1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains all the routines used when modifying on-disk SPA state. 29 * This includes opening, importing, destroying, exporting a pool, and syncing a 30 * pool. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zio.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/zio_compress.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/metaslab.h> 45 #include <sys/uberblock_impl.h> 46 #include <sys/txg.h> 47 #include <sys/avl.h> 48 #include <sys/dmu_traverse.h> 49 #include <sys/dmu_objset.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dataset.h> 53 #include <sys/dsl_dir.h> 54 #include <sys/dsl_prop.h> 55 #include <sys/dsl_synctask.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/arc.h> 58 #include <sys/callb.h> 59 #include <sys/systeminfo.h> 60 #include <sys/sunddi.h> 61 #include <sys/spa_boot.h> 62 #include <sys/zfs_ioctl.h> 63 64 #ifdef _KERNEL 65 #include <sys/zone.h> 66 #endif /* _KERNEL */ 67 68 #include "zfs_prop.h" 69 #include "zfs_comutil.h" 70 71 enum zti_modes { 72 zti_mode_fixed, /* value is # of threads (min 1) */ 73 zti_mode_online_percent, /* value is % of online CPUs */ 74 zti_mode_tune, /* fill from zio_taskq_tune_* */ 75 zti_nmodes 76 }; 77 78 #define ZTI_THREAD_FIX(n) { zti_mode_fixed, (n) } 79 #define ZTI_THREAD_PCT(n) { zti_mode_online_percent, (n) } 80 #define ZTI_THREAD_TUNE { zti_mode_tune, 0 } 81 82 #define ZTI_THREAD_ONE ZTI_THREAD_FIX(1) 83 84 typedef struct zio_taskq_info { 85 const char *zti_name; 86 struct { 87 enum zti_modes zti_mode; 88 uint_t zti_value; 89 } zti_nthreads[ZIO_TASKQ_TYPES]; 90 } zio_taskq_info_t; 91 92 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 93 "issue", "intr" 94 }; 95 96 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = { 97 /* ISSUE INTR */ 98 { "spa_zio_null", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 99 { "spa_zio_read", { ZTI_THREAD_FIX(8), ZTI_THREAD_TUNE } }, 100 { "spa_zio_write", { ZTI_THREAD_TUNE, ZTI_THREAD_FIX(8) } }, 101 { "spa_zio_free", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 102 { "spa_zio_claim", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 103 { "spa_zio_ioctl", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 104 }; 105 106 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent; 107 uint_t zio_taskq_tune_value = 80; /* #threads = 80% of # online CPUs */ 108 109 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); 110 static boolean_t spa_has_active_shared_spare(spa_t *spa); 111 112 /* 113 * ========================================================================== 114 * SPA properties routines 115 * ========================================================================== 116 */ 117 118 /* 119 * Add a (source=src, propname=propval) list to an nvlist. 120 */ 121 static void 122 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 123 uint64_t intval, zprop_source_t src) 124 { 125 const char *propname = zpool_prop_to_name(prop); 126 nvlist_t *propval; 127 128 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 129 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 130 131 if (strval != NULL) 132 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 133 else 134 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 135 136 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 137 nvlist_free(propval); 138 } 139 140 /* 141 * Get property values from the spa configuration. 142 */ 143 static void 144 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 145 { 146 uint64_t size; 147 uint64_t used; 148 uint64_t cap, version; 149 zprop_source_t src = ZPROP_SRC_NONE; 150 spa_config_dirent_t *dp; 151 152 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 153 154 if (spa->spa_root_vdev != NULL) { 155 size = spa_get_space(spa); 156 used = spa_get_alloc(spa); 157 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 158 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 159 spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src); 160 spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, 161 size - used, src); 162 163 cap = (size == 0) ? 0 : (used * 100 / size); 164 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 165 166 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 167 spa->spa_root_vdev->vdev_state, src); 168 169 version = spa_version(spa); 170 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 171 src = ZPROP_SRC_DEFAULT; 172 else 173 src = ZPROP_SRC_LOCAL; 174 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 175 } 176 177 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 178 179 if (spa->spa_root != NULL) 180 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 181 0, ZPROP_SRC_LOCAL); 182 183 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 184 if (dp->scd_path == NULL) { 185 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 186 "none", 0, ZPROP_SRC_LOCAL); 187 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 188 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 189 dp->scd_path, 0, ZPROP_SRC_LOCAL); 190 } 191 } 192 } 193 194 /* 195 * Get zpool property values. 196 */ 197 int 198 spa_prop_get(spa_t *spa, nvlist_t **nvp) 199 { 200 zap_cursor_t zc; 201 zap_attribute_t za; 202 objset_t *mos = spa->spa_meta_objset; 203 int err; 204 205 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 206 207 mutex_enter(&spa->spa_props_lock); 208 209 /* 210 * Get properties from the spa config. 211 */ 212 spa_prop_get_config(spa, nvp); 213 214 /* If no pool property object, no more prop to get. */ 215 if (spa->spa_pool_props_object == 0) { 216 mutex_exit(&spa->spa_props_lock); 217 return (0); 218 } 219 220 /* 221 * Get properties from the MOS pool property object. 222 */ 223 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 224 (err = zap_cursor_retrieve(&zc, &za)) == 0; 225 zap_cursor_advance(&zc)) { 226 uint64_t intval = 0; 227 char *strval = NULL; 228 zprop_source_t src = ZPROP_SRC_DEFAULT; 229 zpool_prop_t prop; 230 231 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 232 continue; 233 234 switch (za.za_integer_length) { 235 case 8: 236 /* integer property */ 237 if (za.za_first_integer != 238 zpool_prop_default_numeric(prop)) 239 src = ZPROP_SRC_LOCAL; 240 241 if (prop == ZPOOL_PROP_BOOTFS) { 242 dsl_pool_t *dp; 243 dsl_dataset_t *ds = NULL; 244 245 dp = spa_get_dsl(spa); 246 rw_enter(&dp->dp_config_rwlock, RW_READER); 247 if (err = dsl_dataset_hold_obj(dp, 248 za.za_first_integer, FTAG, &ds)) { 249 rw_exit(&dp->dp_config_rwlock); 250 break; 251 } 252 253 strval = kmem_alloc( 254 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 255 KM_SLEEP); 256 dsl_dataset_name(ds, strval); 257 dsl_dataset_rele(ds, FTAG); 258 rw_exit(&dp->dp_config_rwlock); 259 } else { 260 strval = NULL; 261 intval = za.za_first_integer; 262 } 263 264 spa_prop_add_list(*nvp, prop, strval, intval, src); 265 266 if (strval != NULL) 267 kmem_free(strval, 268 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 269 270 break; 271 272 case 1: 273 /* string property */ 274 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 275 err = zap_lookup(mos, spa->spa_pool_props_object, 276 za.za_name, 1, za.za_num_integers, strval); 277 if (err) { 278 kmem_free(strval, za.za_num_integers); 279 break; 280 } 281 spa_prop_add_list(*nvp, prop, strval, 0, src); 282 kmem_free(strval, za.za_num_integers); 283 break; 284 285 default: 286 break; 287 } 288 } 289 zap_cursor_fini(&zc); 290 mutex_exit(&spa->spa_props_lock); 291 out: 292 if (err && err != ENOENT) { 293 nvlist_free(*nvp); 294 *nvp = NULL; 295 return (err); 296 } 297 298 return (0); 299 } 300 301 /* 302 * Validate the given pool properties nvlist and modify the list 303 * for the property values to be set. 304 */ 305 static int 306 spa_prop_validate(spa_t *spa, nvlist_t *props) 307 { 308 nvpair_t *elem; 309 int error = 0, reset_bootfs = 0; 310 uint64_t objnum; 311 312 elem = NULL; 313 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 314 zpool_prop_t prop; 315 char *propname, *strval; 316 uint64_t intval; 317 objset_t *os; 318 char *slash; 319 320 propname = nvpair_name(elem); 321 322 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 323 return (EINVAL); 324 325 switch (prop) { 326 case ZPOOL_PROP_VERSION: 327 error = nvpair_value_uint64(elem, &intval); 328 if (!error && 329 (intval < spa_version(spa) || intval > SPA_VERSION)) 330 error = EINVAL; 331 break; 332 333 case ZPOOL_PROP_DELEGATION: 334 case ZPOOL_PROP_AUTOREPLACE: 335 case ZPOOL_PROP_LISTSNAPS: 336 case ZPOOL_PROP_AUTOEXPAND: 337 error = nvpair_value_uint64(elem, &intval); 338 if (!error && intval > 1) 339 error = EINVAL; 340 break; 341 342 case ZPOOL_PROP_BOOTFS: 343 /* 344 * If the pool version is less than SPA_VERSION_BOOTFS, 345 * or the pool is still being created (version == 0), 346 * the bootfs property cannot be set. 347 */ 348 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 349 error = ENOTSUP; 350 break; 351 } 352 353 /* 354 * Make sure the vdev config is bootable 355 */ 356 if (!vdev_is_bootable(spa->spa_root_vdev)) { 357 error = ENOTSUP; 358 break; 359 } 360 361 reset_bootfs = 1; 362 363 error = nvpair_value_string(elem, &strval); 364 365 if (!error) { 366 uint64_t compress; 367 368 if (strval == NULL || strval[0] == '\0') { 369 objnum = zpool_prop_default_numeric( 370 ZPOOL_PROP_BOOTFS); 371 break; 372 } 373 374 if (error = dmu_objset_open(strval, DMU_OST_ZFS, 375 DS_MODE_USER | DS_MODE_READONLY, &os)) 376 break; 377 378 /* We don't support gzip bootable datasets */ 379 if ((error = dsl_prop_get_integer(strval, 380 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 381 &compress, NULL)) == 0 && 382 !BOOTFS_COMPRESS_VALID(compress)) { 383 error = ENOTSUP; 384 } else { 385 objnum = dmu_objset_id(os); 386 } 387 dmu_objset_close(os); 388 } 389 break; 390 391 case ZPOOL_PROP_FAILUREMODE: 392 error = nvpair_value_uint64(elem, &intval); 393 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 394 intval > ZIO_FAILURE_MODE_PANIC)) 395 error = EINVAL; 396 397 /* 398 * This is a special case which only occurs when 399 * the pool has completely failed. This allows 400 * the user to change the in-core failmode property 401 * without syncing it out to disk (I/Os might 402 * currently be blocked). We do this by returning 403 * EIO to the caller (spa_prop_set) to trick it 404 * into thinking we encountered a property validation 405 * error. 406 */ 407 if (!error && spa_suspended(spa)) { 408 spa->spa_failmode = intval; 409 error = EIO; 410 } 411 break; 412 413 case ZPOOL_PROP_CACHEFILE: 414 if ((error = nvpair_value_string(elem, &strval)) != 0) 415 break; 416 417 if (strval[0] == '\0') 418 break; 419 420 if (strcmp(strval, "none") == 0) 421 break; 422 423 if (strval[0] != '/') { 424 error = EINVAL; 425 break; 426 } 427 428 slash = strrchr(strval, '/'); 429 ASSERT(slash != NULL); 430 431 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 432 strcmp(slash, "/..") == 0) 433 error = EINVAL; 434 break; 435 } 436 437 if (error) 438 break; 439 } 440 441 if (!error && reset_bootfs) { 442 error = nvlist_remove(props, 443 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 444 445 if (!error) { 446 error = nvlist_add_uint64(props, 447 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 448 } 449 } 450 451 return (error); 452 } 453 454 void 455 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 456 { 457 char *cachefile; 458 spa_config_dirent_t *dp; 459 460 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 461 &cachefile) != 0) 462 return; 463 464 dp = kmem_alloc(sizeof (spa_config_dirent_t), 465 KM_SLEEP); 466 467 if (cachefile[0] == '\0') 468 dp->scd_path = spa_strdup(spa_config_path); 469 else if (strcmp(cachefile, "none") == 0) 470 dp->scd_path = NULL; 471 else 472 dp->scd_path = spa_strdup(cachefile); 473 474 list_insert_head(&spa->spa_config_list, dp); 475 if (need_sync) 476 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 477 } 478 479 int 480 spa_prop_set(spa_t *spa, nvlist_t *nvp) 481 { 482 int error; 483 nvpair_t *elem; 484 boolean_t need_sync = B_FALSE; 485 zpool_prop_t prop; 486 487 if ((error = spa_prop_validate(spa, nvp)) != 0) 488 return (error); 489 490 elem = NULL; 491 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 492 if ((prop = zpool_name_to_prop( 493 nvpair_name(elem))) == ZPROP_INVAL) 494 return (EINVAL); 495 496 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 497 continue; 498 499 need_sync = B_TRUE; 500 break; 501 } 502 503 if (need_sync) 504 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 505 spa, nvp, 3)); 506 else 507 return (0); 508 } 509 510 /* 511 * If the bootfs property value is dsobj, clear it. 512 */ 513 void 514 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 515 { 516 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 517 VERIFY(zap_remove(spa->spa_meta_objset, 518 spa->spa_pool_props_object, 519 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 520 spa->spa_bootfs = 0; 521 } 522 } 523 524 /* 525 * ========================================================================== 526 * SPA state manipulation (open/create/destroy/import/export) 527 * ========================================================================== 528 */ 529 530 static int 531 spa_error_entry_compare(const void *a, const void *b) 532 { 533 spa_error_entry_t *sa = (spa_error_entry_t *)a; 534 spa_error_entry_t *sb = (spa_error_entry_t *)b; 535 int ret; 536 537 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 538 sizeof (zbookmark_t)); 539 540 if (ret < 0) 541 return (-1); 542 else if (ret > 0) 543 return (1); 544 else 545 return (0); 546 } 547 548 /* 549 * Utility function which retrieves copies of the current logs and 550 * re-initializes them in the process. 551 */ 552 void 553 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 554 { 555 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 556 557 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 558 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 559 560 avl_create(&spa->spa_errlist_scrub, 561 spa_error_entry_compare, sizeof (spa_error_entry_t), 562 offsetof(spa_error_entry_t, se_avl)); 563 avl_create(&spa->spa_errlist_last, 564 spa_error_entry_compare, sizeof (spa_error_entry_t), 565 offsetof(spa_error_entry_t, se_avl)); 566 } 567 568 /* 569 * Activate an uninitialized pool. 570 */ 571 static void 572 spa_activate(spa_t *spa, int mode) 573 { 574 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 575 576 spa->spa_state = POOL_STATE_ACTIVE; 577 spa->spa_mode = mode; 578 579 spa->spa_normal_class = metaslab_class_create(zfs_metaslab_ops); 580 spa->spa_log_class = metaslab_class_create(zfs_metaslab_ops); 581 582 for (int t = 0; t < ZIO_TYPES; t++) { 583 const zio_taskq_info_t *ztip = &zio_taskqs[t]; 584 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 585 enum zti_modes mode = ztip->zti_nthreads[q].zti_mode; 586 uint_t value = ztip->zti_nthreads[q].zti_value; 587 char name[32]; 588 589 (void) snprintf(name, sizeof (name), 590 "%s_%s", ztip->zti_name, zio_taskq_types[q]); 591 592 if (mode == zti_mode_tune) { 593 mode = zio_taskq_tune_mode; 594 value = zio_taskq_tune_value; 595 if (mode == zti_mode_tune) 596 mode = zti_mode_online_percent; 597 } 598 599 switch (mode) { 600 case zti_mode_fixed: 601 ASSERT3U(value, >=, 1); 602 value = MAX(value, 1); 603 604 spa->spa_zio_taskq[t][q] = taskq_create(name, 605 value, maxclsyspri, 50, INT_MAX, 606 TASKQ_PREPOPULATE); 607 break; 608 609 case zti_mode_online_percent: 610 spa->spa_zio_taskq[t][q] = taskq_create(name, 611 value, maxclsyspri, 50, INT_MAX, 612 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 613 break; 614 615 case zti_mode_tune: 616 default: 617 panic("unrecognized mode for " 618 "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) " 619 "in spa_activate()", 620 t, q, mode, value); 621 break; 622 } 623 } 624 } 625 626 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 627 offsetof(vdev_t, vdev_config_dirty_node)); 628 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 629 offsetof(vdev_t, vdev_state_dirty_node)); 630 631 txg_list_create(&spa->spa_vdev_txg_list, 632 offsetof(struct vdev, vdev_txg_node)); 633 634 avl_create(&spa->spa_errlist_scrub, 635 spa_error_entry_compare, sizeof (spa_error_entry_t), 636 offsetof(spa_error_entry_t, se_avl)); 637 avl_create(&spa->spa_errlist_last, 638 spa_error_entry_compare, sizeof (spa_error_entry_t), 639 offsetof(spa_error_entry_t, se_avl)); 640 } 641 642 /* 643 * Opposite of spa_activate(). 