1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */ 91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 92 ZTI_MODE_NULL, /* don't create a taskq */ 93 ZTI_NMODES 94 } zti_modes_t; 95 96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 97 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 98 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 99 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 100 101 #define ZTI_N(n) ZTI_P(n, 1) 102 #define ZTI_ONE ZTI_N(1) 103 104 typedef struct zio_taskq_info { 105 zti_modes_t zti_mode; 106 uint_t zti_value; 107 uint_t zti_count; 108 } zio_taskq_info_t; 109 110 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 111 "issue", "issue_high", "intr", "intr_high" 112 }; 113 114 /* 115 * This table defines the taskq settings for each ZFS I/O type. When 116 * initializing a pool, we use this table to create an appropriately sized 117 * taskq. Some operations are low volume and therefore have a small, static 118 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 119 * macros. Other operations process a large amount of data; the ZTI_BATCH 120 * macro causes us to create a taskq oriented for throughput. Some operations 121 * are so high frequency and short-lived that the taskq itself can become a a 122 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 123 * additional degree of parallelism specified by the number of threads per- 124 * taskq and the number of taskqs; when dispatching an event in this case, the 125 * particular taskq is chosen at random. 126 * 127 * The different taskq priorities are to handle the different contexts (issue 128 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 129 * need to be handled with minimum delay. 130 */ 131 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 132 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 133 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 134 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */ 135 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 136 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 138 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 139 }; 140 141 static void spa_sync_version(void *arg, dmu_tx_t *tx); 142 static void spa_sync_props(void *arg, dmu_tx_t *tx); 143 static boolean_t spa_has_active_shared_spare(spa_t *spa); 144 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 145 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 146 char **ereport); 147 static void spa_vdev_resilver_done(spa_t *spa); 148 149 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 150 id_t zio_taskq_psrset_bind = PS_NONE; 151 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 152 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 153 154 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 155 extern int zfs_sync_pass_deferred_free; 156 157 /* 158 * This (illegal) pool name is used when temporarily importing a spa_t in order 159 * to get the vdev stats associated with the imported devices. 160 */ 161 #define TRYIMPORT_NAME "$import" 162 163 /* 164 * ========================================================================== 165 * SPA properties routines 166 * ========================================================================== 167 */ 168 169 /* 170 * Add a (source=src, propname=propval) list to an nvlist. 171 */ 172 static void 173 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 174 uint64_t intval, zprop_source_t src) 175 { 176 const char *propname = zpool_prop_to_name(prop); 177 nvlist_t *propval; 178 179 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 180 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 181 182 if (strval != NULL) 183 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 184 else 185 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 186 187 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 188 nvlist_free(propval); 189 } 190 191 /* 192 * Get property values from the spa configuration. 193 */ 194 static void 195 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 196 { 197 vdev_t *rvd = spa->spa_root_vdev; 198 dsl_pool_t *pool = spa->spa_dsl_pool; 199 uint64_t size; 200 uint64_t alloc; 201 uint64_t space; 202 uint64_t cap, version; 203 zprop_source_t src = ZPROP_SRC_NONE; 204 spa_config_dirent_t *dp; 205 206 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 207 208 if (rvd != NULL) { 209 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 210 size = metaslab_class_get_space(spa_normal_class(spa)); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 213 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 214 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 215 size - alloc, src); 216 217 space = 0; 218 for (int c = 0; c < rvd->vdev_children; c++) { 219 vdev_t *tvd = rvd->vdev_child[c]; 220 space += tvd->vdev_max_asize - tvd->vdev_asize; 221 } 222 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 223 src); 224 225 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 226 (spa_mode(spa) == FREAD), src); 227 228 cap = (size == 0) ? 0 : (alloc * 100 / size); 229 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 230 231 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 232 ddt_get_pool_dedup_ratio(spa), src); 233 234 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 235 rvd->vdev_state, src); 236 237 version = spa_version(spa); 238 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 239 src = ZPROP_SRC_DEFAULT; 240 else 241 src = ZPROP_SRC_LOCAL; 242 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 243 } 244 245 if (pool != NULL) { 246 dsl_dir_t *freedir = pool->dp_free_dir; 247 248 /* 249 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 250 * when opening pools before this version freedir will be NULL. 251 */ 252 if (freedir != NULL) { 253 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 254 freedir->dd_phys->dd_used_bytes, src); 255 } else { 256 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 257 NULL, 0, src); 258 } 259 } 260 261 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 262 263 if (spa->spa_comment != NULL) { 264 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 265 0, ZPROP_SRC_LOCAL); 266 } 267 268 if (spa->spa_root != NULL) 269 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 270 0, ZPROP_SRC_LOCAL); 271 272 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 273 if (dp->scd_path == NULL) { 274 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 275 "none", 0, ZPROP_SRC_LOCAL); 276 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 277 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 278 dp->scd_path, 0, ZPROP_SRC_LOCAL); 279 } 280 } 281 } 282 283 /* 284 * Get zpool property values. 285 */ 286 int 287 spa_prop_get(spa_t *spa, nvlist_t **nvp) 288 { 289 objset_t *mos = spa->spa_meta_objset; 290 zap_cursor_t zc; 291 zap_attribute_t za; 292 int err; 293 294 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 295 296 mutex_enter(&spa->spa_props_lock); 297 298 /* 299 * Get properties from the spa config. 