785 
2786 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
2787 	ASSERT(pvd->vdev_ops == pvops);
2788 	ASSERT(oldvd->vdev_parent == pvd);
2789 
2790 	/*
2791 	 * Extract the new device from its root and add it to pvd.
2792 	 */
2793 	vdev_remove_child(newrootvd, newvd);
2794 	newvd->vdev_id = pvd->vdev_children;
2795 	vdev_add_child(pvd, newvd);
2796 
2797 	/*
2798 	 * If newvd is smaller than oldvd, but larger than its rsize,
2799 	 * the addition of newvd may have decreased our parent's asize.
2800 	 */
2801 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
2802 
2803 	tvd = newvd->vdev_top;
2804 	ASSERT(pvd->vdev_top == tvd);
2805 	ASSERT(tvd->vdev_parent == rvd);
2806 
2807 	vdev_config_dirty(tvd);
2808 
2809 	/*
2810 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
2811 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
2812 	 */
2813 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
2814 
2815 	mutex_enter(&newvd->vdev_dtl_lock);
2816 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
2817 	    open_txg - TXG_INITIAL + 1);
2818 	mutex_exit(&newvd->vdev_dtl_lock);
2819 
2820 	if (newvd->vdev_isspare)
2821 		spa_spare_activate(newvd);
2822 
2823 	/*
2824 	 * Mark newvd's DTL dirty in this txg.
2825 	 */
2826 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
2827 
2828 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
2829 
2830 	/*
2831 	 * Kick off a resilver to update newvd.  We need to grab the namespace
2832 	 * lock because spa_scrub() needs to post a sysevent with the pool name.
2833 	 */
2834 	mutex_enter(&spa_namespace_lock);
2835 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2836 	mutex_exit(&spa_namespace_lock);
2837 
2838 	return (0);
2839 }
2840 
2841 /*
2842  * Detach a device from a mirror or replacing vdev.
2843  * If 'replace_done' is specified, only detach if the parent
2844  * is a replacing vdev.
2845  */
2846 int
2847 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
2848 {
2849 	uint64_t txg;
2850 	int c, t, error;
2851 	vdev_t *rvd = spa->spa_root_vdev;
2852 	vdev_t *vd, *pvd, *cvd, *tvd;
2853 	boolean_t unspare = B_FALSE;
2854 	uint64_t unspare_guid;
2855 
2856 	txg = spa_vdev_enter(spa);
2857 
2858 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2859 
2860 	if (vd == NULL)
2861 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2862 
2863 	if (!vd->vdev_ops->vdev_op_leaf)
2864 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2865 
2866 	pvd = vd->vdev_parent;
2867 
2868 	/*
2869 	 * If replace_done is specified, only remove this device if it's
2870 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
2871 	 * disk can be removed.
2872 	 */
2873 	if (replace_done) {
2874 		if (pvd->vdev_ops == &vdev_replacing_ops) {
2875 			if (vd->vdev_id != 0)
2876 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2877 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
2878 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2879 		}
2880 	}
2881 
2882 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
2883 	    spa_version(spa) >= SPA_VERSION_SPARES);
2884 
2885 	/*
2886 	 * Only mirror, replacing, and spare vdevs support detach.
2887 	 */
2888 	if (pvd->vdev_ops != &vdev_replacing_ops &&
2889 	    pvd->vdev_ops != &vdev_mirror_ops &&
2890 	    pvd->vdev_ops != &vdev_spare_ops)
2891 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2892 
2893 	/*
2894 	 * If there's only one replica, you can't detach it.
2895 	 */
2896 	if (pvd->vdev_children <= 1)
2897 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
2898 
2899 	/*
2900 	 * If all siblings have non-empty DTLs, this device may have the only
2901 	 * valid copy of the data, which means we cannot safely detach it.
2902 	 *
2903 	 * XXX -- as in the vdev_offline() case, we really want a more
2904 	 * precise DTL check.
2905 	 */
2906 	for (c = 0; c < pvd->vdev_children; c++) {
2907 		uint64_t dirty;
2908 
2909 		cvd = pvd->vdev_child[c];
2910 		if (cvd == vd)
2911 			continue;
2912 		if (vdev_is_dead(cvd))
2913 			continue;
2914 		mutex_enter(&cvd->vdev_dtl_lock);
2915 		dirty = cvd->vdev_dtl_map.sm_space |
2916 		    cvd->vdev_dtl_scrub.sm_space;
2917 		mutex_exit(&cvd->vdev_dtl_lock);
2918 		if (!dirty)
2919 			break;
2920 	}
2921 
2922 	/*
2923 	 * If we are a replacing or spare vdev, then we can always detach the
2924 	 * latter child, as that is how one cancels the operation.
2925 	 */
2926 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
2927 	    c == pvd->vdev_children)
2928 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
2929 
2930 	/*
2931 	 * If we are detaching the original disk from a spare, then it implies
2932 	 * that the spare should become a real disk, and be removed from the
2933 	 * active spare list for the pool.
2934 	 */
2935 	if (pvd->vdev_ops == &vdev_spare_ops &&
2936 	    vd->vdev_id == 0)
2937 		unspare = B_TRUE;
2938 
2939 	/*
2940 	 * Erase the disk labels so the disk can be used for other things.
2941 	 * This must be done after all other error cases are handled,
2942 	 * but before we disembowel vd (so we can still do I/O to it).
2943 	 * But if we can't do it, don't treat the error as fatal --
2944 	 * it may be that the unwritability of the disk is the reason
2945 	 * it's being detached!
2946 	 */
2947 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2948 
2949 	/*
2950 	 * Remove vd from its parent and compact the parent's children.
2951 	 */
2952 	vdev_remove_child(pvd, vd);
2953 	vdev_compact_children(pvd);
2954 
2955 	/*
2956 	 * Remember one of the remaining children so we can get tvd below.
2957 	 */
2958 	cvd = pvd->vdev_child[0];
2959 
2960 	/*
2961 	 * If we need to remove the remaining child from the list of hot spares,
2962 	 * do it now, marking the vdev as no longer a spare in the process.  We
2963 	 * must do this before vdev_remove_parent(), because that can change the
2964 	 * GUID if it creates a new toplevel GUID.
2965 	 */
2966 	if (unspare) {
2967 		ASSERT(cvd->vdev_isspare);
2968 		spa_spare_remove(cvd);
2969 		unspare_guid = cvd->vdev_guid;
2970 	}
2971 
2972 	/*
2973 	 * If the parent mirror/replacing vdev only has one child,
2974 	 * the parent is no longer needed.  Remove it from the tree.
2975 	 */
2976 	if (pvd->vdev_children == 1)
2977 		vdev_remove_parent(cvd);
2978 
2979 	/*
2980 	 * We don't set tvd until now because the parent we just removed
2981 	 * may have been the previous top-level vdev.
2982 	 */
2983 	tvd = cvd->vdev_top;
2984 	ASSERT(tvd->vdev_parent == rvd);
2985 
2986 	/*
2987 	 * Reevaluate the parent vdev state.