644 */ 645 static void 646 spa_deactivate(spa_t *spa) 647 { 648 ASSERT(spa->spa_sync_on == B_FALSE); 649 ASSERT(spa->spa_dsl_pool == NULL); 650 ASSERT(spa->spa_root_vdev == NULL); 651 ASSERT(spa->spa_async_zio_root == NULL); 652 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 653 654 txg_list_destroy(&spa->spa_vdev_txg_list); 655 656 list_destroy(&spa->spa_config_dirty_list); 657 list_destroy(&spa->spa_state_dirty_list); 658 659 for (int t = 0; t < ZIO_TYPES; t++) { 660 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 661 taskq_destroy(spa->spa_zio_taskq[t][q]); 662 spa->spa_zio_taskq[t][q] = NULL; 663 } 664 } 665 666 metaslab_class_destroy(spa->spa_normal_class); 667 spa->spa_normal_class = NULL; 668 669 metaslab_class_destroy(spa->spa_log_class); 670 spa->spa_log_class = NULL; 671 672 /* 673 * If this was part of an import or the open otherwise failed, we may 674 * still have errors left in the queues. Empty them just in case. 675 */ 676 spa_errlog_drain(spa); 677 678 avl_destroy(&spa->spa_errlist_scrub); 679 avl_destroy(&spa->spa_errlist_last); 680 681 spa->spa_state = POOL_STATE_UNINITIALIZED; 682 } 683 684 /* 685 * Verify a pool configuration, and construct the vdev tree appropriately. This 686 * will create all the necessary vdevs in the appropriate layout, with each vdev 687 * in the CLOSED state. This will prep the pool before open/creation/import. 688 * All vdev validation is done by the vdev_alloc() routine. 689 */ 690 static int 691 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 692 uint_t id, int atype) 693 { 694 nvlist_t **child; 695 uint_t children; 696 int error; 697 698 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 699 return (error); 700 701 if ((*vdp)->vdev_ops->vdev_op_leaf) 702 return (0); 703 704 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 705 &child, &children); 706 707 if (error == ENOENT) 708 return (0); 709 710 if (error) { 711 vdev_free(*vdp); 712 *vdp = NULL; 713 return (EINVAL); 714 } 715 716 for (int c = 0; c < children; c++) { 717 vdev_t *vd; 718 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 719 atype)) != 0) { 720 vdev_free(*vdp); 721 *vdp = NULL; 722 return (error); 723 } 724 } 725 726 ASSERT(*vdp != NULL); 727 728 return (0); 729 } 730 731 /* 732 * Opposite of spa_load(). 733 */ 734 static void 735 spa_unload(spa_t *spa) 736 { 737 int i; 738 739 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 740 741 /* 742 * Stop async tasks. 743 */ 744 spa_async_suspend(spa); 745 746 /* 747 * Stop syncing. 748 */ 749 if (spa->spa_sync_on) { 750 txg_sync_stop(spa->spa_dsl_pool); 751 spa->spa_sync_on = B_FALSE; 752 } 753 754 /* 755 * Wait for any outstanding async I/O to complete. 756 */ 757 if (spa->spa_async_zio_root != NULL) { 758 (void) zio_wait(spa->spa_async_zio_root); 759 spa->spa_async_zio_root = NULL; 760 } 761 762 /* 763 * Close the dsl pool. 764 */ 765 if (spa->spa_dsl_pool) { 766 dsl_pool_close(spa->spa_dsl_pool); 767 spa->spa_dsl_pool = NULL; 768 } 769 770 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 771 772 /* 773 * Drop and purge level 2 cache 774 */ 775 spa_l2cache_drop(spa); 776 777 /* 778 * Close all vdevs. 779 */ 780 if (spa->spa_root_vdev) 781 vdev_free(spa->spa_root_vdev); 782 ASSERT(spa->spa_root_vdev == NULL); 783 784 for (i = 0; i < spa->spa_spares.sav_count; i++) 785 vdev_free(spa->spa_spares.sav_vdevs[i]); 786 if (spa->spa_spares.sav_vdevs) { 787 kmem_free(spa->spa_spares.sav_vdevs, 788 spa->spa_spares.sav_count * sizeof (void *)); 789 spa->spa_spares.sav_vdevs = NULL; 790 } 791 if (spa->spa_spares.sav_config) { 792 nvlist_free(spa->spa_spares.sav_config); 793 spa->spa_spares.sav_config = NULL; 794 } 795 spa->spa_spares.sav_count = 0; 796 797 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 798 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 799 if (spa->spa_l2cache.sav_vdevs) { 800 kmem_free(spa->spa_l2cache.sav_vdevs, 801 spa->spa_l2cache.sav_count * sizeof (void *)); 802 spa->spa_l2cache.sav_vdevs = NULL; 803 } 804 if (spa->spa_l2cache.sav_config) { 805 nvlist_free(spa->spa_l2cache.sav_config); 806 spa->spa_l2cache.sav_config = NULL; 807 } 808 spa->spa_l2cache.sav_count = 0; 809 810 spa->spa_async_suspended = 0; 811 812 spa_config_exit(spa, SCL_ALL, FTAG); 813 } 814 815 /* 816 * Load (or re-load) the current list of vdevs describing the active spares for 817 * this pool. When this is called, we have some form of basic information in 818 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 819 * then re-generate a more complete list including status information. 820 */ 821 static void 822 spa_load_spares(spa_t *spa) 823 { 824 nvlist_t **spares; 825 uint_t nspares; 826 int i; 827 vdev_t *vd, *tvd; 828 829 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 830 831 /* 832 * First, close and free any existing spare vdevs. 833 */ 834 for (i = 0; i < spa->spa_spares.sav_count; i++) { 835 vd = spa->spa_spares.sav_vdevs[i]; 836 837 /* Undo the call to spa_activate() below */ 838 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 839 B_FALSE)) != NULL && tvd->vdev_isspare) 840 spa_spare_remove(tvd); 841 vdev_close(vd); 842 vdev_free(vd); 843 } 844 845 if (spa->spa_spares.sav_vdevs) 846 kmem_free(spa->spa_spares.sav_vdevs, 847 spa->spa_spares.sav_count * sizeof (void *)); 848 849 if (spa->spa_spares.sav_config == NULL) 850 nspares = 0; 851 else 852 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 853 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 854 855 spa->spa_spares.sav_count = (int)nspares; 856 spa->spa_spares.sav_vdevs = NULL; 857 858 if (nspares == 0) 859 return; 860 861 /* 862 * Construct the array of vdevs, opening them to get status in the 863 * process. For each spare, there is potentially two different vdev_t 864 * structures associated with it: one in the list of spares (used only 865 * for basic validation purposes) and one in the active vdev 866 * configuration (if it's spared in). During this phase we open and 867 * validate each vdev on the spare list. If the vdev also exists in the 868 * active configuration, then we also mark this vdev as an active spare. 869 */ 870 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 871 KM_SLEEP); 872 for (i = 0; i < spa->spa_spares.sav_count; i++) { 873 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 874 VDEV_ALLOC_SPARE) == 0); 875 ASSERT(vd != NULL); 876 877 spa->spa_spares.sav_vdevs[i] = vd; 878 879 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 880 B_FALSE)) != NULL) { 881 if (!tvd->vdev_isspare) 882 spa_spare_add(tvd); 883 884 /* 885 * We only mark the spare active if we were successfully 886 * able to load the vdev. Otherwise, importing a pool 887 * with a bad active spare would result in strange 888 * behavior, because multiple pool would think the spare 889 * is actively in use. 890 * 891 * There is a vulnerability here to an equally bizarre 892 * circumstance, where a dead active spare is later 893 * brought back to life (onlined or otherwise). Given 894 * the rarity of this scenario, and the extra complexity 895 * it adds, we ignore the possibility. 896 */ 897 if (!vdev_is_dead(tvd)) 898 spa_spare_activate(tvd); 899 } 900 901 vd->vdev_top = vd; 902 vd->vdev_aux = &spa->spa_spares; 903 904 if (vdev_open(vd) != 0) 905 continue; 906 907 if (vdev_validate_aux(vd) == 0) 908 spa_spare_add(vd); 909 } 910 911 /* 912 * Recompute the stashed list of spares, with status information 913 * this time. 914 */ 915 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 916 DATA_TYPE_NVLIST_ARRAY) == 0); 917 918 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 919 KM_SLEEP); 920 for (i = 0; i < spa->spa_spares.sav_count; i++) 921 spares[i] = vdev_config_generate(spa, 922 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); 923 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 924 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 925 for (i = 0; i < spa->spa_spares.sav_count; i++) 926 nvlist_free(spares[i]); 927 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 928 } 929 930 /* 931 * Load (or re-load) the current list of vdevs describing the active l2cache for 932 * this pool. When this is called, we have some form of basic information in 933 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 934 * then re-generate a more complete list including status information. 935 * Devices which are already active have their details maintained, and are 936 * not re-opened. 937 */ 938 static void 939 spa_load_l2cache(spa_t *spa) 940 { 941 nvlist_t **l2cache; 942 uint_t nl2cache; 943 int i, j, oldnvdevs; 944 uint64_t guid; 945 vdev_t *vd, **oldvdevs, **newvdevs; 946 spa_aux_vdev_t *sav = &spa->spa_l2cache; 947 948 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 949 950 if (sav->sav_config != NULL) { 951 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 952 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 953 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 954 } else { 955 nl2cache = 0; 956 } 957 958 oldvdevs = sav->sav_vdevs; 959 oldnvdevs = sav->sav_count; 960 sav->sav_vdevs = NULL; 961 sav->sav_count = 0; 962 963 /* 964 * Process new nvlist of vdevs. 965 */ 966 for (i = 0; i < nl2cache; i++) { 967 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 968 &guid) == 0); 969 970 newvdevs[i] = NULL; 971 for (j = 0; j < oldnvdevs; j++) { 972 vd = oldvdevs[j]; 973 if (vd != NULL && guid == vd->vdev_guid) { 974 /* 975 * Retain previous vdev for add/remove ops. 976 */ 977 newvdevs[i] = vd; 978 oldvdevs[j] = NULL; 979 break; 980 } 981 } 982 983 if (newvdevs[i] == NULL) { 984 /* 985 * Create new vdev 986 */ 987 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 988 VDEV_ALLOC_L2CACHE) == 0); 989 ASSERT(vd != NULL); 990 newvdevs[i] = vd; 991 992 /* 993 * Commit this vdev as an l2cache device, 994 * even if it fails to open. 995 */ 996 spa_l2cache_add(vd); 997 998 vd->vdev_top = vd; 999 vd->vdev_aux = sav; 1000 1001 spa_l2cache_activate(vd); 1002 1003 if (vdev_open(vd) != 0) 1004 continue; 1005 1006 (void) vdev_validate_aux(vd); 1007 1008 if (!vdev_is_dead(vd)) 1009 l2arc_add_vdev(spa, vd); 1010 } 1011 } 1012 1013 /* 1014 * Purge vdevs that were dropped 1015 */ 1016 for (i = 0; i < oldnvdevs; i++) { 1017 uint64_t pool; 1018 1019 vd = oldvdevs[i]; 1020 if (vd != NULL) { 1021 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1022 pool != 0ULL && l2arc_vdev_present(vd)) 1023 l2arc_remove_vdev(vd); 1024 (void) vdev_close(vd); 1025 spa_l2cache_remove(vd); 1026 } 1027 } 1028 1029 if (oldvdevs) 1030 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1031 1032 if (sav->sav_config == NULL) 1033 goto out; 1034 1035 sav->sav_vdevs = newvdevs; 1036 sav->sav_count = (int)nl2cache; 1037 1038 /* 1039 * Recompute the stashed list of l2cache devices, with status 1040 * information this time. 1041 */ 1042 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1043 DATA_TYPE_NVLIST_ARRAY) == 0); 1044 1045 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1046 for (i = 0; i < sav->sav_count; i++) 1047 l2cache[i] = vdev_config_generate(spa, 1048 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); 1049 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1050 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1051 out: 1052 for (i = 0; i < sav->sav_count; i++) 1053 nvlist_free(l2cache[i]); 1054 if (sav->sav_count) 1055 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1056 } 1057 1058 static int 1059 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1060 { 1061 dmu_buf_t *db; 1062 char *packed = NULL; 1063 size_t nvsize = 0; 1064 int error; 1065 *value = NULL; 1066 1067 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1068 nvsize = *(uint64_t *)db->db_data; 1069 dmu_buf_rele(db, FTAG); 1070 1071 packed = kmem_alloc(nvsize, KM_SLEEP); 1072 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1073 DMU_READ_PREFETCH); 1074 if (error == 0) 1075 error = nvlist_unpack(packed, nvsize, value, 0); 1076 kmem_free(packed, nvsize); 1077 1078 return (error); 1079 } 1080 1081 /* 1082 * Checks to see if the given vdev could not be opened, in which case we post a 1083 * sysevent to notify the autoreplace code that the device has been removed. 1084 */ 1085 static void 1086 spa_check_removed(vdev_t *vd) 1087 { 1088 for (int c = 0; c < vd->vdev_children; c++) 1089 spa_check_removed(vd->vdev_child[c]); 1090 1091 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1092 zfs_post_autoreplace(vd->vdev_spa, vd); 1093 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1094 } 1095 } 1096 1097 /* 1098 * Load the slog device state from the config object since it's possible 1099 * that the label does not contain the most up-to-date information. 1100 */ 1101 void 1102 spa_load_log_state(spa_t *spa) 1103 { 1104 nvlist_t *nv, *nvroot, **child; 1105 uint64_t is_log; 1106 uint_t children; 1107 vdev_t *rvd = spa->spa_root_vdev; 1108 1109 VERIFY(load_nvlist(spa, spa->spa_config_object, &nv) == 0); 1110 VERIFY(nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1111 VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1112 &child, &children) == 0); 1113 1114 for (int c = 0; c < children; c++) { 1115 vdev_t *tvd = rvd->vdev_child[c]; 1116 1117 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 1118 &is_log) == 0 && is_log) 1119 vdev_load_log_state(tvd, child[c]); 1120 } 1121 nvlist_free(nv); 1122 } 1123 1124 /* 1125 * Check for missing log devices 1126 */ 1127 int 1128 spa_check_logs(spa_t *spa) 1129 { 1130 switch (spa->spa_log_state) { 1131 case SPA_LOG_MISSING: 1132 /* need to recheck in case slog has been restored */ 1133 case SPA_LOG_UNKNOWN: 1134 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1135 DS_FIND_CHILDREN)) { 1136 spa->spa_log_state = SPA_LOG_MISSING; 1137 return (1); 1138 } 1139 break; 1140 } 1141 return (0); 1142 } 1143 1144 /* 1145 * Load an existing storage pool, using the pool's builtin spa_config as a 1146 * source of configuration information. 1147 */ 1148 static int 1149 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig) 1150 { 1151 int error = 0; 1152 nvlist_t *nvroot = NULL; 1153 vdev_t *rvd; 1154 uberblock_t *ub = &spa->spa_uberblock; 1155 uint64_t config_cache_txg = spa->spa_config_txg; 1156 uint64_t pool_guid; 1157 uint64_t version; 1158 uint64_t autoreplace = 0; 1159 int orig_mode = spa->spa_mode; 1160 char *ereport = FM_EREPORT_ZFS_POOL; 1161 1162 /* 1163 * If this is an untrusted config, access the pool in read-only mode. 1164 * This prevents things like resilvering recently removed devices. 1165 */ 1166 if (!mosconfig) 1167 spa->spa_mode = FREAD; 1168 1169 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1170 1171 spa->spa_load_state = state; 1172 1173 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1174 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 1175 error = EINVAL; 1176 goto out; 1177 } 1178 1179 /* 1180 * Versioning wasn't explicitly added to the label until later, so if 1181 * it's not present treat it as the initial version. 1182 */ 1183 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0) 1184 version = SPA_VERSION_INITIAL; 1185 1186 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1187 &spa->spa_config_txg); 1188 1189 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1190 spa_guid_exists(pool_guid, 0)) { 1191 error = EEXIST; 1192 goto out; 1193 } 1194 1195 spa->spa_load_guid = pool_guid; 1196 1197 /* 1198 * Create "The Godfather" zio to hold all async IOs 1199 */ 1200 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1201 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1202 1203 /* 1204 * Parse the configuration into a vdev tree. We explicitly set the 1205 * value that will be returned by spa_version() since parsing the 1206 * configuration requires knowing the version number. 1207 */ 1208 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1209 spa->spa_ubsync.ub_version = version; 1210 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD); 1211 spa_config_exit(spa, SCL_ALL, FTAG); 1212 1213 if (error != 0) 1214 goto out; 1215 1216 ASSERT(spa->spa_root_vdev == rvd); 1217 ASSERT(spa_guid(spa) == pool_guid); 1218 1219 /* 1220 * Try to open all vdevs, loading each label in the process. 