300 */ 301 spa_prop_get_config(spa, nvp); 302 303 /* If no pool property object, no more prop to get. */ 304 if (mos == NULL || spa->spa_pool_props_object == 0) { 305 mutex_exit(&spa->spa_props_lock); 306 return (0); 307 } 308 309 /* 310 * Get properties from the MOS pool property object. 311 */ 312 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 313 (err = zap_cursor_retrieve(&zc, &za)) == 0; 314 zap_cursor_advance(&zc)) { 315 uint64_t intval = 0; 316 char *strval = NULL; 317 zprop_source_t src = ZPROP_SRC_DEFAULT; 318 zpool_prop_t prop; 319 320 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 321 continue; 322 323 switch (za.za_integer_length) { 324 case 8: 325 /* integer property */ 326 if (za.za_first_integer != 327 zpool_prop_default_numeric(prop)) 328 src = ZPROP_SRC_LOCAL; 329 330 if (prop == ZPOOL_PROP_BOOTFS) { 331 dsl_pool_t *dp; 332 dsl_dataset_t *ds = NULL; 333 334 dp = spa_get_dsl(spa); 335 dsl_pool_config_enter(dp, FTAG); 336 if (err = dsl_dataset_hold_obj(dp, 337 za.za_first_integer, FTAG, &ds)) { 338 dsl_pool_config_exit(dp, FTAG); 339 break; 340 } 341 342 strval = kmem_alloc( 343 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 344 KM_SLEEP); 345 dsl_dataset_name(ds, strval); 346 dsl_dataset_rele(ds, FTAG); 347 dsl_pool_config_exit(dp, FTAG); 348 } else { 349 strval = NULL; 350 intval = za.za_first_integer; 351 } 352 353 spa_prop_add_list(*nvp, prop, strval, intval, src); 354 355 if (strval != NULL) 356 kmem_free(strval, 357 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 358 359 break; 360 361 case 1: 362 /* string property */ 363 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 364 err = zap_lookup(mos, spa->spa_pool_props_object, 365 za.za_name, 1, za.za_num_integers, strval); 366 if (err) { 367 kmem_free(strval, za.za_num_integers); 368 break; 369 } 370 spa_prop_add_list(*nvp, prop, strval, 0, src); 371 kmem_free(strval, za.za_num_integers); 372 break; 373 374 default: 375 break; 376 } 377 } 378 zap_cursor_fini(&zc); 379 mutex_exit(&spa->spa_props_lock); 380 out: 381 if (err && err != ENOENT) { 382 nvlist_free(*nvp); 383 *nvp = NULL; 384 return (err); 385 } 386 387 return (0); 388 } 389 390 /* 391 * Validate the given pool properties nvlist and modify the list 392 * for the property values to be set. 393 */ 394 static int 395 spa_prop_validate(spa_t *spa, nvlist_t *props) 396 { 397 nvpair_t *elem; 398 int error = 0, reset_bootfs = 0; 399 uint64_t objnum = 0; 400 boolean_t has_feature = B_FALSE; 401 402 elem = NULL; 403 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 404 uint64_t intval; 405 char *strval, *slash, *check, *fname; 406 const char *propname = nvpair_name(elem); 407 zpool_prop_t prop = zpool_name_to_prop(propname); 408 409 switch (prop) { 410 case ZPROP_INVAL: 411 if (!zpool_prop_feature(propname)) { 412 error = SET_ERROR(EINVAL); 413 break; 414 } 415 416 /* 417 * Sanitize the input. 418 */ 419 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 420 error = SET_ERROR(EINVAL); 421 break; 422 } 423 424 if (nvpair_value_uint64(elem, &intval) != 0) { 425 error = SET_ERROR(EINVAL); 426 break; 427 } 428 429 if (intval != 0) { 430 error = SET_ERROR(EINVAL); 431 break; 432 } 433 434 fname = strchr(propname, '@') + 1; 435 if (zfeature_lookup_name(fname, NULL) != 0) { 436 error = SET_ERROR(EINVAL); 437 break; 438 } 439 440 has_feature = B_TRUE; 441 break; 442 443 case ZPOOL_PROP_VERSION: 444 error = nvpair_value_uint64(elem, &intval); 445 if (!error && 446 (intval < spa_version(spa) || 447 intval > SPA_VERSION_BEFORE_FEATURES || 448 has_feature)) 449 error = SET_ERROR(EINVAL); 450 break; 451 452 case ZPOOL_PROP_DELEGATION: 453 case ZPOOL_PROP_AUTOREPLACE: 454 case ZPOOL_PROP_LISTSNAPS: 455 case ZPOOL_PROP_AUTOEXPAND: 456 error = nvpair_value_uint64(elem, &intval); 457 if (!error && intval > 1) 458 error = SET_ERROR(EINVAL); 459 break; 460 461 case ZPOOL_PROP_BOOTFS: 462 /* 463 * If the pool version is less than SPA_VERSION_BOOTFS, 464 * or the pool is still being created (version == 0), 465 * the bootfs property cannot be set. 466 */ 467 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 468 error = SET_ERROR(ENOTSUP); 469 break; 470 } 471 472 /* 473 * Make sure the vdev config is bootable 474 */ 475 if (!vdev_is_bootable(spa->spa_root_vdev)) { 476 error = SET_ERROR(ENOTSUP); 477 break; 478 } 479 480 reset_bootfs = 1; 481 482 error = nvpair_value_string(elem, &strval); 483 484 if (!error) { 485 objset_t *os; 486 uint64_t compress; 487 488 if (strval == NULL || strval[0] == '\0') { 489 objnum = zpool_prop_default_numeric( 490 ZPOOL_PROP_BOOTFS); 491 break; 492 } 493 494 if (error = dmu_objset_hold(strval, FTAG, &os)) 495 break; 496 497 /* Must be ZPL and not gzip compressed. */ 498 499 if (dmu_objset_type(os) != DMU_OST_ZFS) { 500 error = SET_ERROR(ENOTSUP); 501 } else if ((error = 502 dsl_prop_get_int_ds(dmu_objset_ds(os), 503 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 504 &compress)) == 0 && 505 !BOOTFS_COMPRESS_VALID(compress)) { 506 error = SET_ERROR(ENOTSUP); 507 } else { 508 objnum = dmu_objset_id(os); 509 } 510 dmu_objset_rele(os, FTAG); 511 } 512 break; 513 514 case ZPOOL_PROP_FAILUREMODE: 515 error = nvpair_value_uint64(elem, &intval); 516 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 517 intval > ZIO_FAILURE_MODE_PANIC)) 518 error = SET_ERROR(EINVAL); 519 520 /* 521 * This is a special case which only occurs when 522 * the pool has completely failed. This allows 523 * the user to change the in-core failmode property 524 * without syncing it out to disk (I/Os might 525 * currently be blocked). We do this by returning 526 * EIO to the caller (spa_prop_set) to trick it 527 * into thinking we encountered a property validation 528 * error. 529 */ 530 if (!error && spa_suspended(spa)) { 531 spa->spa_failmode = intval; 532 error = SET_ERROR(EIO); 533 } 534 break; 535 536 case ZPOOL_PROP_CACHEFILE: 537 if ((error = nvpair_value_string(elem, &strval)) != 0) 538 break; 539 540 if (strval[0] == '\0') 541 break; 542 543 if (strcmp(strval, "none") == 0) 544 break; 545 546 if (strval[0] != '/') { 547 error = SET_ERROR(EINVAL); 548 break; 549 } 550 551 slash = strrchr(strval, '/'); 552 ASSERT(slash != NULL); 553 554 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 555 strcmp(slash, "/..") == 0) 556 error = SET_ERROR(EINVAL); 557 break; 558 559 case ZPOOL_PROP_COMMENT: 560 if ((error = nvpair_value_string(elem, &strval)) != 0) 561 break; 562 for (check = strval; *check != '\0'; check++) { 563 /* 564 * The kernel doesn't have an easy isprint() 565 * check. For this kernel check, we merely 566 * check ASCII apart from DEL. Fix this if 567 * there is an easy-to-use kernel isprint(). 