2988 	 */
2989 	vdev_propagate_state(cvd);
2990 
2991 	/*
2992 	 * If the device we just detached was smaller than the others, it may be
2993 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
2994 	 * can't fail because the existing metaslabs are already in core, so
2995 	 * there's nothing to read from disk.
2996 	 */
2997 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
2998 
2999 	vdev_config_dirty(tvd);
3000 
3001 	/*
3002 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3003 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3004 	 * But first make sure we're not on any *other* txg's DTL list, to
3005 	 * prevent vd from being accessed after it's freed.
3006 	 */
3007 	for (t = 0; t < TXG_SIZE; t++)
3008 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3009 	vd->vdev_detached = B_TRUE;
3010 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3011 
3012 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3013 
3014 	error = spa_vdev_exit(spa, vd, txg, 0);
3015 
3016 	/*
3017 	 * If this was the removal of the original device in a hot spare vdev,
3018 	 * then we want to go through and remove the device from the hot spare
3019 	 * list of every other pool.
3020 	 */
3021 	if (unspare) {
3022 		spa = NULL;
3023 		mutex_enter(&spa_namespace_lock);
3024 		while ((spa = spa_next(spa)) != NULL) {
3025 			if (spa->spa_state != POOL_STATE_ACTIVE)
3026 				continue;
3027 
3028 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3029 		}
3030 		mutex_exit(&spa_namespace_lock);
3031 	}
3032 
3033 	return (error);
3034 }
3035 
3036 /*
3037  * Remove a spares vdev from the nvlist config.
3038  */
3039 static int
3040 spa_remove_spares(spa_aux_vdev_t *sav, uint64_t guid, boolean_t unspare,
3041     nvlist_t **spares, int nspares, vdev_t *vd)
3042 {
3043 	nvlist_t *nv, **newspares;
3044 	int i, j;
3045 
3046 	nv = NULL;
3047 	for (i = 0; i < nspares; i++) {
3048 		uint64_t theguid;
3049 
3050 		VERIFY(nvlist_lookup_uint64(spares[i],
3051 		    ZPOOL_CONFIG_GUID, &theguid) == 0);
3052 		if (theguid == guid) {
3053 			nv = spares[i];
3054 			break;
3055 		}
3056 	}
3057 
3058 	/*
3059 	 * Only remove the hot spare if it's not currently in use in this pool.
3060 	 */
3061 	if (nv == NULL && vd == NULL)
3062 		return (ENOENT);
3063 
3064 	if (nv == NULL && vd != NULL)
3065 		return (ENOTSUP);
3066 
3067 	if (!unspare && nv != NULL && vd != NULL)
3068 		return (EBUSY);
3069 
3070 	if (nspares == 1) {
3071 		newspares = NULL;
3072 	} else {
3073 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
3074 		    KM_SLEEP);
3075 		for (i = 0, j = 0; i < nspares; i++) {
3076 			if (spares[i] != nv)
3077 				VERIFY(nvlist_dup(spares[i],
3078 				    &newspares[j++], KM_SLEEP) == 0);
3079 		}
3080 	}
3081 
3082 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_SPARES,
3083 	    DATA_TYPE_NVLIST_ARRAY) == 0);
3084 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3085 	    ZPOOL_CONFIG_SPARES, newspares, nspares - 1) == 0);
3086 	for (i = 0; i < nspares - 1; i++)
3087 		nvlist_free(newspares[i]);
3088 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
3089 
3090 	return (0);
3091 }
3092 
3093 /*
3094  * Remove an l2cache vdev from the nvlist config.
3095  */
3096 static int
3097 spa_remove_l2cache(spa_aux_vdev_t *sav, uint64_t guid, nvlist_t **l2cache,
3098     int nl2cache, vdev_t *vd)
3099 {
3100 	nvlist_t *nv, **newl2cache;
3101 	int i, j;
3102 
3103 	nv = NULL;
3104 	for (i = 0; i < nl2cache; i++) {
3105 		uint64_t theguid;
3106 
3107 		VERIFY(nvlist_lookup_uint64(l2cache[i],
3108 		    ZPOOL_CONFIG_GUID, &theguid) == 0);
3109 		if (theguid == guid) {
3110 			nv = l2cache[i];
3111 			break;
3112 		}
3113 	}
3114 
3115 	if (vd == NULL) {
3116 		for (i = 0; i < nl2cache; i++) {
3117 			if (sav->sav_vdevs[i]->vdev_guid == guid) {
3118 				vd = sav->sav_vdevs[i];
3119 				break;
3120 			}
3121 		}
3122 	}
3123 
3124 	if (nv == NULL && vd == NULL)
3125 		return (ENOENT);
3126 
3127 	if (nv == NULL && vd != NULL)
3128 		return (ENOTSUP);
3129 
3130 	if (nl2cache == 1) {
3131 		newl2cache = NULL;
3132 	} else {
3133 		newl2cache = kmem_alloc((nl2cache - 1) * sizeof (void *),
3134 		    KM_SLEEP);
3135 		for (i = 0, j = 0; i < nl2cache; i++) {
3136 			if (l2cache[i] != nv)
3137 				VERIFY(nvlist_dup(l2cache[i],
3138 				    &newl2cache[j++], KM_SLEEP) == 0);
3139 		}
3140 	}
3141 
3142 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
3143 	    DATA_TYPE_NVLIST_ARRAY) == 0);
3144 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3145 	    ZPOOL_CONFIG_L2CACHE, newl2cache, nl2cache - 1) == 0);
3146 	for (i = 0; i < nl2cache - 1; i++)
3147 		nvlist_free(newl2cache[i]);
3148 	kmem_free(newl2cache, (nl2cache - 1) * sizeof (void *));
3149 
3150 	return (0);
3151 }
3152 
3153 /*
3154  * Remove a device from the pool.  Currently, this supports removing only hot
3155  * spares and level 2 ARC devices.
3156  */
3157 int
3158 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3159 {
3160 	vdev_t *vd;
3161 	nvlist_t **spares, **l2cache;
3162 	uint_t nspares, nl2cache;
3163 	int error = 0;
3164 
3165 	spa_config_enter(spa, RW_WRITER, FTAG);
3166 
3167 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3168 
3169 	if (spa->spa_spares.sav_vdevs != NULL &&
3170 	    spa_spare_exists(guid, NULL) &&
3171 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3172 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) {
3173 		if ((error = spa_remove_spares(&spa->spa_spares, guid, unspare,
3174 		    spares, nspares, vd)) != 0)
3175 			goto out;
3176 		spa_load_spares(spa);
3177 		spa->spa_spares.sav_sync = B_TRUE;
3178 		goto out;
3179 	}
3180 
3181 	if (spa->spa_l2cache.sav_vdevs != NULL &&
3182 	    spa_l2cache_exists(guid, NULL) &&
3183 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3184 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) {
3185 		if ((error = spa_remove_l2cache(&spa->spa_l2cache, guid,
3186 		    l2cache, nl2cache, vd)) != 0)
3187 			goto out;
3188 		spa_load_l2cache(spa);
3189 		spa->spa_l2cache.sav_sync = B_TRUE;
3190 	}
3191 
3192 out:
3193 	spa_config_exit(spa, FTAG);
3194 	return (error);
3195 }
3196 
3197 /*
3198  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3199  * current spared, so we can detach it.