1221 */ 1222 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1223 error = vdev_open(rvd); 1224 spa_config_exit(spa, SCL_ALL, FTAG); 1225 if (error != 0) 1226 goto out; 1227 1228 /* 1229 * We need to validate the vdev labels against the configuration that 1230 * we have in hand, which is dependent on the setting of mosconfig. If 1231 * mosconfig is true then we're validating the vdev labels based on 1232 * that config. Otherwise, we're validating against the cached config 1233 * (zpool.cache) that was read when we loaded the zfs module, and then 1234 * later we will recursively call spa_load() and validate against 1235 * the vdev config. 1236 */ 1237 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1238 error = vdev_validate(rvd); 1239 spa_config_exit(spa, SCL_ALL, FTAG); 1240 if (error != 0) 1241 goto out; 1242 1243 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1244 error = ENXIO; 1245 goto out; 1246 } 1247 1248 /* 1249 * Find the best uberblock. 1250 */ 1251 vdev_uberblock_load(NULL, rvd, ub); 1252 1253 /* 1254 * If we weren't able to find a single valid uberblock, return failure. 1255 */ 1256 if (ub->ub_txg == 0) { 1257 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1258 VDEV_AUX_CORRUPT_DATA); 1259 error = ENXIO; 1260 goto out; 1261 } 1262 1263 /* 1264 * If the pool is newer than the code, we can't open it. 1265 */ 1266 if (ub->ub_version > SPA_VERSION) { 1267 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1268 VDEV_AUX_VERSION_NEWER); 1269 error = ENOTSUP; 1270 goto out; 1271 } 1272 1273 /* 1274 * If the vdev guid sum doesn't match the uberblock, we have an 1275 * incomplete configuration. 1276 */ 1277 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { 1278 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1279 VDEV_AUX_BAD_GUID_SUM); 1280 error = ENXIO; 1281 goto out; 1282 } 1283 1284 /* 1285 * Initialize internal SPA structures. 1286 */ 1287 spa->spa_state = POOL_STATE_ACTIVE; 1288 spa->spa_ubsync = spa->spa_uberblock; 1289 spa->spa_first_txg = spa_last_synced_txg(spa) + 1; 1290 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1291 if (error) { 1292 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1293 VDEV_AUX_CORRUPT_DATA); 1294 goto out; 1295 } 1296 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1297 1298 if (zap_lookup(spa->spa_meta_objset, 1299 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 1300 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) { 1301 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1302 VDEV_AUX_CORRUPT_DATA); 1303 error = EIO; 1304 goto out; 1305 } 1306 1307 if (!mosconfig) { 1308 nvlist_t *newconfig; 1309 uint64_t hostid; 1310 1311 if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) { 1312 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1313 VDEV_AUX_CORRUPT_DATA); 1314 error = EIO; 1315 goto out; 1316 } 1317 1318 if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig, 1319 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1320 char *hostname; 1321 unsigned long myhostid = 0; 1322 1323 VERIFY(nvlist_lookup_string(newconfig, 1324 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1325 1326 #ifdef _KERNEL 1327 myhostid = zone_get_hostid(NULL); 1328 #else /* _KERNEL */ 1329 /* 1330 * We're emulating the system's hostid in userland, so 1331 * we can't use zone_get_hostid(). 1332 */ 1333 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1334 #endif /* _KERNEL */ 1335 if (hostid != 0 && myhostid != 0 && 1336 hostid != myhostid) { 1337 cmn_err(CE_WARN, "pool '%s' could not be " 1338 "loaded as it was last accessed by " 1339 "another system (host: %s hostid: 0x%lx). " 1340 "See: http://www.sun.com/msg/ZFS-8000-EY", 1341 spa_name(spa), hostname, 1342 (unsigned long)hostid); 1343 error = EBADF; 1344 goto out; 1345 } 1346 } 1347 1348 spa_config_set(spa, newconfig); 1349 spa_unload(spa); 1350 spa_deactivate(spa); 1351 spa_activate(spa, orig_mode); 1352 1353 return (spa_load(spa, newconfig, state, B_TRUE)); 1354 } 1355 1356 if (zap_lookup(spa->spa_meta_objset, 1357 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 1358 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) { 1359 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1360 VDEV_AUX_CORRUPT_DATA); 1361 error = EIO; 1362 goto out; 1363 } 1364 1365 /* 1366 * Load the bit that tells us to use the new accounting function 1367 * (raid-z deflation). If we have an older pool, this will not 1368 * be present. 1369 */ 1370 error = zap_lookup(spa->spa_meta_objset, 1371 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 1372 sizeof (uint64_t), 1, &spa->spa_deflate); 1373 if (error != 0 && error != ENOENT) { 1374 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1375 VDEV_AUX_CORRUPT_DATA); 1376 error = EIO; 1377 goto out; 1378 } 1379 1380 /* 1381 * Load the persistent error log. If we have an older pool, this will 1382 * not be present. 1383 */ 1384 error = zap_lookup(spa->spa_meta_objset, 1385 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, 1386 sizeof (uint64_t), 1, &spa->spa_errlog_last); 1387 if (error != 0 && error != ENOENT) { 1388 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1389 VDEV_AUX_CORRUPT_DATA); 1390 error = EIO; 1391 goto out; 1392 } 1393 1394 error = zap_lookup(spa->spa_meta_objset, 1395 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, 1396 sizeof (uint64_t), 1, &spa->spa_errlog_scrub); 1397 if (error != 0 && error != ENOENT) { 1398 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1399 VDEV_AUX_CORRUPT_DATA); 1400 error = EIO; 1401 goto out; 1402 } 1403 1404 /* 1405 * Load the history object. If we have an older pool, this 1406 * will not be present. 1407 */ 1408 error = zap_lookup(spa->spa_meta_objset, 1409 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, 1410 sizeof (uint64_t), 1, &spa->spa_history); 1411 if (error != 0 && error != ENOENT) { 1412 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1413 VDEV_AUX_CORRUPT_DATA); 1414 error = EIO; 1415 goto out; 1416 } 1417 1418 /* 1419 * Load any hot spares for this pool. 1420 */ 1421 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1422 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object); 1423 if (error != 0 && error != ENOENT) { 1424 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1425 VDEV_AUX_CORRUPT_DATA); 1426 error = EIO; 1427 goto out; 1428 } 1429 if (error == 0) { 1430 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1431 if (load_nvlist(spa, spa->spa_spares.sav_object, 1432 &spa->spa_spares.sav_config) != 0) { 1433 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1434 VDEV_AUX_CORRUPT_DATA); 1435 error = EIO; 1436 goto out; 1437 } 1438 1439 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1440 spa_load_spares(spa); 1441 spa_config_exit(spa, SCL_ALL, FTAG); 1442 } 1443 1444 /* 1445 * Load any level 2 ARC devices for this pool. 1446 */ 1447 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1448 DMU_POOL_L2CACHE, sizeof (uint64_t), 1, 1449 &spa->spa_l2cache.sav_object); 1450 if (error != 0 && error != ENOENT) { 1451 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1452 VDEV_AUX_CORRUPT_DATA); 1453 error = EIO; 1454 goto out; 1455 } 1456 if (error == 0) { 1457 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1458 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1459 &spa->spa_l2cache.sav_config) != 0) { 1460 vdev_set_state(rvd, B_TRUE, 1461 VDEV_STATE_CANT_OPEN, 1462 VDEV_AUX_CORRUPT_DATA); 1463 error = EIO; 1464 goto out; 1465 } 1466 1467 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1468 spa_load_l2cache(spa); 1469 spa_config_exit(spa, SCL_ALL, FTAG); 1470 } 1471 1472 spa_load_log_state(spa); 1473 1474 if (spa_check_logs(spa)) { 1475 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1476 VDEV_AUX_BAD_LOG); 1477 error = ENXIO; 1478 ereport = FM_EREPORT_ZFS_LOG_REPLAY; 1479 goto out; 1480 } 1481 1482 1483 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1484 1485 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1486 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object); 1487 1488 if (error && error != ENOENT) { 1489 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1490 VDEV_AUX_CORRUPT_DATA); 1491 error = EIO; 1492 goto out; 1493 } 1494 1495 if (error == 0) { 1496 (void) zap_lookup(spa->spa_meta_objset, 1497 spa->spa_pool_props_object, 1498 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 1499 sizeof (uint64_t), 1, &spa->spa_bootfs); 1500 (void) zap_lookup(spa->spa_meta_objset, 1501 spa->spa_pool_props_object, 1502 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1503 sizeof (uint64_t), 1, &autoreplace); 1504 (void) zap_lookup(spa->spa_meta_objset, 1505 spa->spa_pool_props_object, 1506 zpool_prop_to_name(ZPOOL_PROP_DELEGATION), 1507 sizeof (uint64_t), 1, &spa->spa_delegation); 1508 (void) zap_lookup(spa->spa_meta_objset, 1509 spa->spa_pool_props_object, 1510 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), 1511 sizeof (uint64_t), 1, &spa->spa_failmode); 1512 (void) zap_lookup(spa->spa_meta_objset, 1513 spa->spa_pool_props_object, 1514 zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND), 1515 sizeof (uint64_t), 1, &spa->spa_autoexpand); 1516 } 1517 1518 /* 1519 * If the 'autoreplace' property is set, then post a resource notifying 1520 * the ZFS DE that it should not issue any faults for unopenable 1521 * devices. We also iterate over the vdevs, and post a sysevent for any 1522 * unopenable vdevs so that the normal autoreplace handler can take 1523 * over. 1524 */ 1525 if (autoreplace && state != SPA_LOAD_TRYIMPORT) 1526 spa_check_removed(spa->spa_root_vdev); 1527 1528 /* 1529 * Load the vdev state for all toplevel vdevs. 1530 */ 1531 vdev_load(rvd); 1532 1533 /* 1534 * Propagate the leaf DTLs we just loaded all the way up the tree. 1535 */ 1536 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1537 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1538 spa_config_exit(spa, SCL_ALL, FTAG); 1539 1540 /* 1541 * Check the state of the root vdev. If it can't be opened, it 1542 * indicates one or more toplevel vdevs are faulted. 1543 */ 1544 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1545 error = ENXIO; 1546 goto out; 1547 } 1548 1549 if (spa_writeable(spa)) { 1550 dmu_tx_t *tx; 1551 int need_update = B_FALSE; 1552 1553 ASSERT(state != SPA_LOAD_TRYIMPORT); 1554 1555 /* 1556 * Claim log blocks that haven't been committed yet. 1557 * This must all happen in a single txg. 1558 */ 1559 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 1560 spa_first_txg(spa)); 1561 (void) dmu_objset_find(spa_name(spa), 1562 zil_claim, tx, DS_FIND_CHILDREN); 1563 dmu_tx_commit(tx); 1564 1565 spa->spa_log_state = SPA_LOG_GOOD; 1566 spa->spa_sync_on = B_TRUE; 1567 txg_sync_start(spa->spa_dsl_pool); 1568 1569 /* 1570 * Wait for all claims to sync. 1571 */ 1572 txg_wait_synced(spa->spa_dsl_pool, 0); 1573 1574 /* 1575 * If the config cache is stale, or we have uninitialized 1576 * metaslabs (see spa_vdev_add()), then update the config. 1577 * 1578 * If spa_load_verbatim is true, trust the current 1579 * in-core spa_config and update the disk labels. 1580 */ 1581 if (config_cache_txg != spa->spa_config_txg || 1582 state == SPA_LOAD_IMPORT || spa->spa_load_verbatim) 1583 need_update = B_TRUE; 1584 1585 for (int c = 0; c < rvd->vdev_children; c++) 1586 if (rvd->vdev_child[c]->vdev_ms_array == 0) 1587 need_update = B_TRUE; 1588 1589 /* 1590 * Update the config cache asychronously in case we're the 1591 * root pool, in which case the config cache isn't writable yet. 1592 */ 1593 if (need_update) 1594 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 1595 1596 /* 1597 * Check all DTLs to see if anything needs resilvering. 1598 */ 1599 if (vdev_resilver_needed(rvd, NULL, NULL)) 1600 spa_async_request(spa, SPA_ASYNC_RESILVER); 1601 } 1602 1603 error = 0; 1604 out: 1605 spa->spa_minref = refcount_count(&spa->spa_refcount); 1606 if (error && error != EBADF) 1607 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1608 spa->spa_load_state = SPA_LOAD_NONE; 1609 spa->spa_ena = 0; 1610 1611 return (error); 1612 } 1613 1614 /* 1615 * Pool Open/Import 1616 * 1617 * The import case is identical to an open except that the configuration is sent 1618 * down from userland, instead of grabbed from the configuration cache. For the 1619 * case of an open, the pool configuration will exist in the 1620 * POOL_STATE_UNINITIALIZED state. 1621 * 1622 * The stats information (gen/count/ustats) is used to gather vdev statistics at 1623 * the same time open the pool, without having to keep around the spa_t in some 1624 * ambiguous state. 1625 */ 1626 static int 1627 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config) 1628 { 1629 spa_t *spa; 1630 int error; 1631 int locked = B_FALSE; 1632 1633 *spapp = NULL; 1634 1635 /* 1636 * As disgusting as this is, we need to support recursive calls to this 1637 * function because dsl_dir_open() is called during spa_load(), and ends 1638 * up calling spa_open() again. The real fix is to figure out how to 1639 * avoid dsl_dir_open() calling this in the first place. 1640 */ 1641 if (mutex_owner(&spa_namespace_lock) != curthread) { 1642 mutex_enter(&spa_namespace_lock); 1643 locked = B_TRUE; 1644 } 1645 1646 if ((spa = spa_lookup(pool)) == NULL) { 1647 if (locked) 1648 mutex_exit(&spa_namespace_lock); 1649 return (ENOENT); 1650 } 1651 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 1652 1653 spa_activate(spa, spa_mode_global); 1654 1655 error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE); 1656 1657 if (error == EBADF) { 1658 /* 1659 * If vdev_validate() returns failure (indicated by 1660 * EBADF), it indicates that one of the vdevs indicates 1661 * that the pool has been exported or destroyed. If 1662 * this is the case, the config cache is out of sync and 1663 * we should remove the pool from the namespace. 1664 */ 1665 spa_unload(spa); 1666 spa_deactivate(spa); 1667 spa_config_sync(spa, B_TRUE, B_TRUE); 1668 spa_remove(spa); 1669 if (locked) 1670 mutex_exit(&spa_namespace_lock); 1671 return (ENOENT); 1672 } 1673 1674 if (error) { 1675 /* 1676 * We can't open the pool, but we still have useful 1677 * information: the state of each vdev after the 1678 * attempted vdev_open(). Return this to the user. 1679 */ 1680 if (config != NULL && spa->spa_root_vdev != NULL) 1681 *config = spa_config_generate(spa, NULL, -1ULL, 1682 B_TRUE); 1683 spa_unload(spa); 1684 spa_deactivate(spa); 1685 spa->spa_last_open_failed = B_TRUE; 1686 if (locked) 1687 mutex_exit(&spa_namespace_lock); 1688 *spapp = NULL; 1689 return (error); 1690 } else { 1691 spa->spa_last_open_failed = B_FALSE; 1692 } 1693 } 1694 1695 spa_open_ref(spa, tag); 1696 1697 if (locked) 1698 mutex_exit(&spa_namespace_lock); 1699 1700 *spapp = spa; 1701 1702 if (config != NULL) 1703 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 1704 1705 return (0); 1706 } 1707 1708 int 1709 spa_open(const char *name, spa_t **spapp, void *tag) 1710 { 1711 return (spa_open_common(name, spapp, tag, NULL)); 1712 } 1713 1714 /* 1715 * Lookup the given spa_t, incrementing the inject count in the process, 1716 * preventing it from being exported or destroyed. 1717 */ 1718 spa_t * 1719 spa_inject_addref(char *name) 1720 { 1721 spa_t *spa; 1722 1723 mutex_enter(&spa_namespace_lock); 1724 if ((spa = spa_lookup(name)) == NULL) { 1725 mutex_exit(&spa_namespace_lock); 1726 return (NULL); 1727 } 1728 spa->spa_inject_ref++; 1729 mutex_exit(&spa_namespace_lock); 1730 1731 return (spa); 1732 } 1733 1734 void 1735 spa_inject_delref(spa_t *spa) 1736 { 1737 mutex_enter(&spa_namespace_lock); 1738 spa->spa_inject_ref--; 1739 mutex_exit(&spa_namespace_lock); 1740 } 1741 1742 /* 1743 * Add spares device information to the nvlist. 1744 */ 1745 static void 1746 spa_add_spares(spa_t *spa, nvlist_t *config) 1747 { 1748 nvlist_t **spares; 1749 uint_t i, nspares; 1750 nvlist_t *nvroot; 1751 uint64_t guid; 1752 vdev_stat_t *vs; 1753 uint_t vsc; 1754 uint64_t pool; 1755 1756 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 1757 1758 if (spa->spa_spares.sav_count == 0) 1759 return; 1760 1761 VERIFY(nvlist_lookup_nvlist(config, 1762 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1763 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1764 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1765 if (nspares != 0) { 1766 VERIFY(nvlist_add_nvlist_array(nvroot, 1767 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1768 VERIFY(nvlist_lookup_nvlist_array(nvroot, 1769 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1770 1771 /* 1772 * Go through and find any spares which have since been 1773 * repurposed as an active spare. If this is the case, update 1774 * their status appropriately. 