568 */ 569 if (*check >= 0x7f) { 570 error = SET_ERROR(EINVAL); 571 break; 572 } 573 check++; 574 } 575 if (strlen(strval) > ZPROP_MAX_COMMENT) 576 error = E2BIG; 577 break; 578 579 case ZPOOL_PROP_DEDUPDITTO: 580 if (spa_version(spa) < SPA_VERSION_DEDUP) 581 error = SET_ERROR(ENOTSUP); 582 else 583 error = nvpair_value_uint64(elem, &intval); 584 if (error == 0 && 585 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 586 error = SET_ERROR(EINVAL); 587 break; 588 } 589 590 if (error) 591 break; 592 } 593 594 if (!error && reset_bootfs) { 595 error = nvlist_remove(props, 596 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 597 598 if (!error) { 599 error = nvlist_add_uint64(props, 600 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 601 } 602 } 603 604 return (error); 605 } 606 607 void 608 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 609 { 610 char *cachefile; 611 spa_config_dirent_t *dp; 612 613 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 614 &cachefile) != 0) 615 return; 616 617 dp = kmem_alloc(sizeof (spa_config_dirent_t), 618 KM_SLEEP); 619 620 if (cachefile[0] == '\0') 621 dp->scd_path = spa_strdup(spa_config_path); 622 else if (strcmp(cachefile, "none") == 0) 623 dp->scd_path = NULL; 624 else 625 dp->scd_path = spa_strdup(cachefile); 626 627 list_insert_head(&spa->spa_config_list, dp); 628 if (need_sync) 629 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 630 } 631 632 int 633 spa_prop_set(spa_t *spa, nvlist_t *nvp) 634 { 635 int error; 636 nvpair_t *elem = NULL; 637 boolean_t need_sync = B_FALSE; 638 639 if ((error = spa_prop_validate(spa, nvp)) != 0) 640 return (error); 641 642 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 643 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 644 645 if (prop == ZPOOL_PROP_CACHEFILE || 646 prop == ZPOOL_PROP_ALTROOT || 647 prop == ZPOOL_PROP_READONLY) 648 continue; 649 650 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 651 uint64_t ver; 652 653 if (prop == ZPOOL_PROP_VERSION) { 654 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 655 } else { 656 ASSERT(zpool_prop_feature(nvpair_name(elem))); 657 ver = SPA_VERSION_FEATURES; 658 need_sync = B_TRUE; 659 } 660 661 /* Save time if the version is already set. */ 662 if (ver == spa_version(spa)) 663 continue; 664 665 /* 666 * In addition to the pool directory object, we might 667 * create the pool properties object, the features for 668 * read object, the features for write object, or the 669 * feature descriptions object. 670 */ 671 error = dsl_sync_task(spa->spa_name, NULL, 672 spa_sync_version, &ver, 6); 673 if (error) 674 return (error); 675 continue; 676 } 677 678 need_sync = B_TRUE; 679 break; 680 } 681 682 if (need_sync) { 683 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 684 nvp, 6)); 685 } 686 687 return (0); 688 } 689 690 /* 691 * If the bootfs property value is dsobj, clear it. 692 */ 693 void 694 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 695 { 696 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 697 VERIFY(zap_remove(spa->spa_meta_objset, 698 spa->spa_pool_props_object, 699 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 700 spa->spa_bootfs = 0; 701 } 702 } 703 704 /*ARGSUSED*/ 705 static int 706 spa_change_guid_check(void *arg, dmu_tx_t *tx) 707 { 708 uint64_t *newguid = arg; 709 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 710 vdev_t *rvd = spa->spa_root_vdev; 711 uint64_t vdev_state; 712 713 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 714 vdev_state = rvd->vdev_state; 715 spa_config_exit(spa, SCL_STATE, FTAG); 716 717 if (vdev_state != VDEV_STATE_HEALTHY) 718 return (SET_ERROR(ENXIO)); 719 720 ASSERT3U(spa_guid(spa), !=, *newguid); 721 722 return (0); 723 } 724 725 static void 726 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 727 { 728 uint64_t *newguid = arg; 729 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 730 uint64_t oldguid; 731 vdev_t *rvd = spa->spa_root_vdev; 732 733 oldguid = spa_guid(spa); 734 735 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 736 rvd->vdev_guid = *newguid; 737 rvd->vdev_guid_sum += (*newguid - oldguid); 738 vdev_config_dirty(rvd); 739 spa_config_exit(spa, SCL_STATE, FTAG); 740 741 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 742 oldguid, *newguid); 743 } 744 745 /* 746 * Change the GUID for the pool. This is done so that we can later 747 * re-import a pool built from a clone of our own vdevs. We will modify 748 * the root vdev's guid, our own pool guid, and then mark all of our 749 * vdevs dirty. Note that we must make sure that all our vdevs are 750 * online when we do this, or else any vdevs that weren't present 751 * would be orphaned from our pool. We are also going to issue a 752 * sysevent to update any watchers. 753 */ 754 int 755 spa_change_guid(spa_t *spa) 756 { 757 int error; 758 uint64_t guid; 759 760 mutex_enter(&spa->spa_vdev_top_lock); 761 mutex_enter(&spa_namespace_lock); 762 guid = spa_generate_guid(NULL); 763 764 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 765 spa_change_guid_sync, &guid, 5); 766 767 if (error == 0) { 768 spa_config_sync(spa, B_FALSE, B_TRUE); 769 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 770 } 771 772 mutex_exit(&spa_namespace_lock); 773 mutex_exit(&spa->spa_vdev_top_lock); 774 775 return (error); 776 } 777 778 /* 779 * ========================================================================== 780 * SPA state manipulation (open/create/destroy/import/export) 781 * ========================================================================== 782 */ 783 784 static int 785 spa_error_entry_compare(const void *a, const void *b) 786 { 787 spa_error_entry_t *sa = (spa_error_entry_t *)a; 788 spa_error_entry_t *sb = (spa_error_entry_t *)b; 789 int ret; 790 791 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 792 sizeof (zbookmark_t)); 793 794 if (ret < 0) 795 return (-1); 796 else if (ret > 0) 797 return (1); 798 else 799 return (0); 800 } 801 802 /* 803 * Utility function which retrieves copies of the current logs and 804 * re-initializes them in the process. 805 */ 806 void 807 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 808 { 809 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 810 811 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 812 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 813 814 avl_create(&spa->spa_errlist_scrub, 815 spa_error_entry_compare, sizeof (spa_error_entry_t), 816 offsetof(spa_error_entry_t, se_avl)); 817 avl_create(&spa->spa_errlist_last, 818 spa_error_entry_compare, sizeof (spa_error_entry_t), 819 offsetof(spa_error_entry_t, se_avl)); 820 } 821 822 static void 823 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 824 { 825 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 826 enum zti_modes mode = ztip->zti_mode; 827 uint_t value = ztip->zti_value; 828 uint_t count = ztip->zti_count; 829 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 830 char name[32]; 831 uint_t flags = 0; 832 boolean_t batch = B_FALSE; 833 834 if (mode == ZTI_MODE_NULL) { 835 tqs->stqs_count = 0; 836 tqs->stqs_taskq = NULL; 837 return; 838 } 839 840 ASSERT3U(count, >, 0); 841 842 tqs->stqs_count = count; 843 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 844 845 for (uint_t i = 0; i < count; i++) { 846 taskq_t *tq; 847 848 switch (mode) { 849 case ZTI_MODE_FIXED: 850 ASSERT3U(value, >=, 1); 851 value = MAX(value, 1); 852 break; 853 854 case ZTI_MODE_BATCH: 855 batch = B_TRUE; 856 flags |= TASKQ_THREADS_CPU_PCT; 857 value = zio_taskq_batch_pct; 858 break; 859 860 case ZTI_MODE_ONLINE_PERCENT: 861 flags |= TASKQ_THREADS_CPU_PCT; 862 break; 863 864 default: 865 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 866 "spa_activate()", 867 zio_type_name[t], zio_taskq_types[q], mode, value); 868 break; 869 } 870 871 if (count > 1) { 872 (void) snprintf(name, sizeof (name), "%s_%s_%u", 873 zio_type_name[t], zio_taskq_types[q], i); 874 } else { 875 (void) snprintf(name, sizeof (name), "%s_%s", 876 zio_type_name[t], zio_taskq_types[q]); 877 } 878 879 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 880 if (batch) 881 flags |= TASKQ_DC_BATCH; 882 883 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 884 spa->spa_proc, zio_taskq_basedc, flags); 885 } else { 886 tq = taskq_create_proc(name, value, maxclsyspri, 50, 887 INT_MAX, spa->spa_proc, flags); 888 } 889 890 tqs->stqs_taskq[i] = tq; 891 } 892 } 893 894 static void 895 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 896 { 897 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 898 899 if (tqs->stqs_taskq == NULL) { 900 ASSERT0(tqs->stqs_count); 901 return; 902 } 903 904 for (uint_t i = 0; i < tqs->stqs_count; i++) { 905 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 906 taskq_destroy(tqs->stqs_taskq[i]); 907 } 908 909 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 910 tqs->stqs_taskq = NULL; 911 } 912 913 /* 914 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 915 * Note that a type may have multiple discrete taskqs to avoid lock contention 916 * on the taskq itself. In that case we choose which taskq at random by using 917 * the low bits of gethrtime(). 918 */ 919 void 920 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 921 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 922 { 923 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 924 taskq_t *tq; 925 926 ASSERT3P(tqs->stqs_taskq, !=, NULL); 927 ASSERT3U(tqs->stqs_count, !=, 0); 928 929 if (tqs->stqs_count == 1) { 930 tq = tqs->stqs_taskq[0]; 931 } else { 932 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 933 } 934 935 taskq_dispatch_ent(tq, func, arg, flags, ent); 936 } 937 938 static void 939 spa_create_zio_taskqs(spa_t *spa) 940 { 941 for (int t = 0; t < ZIO_TYPES; t++) { 942 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 943 spa_taskqs_init(spa, t, q); 944 } 945 } 946 } 947 948 #ifdef _KERNEL 949 static void 950 spa_thread(void *arg) 951 { 952 callb_cpr_t cprinfo; 953 954 spa_t *spa = arg; 955 user_t *pu = PTOU(curproc); 956 957 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 958 spa->spa_name); 959 960 ASSERT(curproc != &p0); 961 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 962 "zpool-%s", spa->spa_name); 963 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 964 965 /* bind this thread to the requested psrset */ 966 if (zio_taskq_psrset_bind != PS_NONE) { 967 pool_lock(); 968 mutex_enter(&cpu_lock); 969 mutex_enter(&pidlock); 970 mutex_enter(&curproc->p_lock); 971 972 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 973 0, NULL, NULL) == 0) { 974 curthread->t_bind_pset = zio_taskq_psrset_bind; 975 } else { 976 cmn_err(CE_WARN, 977 "Couldn't bind process for zfs pool \"%s\" to " 978 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 979 } 980 981 mutex_exit(&curproc->p_lock); 982 mutex_exit(&pidlock); 983 mutex_exit(&cpu_lock); 984 pool_unlock(); 985 } 986 987 if (zio_taskq_sysdc) { 988 sysdc_thread_enter(curthread, 100, 0); 989 } 990 991 spa->spa_proc = curproc; 992 spa->spa_did = curthread->t_did; 993 994 spa_create_zio_taskqs(spa); 995 996 mutex_enter(&spa->spa_proc_lock); 997 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 998 999 spa->spa_proc_state = SPA_PROC_ACTIVE; 1000 cv_broadcast(&spa->spa_proc_cv); 1001 1002 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1003 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1004 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1005 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1006 1007 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1008 spa->spa_proc_state = SPA_PROC_GONE; 1009 spa->spa_proc = &p0; 1010 cv_broadcast(&spa->spa_proc_cv); 1011 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1012 1013 mutex_enter(&curproc->p_lock); 1014 lwp_exit(); 1015 } 1016 #endif 1017 1018 /* 1019 * Activate an uninitialized pool. 1020 */ 1021 static void 1022 spa_activate(spa_t *spa, int mode) 1023 { 1024 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1025 1026 spa->spa_state = POOL_STATE_ACTIVE; 1027 spa->spa_mode = mode; 1028 1029 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1030 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1031 1032 /* Try to create a covering process */ 1033 mutex_enter(&spa->spa_proc_lock); 1034 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1035 ASSERT(spa->spa_proc == &p0); 1036 spa->spa_did = 0; 1037 1038 /* Only create a process if we're going to be around a while. */ 1039 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1040 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1041 NULL, 0) == 0) { 1042 spa->spa_proc_state = SPA_PROC_CREATED; 1043 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1044 cv_wait(&spa->spa_proc_cv, 1045 &spa->spa_proc_lock); 1046 } 1047 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1048 ASSERT(spa->spa_proc != &p0); 1049 ASSERT(spa->spa_did != 0); 1050 } else { 1051 #ifdef _KERNEL 1052 cmn_err(CE_WARN, 1053 "Couldn't create process for zfs pool \"%s\"\n", 1054 spa->spa_name); 1055 #endif 1056 } 1057 } 1058 mutex_exit(&spa->spa_proc_lock); 1059 1060 /* If we didn't create a process, we need to create our taskqs. */ 1061 if (spa->spa_proc == &p0) { 1062 spa_create_zio_taskqs(spa); 1063 } 1064 1065 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1066 offsetof(vdev_t, vdev_config_dirty_node)); 1067 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1068 offsetof(vdev_t, vdev_state_dirty_node)); 1069 1070 txg_list_create(&spa->spa_vdev_txg_list, 1071 offsetof(struct vdev, vdev_txg_node)); 1072 1073 avl_create(&spa->spa_errlist_scrub, 1074 spa_error_entry_compare, sizeof (spa_error_entry_t), 1075 offsetof(spa_error_entry_t, se_avl)); 1076 avl_create(&spa->spa_errlist_last, 1077 spa_error_entry_compare, sizeof (spa_error_entry_t), 1078 offsetof(spa_error_entry_t, se_avl)); 1079 } 1080 1081 /* 1082 * Opposite of spa_activate(). 