3200  */
3201 static vdev_t *
3202 spa_vdev_resilver_done_hunt(vdev_t *vd)
3203 {
3204 	vdev_t *newvd, *oldvd;
3205 	int c;
3206 
3207 	for (c = 0; c < vd->vdev_children; c++) {
3208 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3209 		if (oldvd != NULL)
3210 			return (oldvd);
3211 	}
3212 
3213 	/*
3214 	 * Check for a completed replacement.
3215 	 */
3216 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3217 		oldvd = vd->vdev_child[0];
3218 		newvd = vd->vdev_child[1];
3219 
3220 		mutex_enter(&newvd->vdev_dtl_lock);
3221 		if (newvd->vdev_dtl_map.sm_space == 0 &&
3222 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3223 			mutex_exit(&newvd->vdev_dtl_lock);
3224 			return (oldvd);
3225 		}
3226 		mutex_exit(&newvd->vdev_dtl_lock);
3227 	}
3228 
3229 	/*
3230 	 * Check for a completed resilver with the 'unspare' flag set.
3231 	 */
3232 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3233 		newvd = vd->vdev_child[0];
3234 		oldvd = vd->vdev_child[1];
3235 
3236 		mutex_enter(&newvd->vdev_dtl_lock);
3237 		if (newvd->vdev_unspare &&
3238 		    newvd->vdev_dtl_map.sm_space == 0 &&
3239 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3240 			newvd->vdev_unspare = 0;
3241 			mutex_exit(&newvd->vdev_dtl_lock);
3242 			return (oldvd);
3243 		}
3244 		mutex_exit(&newvd->vdev_dtl_lock);
3245 	}
3246 
3247 	return (NULL);
3248 }
3249 
3250 static void
3251 spa_vdev_resilver_done(spa_t *spa)
3252 {
3253 	vdev_t *vd;
3254 	vdev_t *pvd;
3255 	uint64_t guid;
3256 	uint64_t pguid = 0;
3257 
3258 	spa_config_enter(spa, RW_READER, FTAG);
3259 
3260 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3261 		guid = vd->vdev_guid;
3262 		/*
3263 		 * If we have just finished replacing a hot spared device, then
3264 		 * we need to detach the parent's first child (the original hot
3265 		 * spare) as well.
3266 		 */
3267 		pvd = vd->vdev_parent;
3268 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3269 		    pvd->vdev_id == 0) {
3270 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3271 			ASSERT(pvd->vdev_parent->vdev_children == 2);
3272 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
3273 		}
3274 		spa_config_exit(spa, FTAG);
3275 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
3276 			return;
3277 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
3278 			return;
3279 		spa_config_enter(spa, RW_READER, FTAG);
3280 	}
3281 
3282 	spa_config_exit(spa, FTAG);
3283 }
3284 
3285 /*
3286  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
3287  * on spa_vdev_enter/exit() to synchronize the labels and cache.
3288  */
3289 int
3290 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3291 {
3292 	vdev_t *vd;
3293 	uint64_t txg;
3294 
3295 	txg = spa_vdev_enter(spa);
3296 
3297 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) {
3298 		/*
3299 		 * Determine if this is a reference to a hot spare device.  If
3300 		 * it is, update the path manually as there is no associated
3301 		 * vdev_t that can be synced to disk.
3302 		 */
3303 		nvlist_t **spares;
3304 		uint_t i, nspares;
3305 
3306 		if (spa->spa_spares.sav_config != NULL) {
3307 			VERIFY(nvlist_lookup_nvlist_array(
3308 			    spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
3309 			    &spares, &nspares) == 0);
3310 			for (i = 0; i < nspares; i++) {
3311 				uint64_t theguid;
3312 				VERIFY(nvlist_lookup_uint64(spares[i],
3313 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
3314 				if (theguid == guid) {
3315 					VERIFY(nvlist_add_string(spares[i],
3316 					    ZPOOL_CONFIG_PATH, newpath) == 0);
3317 					spa_load_spares(spa);
3318 					spa->spa_spares.sav_sync = B_TRUE;
3319 					return (spa_vdev_exit(spa, NULL, txg,
3320 					    0));
3321 				}
3322 			}
3323 		}
3324 
3325 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3326 	}
3327 
3328 	if (!vd->vdev_ops->vdev_op_leaf)
3329 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3330 
3331 	spa_strfree(vd->vdev_path);
3332 	vd->vdev_path = spa_strdup(newpath);
3333 
3334 	vdev_config_dirty(vd->vdev_top);
3335 
3336 	return (spa_vdev_exit(spa, NULL, txg, 0));
3337 }
3338 
3339 /*
3340  * ==========================================================================
3341  * SPA Scrubbing
3342  * ==========================================================================
3343  */
3344 
3345 static void
3346 spa_scrub_io_done(zio_t *zio)
3347 {
3348 	spa_t *spa = zio->io_spa;
3349 
3350 	arc_data_buf_free(zio->io_data, zio->io_size);
3351 
3352 	mutex_enter(&spa->spa_scrub_lock);
3353 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3354 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
3355 		spa->spa_scrub_errors++;
3356 		mutex_enter(&vd->vdev_stat_lock);
3357 		vd->vdev_stat.vs_scrub_errors++;
3358 		mutex_exit(&vd->vdev_stat_lock);
3359 	}
3360 
3361 	if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
3362 		cv_broadcast(&spa->spa_scrub_io_cv);
3363 
3364 	ASSERT(spa->spa_scrub_inflight >= 0);
3365 
3366 	mutex_exit(&spa->spa_scrub_lock);
3367 }
3368 
3369 static void
3370 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
3371     zbookmark_t *zb)
3372 {
3373 	size_t size = BP_GET_LSIZE(bp);
3374 	void *data;
3375 
3376 	mutex_enter(&spa->spa_scrub_lock);
3377 	/*
3378 	 * Do not give too much work to vdev(s).
3379 	 */
3380 	while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
3381 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3382 	}
3383 	spa->spa_scrub_inflight++;
3384 	mutex_exit(&spa->spa_scrub_lock);
3385 
3386 	data = arc_data_buf_alloc(size);
3387 
3388 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
3389 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
3390 
3391 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
3392 
3393 	zio_nowait(zio_read(NULL, spa, bp, data, size,
3394 	    spa_scrub_io_done, NULL, priority, flags, zb));
3395 }
3396 
3397 /* ARGSUSED */
3398 static int
3399 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
3400 {
3401 	blkptr_t *bp = &bc->bc_blkptr;
3402 	vdev_t *vd = spa->spa_root_vdev;
3403 	dva_t *dva = bp->blk_dva;
3404 	int needs_resilver = B_FALSE;
3405 	int d;
3406 
3407 	if (bc->bc_errno) {
3408 		/*
3409 		 * We can't scrub this block, but we can continue to scrub
3410 		 * the rest of the pool.  Note the error and move along.