1775 */ 1776 for (i = 0; i < nspares; i++) { 1777 VERIFY(nvlist_lookup_uint64(spares[i], 1778 ZPOOL_CONFIG_GUID, &guid) == 0); 1779 if (spa_spare_exists(guid, &pool, NULL) && 1780 pool != 0ULL) { 1781 VERIFY(nvlist_lookup_uint64_array( 1782 spares[i], ZPOOL_CONFIG_STATS, 1783 (uint64_t **)&vs, &vsc) == 0); 1784 vs->vs_state = VDEV_STATE_CANT_OPEN; 1785 vs->vs_aux = VDEV_AUX_SPARED; 1786 } 1787 } 1788 } 1789 } 1790 1791 /* 1792 * Add l2cache device information to the nvlist, including vdev stats. 1793 */ 1794 static void 1795 spa_add_l2cache(spa_t *spa, nvlist_t *config) 1796 { 1797 nvlist_t **l2cache; 1798 uint_t i, j, nl2cache; 1799 nvlist_t *nvroot; 1800 uint64_t guid; 1801 vdev_t *vd; 1802 vdev_stat_t *vs; 1803 uint_t vsc; 1804 1805 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 1806 1807 if (spa->spa_l2cache.sav_count == 0) 1808 return; 1809 1810 VERIFY(nvlist_lookup_nvlist(config, 1811 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1812 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 1813 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1814 if (nl2cache != 0) { 1815 VERIFY(nvlist_add_nvlist_array(nvroot, 1816 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 1817 VERIFY(nvlist_lookup_nvlist_array(nvroot, 1818 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1819 1820 /* 1821 * Update level 2 cache device stats. 1822 */ 1823 1824 for (i = 0; i < nl2cache; i++) { 1825 VERIFY(nvlist_lookup_uint64(l2cache[i], 1826 ZPOOL_CONFIG_GUID, &guid) == 0); 1827 1828 vd = NULL; 1829 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 1830 if (guid == 1831 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 1832 vd = spa->spa_l2cache.sav_vdevs[j]; 1833 break; 1834 } 1835 } 1836 ASSERT(vd != NULL); 1837 1838 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 1839 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); 1840 vdev_get_stats(vd, vs); 1841 } 1842 } 1843 } 1844 1845 int 1846 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 1847 { 1848 int error; 1849 spa_t *spa; 1850 1851 *config = NULL; 1852 error = spa_open_common(name, &spa, FTAG, config); 1853 1854 if (spa != NULL) { 1855 /* 1856 * This still leaves a window of inconsistency where the spares 1857 * or l2cache devices could change and the config would be 1858 * self-inconsistent. 1859 */ 1860 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1861 1862 if (*config != NULL) { 1863 VERIFY(nvlist_add_uint64(*config, 1864 ZPOOL_CONFIG_ERRCOUNT, 1865 spa_get_errlog_size(spa)) == 0); 1866 1867 if (spa_suspended(spa)) 1868 VERIFY(nvlist_add_uint64(*config, 1869 ZPOOL_CONFIG_SUSPENDED, 1870 spa->spa_failmode) == 0); 1871 1872 spa_add_spares(spa, *config); 1873 spa_add_l2cache(spa, *config); 1874 } 1875 } 1876 1877 /* 1878 * We want to get the alternate root even for faulted pools, so we cheat 1879 * and call spa_lookup() directly. 1880 */ 1881 if (altroot) { 1882 if (spa == NULL) { 1883 mutex_enter(&spa_namespace_lock); 1884 spa = spa_lookup(name); 1885 if (spa) 1886 spa_altroot(spa, altroot, buflen); 1887 else 1888 altroot[0] = '\0'; 1889 spa = NULL; 1890 mutex_exit(&spa_namespace_lock); 1891 } else { 1892 spa_altroot(spa, altroot, buflen); 1893 } 1894 } 1895 1896 if (spa != NULL) { 1897 spa_config_exit(spa, SCL_CONFIG, FTAG); 1898 spa_close(spa, FTAG); 1899 } 1900 1901 return (error); 1902 } 1903 1904 /* 1905 * Validate that the auxiliary device array is well formed. We must have an 1906 * array of nvlists, each which describes a valid leaf vdev. If this is an 1907 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 1908 * specified, as long as they are well-formed. 1909 */ 1910 static int 1911 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 1912 spa_aux_vdev_t *sav, const char *config, uint64_t version, 1913 vdev_labeltype_t label) 1914 { 1915 nvlist_t **dev; 1916 uint_t i, ndev; 1917 vdev_t *vd; 1918 int error; 1919 1920 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1921 1922 /* 1923 * It's acceptable to have no devs specified. 1924 */ 1925 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 1926 return (0); 1927 1928 if (ndev == 0) 1929 return (EINVAL); 1930 1931 /* 1932 * Make sure the pool is formatted with a version that supports this 1933 * device type. 1934 */ 1935 if (spa_version(spa) < version) 1936 return (ENOTSUP); 1937 1938 /* 1939 * Set the pending device list so we correctly handle device in-use 1940 * checking. 1941 */ 1942 sav->sav_pending = dev; 1943 sav->sav_npending = ndev; 1944 1945 for (i = 0; i < ndev; i++) { 1946 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 1947 mode)) != 0) 1948 goto out; 1949 1950 if (!vd->vdev_ops->vdev_op_leaf) { 1951 vdev_free(vd); 1952 error = EINVAL; 1953 goto out; 1954 } 1955 1956 /* 1957 * The L2ARC currently only supports disk devices in 1958 * kernel context. For user-level testing, we allow it. 1959 */ 1960 #ifdef _KERNEL 1961 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 1962 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 1963 error = ENOTBLK; 1964 goto out; 1965 } 1966 #endif 1967 vd->vdev_top = vd; 1968 1969 if ((error = vdev_open(vd)) == 0 && 1970 (error = vdev_label_init(vd, crtxg, label)) == 0) { 1971 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 1972 vd->vdev_guid) == 0); 1973 } 1974 1975 vdev_free(vd); 1976 1977 if (error && 1978 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 1979 goto out; 1980 else 1981 error = 0; 1982 } 1983 1984 out: 1985 sav->sav_pending = NULL; 1986 sav->sav_npending = 0; 1987 return (error); 1988 } 1989 1990 static int 1991 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 1992 { 1993 int error; 1994 1995 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1996 1997 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 1998 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 1999 VDEV_LABEL_SPARE)) != 0) { 2000 return (error); 2001 } 2002 2003 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2004 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2005 VDEV_LABEL_L2CACHE)); 2006 } 2007 2008 static void 2009 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2010 const char *config) 2011 { 2012 int i; 2013 2014 if (sav->sav_config != NULL) { 2015 nvlist_t **olddevs; 2016 uint_t oldndevs; 2017 nvlist_t **newdevs; 2018 2019 /* 2020 * Generate new dev list by concatentating with the 2021 * current dev list. 2022 */ 2023 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2024 &olddevs, &oldndevs) == 0); 2025 2026 newdevs = kmem_alloc(sizeof (void *) * 2027 (ndevs + oldndevs), KM_SLEEP); 2028 for (i = 0; i < oldndevs; i++) 2029 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2030 KM_SLEEP) == 0); 2031 for (i = 0; i < ndevs; i++) 2032 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2033 KM_SLEEP) == 0); 2034 2035 VERIFY(nvlist_remove(sav->sav_config, config, 2036 DATA_TYPE_NVLIST_ARRAY) == 0); 2037 2038 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2039 config, newdevs, ndevs + oldndevs) == 0); 2040 for (i = 0; i < oldndevs + ndevs; i++) 2041 nvlist_free(newdevs[i]); 2042 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2043 } else { 2044 /* 2045 * Generate a new dev list. 2046 */ 2047 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2048 KM_SLEEP) == 0); 2049 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2050 devs, ndevs) == 0); 2051 } 2052 } 2053 2054 /* 2055 * Stop and drop level 2 ARC devices 2056 */ 2057 void 2058 spa_l2cache_drop(spa_t *spa) 2059 { 2060 vdev_t *vd; 2061 int i; 2062 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2063 2064 for (i = 0; i < sav->sav_count; i++) { 2065 uint64_t pool; 2066 2067 vd = sav->sav_vdevs[i]; 2068 ASSERT(vd != NULL); 2069 2070 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2071 pool != 0ULL && l2arc_vdev_present(vd)) 2072 l2arc_remove_vdev(vd); 2073 if (vd->vdev_isl2cache) 2074 spa_l2cache_remove(vd); 2075 vdev_clear_stats(vd); 2076 (void) vdev_close(vd); 2077 } 2078 } 2079 2080 /* 2081 * Pool Creation 2082 */ 2083 int 2084 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2085 const char *history_str, nvlist_t *zplprops) 2086 { 2087 spa_t *spa; 2088 char *altroot = NULL; 2089 vdev_t *rvd; 2090 dsl_pool_t *dp; 2091 dmu_tx_t *tx; 2092 int error = 0; 2093 uint64_t txg = TXG_INITIAL; 2094 nvlist_t **spares, **l2cache; 2095 uint_t nspares, nl2cache; 2096 uint64_t version; 2097 2098 /* 2099 * If this pool already exists, return failure. 2100 */ 2101 mutex_enter(&spa_namespace_lock); 2102 if (spa_lookup(pool) != NULL) { 2103 mutex_exit(&spa_namespace_lock); 2104 return (EEXIST); 2105 } 2106 2107 /* 2108 * Allocate a new spa_t structure. 2109 */ 2110 (void) nvlist_lookup_string(props, 2111 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2112 spa = spa_add(pool, altroot); 2113 spa_activate(spa, spa_mode_global); 2114 2115 spa->spa_uberblock.ub_txg = txg - 1; 2116 2117 if (props && (error = spa_prop_validate(spa, props))) { 2118 spa_deactivate(spa); 2119 spa_remove(spa); 2120 mutex_exit(&spa_namespace_lock); 2121 return (error); 2122 } 2123 2124 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2125 &version) != 0) 2126 version = SPA_VERSION; 2127 ASSERT(version <= SPA_VERSION); 2128 spa->spa_uberblock.ub_version = version; 2129 spa->spa_ubsync = spa->spa_uberblock; 2130 2131 /* 2132 * Create "The Godfather" zio to hold all async IOs 2133 */ 2134 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2135 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2136 2137 /* 2138 * Create the root vdev. 2139 */ 2140 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2141 2142 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2143 2144 ASSERT(error != 0 || rvd != NULL); 2145 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2146 2147 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2148 error = EINVAL; 2149 2150 if (error == 0 && 2151 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2152 (error = spa_validate_aux(spa, nvroot, txg, 2153 VDEV_ALLOC_ADD)) == 0) { 2154 for (int c = 0; c < rvd->vdev_children; c++) { 2155 vdev_metaslab_set_size(rvd->vdev_child[c]); 2156 vdev_expand(rvd->vdev_child[c], txg); 2157 } 2158 } 2159 2160 spa_config_exit(spa, SCL_ALL, FTAG); 2161 2162 if (error != 0) { 2163 spa_unload(spa); 2164 spa_deactivate(spa); 2165 spa_remove(spa); 2166 mutex_exit(&spa_namespace_lock); 2167 return (error); 2168 } 2169 2170 /* 2171 * Get the list of spares, if specified. 2172 */ 2173 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2174 &spares, &nspares) == 0) { 2175 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2176 KM_SLEEP) == 0); 2177 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2178 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2179 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2180 spa_load_spares(spa); 2181 spa_config_exit(spa, SCL_ALL, FTAG); 2182 spa->spa_spares.sav_sync = B_TRUE; 2183 } 2184 2185 /* 2186 * Get the list of level 2 cache devices, if specified. 2187 */ 2188 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2189 &l2cache, &nl2cache) == 0) { 2190 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2191 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2192 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2193 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2194 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2195 spa_load_l2cache(spa); 2196 spa_config_exit(spa, SCL_ALL, FTAG); 2197 spa->spa_l2cache.sav_sync = B_TRUE; 2198 } 2199 2200 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2201 spa->spa_meta_objset = dp->dp_meta_objset; 2202 2203 tx = dmu_tx_create_assigned(dp, txg); 2204 2205 /* 2206 * Create the pool config object. 2207 */ 2208 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2209 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2210 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2211 2212 if (zap_add(spa->spa_meta_objset, 2213 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2214 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2215 cmn_err(CE_PANIC, "failed to add pool config"); 2216 } 2217 2218 /* Newly created pools with the right version are always deflated. */ 2219 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2220 spa->spa_deflate = TRUE; 2221 if (zap_add(spa->spa_meta_objset, 2222 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2223 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2224 cmn_err(CE_PANIC, "failed to add deflate"); 2225 } 2226 } 2227 2228 /* 2229 * Create the deferred-free bplist object. Turn off compression 2230 * because sync-to-convergence takes longer if the blocksize 2231 * keeps changing. 2232 */ 2233 spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset, 2234 1 << 14, tx); 2235 dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 2236 ZIO_COMPRESS_OFF, tx); 2237 2238 if (zap_add(spa->spa_meta_objset, 2239 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 2240 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) { 2241 cmn_err(CE_PANIC, "failed to add bplist"); 2242 } 2243 2244 /* 2245 * Create the pool's history object. 2246 */ 2247 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2248 spa_history_create_obj(spa, tx); 2249 2250 /* 2251 * Set pool properties. 2252 */ 2253 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2254 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2255 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2256 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 2257 if (props != NULL) { 2258 spa_configfile_set(spa, props, B_FALSE); 2259 spa_sync_props(spa, props, CRED(), tx); 2260 } 2261 2262 dmu_tx_commit(tx); 2263 2264 spa->spa_sync_on = B_TRUE; 2265 txg_sync_start(spa->spa_dsl_pool); 2266 2267 /* 2268 * We explicitly wait for the first transaction to complete so that our 2269 * bean counters are appropriately updated. 2270 */ 2271 txg_wait_synced(spa->spa_dsl_pool, txg); 2272 2273 spa_config_sync(spa, B_FALSE, B_TRUE); 2274 2275 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2276 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2277 spa_history_log_version(spa, LOG_POOL_CREATE); 2278 2279 spa->spa_minref = refcount_count(&spa->spa_refcount); 2280 2281 mutex_exit(&spa_namespace_lock); 2282 2283 return (0); 2284 } 2285 2286 #ifdef _KERNEL 2287 /* 2288 * Get the root pool information from the root disk, then import the root pool 2289 * during the system boot up time. 2290 */ 2291 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 2292 2293 static nvlist_t * 2294 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 2295 { 2296 nvlist_t *config; 2297 nvlist_t *nvtop, *nvroot; 2298 uint64_t pgid; 2299 2300 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 2301 return (NULL); 2302 2303 /* 2304 * Add this top-level vdev to the child array. 2305 */ 2306 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2307 &nvtop) == 0); 2308 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 2309 &pgid) == 0); 2310 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 2311 2312 /* 2313 * Put this pool's top-level vdevs into a root vdev. 2314 */ 2315 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2316 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 2317 VDEV_TYPE_ROOT) == 0); 2318 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2319 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2320 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2321 &nvtop, 1) == 0); 2322 2323 /* 2324 * Replace the existing vdev_tree with the new root vdev in 2325 * this pool's configuration (remove the old, add the new). 2326 */ 2327 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2328 nvlist_free(nvroot); 2329 return (config); 2330 } 2331 2332 /* 2333 * Walk the vdev tree and see if we can find a device with "better" 2334 * configuration. A configuration is "better" if the label on that 2335 * device has a more recent txg. 2336 */ 2337 static void 2338 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 2339 { 2340 for (int c = 0; c < vd->vdev_children; c++) 2341 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 2342 2343 if (vd->vdev_ops->vdev_op_leaf) { 2344 nvlist_t *label; 2345 uint64_t label_txg; 2346 2347 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 2348 &label) != 0) 2349 return; 2350 2351 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 2352 &label_txg) == 0); 2353 2354 /* 2355 * Do we have a better boot device? 