1083 */ 1084 static void 1085 spa_deactivate(spa_t *spa) 1086 { 1087 ASSERT(spa->spa_sync_on == B_FALSE); 1088 ASSERT(spa->spa_dsl_pool == NULL); 1089 ASSERT(spa->spa_root_vdev == NULL); 1090 ASSERT(spa->spa_async_zio_root == NULL); 1091 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1092 1093 txg_list_destroy(&spa->spa_vdev_txg_list); 1094 1095 list_destroy(&spa->spa_config_dirty_list); 1096 list_destroy(&spa->spa_state_dirty_list); 1097 1098 for (int t = 0; t < ZIO_TYPES; t++) { 1099 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1100 spa_taskqs_fini(spa, t, q); 1101 } 1102 } 1103 1104 metaslab_class_destroy(spa->spa_normal_class); 1105 spa->spa_normal_class = NULL; 1106 1107 metaslab_class_destroy(spa->spa_log_class); 1108 spa->spa_log_class = NULL; 1109 1110 /* 1111 * If this was part of an import or the open otherwise failed, we may 1112 * still have errors left in the queues. Empty them just in case. 1113 */ 1114 spa_errlog_drain(spa); 1115 1116 avl_destroy(&spa->spa_errlist_scrub); 1117 avl_destroy(&spa->spa_errlist_last); 1118 1119 spa->spa_state = POOL_STATE_UNINITIALIZED; 1120 1121 mutex_enter(&spa->spa_proc_lock); 1122 if (spa->spa_proc_state != SPA_PROC_NONE) { 1123 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1124 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1125 cv_broadcast(&spa->spa_proc_cv); 1126 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1127 ASSERT(spa->spa_proc != &p0); 1128 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1129 } 1130 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1131 spa->spa_proc_state = SPA_PROC_NONE; 1132 } 1133 ASSERT(spa->spa_proc == &p0); 1134 mutex_exit(&spa->spa_proc_lock); 1135 1136 /* 1137 * We want to make sure spa_thread() has actually exited the ZFS 1138 * module, so that the module can't be unloaded out from underneath 1139 * it. 1140 */ 1141 if (spa->spa_did != 0) { 1142 thread_join(spa->spa_did); 1143 spa->spa_did = 0; 1144 } 1145 } 1146 1147 /* 1148 * Verify a pool configuration, and construct the vdev tree appropriately. This 1149 * will create all the necessary vdevs in the appropriate layout, with each vdev 1150 * in the CLOSED state. This will prep the pool before open/creation/import. 1151 * All vdev validation is done by the vdev_alloc() routine. 1152 */ 1153 static int 1154 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1155 uint_t id, int atype) 1156 { 1157 nvlist_t **child; 1158 uint_t children; 1159 int error; 1160 1161 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1162 return (error); 1163 1164 if ((*vdp)->vdev_ops->vdev_op_leaf) 1165 return (0); 1166 1167 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1168 &child, &children); 1169 1170 if (error == ENOENT) 1171 return (0); 1172 1173 if (error) { 1174 vdev_free(*vdp); 1175 *vdp = NULL; 1176 return (SET_ERROR(EINVAL)); 1177 } 1178 1179 for (int c = 0; c < children; c++) { 1180 vdev_t *vd; 1181 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1182 atype)) != 0) { 1183 vdev_free(*vdp); 1184 *vdp = NULL; 1185 return (error); 1186 } 1187 } 1188 1189 ASSERT(*vdp != NULL); 1190 1191 return (0); 1192 } 1193 1194 /* 1195 * Opposite of spa_load(). 1196 */ 1197 static void 1198 spa_unload(spa_t *spa) 1199 { 1200 int i; 1201 1202 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1203 1204 /* 1205 * Stop async tasks. 1206 */ 1207 spa_async_suspend(spa); 1208 1209 /* 1210 * Stop syncing. 1211 */ 1212 if (spa->spa_sync_on) { 1213 txg_sync_stop(spa->spa_dsl_pool); 1214 spa->spa_sync_on = B_FALSE; 1215 } 1216 1217 /* 1218 * Wait for any outstanding async I/O to complete. 1219 */ 1220 if (spa->spa_async_zio_root != NULL) { 1221 (void) zio_wait(spa->spa_async_zio_root); 1222 spa->spa_async_zio_root = NULL; 1223 } 1224 1225 bpobj_close(&spa->spa_deferred_bpobj); 1226 1227 /* 1228 * Close the dsl pool. 1229 */ 1230 if (spa->spa_dsl_pool) { 1231 dsl_pool_close(spa->spa_dsl_pool); 1232 spa->spa_dsl_pool = NULL; 1233 spa->spa_meta_objset = NULL; 1234 } 1235 1236 ddt_unload(spa); 1237 1238 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1239 1240 /* 1241 * Drop and purge level 2 cache 1242 */ 1243 spa_l2cache_drop(spa); 1244 1245 /* 1246 * Close all vdevs. 1247 */ 1248 if (spa->spa_root_vdev) 1249 vdev_free(spa->spa_root_vdev); 1250 ASSERT(spa->spa_root_vdev == NULL); 1251 1252 for (i = 0; i < spa->spa_spares.sav_count; i++) 1253 vdev_free(spa->spa_spares.sav_vdevs[i]); 1254 if (spa->spa_spares.sav_vdevs) { 1255 kmem_free(spa->spa_spares.sav_vdevs, 1256 spa->spa_spares.sav_count * sizeof (void *)); 1257 spa->spa_spares.sav_vdevs = NULL; 1258 } 1259 if (spa->spa_spares.sav_config) { 1260 nvlist_free(spa->spa_spares.sav_config); 1261 spa->spa_spares.sav_config = NULL; 1262 } 1263 spa->spa_spares.sav_count = 0; 1264 1265 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1266 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1267 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1268 } 1269 if (spa->spa_l2cache.sav_vdevs) { 1270 kmem_free(spa->spa_l2cache.sav_vdevs, 1271 spa->spa_l2cache.sav_count * sizeof (void *)); 1272 spa->spa_l2cache.sav_vdevs = NULL; 1273 } 1274 if (spa->spa_l2cache.sav_config) { 1275 nvlist_free(spa->spa_l2cache.sav_config); 1276 spa->spa_l2cache.sav_config = NULL; 1277 } 1278 spa->spa_l2cache.sav_count = 0; 1279 1280 spa->spa_async_suspended = 0; 1281 1282 if (spa->spa_comment != NULL) { 1283 spa_strfree(spa->spa_comment); 1284 spa->spa_comment = NULL; 1285 } 1286 1287 spa_config_exit(spa, SCL_ALL, FTAG); 1288 } 1289 1290 /* 1291 * Load (or re-load) the current list of vdevs describing the active spares for 1292 * this pool. When this is called, we have some form of basic information in 1293 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1294 * then re-generate a more complete list including status information. 1295 */ 1296 static void 1297 spa_load_spares(spa_t *spa) 1298 { 1299 nvlist_t **spares; 1300 uint_t nspares; 1301 int i; 1302 vdev_t *vd, *tvd; 1303 1304 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1305 1306 /* 1307 * First, close and free any existing spare vdevs. 1308 */ 1309 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1310 vd = spa->spa_spares.sav_vdevs[i]; 1311 1312 /* Undo the call to spa_activate() below */ 1313 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1314 B_FALSE)) != NULL && tvd->vdev_isspare) 1315 spa_spare_remove(tvd); 1316 vdev_close(vd); 1317 vdev_free(vd); 1318 } 1319 1320 if (spa->spa_spares.sav_vdevs) 1321 kmem_free(spa->spa_spares.sav_vdevs, 1322 spa->spa_spares.sav_count * sizeof (void *)); 1323 1324 if (spa->spa_spares.sav_config == NULL) 1325 nspares = 0; 1326 else 1327 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1328 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1329 1330 spa->spa_spares.sav_count = (int)nspares; 1331 spa->spa_spares.sav_vdevs = NULL; 1332 1333 if (nspares == 0) 1334 return; 1335 1336 /* 1337 * Construct the array of vdevs, opening them to get status in the 1338 * process. For each spare, there is potentially two different vdev_t 1339 * structures associated with it: one in the list of spares (used only 1340 * for basic validation purposes) and one in the active vdev 1341 * configuration (if it's spared in). During this phase we open and 1342 * validate each vdev on the spare list. If the vdev also exists in the 1343 * active configuration, then we also mark this vdev as an active spare. 