3411 		 */
3412 		mutex_enter(&spa->spa_scrub_lock);
3413 		spa->spa_scrub_errors++;
3414 		mutex_exit(&spa->spa_scrub_lock);
3415 
3416 		mutex_enter(&vd->vdev_stat_lock);
3417 		vd->vdev_stat.vs_scrub_errors++;
3418 		mutex_exit(&vd->vdev_stat_lock);
3419 
3420 		return (ERESTART);
3421 	}
3422 
3423 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
3424 
3425 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
3426 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
3427 
3428 		ASSERT(vd != NULL);
3429 
3430 		/*
3431 		 * Keep track of how much data we've examined so that
3432 		 * zpool(1M) status can make useful progress reports.
3433 		 */
3434 		mutex_enter(&vd->vdev_stat_lock);
3435 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
3436 		mutex_exit(&vd->vdev_stat_lock);
3437 
3438 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
3439 			if (DVA_GET_GANG(&dva[d])) {
3440 				/*
3441 				 * Gang members may be spread across multiple
3442 				 * vdevs, so the best we can do is look at the
3443 				 * pool-wide DTL.
3444 				 * XXX -- it would be better to change our
3445 				 * allocation policy to ensure that this can't
3446 				 * happen.
3447 				 */
3448 				vd = spa->spa_root_vdev;
3449 			}
3450 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
3451 			    bp->blk_birth, 1))
3452 				needs_resilver = B_TRUE;
3453 		}
3454 	}
3455 
3456 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
3457 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
3458 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
3459 	else if (needs_resilver)
3460 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
3461 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
3462 
3463 	return (0);
3464 }
3465 
3466 static void
3467 spa_scrub_thread(spa_t *spa)
3468 {
3469 	callb_cpr_t cprinfo;
3470 	traverse_handle_t *th = spa->spa_scrub_th;
3471 	vdev_t *rvd = spa->spa_root_vdev;
3472 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
3473 	int error = 0;
3474 	boolean_t complete;
3475 
3476 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
3477 
3478 	/*
3479 	 * If we're restarting due to a snapshot create/delete,
3480 	 * wait for that to complete.
3481 	 */
3482 	txg_wait_synced(spa_get_dsl(spa), 0);
3483 
3484 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
3485 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
3486 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
3487 
3488 	spa_config_enter(spa, RW_WRITER, FTAG);
3489 	vdev_reopen(rvd);		/* purge all vdev caches */
3490 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
3491 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
3492 	spa_config_exit(spa, FTAG);
3493 
3494 	mutex_enter(&spa->spa_scrub_lock);
3495 	spa->spa_scrub_errors = 0;
3496 	spa->spa_scrub_active = 1;
3497 	ASSERT(spa->spa_scrub_inflight == 0);
3498 
3499 	while (!spa->spa_scrub_stop) {
3500 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3501 		while (spa->spa_scrub_suspended) {
3502 			spa->spa_scrub_active = 0;
3503 			cv_broadcast(&spa->spa_scrub_cv);
3504 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
3505 			spa->spa_scrub_active = 1;
3506 		}
3507 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
3508 
3509 		if (spa->spa_scrub_restart_txg != 0)
3510 			break;
3511 
3512 		mutex_exit(&spa->spa_scrub_lock);
3513 		error = traverse_more(th);
3514 		mutex_enter(&spa->spa_scrub_lock);
3515 		if (error != EAGAIN)
3516 			break;
3517 	}
3518 
3519 	while (spa->spa_scrub_inflight)
3520 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3521 
3522 	spa->spa_scrub_active = 0;
3523 	cv_broadcast(&spa->spa_scrub_cv);
3524 
3525 	mutex_exit(&spa->spa_scrub_lock);
3526 
3527 	spa_config_enter(spa, RW_WRITER, FTAG);
3528 
3529 	mutex_enter(&spa->spa_scrub_lock);
3530 
3531 	/*
3532 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
3533 	 * AND the spa config lock to synchronize with any config changes
3534 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
3535 	 */
3536 	if (spa->spa_scrub_restart_txg != 0)
3537 		error = ERESTART;
3538 
3539 	if (spa->spa_scrub_stop)
3540 		error = EINTR;
3541 
3542 	/*
3543 	 * Even if there were uncorrectable errors, we consider the scrub
3544 	 * completed.  The downside is that if there is a transient error during
3545 	 * a resilver, we won't resilver the data properly to the target.  But
3546 	 * if the damage is permanent (more likely) we will resilver forever,
3547 	 * which isn't really acceptable.  Since there is enough information for
3548 	 * the user to know what has failed and why, this seems like a more
3549 	 * tractable approach.
3550 	 */
3551 	complete = (error == 0);
3552 
3553 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
3554 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
3555 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
3556 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
3557 
3558 	mutex_exit(&spa->spa_scrub_lock);
3559 
3560 	/*
3561 	 * If the scrub/resilver completed, update all DTLs to reflect this.
3562 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
3563 	 */
3564 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
3565 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
3566 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
3567 	spa_errlog_rotate(spa);
3568 
3569 	if (scrub_type == POOL_SCRUB_RESILVER && complete)
3570 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH);
3571 
3572 	spa_config_exit(spa, FTAG);
3573 
3574 	mutex_enter(&spa->spa_scrub_lock);
3575 
3576 	/*
3577 	 * We may have finished replacing a device.
3578 	 * Let the async thread assess this and handle the detach.
3579 	 */
3580 	spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3581 
3582 	/*
3583 	 * If we were told to restart, our final act is to start a new scrub.
3584 	 */
3585 	if (error == ERESTART)
3586 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
3587 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
3588 
3589 	spa->spa_scrub_type = POOL_SCRUB_NONE;
3590 	spa->spa_scrub_active = 0;
3591 	spa->spa_scrub_thread = NULL;
3592 	cv_broadcast(&spa->spa_scrub_cv);
3593 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
3594 	thread_exit();
3595 }
3596 
3597 void
3598 spa_scrub_suspend(spa_t *spa)
3599 {
3600 	mutex_enter(&spa->spa_scrub_lock);
3601 	spa->spa_scrub_suspended++;
3602 	while (spa->spa_scrub_active) {
3603 		cv_broadcast(&spa->spa_scrub_cv);
3604 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
3605 	}
3606 	while (spa->spa_scrub_inflight)
3607 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3608 	mutex_exit(&spa->spa_scrub_lock);
3609 }
3610 
3611 void
3612 spa_scrub_resume(spa_t *spa)
3613 {
3614 	mutex_enter(&spa->spa_scrub_lock);
3615 	ASSERT(spa->spa_scrub_suspended != 0);
3616 	if (--spa->spa_scrub_suspended == 0)
3617 		cv_broadcast(&spa->spa_scrub_cv);
3618 	mutex_exit(&spa->spa_scrub_lock);
3619 }
3620 
3621 void
3622 spa_scrub_restart(spa_t *spa, uint64_t txg)
3623 {
3624 	/*
3625 	 * Something happened (e.g. snapshot create/delete) that means
3626 	 * we must restart any in-progress scrubs.  The itinerary will
3627 	 * fix this properly.