2356 */ 2357 if (label_txg > *txg) { 2358 *txg = label_txg; 2359 *avd = vd; 2360 } 2361 nvlist_free(label); 2362 } 2363 } 2364 2365 /* 2366 * Import a root pool. 2367 * 2368 * For x86. devpath_list will consist of devid and/or physpath name of 2369 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2370 * The GRUB "findroot" command will return the vdev we should boot. 2371 * 2372 * For Sparc, devpath_list consists the physpath name of the booting device 2373 * no matter the rootpool is a single device pool or a mirrored pool. 2374 * e.g. 2375 * "/pci@1f,0/ide@d/disk@0,0:a" 2376 */ 2377 int 2378 spa_import_rootpool(char *devpath, char *devid) 2379 { 2380 spa_t *spa; 2381 vdev_t *rvd, *bvd, *avd = NULL; 2382 nvlist_t *config, *nvtop; 2383 uint64_t guid, txg; 2384 char *pname; 2385 int error; 2386 2387 /* 2388 * Read the label from the boot device and generate a configuration. 2389 */ 2390 if ((config = spa_generate_rootconf(devpath, devid, &guid)) == NULL) { 2391 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 2392 devpath); 2393 return (EIO); 2394 } 2395 2396 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 2397 &pname) == 0); 2398 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 2399 2400 mutex_enter(&spa_namespace_lock); 2401 if ((spa = spa_lookup(pname)) != NULL) { 2402 /* 2403 * Remove the existing root pool from the namespace so that we 2404 * can replace it with the correct config we just read in. 2405 */ 2406 spa_remove(spa); 2407 } 2408 2409 spa = spa_add(pname, NULL); 2410 spa->spa_is_root = B_TRUE; 2411 spa->spa_load_verbatim = B_TRUE; 2412 2413 /* 2414 * Build up a vdev tree based on the boot device's label config. 2415 */ 2416 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2417 &nvtop) == 0); 2418 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2419 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 2420 VDEV_ALLOC_ROOTPOOL); 2421 spa_config_exit(spa, SCL_ALL, FTAG); 2422 if (error) { 2423 mutex_exit(&spa_namespace_lock); 2424 nvlist_free(config); 2425 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 2426 pname); 2427 return (error); 2428 } 2429 2430 /* 2431 * Get the boot vdev. 2432 */ 2433 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 2434 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 2435 (u_longlong_t)guid); 2436 error = ENOENT; 2437 goto out; 2438 } 2439 2440 /* 2441 * Determine if there is a better boot device. 2442 */ 2443 avd = bvd; 2444 spa_alt_rootvdev(rvd, &avd, &txg); 2445 if (avd != bvd) { 2446 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 2447 "try booting from '%s'", avd->vdev_path); 2448 error = EINVAL; 2449 goto out; 2450 } 2451 2452 /* 2453 * If the boot device is part of a spare vdev then ensure that 2454 * we're booting off the active spare. 2455 */ 2456 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 2457 !bvd->vdev_isspare) { 2458 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 2459 "try booting from '%s'", 2460 bvd->vdev_parent->vdev_child[1]->vdev_path); 2461 error = EINVAL; 2462 goto out; 2463 } 2464 2465 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 2466 error = 0; 2467 spa_history_log_version(spa, LOG_POOL_IMPORT); 2468 out: 2469 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2470 vdev_free(rvd); 2471 spa_config_exit(spa, SCL_ALL, FTAG); 2472 mutex_exit(&spa_namespace_lock); 2473 2474 nvlist_free(config); 2475 return (error); 2476 } 2477 2478 #endif 2479 2480 /* 2481 * Take a pool and insert it into the namespace as if it had been loaded at 2482 * boot. 2483 */ 2484 int 2485 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props) 2486 { 2487 spa_t *spa; 2488 char *altroot = NULL; 2489 2490 mutex_enter(&spa_namespace_lock); 2491 if (spa_lookup(pool) != NULL) { 2492 mutex_exit(&spa_namespace_lock); 2493 return (EEXIST); 2494 } 2495 2496 (void) nvlist_lookup_string(props, 2497 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2498 spa = spa_add(pool, altroot); 2499 2500 spa->spa_load_verbatim = B_TRUE; 2501 2502 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 2503 2504 if (props != NULL) 2505 spa_configfile_set(spa, props, B_FALSE); 2506 2507 spa_config_sync(spa, B_FALSE, B_TRUE); 2508 2509 mutex_exit(&spa_namespace_lock); 2510 spa_history_log_version(spa, LOG_POOL_IMPORT); 2511 2512 return (0); 2513 } 2514 2515 /* 2516 * Import a non-root pool into the system. 2517 */ 2518 int 2519 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 2520 { 2521 spa_t *spa; 2522 char *altroot = NULL; 2523 int error; 2524 nvlist_t *nvroot; 2525 nvlist_t **spares, **l2cache; 2526 uint_t nspares, nl2cache; 2527 2528 /* 2529 * If a pool with this name exists, return failure. 2530 */ 2531 mutex_enter(&spa_namespace_lock); 2532 if ((spa = spa_lookup(pool)) != NULL) { 2533 mutex_exit(&spa_namespace_lock); 2534 return (EEXIST); 2535 } 2536 2537 /* 2538 * Create and initialize the spa structure. 2539 */ 2540 (void) nvlist_lookup_string(props, 2541 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2542 spa = spa_add(pool, altroot); 2543 spa_activate(spa, spa_mode_global); 2544 2545 /* 2546 * Don't start async tasks until we know everything is healthy. 2547 */ 2548 spa_async_suspend(spa); 2549 2550 /* 2551 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 2552 * because the user-supplied config is actually the one to trust when 2553 * doing an import. 2554 */ 2555 error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE); 2556 2557 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2558 /* 2559 * Toss any existing sparelist, as it doesn't have any validity 2560 * anymore, and conflicts with spa_has_spare(). 2561 */ 2562 if (spa->spa_spares.sav_config) { 2563 nvlist_free(spa->spa_spares.sav_config); 2564 spa->spa_spares.sav_config = NULL; 2565 spa_load_spares(spa); 2566 } 2567 if (spa->spa_l2cache.sav_config) { 2568 nvlist_free(spa->spa_l2cache.sav_config); 2569 spa->spa_l2cache.sav_config = NULL; 2570 spa_load_l2cache(spa); 2571 } 2572 2573 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2574 &nvroot) == 0); 2575 if (error == 0) 2576 error = spa_validate_aux(spa, nvroot, -1ULL, 2577 VDEV_ALLOC_SPARE); 2578 if (error == 0) 2579 error = spa_validate_aux(spa, nvroot, -1ULL, 2580 VDEV_ALLOC_L2CACHE); 2581 spa_config_exit(spa, SCL_ALL, FTAG); 2582 2583 if (props != NULL) 2584 spa_configfile_set(spa, props, B_FALSE); 2585 2586 if (error != 0 || (props && spa_writeable(spa) && 2587 (error = spa_prop_set(spa, props)))) { 2588 spa_unload(spa); 2589 spa_deactivate(spa); 2590 spa_remove(spa); 2591 mutex_exit(&spa_namespace_lock); 2592 return (error); 2593 } 2594 2595 spa_async_resume(spa); 2596 2597 /* 2598 * Override any spares and level 2 cache devices as specified by 2599 * the user, as these may have correct device names/devids, etc. 2600 */ 2601 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2602 &spares, &nspares) == 0) { 2603 if (spa->spa_spares.sav_config) 2604 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 2605 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 2606 else 2607 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 2608 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2609 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2610 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2611 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2612 spa_load_spares(spa); 2613 spa_config_exit(spa, SCL_ALL, FTAG); 2614 spa->spa_spares.sav_sync = B_TRUE; 2615 } 2616 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2617 &l2cache, &nl2cache) == 0) { 2618 if (spa->spa_l2cache.sav_config) 2619 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 2620 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 2621 else 2622 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2623 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2624 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2625 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2626 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2627 spa_load_l2cache(spa); 2628 spa_config_exit(spa, SCL_ALL, FTAG); 2629 spa->spa_l2cache.sav_sync = B_TRUE; 2630 } 2631 2632 if (spa_writeable(spa)) { 2633 /* 2634 * Update the config cache to include the newly-imported pool. 2635 */ 2636 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2637 } 2638 2639 /* 2640 * It's possible that the pool was expanded while it was exported. 2641 * We kick off an async task to handle this for us. 2642 */ 2643 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 2644 2645 mutex_exit(&spa_namespace_lock); 2646 spa_history_log_version(spa, LOG_POOL_IMPORT); 2647 2648 return (0); 2649 } 2650 2651 2652 /* 2653 * This (illegal) pool name is used when temporarily importing a spa_t in order 2654 * to get the vdev stats associated with the imported devices. 2655 */ 2656 #define TRYIMPORT_NAME "$import" 2657 2658 nvlist_t * 2659 spa_tryimport(nvlist_t *tryconfig) 2660 { 2661 nvlist_t *config = NULL; 2662 char *poolname; 2663 spa_t *spa; 2664 uint64_t state; 2665 int error; 2666 2667 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 2668 return (NULL); 2669 2670 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 2671 return (NULL); 2672 2673 /* 2674 * Create and initialize the spa structure. 2675 */ 2676 mutex_enter(&spa_namespace_lock); 2677 spa = spa_add(TRYIMPORT_NAME, NULL); 2678 spa_activate(spa, FREAD); 2679 2680 /* 2681 * Pass off the heavy lifting to spa_load(). 2682 * Pass TRUE for mosconfig because the user-supplied config 2683 * is actually the one to trust when doing an import. 2684 */ 2685 error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE); 2686 2687 /* 2688 * If 'tryconfig' was at least parsable, return the current config. 2689 */ 2690 if (spa->spa_root_vdev != NULL) { 2691 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2692 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 2693 poolname) == 0); 2694 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 2695 state) == 0); 2696 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 2697 spa->spa_uberblock.ub_timestamp) == 0); 2698 2699 /* 2700 * If the bootfs property exists on this pool then we 2701 * copy it out so that external consumers can tell which 2702 * pools are bootable. 2703 */ 2704 if ((!error || error == EEXIST) && spa->spa_bootfs) { 2705 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2706 2707 /* 2708 * We have to play games with the name since the 2709 * pool was opened as TRYIMPORT_NAME. 2710 */ 2711 if (dsl_dsobj_to_dsname(spa_name(spa), 2712 spa->spa_bootfs, tmpname) == 0) { 2713 char *cp; 2714 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2715 2716 cp = strchr(tmpname, '/'); 2717 if (cp == NULL) { 2718 (void) strlcpy(dsname, tmpname, 2719 MAXPATHLEN); 2720 } else { 2721 (void) snprintf(dsname, MAXPATHLEN, 2722 "%s/%s", poolname, ++cp); 2723 } 2724 VERIFY(nvlist_add_string(config, 2725 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 2726 kmem_free(dsname, MAXPATHLEN); 2727 } 2728 kmem_free(tmpname, MAXPATHLEN); 2729 } 2730 2731 /* 2732 * Add the list of hot spares and level 2 cache devices. 2733 */ 2734 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2735 spa_add_spares(spa, config); 2736 spa_add_l2cache(spa, config); 2737 spa_config_exit(spa, SCL_CONFIG, FTAG); 2738 } 2739 2740 spa_unload(spa); 2741 spa_deactivate(spa); 2742 spa_remove(spa); 2743 mutex_exit(&spa_namespace_lock); 2744 2745 return (config); 2746 } 2747 2748 /* 2749 * Pool export/destroy 2750 * 2751 * The act of destroying or exporting a pool is very simple. We make sure there 2752 * is no more pending I/O and any references to the pool are gone. Then, we 2753 * update the pool state and sync all the labels to disk, removing the 2754 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 2755 * we don't sync the labels or remove the configuration cache. 2756 */ 2757 static int 2758 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 2759 boolean_t force, boolean_t hardforce) 2760 { 2761 spa_t *spa; 2762 2763 if (oldconfig) 2764 *oldconfig = NULL; 2765 2766 if (!(spa_mode_global & FWRITE)) 2767 return (EROFS); 2768 2769 mutex_enter(&spa_namespace_lock); 2770 if ((spa = spa_lookup(pool)) == NULL) { 2771 mutex_exit(&spa_namespace_lock); 2772 return (ENOENT); 2773 } 2774 2775 /* 2776 * Put a hold on the pool, drop the namespace lock, stop async tasks, 2777 * reacquire the namespace lock, and see if we can export. 2778 */ 2779 spa_open_ref(spa, FTAG); 2780 mutex_exit(&spa_namespace_lock); 2781 spa_async_suspend(spa); 2782 mutex_enter(&spa_namespace_lock); 2783 spa_close(spa, FTAG); 2784 2785 /* 2786 * The pool will be in core if it's openable, 2787 * in which case we can modify its state. 2788 */ 2789 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 2790 /* 2791 * Objsets may be open only because they're dirty, so we 2792 * have to force it to sync before checking spa_refcnt. 2793 */ 2794 txg_wait_synced(spa->spa_dsl_pool, 0); 2795 2796 /* 2797 * A pool cannot be exported or destroyed if there are active 2798 * references. If we are resetting a pool, allow references by 2799 * fault injection handlers. 2800 */ 2801 if (!spa_refcount_zero(spa) || 2802 (spa->spa_inject_ref != 0 && 2803 new_state != POOL_STATE_UNINITIALIZED)) { 2804 spa_async_resume(spa); 2805 mutex_exit(&spa_namespace_lock); 2806 return (EBUSY); 2807 } 2808 2809 /* 2810 * A pool cannot be exported if it has an active shared spare. 2811 * This is to prevent other pools stealing the active spare 2812 * from an exported pool. At user's own will, such pool can 2813 * be forcedly exported. 2814 */ 2815 if (!force && new_state == POOL_STATE_EXPORTED && 2816 spa_has_active_shared_spare(spa)) { 2817 spa_async_resume(spa); 2818 mutex_exit(&spa_namespace_lock); 2819 return (EXDEV); 2820 } 2821 2822 /* 2823 * We want this to be reflected on every label, 2824 * so mark them all dirty. spa_unload() will do the 2825 * final sync that pushes these changes out. 2826 */ 2827 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 2828 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2829 spa->spa_state = new_state; 2830 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 2831 vdev_config_dirty(spa->spa_root_vdev); 2832 spa_config_exit(spa, SCL_ALL, FTAG); 2833 } 2834 } 2835 2836 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 2837 2838 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 2839 spa_unload(spa); 2840 spa_deactivate(spa); 2841 } 2842 2843 if (oldconfig && spa->spa_config) 2844 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 2845 2846 if (new_state != POOL_STATE_UNINITIALIZED) { 2847 if (!hardforce) 2848 spa_config_sync(spa, B_TRUE, B_TRUE); 2849 spa_remove(spa); 2850 } 2851 mutex_exit(&spa_namespace_lock); 2852 2853 return (0); 2854 } 2855 2856 /* 2857 * Destroy a storage pool. 2858 */ 2859 int 2860 spa_destroy(char *pool) 2861 { 2862 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 2863 B_FALSE, B_FALSE)); 2864 } 2865 2866 /* 2867 * Export a storage pool. 2868 */ 2869 int 2870 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 2871 boolean_t hardforce) 2872 { 2873 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 2874 force, hardforce)); 2875 } 2876 2877 /* 2878 * Similar to spa_export(), this unloads the spa_t without actually removing it 2879 * from the namespace in any way. 2880 */ 2881 int 2882 spa_reset(char *pool) 2883 { 2884 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 2885 B_FALSE, B_FALSE)); 2886 } 2887 2888 /* 2889 * ========================================================================== 2890 * Device manipulation 2891 * ========================================================================== 2892 */ 2893 2894 /* 2895 * Add a device to a storage pool. 2896 */ 2897 int 2898 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 2899 { 2900 uint64_t txg; 2901 int error; 2902 vdev_t *rvd = spa->spa_root_vdev; 2903 vdev_t *vd, *tvd; 2904 nvlist_t **spares, **l2cache; 2905 uint_t nspares, nl2cache; 2906 2907 txg = spa_vdev_enter(spa); 2908 2909 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 2910 VDEV_ALLOC_ADD)) != 0) 2911 return (spa_vdev_exit(spa, NULL, txg, error)); 2912 2913 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 2914 2915 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 2916 &nspares) != 0) 2917 nspares = 0; 2918 2919 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 2920 &nl2cache) != 0) 2921 nl2cache = 0; 2922 2923 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 2924 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 2925 2926 if (vd->vdev_children != 0 && 2927 (error = vdev_create(vd, txg, B_FALSE)) != 0) 2928 return (spa_vdev_exit(spa, vd, txg, error)); 2929 2930 /* 2931 * We must validate the spares and l2cache devices after checking the 2932 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 2933 */ 2934 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 2935 return (spa_vdev_exit(spa, vd, txg, error)); 2936 2937 /* 2938 * Transfer each new top-level vdev from vd to rvd. 2939 */ 2940 for (int c = 0; c < vd->vdev_children; c++) { 2941 tvd = vd->vdev_child[c]; 2942 vdev_remove_child(vd, tvd); 2943 tvd->vdev_id = rvd->vdev_children; 2944 vdev_add_child(rvd, tvd); 2945 vdev_config_dirty(tvd); 2946 } 2947 2948 if (nspares != 0) { 2949 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 2950 ZPOOL_CONFIG_SPARES); 2951 spa_load_spares(spa); 2952 spa->spa_spares.sav_sync = B_TRUE; 2953 } 2954 2955 if (nl2cache != 0) { 2956 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 2957 ZPOOL_CONFIG_L2CACHE); 2958 spa_load_l2cache(spa); 2959 spa->spa_l2cache.sav_sync = B_TRUE; 2960 } 2961 2962 /* 2963 * We have to be careful when adding new vdevs to an existing pool. 2964 * If other threads start allocating from these vdevs before we 2965 * sync the config cache, and we lose power, then upon reboot we may 2966 * fail to open the pool because there are DVAs that the config cache 2967 * can't translate. Therefore, we first add the vdevs without 2968 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 2969 * and then let spa_config_update() initialize the new metaslabs. 