1344 */ 1345 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1346 KM_SLEEP); 1347 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1348 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1349 VDEV_ALLOC_SPARE) == 0); 1350 ASSERT(vd != NULL); 1351 1352 spa->spa_spares.sav_vdevs[i] = vd; 1353 1354 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1355 B_FALSE)) != NULL) { 1356 if (!tvd->vdev_isspare) 1357 spa_spare_add(tvd); 1358 1359 /* 1360 * We only mark the spare active if we were successfully 1361 * able to load the vdev. Otherwise, importing a pool 1362 * with a bad active spare would result in strange 1363 * behavior, because multiple pool would think the spare 1364 * is actively in use. 1365 * 1366 * There is a vulnerability here to an equally bizarre 1367 * circumstance, where a dead active spare is later 1368 * brought back to life (onlined or otherwise). Given 1369 * the rarity of this scenario, and the extra complexity 1370 * it adds, we ignore the possibility. 1371 */ 1372 if (!vdev_is_dead(tvd)) 1373 spa_spare_activate(tvd); 1374 } 1375 1376 vd->vdev_top = vd; 1377 vd->vdev_aux = &spa->spa_spares; 1378 1379 if (vdev_open(vd) != 0) 1380 continue; 1381 1382 if (vdev_validate_aux(vd) == 0) 1383 spa_spare_add(vd); 1384 } 1385 1386 /* 1387 * Recompute the stashed list of spares, with status information 1388 * this time. 1389 */ 1390 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1391 DATA_TYPE_NVLIST_ARRAY) == 0); 1392 1393 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1394 KM_SLEEP); 1395 for (i = 0; i < spa->spa_spares.sav_count; i++) 1396 spares[i] = vdev_config_generate(spa, 1397 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1398 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1399 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1400 for (i = 0; i < spa->spa_spares.sav_count; i++) 1401 nvlist_free(spares[i]); 1402 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1403 } 1404 1405 /* 1406 * Load (or re-load) the current list of vdevs describing the active l2cache for 1407 * this pool. When this is called, we have some form of basic information in 1408 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1409 * then re-generate a more complete list including status information. 1410 * Devices which are already active have their details maintained, and are 1411 * not re-opened. 1412 */ 1413 static void 1414 spa_load_l2cache(spa_t *spa) 1415 { 1416 nvlist_t **l2cache; 1417 uint_t nl2cache; 1418 int i, j, oldnvdevs; 1419 uint64_t guid; 1420 vdev_t *vd, **oldvdevs, **newvdevs; 1421 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1422 1423 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1424 1425 if (sav->sav_config != NULL) { 1426 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1427 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1428 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1429 } else { 1430 nl2cache = 0; 1431 newvdevs = NULL; 1432 } 1433 1434 oldvdevs = sav->sav_vdevs; 1435 oldnvdevs = sav->sav_count; 1436 sav->sav_vdevs = NULL; 1437 sav->sav_count = 0; 1438 1439 /* 1440 * Process new nvlist of vdevs. 1441 */ 1442 for (i = 0; i < nl2cache; i++) { 1443 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1444 &guid) == 0); 1445 1446 newvdevs[i] = NULL; 1447 for (j = 0; j < oldnvdevs; j++) { 1448 vd = oldvdevs[j]; 1449 if (vd != NULL && guid == vd->vdev_guid) { 1450 /* 1451 * Retain previous vdev for add/remove ops. 1452 */ 1453 newvdevs[i] = vd; 1454 oldvdevs[j] = NULL; 1455 break; 1456 } 1457 } 1458 1459 if (newvdevs[i] == NULL) { 1460 /* 1461 * Create new vdev 1462 */ 1463 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1464 VDEV_ALLOC_L2CACHE) == 0); 1465 ASSERT(vd != NULL); 1466 newvdevs[i] = vd; 1467 1468 /* 1469 * Commit this vdev as an l2cache device, 1470 * even if it fails to open. 1471 */ 1472 spa_l2cache_add(vd); 1473 1474 vd->vdev_top = vd; 1475 vd->vdev_aux = sav; 1476 1477 spa_l2cache_activate(vd); 1478 1479 if (vdev_open(vd) != 0) 1480 continue; 1481 1482 (void) vdev_validate_aux(vd); 1483 1484 if (!vdev_is_dead(vd)) 1485 l2arc_add_vdev(spa, vd); 1486 } 1487 } 1488 1489 /* 1490 * Purge vdevs that were dropped 1491 */ 1492 for (i = 0; i < oldnvdevs; i++) { 1493 uint64_t pool; 1494 1495 vd = oldvdevs[i]; 1496 if (vd != NULL) { 1497 ASSERT(vd->vdev_isl2cache); 1498 1499 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1500 pool != 0ULL && l2arc_vdev_present(vd)) 1501 l2arc_remove_vdev(vd); 1502 vdev_clear_stats(vd); 1503 vdev_free(vd); 1504 } 1505 } 1506 1507 if (oldvdevs) 1508 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1509 1510 if (sav->sav_config == NULL) 1511 goto out; 1512 1513 sav->sav_vdevs = newvdevs; 1514 sav->sav_count = (int)nl2cache; 1515 1516 /* 1517 * Recompute the stashed list of l2cache devices, with status 1518 * information this time. 1519 */ 1520 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1521 DATA_TYPE_NVLIST_ARRAY) == 0); 1522 1523 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1524 for (i = 0; i < sav->sav_count; i++) 1525 l2cache[i] = vdev_config_generate(spa, 1526 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1527 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1528 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1529 out: 1530 for (i = 0; i < sav->sav_count; i++) 1531 nvlist_free(l2cache[i]); 1532 if (sav->sav_count) 1533 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1534 } 1535 1536 static int 1537 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1538 { 1539 dmu_buf_t *db; 1540 char *packed = NULL; 1541 size_t nvsize = 0; 1542 int error; 1543 *value = NULL; 1544 1545 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1546 nvsize = *(uint64_t *)db->db_data; 1547 dmu_buf_rele(db, FTAG); 1548 1549 packed = kmem_alloc(nvsize, KM_SLEEP); 1550 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1551 DMU_READ_PREFETCH); 1552 if (error == 0) 1553 error = nvlist_unpack(packed, nvsize, value, 0); 1554 kmem_free(packed, nvsize); 1555 1556 return (error); 1557 } 1558 1559 /* 1560 * Checks to see if the given vdev could not be opened, in which case we post a 1561 * sysevent to notify the autoreplace code that the device has been removed. 1562 */ 1563 static void 1564 spa_check_removed(vdev_t *vd) 1565 { 1566 for (int c = 0; c < vd->vdev_children; c++) 1567 spa_check_removed(vd->vdev_child[c]); 1568 1569 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1570 !vd->vdev_ishole) { 1571 zfs_post_autoreplace(vd->vdev_spa, vd); 1572 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1573 } 1574 } 1575 1576 /* 1577 * Validate the current config against the MOS config 1578 */ 1579 static boolean_t 1580 spa_config_valid(spa_t *spa, nvlist_t *config) 1581 { 1582 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1583 nvlist_t *nv; 1584 1585 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1586 1587 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1588 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1589 1590 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1591 1592 /* 1593 * If we're doing a normal import, then build up any additional 1594 * diagnostic information about missing devices in this config. 