3628 	 */
3629 	mutex_enter(&spa->spa_scrub_lock);
3630 	spa->spa_scrub_restart_txg = txg;
3631 	mutex_exit(&spa->spa_scrub_lock);
3632 }
3633 
3634 int
3635 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
3636 {
3637 	space_seg_t *ss;
3638 	uint64_t mintxg, maxtxg;
3639 	vdev_t *rvd = spa->spa_root_vdev;
3640 
3641 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3642 	ASSERT(!spa_config_held(spa, RW_WRITER));
3643 
3644 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3645 		return (ENOTSUP);
3646 
3647 	mutex_enter(&spa->spa_scrub_lock);
3648 
3649 	/*
3650 	 * If there's a scrub or resilver already in progress, stop it.
3651 	 */
3652 	while (spa->spa_scrub_thread != NULL) {
3653 		/*
3654 		 * Don't stop a resilver unless forced.
3655 		 */
3656 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
3657 			mutex_exit(&spa->spa_scrub_lock);
3658 			return (EBUSY);
3659 		}
3660 		spa->spa_scrub_stop = 1;
3661 		cv_broadcast(&spa->spa_scrub_cv);
3662 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
3663 	}
3664 
3665 	/*
3666 	 * Terminate the previous traverse.
3667 	 */
3668 	if (spa->spa_scrub_th != NULL) {
3669 		traverse_fini(spa->spa_scrub_th);
3670 		spa->spa_scrub_th = NULL;
3671 	}
3672 
3673 	if (rvd == NULL) {
3674 		ASSERT(spa->spa_scrub_stop == 0);
3675 		ASSERT(spa->spa_scrub_type == type);
3676 		ASSERT(spa->spa_scrub_restart_txg == 0);
3677 		mutex_exit(&spa->spa_scrub_lock);
3678 		return (0);
3679 	}
3680 
3681 	mintxg = TXG_INITIAL - 1;
3682 	maxtxg = spa_last_synced_txg(spa) + 1;
3683 
3684 	mutex_enter(&rvd->vdev_dtl_lock);
3685 
3686 	if (rvd->vdev_dtl_map.sm_space == 0) {
3687 		/*
3688 		 * The pool-wide DTL is empty.
3689 		 * If this is a resilver, there's nothing to do except
3690 		 * check whether any in-progress replacements have completed.
3691 		 */
3692 		if (type == POOL_SCRUB_RESILVER) {
3693 			type = POOL_SCRUB_NONE;
3694 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3695 		}
3696 	} else {
3697 		/*
3698 		 * The pool-wide DTL is non-empty.
3699 		 * If this is a normal scrub, upgrade to a resilver instead.
3700 		 */
3701 		if (type == POOL_SCRUB_EVERYTHING)
3702 			type = POOL_SCRUB_RESILVER;
3703 	}
3704 
3705 	if (type == POOL_SCRUB_RESILVER) {
3706 		/*
3707 		 * Determine the resilvering boundaries.
3708 		 *
3709 		 * Note: (mintxg, maxtxg) is an open interval,
3710 		 * i.e. mintxg and maxtxg themselves are not included.
3711 		 *
3712 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
3713 		 * so we don't claim to resilver a txg that's still changing.
3714 		 */
3715 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
3716 		mintxg = ss->ss_start - 1;
3717 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
3718 		maxtxg = MIN(ss->ss_end, maxtxg);
3719 
3720 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START);
3721 	}
3722 
3723 	mutex_exit(&rvd->vdev_dtl_lock);
3724 
3725 	spa->spa_scrub_stop = 0;
3726 	spa->spa_scrub_type = type;
3727 	spa->spa_scrub_restart_txg = 0;
3728 
3729 	if (type != POOL_SCRUB_NONE) {
3730 		spa->spa_scrub_mintxg = mintxg;
3731 		spa->spa_scrub_maxtxg = maxtxg;
3732 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
3733 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
3734 		    ZIO_FLAG_CANFAIL);
3735 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
3736 		spa->spa_scrub_thread = thread_create(NULL, 0,
3737 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
3738 	}
3739 
3740 	mutex_exit(&spa->spa_scrub_lock);
3741 
3742 	return (0);
3743 }
3744 
3745 /*
3746  * ==========================================================================
3747  * SPA async task processing
3748  * ==========================================================================
3749  */
3750 
3751 static void
3752 spa_async_remove(spa_t *spa, vdev_t *vd)
3753 {
3754 	vdev_t *tvd;
3755 	int c;
3756 
3757 	for (c = 0; c < vd->vdev_children; c++) {
3758 		tvd = vd->vdev_child[c];
3759 		if (tvd->vdev_remove_wanted) {
3760 			tvd->vdev_remove_wanted = 0;
3761 			vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED,
3762 			    VDEV_AUX_NONE);
3763 			vdev_clear(spa, tvd, B_TRUE);
3764 			vdev_config_dirty(tvd->vdev_top);
3765 		}
3766 		spa_async_remove(spa, tvd);
3767 	}
3768 }
3769 
3770 static void
3771 spa_async_thread(spa_t *spa)
3772 {
3773 	int tasks;
3774 	uint64_t txg;
3775 
3776 	ASSERT(spa->spa_sync_on);
3777 
3778 	mutex_enter(&spa->spa_async_lock);
3779 	tasks = spa->spa_async_tasks;
3780 	spa->spa_async_tasks = 0;
3781 	mutex_exit(&spa->spa_async_lock);
3782 
3783 	/*
3784 	 * See if the config needs to be updated.
3785 	 */
3786 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3787 		mutex_enter(&spa_namespace_lock);
3788 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3789 		mutex_exit(&spa_namespace_lock);
3790 	}
3791 
3792 	/*
3793 	 * See if any devices need to be marked REMOVED.
3794 	 *
3795 	 * XXX - We avoid doing this when we are in
3796 	 * I/O failure state since spa_vdev_enter() grabs
3797 	 * the namespace lock and would not be able to obtain
3798 	 * the writer config lock.
3799 	 */
3800 	if (tasks & SPA_ASYNC_REMOVE &&
3801 	    spa_state(spa) != POOL_STATE_IO_FAILURE) {
3802 		txg = spa_vdev_enter(spa);
3803 		spa_async_remove(spa, spa->spa_root_vdev);
3804 		(void) spa_vdev_exit(spa, NULL, txg, 0);
3805 	}
3806 
3807 	/*
3808 	 * If any devices are done replacing, detach them.
3809 	 */
3810 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3811 		spa_vdev_resilver_done(spa);
3812 
3813 	/*
3814 	 * Kick off a scrub.  When starting a RESILVER scrub (or an EVERYTHING
3815 	 * scrub which can become a resilver), we need to hold
3816 	 * spa_namespace_lock() because the sysevent we post via
3817 	 * spa_event_notify() needs to get the name of the pool.
3818 	 */
3819 	if (tasks & SPA_ASYNC_SCRUB) {
3820 		mutex_enter(&spa_namespace_lock);
3821 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
3822 		mutex_exit(&spa_namespace_lock);
3823 	}
3824 
3825 	/*
3826 	 * Kick off a resilver.
3827 	 */
3828 	if (tasks & SPA_ASYNC_RESILVER) {
3829 		mutex_enter(&spa_namespace_lock);
3830 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
3831 		mutex_exit(&spa_namespace_lock);
3832 	}
3833 
3834 	/*
3835 	 * Let the world know that we're done.