2970 * 2971 * spa_load() checks for added-but-not-initialized vdevs, so that 2972 * if we lose power at any point in this sequence, the remaining 2973 * steps will be completed the next time we load the pool. 2974 */ 2975 (void) spa_vdev_exit(spa, vd, txg, 0); 2976 2977 mutex_enter(&spa_namespace_lock); 2978 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2979 mutex_exit(&spa_namespace_lock); 2980 2981 return (0); 2982 } 2983 2984 /* 2985 * Attach a device to a mirror. The arguments are the path to any device 2986 * in the mirror, and the nvroot for the new device. If the path specifies 2987 * a device that is not mirrored, we automatically insert the mirror vdev. 2988 * 2989 * If 'replacing' is specified, the new device is intended to replace the 2990 * existing device; in this case the two devices are made into their own 2991 * mirror using the 'replacing' vdev, which is functionally identical to 2992 * the mirror vdev (it actually reuses all the same ops) but has a few 2993 * extra rules: you can't attach to it after it's been created, and upon 2994 * completion of resilvering, the first disk (the one being replaced) 2995 * is automatically detached. 2996 */ 2997 int 2998 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 2999 { 3000 uint64_t txg, open_txg; 3001 vdev_t *rvd = spa->spa_root_vdev; 3002 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3003 vdev_ops_t *pvops; 3004 char *oldvdpath, *newvdpath; 3005 int newvd_isspare; 3006 int error; 3007 3008 txg = spa_vdev_enter(spa); 3009 3010 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3011 3012 if (oldvd == NULL) 3013 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3014 3015 if (!oldvd->vdev_ops->vdev_op_leaf) 3016 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3017 3018 pvd = oldvd->vdev_parent; 3019 3020 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3021 VDEV_ALLOC_ADD)) != 0) 3022 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3023 3024 if (newrootvd->vdev_children != 1) 3025 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3026 3027 newvd = newrootvd->vdev_child[0]; 3028 3029 if (!newvd->vdev_ops->vdev_op_leaf) 3030 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3031 3032 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3033 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3034 3035 /* 3036 * Spares can't replace logs 3037 */ 3038 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3039 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3040 3041 if (!replacing) { 3042 /* 3043 * For attach, the only allowable parent is a mirror or the root 3044 * vdev. 3045 */ 3046 if (pvd->vdev_ops != &vdev_mirror_ops && 3047 pvd->vdev_ops != &vdev_root_ops) 3048 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3049 3050 pvops = &vdev_mirror_ops; 3051 } else { 3052 /* 3053 * Active hot spares can only be replaced by inactive hot 3054 * spares. 3055 */ 3056 if (pvd->vdev_ops == &vdev_spare_ops && 3057 pvd->vdev_child[1] == oldvd && 3058 !spa_has_spare(spa, newvd->vdev_guid)) 3059 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3060 3061 /* 3062 * If the source is a hot spare, and the parent isn't already a 3063 * spare, then we want to create a new hot spare. Otherwise, we 3064 * want to create a replacing vdev. The user is not allowed to 3065 * attach to a spared vdev child unless the 'isspare' state is 3066 * the same (spare replaces spare, non-spare replaces 3067 * non-spare). 3068 */ 3069 if (pvd->vdev_ops == &vdev_replacing_ops) 3070 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3071 else if (pvd->vdev_ops == &vdev_spare_ops && 3072 newvd->vdev_isspare != oldvd->vdev_isspare) 3073 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3074 else if (pvd->vdev_ops != &vdev_spare_ops && 3075 newvd->vdev_isspare) 3076 pvops = &vdev_spare_ops; 3077 else 3078 pvops = &vdev_replacing_ops; 3079 } 3080 3081 /* 3082 * Make sure the new device is big enough. 3083 */ 3084 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3085 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3086 3087 /* 3088 * The new device cannot have a higher alignment requirement 3089 * than the top-level vdev. 3090 */ 3091 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3092 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3093 3094 /* 3095 * If this is an in-place replacement, update oldvd's path and devid 3096 * to make it distinguishable from newvd, and unopenable from now on. 3097 */ 3098 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3099 spa_strfree(oldvd->vdev_path); 3100 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3101 KM_SLEEP); 3102 (void) sprintf(oldvd->vdev_path, "%s/%s", 3103 newvd->vdev_path, "old"); 3104 if (oldvd->vdev_devid != NULL) { 3105 spa_strfree(oldvd->vdev_devid); 3106 oldvd->vdev_devid = NULL; 3107 } 3108 } 3109 3110 /* 3111 * If the parent is not a mirror, or if we're replacing, insert the new 3112 * mirror/replacing/spare vdev above oldvd. 3113 */ 3114 if (pvd->vdev_ops != pvops) 3115 pvd = vdev_add_parent(oldvd, pvops); 3116 3117 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3118 ASSERT(pvd->vdev_ops == pvops); 3119 ASSERT(oldvd->vdev_parent == pvd); 3120 3121 /* 3122 * Extract the new device from its root and add it to pvd. 3123 */ 3124 vdev_remove_child(newrootvd, newvd); 3125 newvd->vdev_id = pvd->vdev_children; 3126 vdev_add_child(pvd, newvd); 3127 3128 tvd = newvd->vdev_top; 3129 ASSERT(pvd->vdev_top == tvd); 3130 ASSERT(tvd->vdev_parent == rvd); 3131 3132 vdev_config_dirty(tvd); 3133 3134 /* 3135 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 3136 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 3137 */ 3138 open_txg = txg + TXG_CONCURRENT_STATES - 1; 3139 3140 vdev_dtl_dirty(newvd, DTL_MISSING, 3141 TXG_INITIAL, open_txg - TXG_INITIAL + 1); 3142 3143 if (newvd->vdev_isspare) { 3144 spa_spare_activate(newvd); 3145 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3146 } 3147 3148 oldvdpath = spa_strdup(oldvd->vdev_path); 3149 newvdpath = spa_strdup(newvd->vdev_path); 3150 newvd_isspare = newvd->vdev_isspare; 3151 3152 /* 3153 * Mark newvd's DTL dirty in this txg. 3154 */ 3155 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3156 3157 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 3158 3159 spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL, 3160 CRED(), "%s vdev=%s %s vdev=%s", 3161 replacing && newvd_isspare ? "spare in" : 3162 replacing ? "replace" : "attach", newvdpath, 3163 replacing ? "for" : "to", oldvdpath); 3164 3165 spa_strfree(oldvdpath); 3166 spa_strfree(newvdpath); 3167 3168 /* 3169 * Kick off a resilver to update newvd. 3170 */ 3171 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 3172 3173 return (0); 3174 } 3175 3176 /* 3177 * Detach a device from a mirror or replacing vdev. 3178 * If 'replace_done' is specified, only detach if the parent 3179 * is a replacing vdev. 3180 */ 3181 int 3182 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3183 { 3184 uint64_t txg; 3185 int error; 3186 vdev_t *rvd = spa->spa_root_vdev; 3187 vdev_t *vd, *pvd, *cvd, *tvd; 3188 boolean_t unspare = B_FALSE; 3189 uint64_t unspare_guid; 3190 size_t len; 3191 3192 txg = spa_vdev_enter(spa); 3193 3194 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3195 3196 if (vd == NULL) 3197 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3198 3199 if (!vd->vdev_ops->vdev_op_leaf) 3200 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3201 3202 pvd = vd->vdev_parent; 3203 3204 /* 3205 * If the parent/child relationship is not as expected, don't do it. 3206 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3207 * vdev that's replacing B with C. The user's intent in replacing 3208 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3209 * the replace by detaching C, the expected behavior is to end up 3210 * M(A,B). But suppose that right after deciding to detach C, 3211 * the replacement of B completes. We would have M(A,C), and then 3212 * ask to detach C, which would leave us with just A -- not what 3213 * the user wanted. To prevent this, we make sure that the 3214 * parent/child relationship hasn't changed -- in this example, 3215 * that C's parent is still the replacing vdev R. 3216 */ 3217 if (pvd->vdev_guid != pguid && pguid != 0) 3218 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3219 3220 /* 3221 * If replace_done is specified, only remove this device if it's 3222 * the first child of a replacing vdev. For the 'spare' vdev, either 3223 * disk can be removed. 3224 */ 3225 if (replace_done) { 3226 if (pvd->vdev_ops == &vdev_replacing_ops) { 3227 if (vd->vdev_id != 0) 3228 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3229 } else if (pvd->vdev_ops != &vdev_spare_ops) { 3230 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3231 } 3232 } 3233 3234 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 3235 spa_version(spa) >= SPA_VERSION_SPARES); 3236 3237 /* 3238 * Only mirror, replacing, and spare vdevs support detach. 3239 */ 3240 if (pvd->vdev_ops != &vdev_replacing_ops && 3241 pvd->vdev_ops != &vdev_mirror_ops && 3242 pvd->vdev_ops != &vdev_spare_ops) 3243 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3244 3245 /* 3246 * If this device has the only valid copy of some data, 3247 * we cannot safely detach it. 3248 */ 3249 if (vdev_dtl_required(vd)) 3250 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3251 3252 ASSERT(pvd->vdev_children >= 2); 3253 3254 /* 3255 * If we are detaching the second disk from a replacing vdev, then 3256 * check to see if we changed the original vdev's path to have "/old" 3257 * at the end in spa_vdev_attach(). If so, undo that change now. 3258 */ 3259 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3260 pvd->vdev_child[0]->vdev_path != NULL && 3261 pvd->vdev_child[1]->vdev_path != NULL) { 3262 ASSERT(pvd->vdev_child[1] == vd); 3263 cvd = pvd->vdev_child[0]; 3264 len = strlen(vd->vdev_path); 3265 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3266 strcmp(cvd->vdev_path + len, "/old") == 0) { 3267 spa_strfree(cvd->vdev_path); 3268 cvd->vdev_path = spa_strdup(vd->vdev_path); 3269 } 3270 } 3271 3272 /* 3273 * If we are detaching the original disk from a spare, then it implies 3274 * that the spare should become a real disk, and be removed from the 3275 * active spare list for the pool. 3276 */ 3277 if (pvd->vdev_ops == &vdev_spare_ops && 3278 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 3279 unspare = B_TRUE; 3280 3281 /* 3282 * Erase the disk labels so the disk can be used for other things. 3283 * This must be done after all other error cases are handled, 3284 * but before we disembowel vd (so we can still do I/O to it). 3285 * But if we can't do it, don't treat the error as fatal -- 3286 * it may be that the unwritability of the disk is the reason 3287 * it's being detached! 3288 */ 3289 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3290 3291 /* 3292 * Remove vd from its parent and compact the parent's children. 3293 */ 3294 vdev_remove_child(pvd, vd); 3295 vdev_compact_children(pvd); 3296 3297 /* 3298 * Remember one of the remaining children so we can get tvd below. 3299 */ 3300 cvd = pvd->vdev_child[0]; 3301 3302 /* 3303 * If we need to remove the remaining child from the list of hot spares, 3304 * do it now, marking the vdev as no longer a spare in the process. 3305 * We must do this before vdev_remove_parent(), because that can 3306 * change the GUID if it creates a new toplevel GUID. For a similar 3307 * reason, we must remove the spare now, in the same txg as the detach; 3308 * otherwise someone could attach a new sibling, change the GUID, and 3309 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 3310 */ 3311 if (unspare) { 3312 ASSERT(cvd->vdev_isspare); 3313 spa_spare_remove(cvd); 3314 unspare_guid = cvd->vdev_guid; 3315 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3316 } 3317 3318 /* 3319 * If the parent mirror/replacing vdev only has one child, 3320 * the parent is no longer needed. Remove it from the tree. 3321 */ 3322 if (pvd->vdev_children == 1) 3323 vdev_remove_parent(cvd); 3324 3325 /* 3326 * We don't set tvd until now because the parent we just removed 3327 * may have been the previous top-level vdev. 3328 */ 3329 tvd = cvd->vdev_top; 3330 ASSERT(tvd->vdev_parent == rvd); 3331 3332 /* 3333 * Reevaluate the parent vdev state. 3334 */ 3335 vdev_propagate_state(cvd); 3336 3337 /* 3338 * If the 'autoexpand' property is set on the pool then automatically 3339 * try to expand the size of the pool. For example if the device we 3340 * just detached was smaller than the others, it may be possible to 3341 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 3342 * first so that we can obtain the updated sizes of the leaf vdevs. 3343 */ 3344 if (spa->spa_autoexpand) { 3345 vdev_reopen(tvd); 3346 vdev_expand(tvd, txg); 3347 } 3348 3349 vdev_config_dirty(tvd); 3350 3351 /* 3352 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 3353 * vd->vdev_detached is set and free vd's DTL object in syncing context. 3354 * But first make sure we're not on any *other* txg's DTL list, to 3355 * prevent vd from being accessed after it's freed. 3356 */ 3357 for (int t = 0; t < TXG_SIZE; t++) 3358 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 3359 vd->vdev_detached = B_TRUE; 3360 vdev_dirty(tvd, VDD_DTL, vd, txg); 3361 3362 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 3363 3364 error = spa_vdev_exit(spa, vd, txg, 0); 3365 3366 /* 3367 * If this was the removal of the original device in a hot spare vdev, 3368 * then we want to go through and remove the device from the hot spare 3369 * list of every other pool. 3370 */ 3371 if (unspare) { 3372 spa_t *myspa = spa; 3373 spa = NULL; 3374 mutex_enter(&spa_namespace_lock); 3375 while ((spa = spa_next(spa)) != NULL) { 3376 if (spa->spa_state != POOL_STATE_ACTIVE) 3377 continue; 3378 if (spa == myspa) 3379 continue; 3380 spa_open_ref(spa, FTAG); 3381 mutex_exit(&spa_namespace_lock); 3382 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3383 mutex_enter(&spa_namespace_lock); 3384 spa_close(spa, FTAG); 3385 } 3386 mutex_exit(&spa_namespace_lock); 3387 } 3388 3389 return (error); 3390 } 3391 3392 static nvlist_t * 3393 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 3394 { 3395 for (int i = 0; i < count; i++) { 3396 uint64_t guid; 3397 3398 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 3399 &guid) == 0); 3400 3401 if (guid == target_guid) 3402 return (nvpp[i]); 3403 } 3404 3405 return (NULL); 3406 } 3407 3408 static void 3409 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 3410 nvlist_t *dev_to_remove) 3411 { 3412 nvlist_t **newdev = NULL; 3413 3414 if (count > 1) 3415 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 3416 3417 for (int i = 0, j = 0; i < count; i++) { 3418 if (dev[i] == dev_to_remove) 3419 continue; 3420 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 3421 } 3422 3423 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 3424 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 3425 3426 for (int i = 0; i < count - 1; i++) 3427 nvlist_free(newdev[i]); 3428 3429 if (count > 1) 3430 kmem_free(newdev, (count - 1) * sizeof (void *)); 3431 } 3432 3433 /* 3434 * Remove a device from the pool. Currently, this supports removing only hot 3435 * spares and level 2 ARC devices. 