1595 * We'll pass this up to the user for further processing. 1596 */ 1597 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1598 nvlist_t **child, *nv; 1599 uint64_t idx = 0; 1600 1601 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1602 KM_SLEEP); 1603 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1604 1605 for (int c = 0; c < rvd->vdev_children; c++) { 1606 vdev_t *tvd = rvd->vdev_child[c]; 1607 vdev_t *mtvd = mrvd->vdev_child[c]; 1608 1609 if (tvd->vdev_ops == &vdev_missing_ops && 1610 mtvd->vdev_ops != &vdev_missing_ops && 1611 mtvd->vdev_islog) 1612 child[idx++] = vdev_config_generate(spa, mtvd, 1613 B_FALSE, 0); 1614 } 1615 1616 if (idx) { 1617 VERIFY(nvlist_add_nvlist_array(nv, 1618 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1619 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1620 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1621 1622 for (int i = 0; i < idx; i++) 1623 nvlist_free(child[i]); 1624 } 1625 nvlist_free(nv); 1626 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1627 } 1628 1629 /* 1630 * Compare the root vdev tree with the information we have 1631 * from the MOS config (mrvd). Check each top-level vdev 1632 * with the corresponding MOS config top-level (mtvd). 1633 */ 1634 for (int c = 0; c < rvd->vdev_children; c++) { 1635 vdev_t *tvd = rvd->vdev_child[c]; 1636 vdev_t *mtvd = mrvd->vdev_child[c]; 1637 1638 /* 1639 * Resolve any "missing" vdevs in the current configuration. 1640 * If we find that the MOS config has more accurate information 1641 * about the top-level vdev then use that vdev instead. 1642 */ 1643 if (tvd->vdev_ops == &vdev_missing_ops && 1644 mtvd->vdev_ops != &vdev_missing_ops) { 1645 1646 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1647 continue; 1648 1649 /* 1650 * Device specific actions. 1651 */ 1652 if (mtvd->vdev_islog) { 1653 spa_set_log_state(spa, SPA_LOG_CLEAR); 1654 } else { 1655 /* 1656 * XXX - once we have 'readonly' pool 1657 * support we should be able to handle 1658 * missing data devices by transitioning 1659 * the pool to readonly. 1660 */ 1661 continue; 1662 } 1663 1664 /* 1665 * Swap the missing vdev with the data we were 1666 * able to obtain from the MOS config. 1667 */ 1668 vdev_remove_child(rvd, tvd); 1669 vdev_remove_child(mrvd, mtvd); 1670 1671 vdev_add_child(rvd, mtvd); 1672 vdev_add_child(mrvd, tvd); 1673 1674 spa_config_exit(spa, SCL_ALL, FTAG); 1675 vdev_load(mtvd); 1676 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1677 1678 vdev_reopen(rvd); 1679 } else if (mtvd->vdev_islog) { 1680 /* 1681 * Load the slog device's state from the MOS config 1682 * since it's possible that the label does not 1683 * contain the most up-to-date information. 1684 */ 1685 vdev_load_log_state(tvd, mtvd); 1686 vdev_reopen(tvd); 1687 } 1688 } 1689 vdev_free(mrvd); 1690 spa_config_exit(spa, SCL_ALL, FTAG); 1691 1692 /* 1693 * Ensure we were able to validate the config. 1694 */ 1695 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1696 } 1697 1698 /* 1699 * Check for missing log devices 1700 */ 1701 static boolean_t 1702 spa_check_logs(spa_t *spa) 1703 { 1704 boolean_t rv = B_FALSE; 1705 1706 switch (spa->spa_log_state) { 1707 case SPA_LOG_MISSING: 1708 /* need to recheck in case slog has been restored */ 1709 case SPA_LOG_UNKNOWN: 1710 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1711 NULL, DS_FIND_CHILDREN) != 0); 1712 if (rv) 1713 spa_set_log_state(spa, SPA_LOG_MISSING); 1714 break; 1715 } 1716 return (rv); 1717 } 1718 1719 static boolean_t 1720 spa_passivate_log(spa_t *spa) 1721 { 1722 vdev_t *rvd = spa->spa_root_vdev; 1723 boolean_t slog_found = B_FALSE; 1724 1725 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1726 1727 if (!spa_has_slogs(spa)) 1728 return (B_FALSE); 1729 1730 for (int c = 0; c < rvd->vdev_children; c++) { 1731 vdev_t *tvd = rvd->vdev_child[c]; 1732 metaslab_group_t *mg = tvd->vdev_mg; 1733 1734 if (tvd->vdev_islog) { 1735 metaslab_group_passivate(mg); 1736 slog_found = B_TRUE; 1737 } 1738 } 1739 1740 return (slog_found); 1741 } 1742 1743 static void 1744 spa_activate_log(spa_t *spa) 1745 { 1746 vdev_t *rvd = spa->spa_root_vdev; 1747 1748 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1749 1750 for (int c = 0; c < rvd->vdev_children; c++) { 1751 vdev_t *tvd = rvd->vdev_child[c]; 1752 metaslab_group_t *mg = tvd->vdev_mg; 1753 1754 if (tvd->vdev_islog) 1755 metaslab_group_activate(mg); 1756 } 1757 } 1758 1759 int 1760 spa_offline_log(spa_t *spa) 1761 { 1762 int error; 1763 1764 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1765 NULL, DS_FIND_CHILDREN); 1766 if (error == 0) { 1767 /* 1768 * We successfully offlined the log device, sync out the 1769 * current txg so that the "stubby" block can be removed 1770 * by zil_sync(). 1771 */ 1772 txg_wait_synced(spa->spa_dsl_pool, 0); 1773 } 1774 return (error); 1775 } 1776 1777 static void 1778 spa_aux_check_removed(spa_aux_vdev_t *sav) 1779 { 1780 for (int i = 0; i < sav->sav_count; i++) 1781 spa_check_removed(sav->sav_vdevs[i]); 1782 } 1783 1784 void 1785 spa_claim_notify(zio_t *zio) 1786 { 1787 spa_t *spa = zio->io_spa; 1788 1789 if (zio->io_error) 1790 return; 1791 1792 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1793 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1794 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1795 mutex_exit(&spa->spa_props_lock); 1796 } 1797 1798 typedef struct spa_load_error { 1799 uint64_t sle_meta_count; 1800 uint64_t sle_data_count; 1801 } spa_load_error_t; 1802 1803 static void 1804 spa_load_verify_done(zio_t *zio) 1805 { 1806 blkptr_t *bp = zio->io_bp; 1807 spa_load_error_t *sle = zio->io_private; 1808 dmu_object_type_t type = BP_GET_TYPE(bp); 1809 int error = zio->io_error; 1810 1811 if (error) { 1812 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1813 type != DMU_OT_INTENT_LOG) 1814 atomic_add_64(&sle->sle_meta_count, 1); 1815 else 1816 atomic_add_64(&sle->sle_data_count, 1); 1817 } 1818 zio_data_buf_free(zio->io_data, zio->io_size); 1819 } 1820 1821 /*ARGSUSED*/ 1822 static int 1823 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1824 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1825 { 1826 if (bp != NULL) { 1827 zio_t *rio = arg; 1828 size_t size = BP_GET_PSIZE(bp); 1829 void *data = zio_data_buf_alloc(size); 1830 1831 zio_nowait(zio_read(rio, spa, bp, data, size, 1832 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1833 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1834 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1835 } 1836 return (0); 1837 } 1838 1839 static int 1840 spa_load_verify(spa_t *spa) 1841 { 1842 zio_t *rio; 1843 spa_load_error_t sle = { 0 }; 1844 zpool_rewind_policy_t policy; 1845 boolean_t verify_ok = B_FALSE; 1846 int error; 1847 1848 zpool_get_rewind_policy(spa->spa_config, &policy); 1849 1850 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1851 return (0); 1852 1853 rio = zio_root(spa, NULL, &sle, 1854 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1855 