3836 	 */
3837 	mutex_enter(&spa->spa_async_lock);
3838 	spa->spa_async_thread = NULL;
3839 	cv_broadcast(&spa->spa_async_cv);
3840 	mutex_exit(&spa->spa_async_lock);
3841 	thread_exit();
3842 }
3843 
3844 void
3845 spa_async_suspend(spa_t *spa)
3846 {
3847 	mutex_enter(&spa->spa_async_lock);
3848 	spa->spa_async_suspended++;
3849 	while (spa->spa_async_thread != NULL)
3850 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3851 	mutex_exit(&spa->spa_async_lock);
3852 }
3853 
3854 void
3855 spa_async_resume(spa_t *spa)
3856 {
3857 	mutex_enter(&spa->spa_async_lock);
3858 	ASSERT(spa->spa_async_suspended != 0);
3859 	spa->spa_async_suspended--;
3860 	mutex_exit(&spa->spa_async_lock);
3861 }
3862 
3863 static void
3864 spa_async_dispatch(spa_t *spa)
3865 {
3866 	mutex_enter(&spa->spa_async_lock);
3867 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3868 	    spa->spa_async_thread == NULL &&
3869 	    rootdir != NULL && !vn_is_readonly(rootdir))
3870 		spa->spa_async_thread = thread_create(NULL, 0,
3871 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3872 	mutex_exit(&spa->spa_async_lock);
3873 }
3874 
3875 void
3876 spa_async_request(spa_t *spa, int task)
3877 {
3878 	mutex_enter(&spa->spa_async_lock);
3879 	spa->spa_async_tasks |= task;
3880 	mutex_exit(&spa->spa_async_lock);
3881 }
3882 
3883 /*
3884  * ==========================================================================
3885  * SPA syncing routines
3886  * ==========================================================================
3887  */
3888 
3889 static void
3890 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3891 {
3892 	bplist_t *bpl = &spa->spa_sync_bplist;
3893 	dmu_tx_t *tx;
3894 	blkptr_t blk;
3895 	uint64_t itor = 0;
3896 	zio_t *zio;
3897 	int error;
3898 	uint8_t c = 1;
3899 
3900 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
3901 
3902 	while (bplist_iterate(bpl, &itor, &blk) == 0)
3903 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
3904 
3905 	error = zio_wait(zio);
3906 	ASSERT3U(error, ==, 0);
3907 
3908 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3909 	bplist_vacate(bpl, tx);
3910 
3911 	/*
3912 	 * Pre-dirty the first block so we sync to convergence faster.
3913 	 * (Usually only the first block is needed.)
3914 	 */
3915 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3916 	dmu_tx_commit(tx);
3917 }
3918 
3919 static void
3920 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3921 {
3922 	char *packed = NULL;
3923 	size_t nvsize = 0;
3924 	dmu_buf_t *db;
3925 
3926 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3927 
3928 	packed = kmem_alloc(nvsize, KM_SLEEP);
3929 
3930 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3931 	    KM_SLEEP) == 0);
3932 
3933 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
3934 
3935 	kmem_free(packed, nvsize);
3936 
3937 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3938 	dmu_buf_will_dirty(db, tx);
3939 	*(uint64_t *)db->db_data = nvsize;
3940 	dmu_buf_rele(db, FTAG);
3941 }
3942 
3943 static void
3944 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3945     const char *config, const char *entry)
3946 {
3947 	nvlist_t *nvroot;
3948 	nvlist_t **list;
3949 	int i;
3950 
3951 	if (!sav->sav_sync)
3952 		return;
3953 
3954 	/*
3955 	 * Update the MOS nvlist describing the list of available devices.
3956 	 * spa_validate_aux() will have already made sure this nvlist is
3957 	 * valid and the vdevs are labeled appropriately.
3958 	 */
3959 	if (sav->sav_object == 0) {
3960 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3961 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3962 		    sizeof (uint64_t), tx);
3963 		VERIFY(zap_update(spa->spa_meta_objset,
3964 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3965 		    &sav->sav_object, tx) == 0);
3966 	}
3967 
3968 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3969 	if (sav->sav_count == 0) {
3970 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3971 	} else {
3972 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3973 		for (i = 0; i < sav->sav_count; i++)
3974 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3975 			    B_FALSE, B_FALSE, B_TRUE);
3976 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3977 		    sav->sav_count) == 0);
3978 		for (i = 0; i < sav->sav_count; i++)
3979 			nvlist_free(list[i]);
3980 		kmem_free(list, sav->sav_count * sizeof (void *));
3981 	}
3982 
3983 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3984 	nvlist_free(nvroot);
3985 
3986 	sav->sav_sync = B_FALSE;
3987 }
3988 
3989 static void
3990 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3991 {
3992 	nvlist_t *config;
3993 
3994 	if (list_is_empty(&spa->spa_dirty_list))
3995 		return;
3996 
3997 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
3998 
3999 	if (spa->spa_config_syncing)
4000 		nvlist_free(spa->spa_config_syncing);
4001 	spa->spa_config_syncing = config;
4002 
4003 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
4004 }
4005 
4006 /*
4007  * Set zpool properties.
4008  */
4009 static void
4010 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
4011 {
4012 	spa_t *spa = arg1;
4013 	objset_t *mos = spa->spa_meta_objset;
4014 	nvlist_t *nvp = arg2;
4015 	nvpair_t *elem;
4016 	uint64_t intval;
4017 	char *strval;
4018 	zpool_prop_t prop;
4019 	const char *propname;
4020 	zprop_type_t proptype;
4021 	spa_config_dirent_t *dp;
4022 
4023 	elem = NULL;
4024 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
4025 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4026 		case ZPOOL_PROP_VERSION:
4027 			/*
4028 			 * Only set version for non-zpool-creation cases
4029 			 * (set/import). spa_create() needs special care
4030 			 * for version setting.
4031 			 */
4032 			if (tx->tx_txg != TXG_INITIAL) {
4033 				VERIFY(nvpair_value_uint64(elem,
4034 				    &intval) == 0);
4035 				ASSERT(intval <= SPA_VERSION);
4036 				ASSERT(intval >= spa_version(spa));
4037 				spa->spa_uberblock.ub_version = intval;
4038 				vdev_config_dirty(spa->spa_root_vdev);
4039 			}
4040 			break;
4041 
4042 		case ZPOOL_PROP_ALTROOT:
4043 			/*
4044 			 * 'altroot' is a non-persistent property. It should
4045 			 * have been set temporarily at creation or import time.
4046 			 */
4047 			ASSERT(spa->spa_root != NULL);
4048 			break;
4049 
4050 		case ZPOOL_PROP_CACHEFILE:
4051 			/*
4052 			 * 'cachefile' is a non-persistent property, but note
4053 			 * an async request that the config cache needs to be
4054 			 * udpated.