3436 */ 3437 int 3438 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 3439 { 3440 vdev_t *vd; 3441 nvlist_t **spares, **l2cache, *nv; 3442 uint_t nspares, nl2cache; 3443 uint64_t txg = 0; 3444 int error = 0; 3445 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 3446 3447 if (!locked) 3448 txg = spa_vdev_enter(spa); 3449 3450 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3451 3452 if (spa->spa_spares.sav_vdevs != NULL && 3453 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3454 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 3455 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 3456 /* 3457 * Only remove the hot spare if it's not currently in use 3458 * in this pool. 3459 */ 3460 if (vd == NULL || unspare) { 3461 spa_vdev_remove_aux(spa->spa_spares.sav_config, 3462 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 3463 spa_load_spares(spa); 3464 spa->spa_spares.sav_sync = B_TRUE; 3465 } else { 3466 error = EBUSY; 3467 } 3468 } else if (spa->spa_l2cache.sav_vdevs != NULL && 3469 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3470 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 3471 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 3472 /* 3473 * Cache devices can always be removed. 3474 */ 3475 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 3476 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 3477 spa_load_l2cache(spa); 3478 spa->spa_l2cache.sav_sync = B_TRUE; 3479 } else if (vd != NULL) { 3480 /* 3481 * Normal vdevs cannot be removed (yet). 3482 */ 3483 error = ENOTSUP; 3484 } else { 3485 /* 3486 * There is no vdev of any kind with the specified guid. 3487 */ 3488 error = ENOENT; 3489 } 3490 3491 if (!locked) 3492 return (spa_vdev_exit(spa, NULL, txg, error)); 3493 3494 return (error); 3495 } 3496 3497 /* 3498 * Find any device that's done replacing, or a vdev marked 'unspare' that's 3499 * current spared, so we can detach it. 3500 */ 3501 static vdev_t * 3502 spa_vdev_resilver_done_hunt(vdev_t *vd) 3503 { 3504 vdev_t *newvd, *oldvd; 3505 3506 for (int c = 0; c < vd->vdev_children; c++) { 3507 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 3508 if (oldvd != NULL) 3509 return (oldvd); 3510 } 3511 3512 /* 3513 * Check for a completed replacement. 3514 */ 3515 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 3516 oldvd = vd->vdev_child[0]; 3517 newvd = vd->vdev_child[1]; 3518 3519 if (vdev_dtl_empty(newvd, DTL_MISSING) && 3520 !vdev_dtl_required(oldvd)) 3521 return (oldvd); 3522 } 3523 3524 /* 3525 * Check for a completed resilver with the 'unspare' flag set. 3526 */ 3527 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 3528 newvd = vd->vdev_child[0]; 3529 oldvd = vd->vdev_child[1]; 3530 3531 if (newvd->vdev_unspare && 3532 vdev_dtl_empty(newvd, DTL_MISSING) && 3533 !vdev_dtl_required(oldvd)) { 3534 newvd->vdev_unspare = 0; 3535 return (oldvd); 3536 } 3537 } 3538 3539 return (NULL); 3540 } 3541 3542 static void 3543 spa_vdev_resilver_done(spa_t *spa) 3544 { 3545 vdev_t *vd, *pvd, *ppvd; 3546 uint64_t guid, sguid, pguid, ppguid; 3547 3548 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3549 3550 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 3551 pvd = vd->vdev_parent; 3552 ppvd = pvd->vdev_parent; 3553 guid = vd->vdev_guid; 3554 pguid = pvd->vdev_guid; 3555 ppguid = ppvd->vdev_guid; 3556 sguid = 0; 3557 /* 3558 * If we have just finished replacing a hot spared device, then 3559 * we need to detach the parent's first child (the original hot 3560 * spare) as well. 3561 */ 3562 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 3563 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 3564 ASSERT(ppvd->vdev_children == 2); 3565 sguid = ppvd->vdev_child[1]->vdev_guid; 3566 } 3567 spa_config_exit(spa, SCL_ALL, FTAG); 3568 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 3569 return; 3570 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 3571 return; 3572 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3573 } 3574 3575 spa_config_exit(spa, SCL_ALL, FTAG); 3576 } 3577 3578 /* 3579 * Update the stored path or FRU for this vdev. Dirty the vdev configuration, 3580 * relying on spa_vdev_enter/exit() to synchronize the labels and cache. 3581 */ 3582 int 3583 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 3584 boolean_t ispath) 3585 { 3586 vdev_t *vd; 3587 uint64_t txg; 3588 3589 txg = spa_vdev_enter(spa); 3590 3591 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3592 return (spa_vdev_exit(spa, NULL, txg, ENOENT)); 3593 3594 if (!vd->vdev_ops->vdev_op_leaf) 3595 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3596 3597 if (ispath) { 3598 spa_strfree(vd->vdev_path); 3599 vd->vdev_path = spa_strdup(value); 3600 } else { 3601 if (vd->vdev_fru != NULL) 3602 spa_strfree(vd->vdev_fru); 3603 vd->vdev_fru = spa_strdup(value); 3604 } 3605 3606 vdev_config_dirty(vd->vdev_top); 3607 3608 return (spa_vdev_exit(spa, NULL, txg, 0)); 3609 } 3610 3611 int 3612 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 3613 { 3614 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 3615 } 3616 3617 int 3618 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 3619 { 3620 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 3621 } 3622 3623 /* 3624 * ========================================================================== 3625 * SPA Scrubbing 3626 * ========================================================================== 3627 */ 3628 3629 int 3630 spa_scrub(spa_t *spa, pool_scrub_type_t type) 3631 { 3632 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 3633 3634 if ((uint_t)type >= POOL_SCRUB_TYPES) 3635 return (ENOTSUP); 3636 3637 /* 3638 * If a resilver was requested, but there is no DTL on a 3639 * writeable leaf device, we have nothing to do. 3640 */ 3641 if (type == POOL_SCRUB_RESILVER && 3642 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 3643 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 3644 return (0); 3645 } 3646 3647 if (type == POOL_SCRUB_EVERYTHING && 3648 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE && 3649 spa->spa_dsl_pool->dp_scrub_isresilver) 3650 return (EBUSY); 3651 3652 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) { 3653 return (dsl_pool_scrub_clean(spa->spa_dsl_pool)); 3654 } else if (type == POOL_SCRUB_NONE) { 3655 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool)); 3656 } else { 3657 return (EINVAL); 3658 } 3659 } 3660 3661 /* 3662 * ========================================================================== 3663 * SPA async task processing 3664 * ========================================================================== 3665 */ 3666 3667 static void 3668 spa_async_remove(spa_t *spa, vdev_t *vd) 3669 { 3670 if (vd->vdev_remove_wanted) { 3671 vd->vdev_remove_wanted = 0; 3672 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 3673 vdev_clear(spa, vd); 3674 vdev_state_dirty(vd->vdev_top); 3675 } 3676 3677 for (int c = 0; c < vd->vdev_children; c++) 3678 spa_async_remove(spa, vd->vdev_child[c]); 3679 } 3680 3681 static void 3682 spa_async_probe(spa_t *spa, vdev_t *vd) 3683 { 3684 if (vd->vdev_probe_wanted) { 3685 vd->vdev_probe_wanted = 0; 3686 vdev_reopen(vd); /* vdev_open() does the actual probe */ 3687 } 3688 3689 for (int c = 0; c < vd->vdev_children; c++) 3690 spa_async_probe(spa, vd->vdev_child[c]); 3691 } 3692 3693 static void 3694 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 3695 { 3696 sysevent_id_t eid; 3697 nvlist_t *attr; 3698 char *physpath; 3699 3700 if (!spa->spa_autoexpand) 3701 return; 3702 3703 for (int c = 0; c < vd->vdev_children; c++) { 3704 vdev_t *cvd = vd->vdev_child[c]; 3705 spa_async_autoexpand(spa, cvd); 3706 } 3707 3708 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 3709 return; 3710 3711 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 3712 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 3713 3714 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3715 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 3716 3717 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 3718 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 3719 3720 nvlist_free(attr); 3721 kmem_free(physpath, MAXPATHLEN); 3722 } 3723 3724 static void 3725 spa_async_thread(spa_t *spa) 3726 { 3727 int tasks; 3728 3729 ASSERT(spa->spa_sync_on); 3730 3731 mutex_enter(&spa->spa_async_lock); 3732 tasks = spa->spa_async_tasks; 3733 spa->spa_async_tasks = 0; 3734 mutex_exit(&spa->spa_async_lock); 3735 3736 /* 3737 * See if the config needs to be updated. 3738 */ 3739 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 3740 uint64_t oldsz, space_update; 3741 3742 mutex_enter(&spa_namespace_lock); 3743 oldsz = spa_get_space(spa); 3744 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3745 space_update = spa_get_space(spa) - oldsz; 3746 mutex_exit(&spa_namespace_lock); 3747 3748 /* 3749 * If the pool grew as a result of the config update, 3750 * then log an internal history event. 3751 */ 3752 if (space_update) { 3753 spa_history_internal_log(LOG_POOL_VDEV_ONLINE, 3754 spa, NULL, CRED(), 3755 "pool '%s' size: %llu(+%llu)", 3756 spa_name(spa), spa_get_space(spa), 3757 space_update); 3758 } 3759 } 3760 3761 /* 3762 * See if any devices need to be marked REMOVED. 3763 */ 3764 if (tasks & SPA_ASYNC_REMOVE) { 3765 spa_vdev_state_enter(spa); 3766 spa_async_remove(spa, spa->spa_root_vdev); 3767 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 3768 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 3769 for (int i = 0; i < spa->spa_spares.sav_count; i++) 3770 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 3771 (void) spa_vdev_state_exit(spa, NULL, 0); 3772 } 3773 3774 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 3775 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3776 spa_async_autoexpand(spa, spa->spa_root_vdev); 3777 spa_config_exit(spa, SCL_CONFIG, FTAG); 3778 } 3779 3780 /* 3781 * See if any devices need to be probed. 3782 */ 3783 if (tasks & SPA_ASYNC_PROBE) { 3784 spa_vdev_state_enter(spa); 3785 spa_async_probe(spa, spa->spa_root_vdev); 3786 (void) spa_vdev_state_exit(spa, NULL, 0); 3787 } 3788 3789 /* 3790 * If any devices are done replacing, detach them. 3791 */ 3792 if (tasks & SPA_ASYNC_RESILVER_DONE) 3793 spa_vdev_resilver_done(spa); 3794 3795 /* 3796 * Kick off a resilver. 3797 */ 3798 if (tasks & SPA_ASYNC_RESILVER) 3799 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0); 3800 3801 /* 3802 * Let the world know that we're done. 3803 */ 3804 mutex_enter(&spa->spa_async_lock); 3805 spa->spa_async_thread = NULL; 3806 cv_broadcast(&spa->spa_async_cv); 3807 mutex_exit(&spa->spa_async_lock); 3808 thread_exit(); 3809 } 3810 3811 void 3812 spa_async_suspend(spa_t *spa) 3813 { 3814 mutex_enter(&spa->spa_async_lock); 3815 spa->spa_async_suspended++; 3816 while (spa->spa_async_thread != NULL) 3817 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 3818 mutex_exit(&spa->spa_async_lock); 3819 } 3820 3821 void 3822 spa_async_resume(spa_t *spa) 3823 { 3824 mutex_enter(&spa->spa_async_lock); 3825 ASSERT(spa->spa_async_suspended != 0); 3826 spa->spa_async_suspended--; 3827 mutex_exit(&spa->spa_async_lock); 3828 } 3829 3830 static void 3831 spa_async_dispatch(spa_t *spa) 3832 { 3833 mutex_enter(&spa->spa_async_lock); 3834 if (spa->spa_async_tasks && !spa->spa_async_suspended && 3835 spa->spa_async_thread == NULL && 3836 rootdir != NULL && !vn_is_readonly(rootdir)) 3837 spa->spa_async_thread = thread_create(NULL, 0, 3838 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 3839 mutex_exit(&spa->spa_async_lock); 3840 } 3841 3842 void 3843 spa_async_request(spa_t *spa, int task) 3844 { 3845 mutex_enter(&spa->spa_async_lock); 3846 spa->spa_async_tasks |= task; 3847 mutex_exit(&spa->spa_async_lock); 3848 } 3849 3850 /* 3851 * ========================================================================== 3852 * SPA syncing routines 3853 * ========================================================================== 3854 */ 3855 3856 static void 3857 spa_sync_deferred_frees(spa_t *spa, uint64_t txg) 3858 { 3859 bplist_t *bpl = &spa->spa_sync_bplist; 3860 dmu_tx_t *tx; 3861 blkptr_t blk; 3862 uint64_t itor = 0; 3863 zio_t *zio; 3864 int error; 3865 uint8_t c = 1; 3866 3867 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 3868 3869 while (bplist_iterate(bpl, &itor, &blk) == 0) { 3870 ASSERT(blk.blk_birth < txg); 3871 zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL, 3872 ZIO_FLAG_MUSTSUCCEED)); 3873 } 3874 3875 error = zio_wait(zio); 3876 ASSERT3U(error, ==, 0); 3877 3878 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3879 bplist_vacate(bpl, tx); 3880 3881 /* 3882 * Pre-dirty the first block so we sync to convergence faster. 3883 * (Usually only the first block is needed.) 3884 */ 3885 dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx); 3886 dmu_tx_commit(tx); 3887 } 3888 3889 static void 3890 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 3891 { 3892 char *packed = NULL; 3893 size_t bufsize; 3894 size_t nvsize = 0; 3895 dmu_buf_t *db; 3896 3897 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 3898 3899 /* 3900 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 3901 * information. This avoids the dbuf_will_dirty() path and 3902 * saves us a pre-read to get data we don't actually care about. 3903 */ 3904 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 3905 packed = kmem_alloc(bufsize, KM_SLEEP); 3906 3907 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 3908 KM_SLEEP) == 0); 3909 bzero(packed + nvsize, bufsize - nvsize); 3910 3911 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 3912 3913 kmem_free(packed, bufsize); 3914 3915 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 3916 dmu_buf_will_dirty(db, tx); 3917 *(uint64_t *)db->db_data = nvsize; 3918 dmu_buf_rele(db, FTAG); 3919 } 3920 3921 static void 3922 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 3923 const char *config, const char *entry) 3924 { 3925 nvlist_t *nvroot; 3926 nvlist_t **list; 3927 int i; 3928 3929 if (!sav->sav_sync) 3930 return; 3931 3932 /* 3933 * Update the MOS nvlist describing the list of available devices. 3934 * spa_validate_aux() will have already made sure this nvlist is 3935 * valid and the vdevs are labeled appropriately. 3936 */ 3937 if (sav->sav_object == 0) { 3938 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 3939 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 3940 sizeof (uint64_t), tx); 3941 VERIFY(zap_update(spa->spa_meta_objset, 3942 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 3943 &sav->sav_object, tx) == 0); 3944 } 3945 3946 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3947 if (sav->sav_count == 0) { 3948 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 3949 } else { 3950 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 3951 for (i = 0; i < sav->sav_count; i++) 3952 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 3953 B_FALSE, B_FALSE, B_TRUE); 3954 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 3955 sav->sav_count) == 0); 3956 for (i = 0; i < sav->sav_count; i++) 3957 nvlist_free(list[i]); 3958 kmem_free(list, sav->sav_count * sizeof (void *)); 3959 } 3960 3961 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 3962 nvlist_free(nvroot); 3963 3964 sav->sav_sync = B_FALSE; 3965 } 3966 3967 static void 3968 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 3969 { 3970 nvlist_t *config; 3971 3972 if (list_is_empty(&spa->spa_config_dirty_list)) 3973 return; 3974 3975 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 3976 3977 config = spa_config_generate(spa, spa->spa_root_vdev, 3978 dmu_tx_get_txg(tx), B_FALSE); 3979 3980 spa_config_exit(spa, SCL_STATE, FTAG); 3981 3982 if (spa->spa_config_syncing) 3983 nvlist_free(spa->spa_config_syncing); 3984 spa->spa_config_syncing = config; 3985 3986 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 3987 } 3988 3989 /* 3990 * Set zpool properties. 