4055 			 */
4056 			VERIFY(nvpair_value_string(elem, &strval) == 0);
4057 
4058 			dp = kmem_alloc(sizeof (spa_config_dirent_t),
4059 			    KM_SLEEP);
4060 
4061 			if (strval[0] == '\0')
4062 				dp->scd_path = spa_strdup(spa_config_path);
4063 			else if (strcmp(strval, "none") == 0)
4064 				dp->scd_path = NULL;
4065 			else
4066 				dp->scd_path = spa_strdup(strval);
4067 
4068 			list_insert_head(&spa->spa_config_list, dp);
4069 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4070 			break;
4071 		default:
4072 			/*
4073 			 * Set pool property values in the poolprops mos object.
4074 			 */
4075 			mutex_enter(&spa->spa_props_lock);
4076 			if (spa->spa_pool_props_object == 0) {
4077 				objset_t *mos = spa->spa_meta_objset;
4078 
4079 				VERIFY((spa->spa_pool_props_object =
4080 				    zap_create(mos, DMU_OT_POOL_PROPS,
4081 				    DMU_OT_NONE, 0, tx)) > 0);
4082 
4083 				VERIFY(zap_update(mos,
4084 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4085 				    8, 1, &spa->spa_pool_props_object, tx)
4086 				    == 0);
4087 			}
4088 			mutex_exit(&spa->spa_props_lock);
4089 
4090 			/* normalize the property name */
4091 			propname = zpool_prop_to_name(prop);
4092 			proptype = zpool_prop_get_type(prop);
4093 
4094 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
4095 				ASSERT(proptype == PROP_TYPE_STRING);
4096 				VERIFY(nvpair_value_string(elem, &strval) == 0);
4097 				VERIFY(zap_update(mos,
4098 				    spa->spa_pool_props_object, propname,
4099 				    1, strlen(strval) + 1, strval, tx) == 0);
4100 
4101 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4102 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4103 
4104 				if (proptype == PROP_TYPE_INDEX) {
4105 					const char *unused;
4106 					VERIFY(zpool_prop_index_to_string(
4107 					    prop, intval, &unused) == 0);
4108 				}
4109 				VERIFY(zap_update(mos,
4110 				    spa->spa_pool_props_object, propname,
4111 				    8, 1, &intval, tx) == 0);
4112 			} else {
4113 				ASSERT(0); /* not allowed */
4114 			}
4115 
4116 			switch (prop) {
4117 			case ZPOOL_PROP_DELEGATION:
4118 				spa->spa_delegation = intval;
4119 				break;
4120 			case ZPOOL_PROP_BOOTFS:
4121 				spa->spa_bootfs = intval;
4122 				break;
4123 			case ZPOOL_PROP_FAILUREMODE:
4124 				spa->spa_failmode = intval;
4125 				break;
4126 			default:
4127 				break;
4128 			}
4129 		}
4130 
4131 		/* log internal history if this is not a zpool create */
4132 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4133 		    tx->tx_txg != TXG_INITIAL) {
4134 			spa_history_internal_log(LOG_POOL_PROPSET,
4135 			    spa, tx, cr, "%s %lld %s",
4136 			    nvpair_name(elem), intval, spa->spa_name);
4137 		}
4138 	}
4139 }
4140 
4141 /*
4142  * Sync the specified transaction group.  New blocks may be dirtied as
4143  * part of the process, so we iterate until it converges.
4144  */
4145 void
4146 spa_sync(spa_t *spa, uint64_t txg)
4147 {
4148 	dsl_pool_t *dp = spa->spa_dsl_pool;
4149 	objset_t *mos = spa->spa_meta_objset;
4150 	bplist_t *bpl = &spa->spa_sync_bplist;
4151 	vdev_t *rvd = spa->spa_root_vdev;
4152 	vdev_t *vd;
4153 	dmu_tx_t *tx;
4154 	int dirty_vdevs;
4155 
4156 	/*
4157 	 * Lock out configuration changes.
4158 	 */
4159 	spa_config_enter(spa, RW_READER, FTAG);
4160 
4161 	spa->spa_syncing_txg = txg;
4162 	spa->spa_sync_pass = 0;
4163 
4164 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4165 
4166 	tx = dmu_tx_create_assigned(dp, txg);
4167 
4168 	/*
4169 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4170 	 * set spa_deflate if we have no raid-z vdevs.
4171 	 */
4172 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4173 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4174 		int i;
4175 
4176 		for (i = 0; i < rvd->vdev_children; i++) {
4177 			vd = rvd->vdev_child[i];
4178 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4179 				break;
4180 		}
4181 		if (i == rvd->vdev_children) {
4182 			spa->spa_deflate = TRUE;
4183 			VERIFY(0 == zap_add(spa->spa_meta_objset,
4184 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4185 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4186 		}
4187 	}
4188 
4189 	/*
4190 	 * If anything has changed in this txg, push the deferred frees
4191 	 * from the previous txg.  If not, leave them alone so that we
4192 	 * don't generate work on an otherwise idle system.
4193 	 */
4194 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4195 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4196 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4197 		spa_sync_deferred_frees(spa, txg);
4198 
4199 	/*
4200 	 * Iterate to convergence.
4201 	 */
4202 	do {
4203 		spa->spa_sync_pass++;
4204 
4205 		spa_sync_config_object(spa, tx);
4206 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4207 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4208 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4209 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4210 		spa_errlog_sync(spa, txg);
4211 		dsl_pool_sync(dp, txg);
4212 
4213 		dirty_vdevs = 0;
4214 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4215 			vdev_sync(vd, txg);
4216 			dirty_vdevs++;
4217 		}
4218 
4219 		bplist_sync(bpl, tx);
4220 	} while (dirty_vdevs);
4221 
4222 	bplist_close(bpl);
4223 
4224 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4225 
4226 	/*
4227 	 * Rewrite the vdev configuration (which includes the uberblock)
4228 	 * to commit the transaction group.
4229 	 *
4230 	 * If there are no dirty vdevs, we sync the uberblock to a few
4231 	 * random top-level vdevs that are known to be visible in the
4232 	 * config cache (see spa_vdev_add() for details).  If there *are*
4233 	 * dirty vdevs -- or if the sync to our random subset fails --
4234 	 * then sync the uberblock to all vdevs.
4235 	 */
4236 	if (list_is_empty(&spa->spa_dirty_list)) {
4237 		vdev_t *svd[SPA_DVAS_PER_BP];
4238 		int svdcount = 0;
4239 		int children = rvd->vdev_children;
4240 		int c0 = spa_get_random(children);
4241 		int c;
4242 
4243 		for (c = 0; c < children; c++) {
4244 			vd = rvd->vdev_child[(c0 + c) % children];
4245 			if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4246 				continue;
4247 			svd[svdcount++] = vd;
4248 			if (svdcount == SPA_DVAS_PER_BP)
4249 				break;
4250 		}
4251 		vdev_config_sync(svd, svdcount, txg);
4252 	} else {
4253 		vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg);
4254 	}
4255 	dmu_tx_commit(tx);
4256 
4257 	/*
4258 	 * Clear the dirty config list.
4259 	 */
4260 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
4261 		vdev_config_clean(vd);
4262 
4263 	/*
4264 	 * Now that the new config has synced transactionally,
4265 	 * let it become visible to the config cache.