3991 */ 3992 static void 3993 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 3994 { 3995 spa_t *spa = arg1; 3996 objset_t *mos = spa->spa_meta_objset; 3997 nvlist_t *nvp = arg2; 3998 nvpair_t *elem; 3999 uint64_t intval; 4000 char *strval; 4001 zpool_prop_t prop; 4002 const char *propname; 4003 zprop_type_t proptype; 4004 4005 mutex_enter(&spa->spa_props_lock); 4006 4007 elem = NULL; 4008 while ((elem = nvlist_next_nvpair(nvp, elem))) { 4009 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 4010 case ZPOOL_PROP_VERSION: 4011 /* 4012 * Only set version for non-zpool-creation cases 4013 * (set/import). spa_create() needs special care 4014 * for version setting. 4015 */ 4016 if (tx->tx_txg != TXG_INITIAL) { 4017 VERIFY(nvpair_value_uint64(elem, 4018 &intval) == 0); 4019 ASSERT(intval <= SPA_VERSION); 4020 ASSERT(intval >= spa_version(spa)); 4021 spa->spa_uberblock.ub_version = intval; 4022 vdev_config_dirty(spa->spa_root_vdev); 4023 } 4024 break; 4025 4026 case ZPOOL_PROP_ALTROOT: 4027 /* 4028 * 'altroot' is a non-persistent property. It should 4029 * have been set temporarily at creation or import time. 4030 */ 4031 ASSERT(spa->spa_root != NULL); 4032 break; 4033 4034 case ZPOOL_PROP_CACHEFILE: 4035 /* 4036 * 'cachefile' is also a non-persisitent property. 4037 */ 4038 break; 4039 default: 4040 /* 4041 * Set pool property values in the poolprops mos object. 4042 */ 4043 if (spa->spa_pool_props_object == 0) { 4044 objset_t *mos = spa->spa_meta_objset; 4045 4046 VERIFY((spa->spa_pool_props_object = 4047 zap_create(mos, DMU_OT_POOL_PROPS, 4048 DMU_OT_NONE, 0, tx)) > 0); 4049 4050 VERIFY(zap_update(mos, 4051 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 4052 8, 1, &spa->spa_pool_props_object, tx) 4053 == 0); 4054 } 4055 4056 /* normalize the property name */ 4057 propname = zpool_prop_to_name(prop); 4058 proptype = zpool_prop_get_type(prop); 4059 4060 if (nvpair_type(elem) == DATA_TYPE_STRING) { 4061 ASSERT(proptype == PROP_TYPE_STRING); 4062 VERIFY(nvpair_value_string(elem, &strval) == 0); 4063 VERIFY(zap_update(mos, 4064 spa->spa_pool_props_object, propname, 4065 1, strlen(strval) + 1, strval, tx) == 0); 4066 4067 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 4068 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 4069 4070 if (proptype == PROP_TYPE_INDEX) { 4071 const char *unused; 4072 VERIFY(zpool_prop_index_to_string( 4073 prop, intval, &unused) == 0); 4074 } 4075 VERIFY(zap_update(mos, 4076 spa->spa_pool_props_object, propname, 4077 8, 1, &intval, tx) == 0); 4078 } else { 4079 ASSERT(0); /* not allowed */ 4080 } 4081 4082 switch (prop) { 4083 case ZPOOL_PROP_DELEGATION: 4084 spa->spa_delegation = intval; 4085 break; 4086 case ZPOOL_PROP_BOOTFS: 4087 spa->spa_bootfs = intval; 4088 break; 4089 case ZPOOL_PROP_FAILUREMODE: 4090 spa->spa_failmode = intval; 4091 break; 4092 case ZPOOL_PROP_AUTOEXPAND: 4093 spa->spa_autoexpand = intval; 4094 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4095 break; 4096 default: 4097 break; 4098 } 4099 } 4100 4101 /* log internal history if this is not a zpool create */ 4102 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 4103 tx->tx_txg != TXG_INITIAL) { 4104 spa_history_internal_log(LOG_POOL_PROPSET, 4105 spa, tx, cr, "%s %lld %s", 4106 nvpair_name(elem), intval, spa_name(spa)); 4107 } 4108 } 4109 4110 mutex_exit(&spa->spa_props_lock); 4111 } 4112 4113 /* 4114 * Sync the specified transaction group. New blocks may be dirtied as 4115 * part of the process, so we iterate until it converges. 4116 */ 4117 void 4118 spa_sync(spa_t *spa, uint64_t txg) 4119 { 4120 dsl_pool_t *dp = spa->spa_dsl_pool; 4121 objset_t *mos = spa->spa_meta_objset; 4122 bplist_t *bpl = &spa->spa_sync_bplist; 4123 vdev_t *rvd = spa->spa_root_vdev; 4124 vdev_t *vd; 4125 dmu_tx_t *tx; 4126 int dirty_vdevs; 4127 int error; 4128 4129 /* 4130 * Lock out configuration changes. 4131 */ 4132 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4133 4134 spa->spa_syncing_txg = txg; 4135 spa->spa_sync_pass = 0; 4136 4137 /* 4138 * If there are any pending vdev state changes, convert them 4139 * into config changes that go out with this transaction group. 4140 */ 4141 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4142 while (list_head(&spa->spa_state_dirty_list) != NULL) { 4143 /* 4144 * We need the write lock here because, for aux vdevs, 4145 * calling vdev_config_dirty() modifies sav_config. 4146 * This is ugly and will become unnecessary when we 4147 * eliminate the aux vdev wart by integrating all vdevs 4148 * into the root vdev tree. 4149 */ 4150 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 4151 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 4152 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 4153 vdev_state_clean(vd); 4154 vdev_config_dirty(vd); 4155 } 4156 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 4157 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 4158 } 4159 spa_config_exit(spa, SCL_STATE, FTAG); 4160 4161 VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj)); 4162 4163 tx = dmu_tx_create_assigned(dp, txg); 4164 4165 /* 4166 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 4167 * set spa_deflate if we have no raid-z vdevs. 4168 */ 4169 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 4170 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 4171 int i; 4172 4173 for (i = 0; i < rvd->vdev_children; i++) { 4174 vd = rvd->vdev_child[i]; 4175 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 4176 break; 4177 } 4178 if (i == rvd->vdev_children) { 4179 spa->spa_deflate = TRUE; 4180 VERIFY(0 == zap_add(spa->spa_meta_objset, 4181 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 4182 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 4183 } 4184 } 4185 4186 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 4187 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 4188 dsl_pool_create_origin(dp, tx); 4189 4190 /* Keeping the origin open increases spa_minref */ 4191 spa->spa_minref += 3; 4192 } 4193 4194 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 4195 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 4196 dsl_pool_upgrade_clones(dp, tx); 4197 } 4198 4199 /* 4200 * If anything has changed in this txg, push the deferred frees 4201 * from the previous txg. If not, leave them alone so that we 4202 * don't generate work on an otherwise idle system. 4203 */ 4204 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 4205 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 4206 !txg_list_empty(&dp->dp_sync_tasks, txg)) 4207 spa_sync_deferred_frees(spa, txg); 4208 4209 /* 4210 * Iterate to convergence. 4211 */ 4212 do { 4213 spa->spa_sync_pass++; 4214 4215 spa_sync_config_object(spa, tx); 4216 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 4217 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 4218 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 4219 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 4220 spa_errlog_sync(spa, txg); 4221 dsl_pool_sync(dp, txg); 4222 4223 dirty_vdevs = 0; 4224 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) { 4225 vdev_sync(vd, txg); 4226 dirty_vdevs++; 4227 } 4228 4229 bplist_sync(bpl, tx); 4230 } while (dirty_vdevs); 4231 4232 bplist_close(bpl); 4233 4234 dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass); 4235 4236 /* 4237 * Rewrite the vdev configuration (which includes the uberblock) 4238 * to commit the transaction group. 4239 * 4240 * If there are no dirty vdevs, we sync the uberblock to a few 4241 * random top-level vdevs that are known to be visible in the 4242 * config cache (see spa_vdev_add() for a complete description). 4243 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 4244 */ 4245 for (;;) { 4246 /* 4247 * We hold SCL_STATE to prevent vdev open/close/etc. 4248 * while we're attempting to write the vdev labels. 4249 */ 4250 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4251 4252 if (list_is_empty(&spa->spa_config_dirty_list)) { 4253 vdev_t *svd[SPA_DVAS_PER_BP]; 4254 int svdcount = 0; 4255 int children = rvd->vdev_children; 4256 int c0 = spa_get_random(children); 4257 4258 for (int c = 0; c < children; c++) { 4259 vd = rvd->vdev_child[(c0 + c) % children]; 4260 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 4261 continue; 4262 svd[svdcount++] = vd; 4263 if (svdcount == SPA_DVAS_PER_BP) 4264 break; 4265 } 4266 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 4267 if (error != 0) 4268 error = vdev_config_sync(svd, svdcount, txg, 4269 B_TRUE); 4270 } else { 4271 error = vdev_config_sync(rvd->vdev_child, 4272 rvd->vdev_children, txg, B_FALSE); 4273 if (error != 0) 4274 error = vdev_config_sync(rvd->vdev_child, 4275 rvd->vdev_children, txg, B_TRUE); 4276 } 4277 4278 spa_config_exit(spa, SCL_STATE, FTAG); 4279 4280 if (error == 0) 4281 break; 4282 zio_suspend(spa, NULL); 4283 zio_resume_wait(spa); 4284 } 4285 dmu_tx_commit(tx); 4286 4287 /* 4288 * Clear the dirty config list. 4289 */ 4290 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 4291 vdev_config_clean(vd); 4292 4293 /* 4294 * Now that the new config has synced transactionally, 4295 * let it become visible to the config cache. 4296 */ 4297 if (spa->spa_config_syncing != NULL) { 4298 spa_config_set(spa, spa->spa_config_syncing); 4299 spa->spa_config_txg = txg; 4300 spa->spa_config_syncing = NULL; 4301 } 4302 4303 spa->spa_ubsync = spa->spa_uberblock; 4304 4305 /* 4306 * Clean up the ZIL records for the synced txg. 4307 */ 4308 dsl_pool_zil_clean(dp); 4309 4310 /* 4311 * Update usable space statistics. 4312 */ 4313 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 4314 vdev_sync_done(vd, txg); 4315 4316 /* 4317 * It had better be the case that we didn't dirty anything 4318 * since vdev_config_sync(). 4319 */ 4320 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 4321 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 4322 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 4323 ASSERT(bpl->bpl_queue == NULL); 4324 4325 spa_config_exit(spa, SCL_CONFIG, FTAG); 4326 4327 /* 4328 * If any async tasks have been requested, kick them off. 4329 */ 4330 spa_async_dispatch(spa); 4331 } 4332 4333 /* 4334 * Sync all pools. We don't want to hold the namespace lock across these 4335 * operations, so we take a reference on the spa_t and drop the lock during the 4336 * sync. 4337 */ 4338 void 4339 spa_sync_allpools(void) 4340 { 4341 spa_t *spa = NULL; 4342 mutex_enter(&spa_namespace_lock); 4343 while ((spa = spa_next(spa)) != NULL) { 4344 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 4345 continue; 4346 spa_open_ref(spa, FTAG); 4347 mutex_exit(&spa_namespace_lock); 4348 txg_wait_synced(spa_get_dsl(spa), 0); 4349 mutex_enter(&spa_namespace_lock); 4350 spa_close(spa, FTAG); 4351 } 4352 mutex_exit(&spa_namespace_lock); 4353 } 4354 4355 /* 4356 * ========================================================================== 4357 * Miscellaneous routines 4358 * ========================================================================== 4359 */ 4360 4361 /* 4362 * Remove all pools in the system. 4363 */ 4364 void 4365 spa_evict_all(void) 4366 { 4367 spa_t *spa; 4368 4369 /* 4370 * Remove all cached state. All pools should be closed now, 4371 * so every spa in the AVL tree should be unreferenced. 4372 */ 4373 mutex_enter(&spa_namespace_lock); 4374 while ((spa = spa_next(NULL)) != NULL) { 4375 /* 4376 * Stop async tasks. The async thread may need to detach 4377 * a device that's been replaced, which requires grabbing 4378 * spa_namespace_lock, so we must drop it here. 4379 */ 4380 spa_open_ref(spa, FTAG); 4381 mutex_exit(&spa_namespace_lock); 4382 spa_async_suspend(spa); 4383 mutex_enter(&spa_namespace_lock); 4384 spa_close(spa, FTAG); 4385 4386 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4387 spa_unload(spa); 4388 spa_deactivate(spa); 4389 } 4390 spa_remove(spa); 4391 } 4392 mutex_exit(&spa_namespace_lock); 4393 } 4394 4395 vdev_t * 4396 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 4397 { 4398 vdev_t *vd; 4399 int i; 4400 4401 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 4402 return (vd); 4403 4404 if (aux) { 4405 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 4406 vd = spa->spa_l2cache.sav_vdevs[i]; 4407 if (vd->vdev_guid == guid) 4408 return (vd); 4409 } 4410 4411 for (i = 0; i < spa->spa_spares.sav_count; i++) { 4412 vd = spa->spa_spares.sav_vdevs[i]; 4413 if (vd->vdev_guid == guid) 4414 return (vd); 4415 } 4416 } 4417 4418 return (NULL); 4419 } 4420 4421 void 4422 spa_upgrade(spa_t *spa, uint64_t version) 4423 { 4424 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4425 4426 /* 4427 * This should only be called for a non-faulted pool, and since a 4428 * future version would result in an unopenable pool, this shouldn't be 4429 * possible. 4430 */ 4431 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 4432 ASSERT(version >= spa->spa_uberblock.ub_version); 4433 4434 spa->spa_uberblock.ub_version = version; 4435 vdev_config_dirty(spa->spa_root_vdev); 4436 4437 spa_config_exit(spa, SCL_ALL, FTAG); 4438 4439 txg_wait_synced(spa_get_dsl(spa), 0); 4440 } 4441 4442 boolean_t 4443 spa_has_spare(spa_t *spa, uint64_t guid) 4444 { 4445 int i; 4446 uint64_t spareguid; 4447 spa_aux_vdev_t *sav = &spa->spa_spares; 4448 4449 for (i = 0; i < sav->sav_count; i++) 4450 if (sav->sav_vdevs[i]->vdev_guid == guid) 4451 return (B_TRUE); 4452 4453 for (i = 0; i < sav->sav_npending; i++) { 4454 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 4455 &spareguid) == 0 && spareguid == guid) 4456 return (B_TRUE); 4457 } 4458 4459 return (B_FALSE); 4460 } 4461 4462 /* 4463 * Check if a pool has an active shared spare device. 4464 * Note: reference count of an active spare is 2, as a spare and as a replace 4465 */ 4466 static boolean_t 4467 spa_has_active_shared_spare(spa_t *spa) 4468 { 4469 int i, refcnt; 4470 uint64_t pool; 4471 spa_aux_vdev_t *sav = &spa->spa_spares; 4472 4473 for (i = 0; i < sav->sav_count; i++) { 4474 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 4475 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 4476 refcnt > 2) 4477 return (B_TRUE); 4478 } 4479 4480 return (B_FALSE); 4481 } 4482 4483 /* 4484 * Post a sysevent corresponding to the given event. The 'name' must be one of 4485 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 4486 * filled in from the spa and (optionally) the vdev. This doesn't do anything 4487 * in the userland libzpool, as we don't want consumers to misinterpret ztest 4488 * or zdb as real changes. 4489 */ 4490 void 4491 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 4492 { 4493 #ifdef _KERNEL 4494 sysevent_t *ev; 4495 sysevent_attr_list_t *attr = NULL; 4496 sysevent_value_t value; 4497 sysevent_id_t eid; 4498 4499 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 4500 SE_SLEEP); 4501 4502 value.value_type = SE_DATA_TYPE_STRING; 4503 value.value.sv_string = spa_name(spa); 4504 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 4505 goto done; 4506 4507 value.value_type = SE_DATA_TYPE_UINT64; 4508 value.value.sv_uint64 = spa_guid(spa); 4509 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 4510 goto done; 4511 4512 if (vd) { 4513 value.value_type = SE_DATA_TYPE_UINT64; 4514 value.value.sv_uint64 = vd->vdev_guid; 4515 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 4516 SE_SLEEP) != 0) 4517 goto done; 4518 4519 if (vd->vdev_path) { 4520 value.value_type = SE_DATA_TYPE_STRING; 4521 value.value.sv_string = vd->vdev_path; 4522 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 4523 &value, SE_SLEEP) != 0) 4524 goto done; 4525 } 4526 } 4527 4528 if (sysevent_attach_attributes(ev, attr) != 0) 4529 goto done; 4530 attr = NULL; 4531 4532 (void) log_sysevent(ev, SE_SLEEP, &eid); 4533 4534 done: 4535 if (attr) 4536 sysevent_free_attr(attr); 4537 sysevent_free(ev); 4538 #endif 4539 } 4540