4266 	 */
4267 	if (spa->spa_config_syncing != NULL) {
4268 		spa_config_set(spa, spa->spa_config_syncing);
4269 		spa->spa_config_txg = txg;
4270 		spa->spa_config_syncing = NULL;
4271 	}
4272 
4273 	/*
4274 	 * Make a stable copy of the fully synced uberblock.
4275 	 * We use this as the root for pool traversals.
4276 	 */
4277 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
4278 
4279 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
4280 
4281 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
4282 	spa->spa_traverse_wanted = 0;
4283 	spa->spa_ubsync = spa->spa_uberblock;
4284 	rw_exit(&spa->spa_traverse_lock);
4285 
4286 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
4287 
4288 	/*
4289 	 * Clean up the ZIL records for the synced txg.
4290 	 */
4291 	dsl_pool_zil_clean(dp);
4292 
4293 	/*
4294 	 * Update usable space statistics.
4295 	 */
4296 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4297 		vdev_sync_done(vd, txg);
4298 
4299 	/*
4300 	 * It had better be the case that we didn't dirty anything
4301 	 * since vdev_config_sync().
4302 	 */
4303 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4304 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4305 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4306 	ASSERT(bpl->bpl_queue == NULL);
4307 
4308 	spa_config_exit(spa, FTAG);
4309 
4310 	/*
4311 	 * If any async tasks have been requested, kick them off.
4312 	 */
4313 	spa_async_dispatch(spa);
4314 }
4315 
4316 /*
4317  * Sync all pools.  We don't want to hold the namespace lock across these
4318  * operations, so we take a reference on the spa_t and drop the lock during the
4319  * sync.
4320  */
4321 void
4322 spa_sync_allpools(void)
4323 {
4324 	spa_t *spa = NULL;
4325 	mutex_enter(&spa_namespace_lock);
4326 	while ((spa = spa_next(spa)) != NULL) {
4327 		if (spa_state(spa) != POOL_STATE_ACTIVE)
4328 			continue;
4329 		spa_open_ref(spa, FTAG);
4330 		mutex_exit(&spa_namespace_lock);
4331 		txg_wait_synced(spa_get_dsl(spa), 0);
4332 		mutex_enter(&spa_namespace_lock);
4333 		spa_close(spa, FTAG);
4334 	}
4335 	mutex_exit(&spa_namespace_lock);
4336 }
4337 
4338 /*
4339  * ==========================================================================
4340  * Miscellaneous routines
4341  * ==========================================================================
4342  */
4343 
4344 /*
4345  * Remove all pools in the system.
4346  */
4347 void
4348 spa_evict_all(void)
4349 {
4350 	spa_t *spa;
4351 
4352 	/*
4353 	 * Remove all cached state.  All pools should be closed now,
4354 	 * so every spa in the AVL tree should be unreferenced.
4355 	 */
4356 	mutex_enter(&spa_namespace_lock);
4357 	while ((spa = spa_next(NULL)) != NULL) {
4358 		/*
4359 		 * Stop async tasks.  The async thread may need to detach
4360 		 * a device that's been replaced, which requires grabbing
4361 		 * spa_namespace_lock, so we must drop it here.
4362 		 */
4363 		spa_open_ref(spa, FTAG);
4364 		mutex_exit(&spa_namespace_lock);
4365 		spa_async_suspend(spa);
4366 		mutex_enter(&spa_namespace_lock);
4367 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
4368 		spa_close(spa, FTAG);
4369 
4370 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4371 			spa_unload(spa);
4372 			spa_deactivate(spa);
4373 		}
4374 		spa_remove(spa);
4375 	}
4376 	mutex_exit(&spa_namespace_lock);
4377 }
4378 
4379 vdev_t *
4380 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache)
4381 {
4382 	vdev_t *vd;
4383 	int i;
4384 
4385 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4386 		return (vd);
4387 
4388 	if (l2cache) {
4389 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4390 			vd = spa->spa_l2cache.sav_vdevs[i];
4391 			if (vd->vdev_guid == guid)
4392 				return (vd);
4393 		}
4394 	}
4395 
4396 	return (NULL);
4397 }
4398 
4399 void
4400 spa_upgrade(spa_t *spa, uint64_t version)
4401 {
4402 	spa_config_enter(spa, RW_WRITER, FTAG);
4403 
4404 	/*
4405 	 * This should only be called for a non-faulted pool, and since a
4406 	 * future version would result in an unopenable pool, this shouldn't be
4407 	 * possible.
4408 	 */
4409 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4410 	ASSERT(version >= spa->spa_uberblock.ub_version);
4411 
4412 	spa->spa_uberblock.ub_version = version;
4413 	vdev_config_dirty(spa->spa_root_vdev);
4414 
4415 	spa_config_exit(spa, FTAG);
4416 
4417 	txg_wait_synced(spa_get_dsl(spa), 0);
4418 }
4419 
4420 boolean_t
4421 spa_has_spare(spa_t *spa, uint64_t guid)
4422 {
4423 	int i;
4424 	uint64_t spareguid;
4425 	spa_aux_vdev_t *sav = &spa->spa_spares;
4426 
4427 	for (i = 0; i < sav->sav_count; i++)
4428 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4429 			return (B_TRUE);
4430 
4431 	for (i = 0; i < sav->sav_npending; i++) {
4432 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4433 		    &spareguid) == 0 && spareguid == guid)
4434 			return (B_TRUE);
4435 	}
4436 
4437 	return (B_FALSE);
4438 }
4439 
4440 /*
4441  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4442  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4443  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4444  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4445  * or zdb as real changes.
4446  */
4447 void
4448 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4449 {
4450 #ifdef _KERNEL
4451 	sysevent_t		*ev;
4452 	sysevent_attr_list_t	*attr = NULL;
4453 	sysevent_value_t	value;
4454 	sysevent_id_t		eid;
4455 
4456 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4457 	    SE_SLEEP);
4458 
4459 	value.value_type = SE_DATA_TYPE_STRING;
4460 	value.value.sv_string = spa_name(spa);
4461 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4462 		goto done;
4463 
4464 	value.value_type = SE_DATA_TYPE_UINT64;
4465 	value.value.sv_uint64 = spa_guid(spa);
4466 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4467 		goto done;
4468 
4469 	if (vd) {
4470 		value.value_type = SE_DATA_TYPE_UINT64;
4471 		value.value.sv_uint64 = vd->vdev_guid;
4472 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4473 		    SE_SLEEP) != 0)
4474 			goto done;
4475 
4476 		if (vd->vdev_path) {
4477 			value.value_type = SE_DATA_TYPE_STRING;
4478 			value.value.sv_string = vd->vdev_path;
4479 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4480 			    &value, SE_SLEEP) != 0)
4481 				goto done;
4482 		}
4483 	}
4484 
4485 	if (sysevent_attach_attributes(ev, attr) != 0)
4486 		goto done;
4487 	attr = NULL;
4488 
4489 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4490 
4491 done:
4492 	if (attr)
4493 		sysevent_free_attr(attr);
4494 	sysevent_free(ev);
4495 #endif
4496 }
4497