1856 error = traverse_pool(spa, spa->spa_verify_min_txg, 1857 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1858 1859 (void) zio_wait(rio); 1860 1861 spa->spa_load_meta_errors = sle.sle_meta_count; 1862 spa->spa_load_data_errors = sle.sle_data_count; 1863 1864 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1865 sle.sle_data_count <= policy.zrp_maxdata) { 1866 int64_t loss = 0; 1867 1868 verify_ok = B_TRUE; 1869 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1870 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1871 1872 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1873 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1874 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1875 VERIFY(nvlist_add_int64(spa->spa_load_info, 1876 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1877 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1878 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1879 } else { 1880 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1881 } 1882 1883 if (error) { 1884 if (error != ENXIO && error != EIO) 1885 error = SET_ERROR(EIO); 1886 return (error); 1887 } 1888 1889 return (verify_ok ? 0 : EIO); 1890 } 1891 1892 /* 1893 * Find a value in the pool props object. 1894 */ 1895 static void 1896 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1897 { 1898 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1899 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1900 } 1901 1902 /* 1903 * Find a value in the pool directory object. 1904 */ 1905 static int 1906 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1907 { 1908 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1909 name, sizeof (uint64_t), 1, val)); 1910 } 1911 1912 static int 1913 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1914 { 1915 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1916 return (err); 1917 } 1918 1919 /* 1920 * Fix up config after a partly-completed split. This is done with the 1921 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1922 * pool have that entry in their config, but only the splitting one contains 1923 * a list of all the guids of the vdevs that are being split off. 1924 * 1925 * This function determines what to do with that list: either rejoin 1926 * all the disks to the pool, or complete the splitting process. To attempt 1927 * the rejoin, each disk that is offlined is marked online again, and 1928 * we do a reopen() call. If the vdev label for every disk that was 1929 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1930 * then we call vdev_split() on each disk, and complete the split. 1931 * 1932 * Otherwise we leave the config alone, with all the vdevs in place in 1933 * the original pool. 1934 */ 1935 static void 1936 spa_try_repair(spa_t *spa, nvlist_t *config) 1937 { 1938 uint_t extracted; 1939 uint64_t *glist; 1940 uint_t i, gcount; 1941 nvlist_t *nvl; 1942 vdev_t **vd; 1943 boolean_t attempt_reopen; 1944 1945 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1946 return; 1947 1948 /* check that the config is complete */ 1949 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1950 &glist, &gcount) != 0) 1951 return; 1952 1953 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1954 1955 /* attempt to online all the vdevs & validate */ 1956 attempt_reopen = B_TRUE; 1957 for (i = 0; i < gcount; i++) { 1958 if (glist[i] == 0) /* vdev is hole */ 1959 continue; 1960 1961 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1962 if (vd[i] == NULL) { 1963 /* 1964 * Don't bother attempting to reopen the disks; 1965 * just do the split. 1966 */ 1967 attempt_reopen = B_FALSE; 1968 } else { 1969 /* attempt to re-online it */ 1970 vd[i]->vdev_offline = B_FALSE; 1971 } 1972 } 1973 1974 if (attempt_reopen) { 1975 vdev_reopen(spa->spa_root_vdev); 1976 1977 /* check each device to see what state it's in */ 1978 for (extracted = 0, i = 0; i < gcount; i++) { 1979 if (vd[i] != NULL && 1980 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1981 break; 1982 ++extracted; 1983 } 1984 } 1985 1986 /* 1987 * If every disk has been moved to the new pool, or if we never 1988 * even attempted to look at them, then we split them off for 1989 * good. 1990 */ 1991 if (!attempt_reopen || gcount == extracted) { 1992 for (i = 0; i < gcount; i++) 1993 if (vd[i] != NULL) 1994 vdev_split(vd[i]); 1995 vdev_reopen(spa->spa_root_vdev); 1996 } 1997 1998 kmem_free(vd, gcount * sizeof (vdev_t *)); 1999 } 2000 2001 static int 2002 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2003 boolean_t mosconfig) 2004 { 2005 nvlist_t *config = spa->spa_config; 2006 char *ereport = FM_EREPORT_ZFS_POOL; 2007 char *comment; 2008 int error; 2009 uint64_t pool_guid; 2010 nvlist_t *nvl; 2011 2012 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2013 return (SET_ERROR(EINVAL)); 2014 2015 ASSERT(spa->spa_comment == NULL); 2016 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2017 spa->spa_comment = spa_strdup(comment); 2018 2019 /* 2020 * Versioning wasn't explicitly added to the label until later, so if 2021 * it's not present treat it as the initial version. 2022 */ 2023 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2024 &spa->spa_ubsync.ub_version) != 0) 2025 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2026 2027 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2028 &spa->spa_config_txg); 2029 2030 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2031 spa_guid_exists(pool_guid, 0)) { 2032 error = SET_ERROR(EEXIST); 2033 } else { 2034 spa->spa_config_guid = pool_guid; 2035 2036 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2037 &nvl) == 0) { 2038 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2039 KM_SLEEP) == 0); 2040 } 2041 2042 nvlist_free(spa->spa_load_info); 2043 spa->spa_load_info = fnvlist_alloc(); 2044 2045 gethrestime(&spa->spa_loaded_ts); 2046 error = spa_load_impl(spa, pool_guid, config, state, type, 2047 mosconfig, &ereport); 2048 } 2049 2050 spa->spa_minref = refcount_count(&spa->spa_refcount); 2051 if (error) { 2052 if (error != EEXIST) { 2053 spa->spa_loaded_ts.tv_sec = 0; 2054 spa->spa_loaded_ts.tv_nsec = 0; 2055 } 2056 if (error != EBADF) { 2057 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2058 } 2059 } 2060 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2061 spa->spa_ena = 0; 2062 2063 return (error); 2064 } 2065 2066 /* 2067 * Load an existing storage pool, using the pool's builtin spa_config as a 2068 * source of configuration information. 2069 */ 2070 static int 2071 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2072 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2073 char **ereport) 2074 { 2075 int error = 0; 2076 nvlist_t *nvroot = NULL; 2077 nvlist_t *label; 2078 vdev_t *rvd; 2079 uberblock_t *ub = &spa->spa_uberblock; 2080 uint64_t children, config_cache_txg = spa->spa_config_txg; 2081 int orig_mode = spa->spa_mode; 2082 int parse; 2083 uint64_t obj; 2084 boolean_t missing_feat_write = B_FALSE; 2085 2086 /* 2087 * If this is an untrusted config, access the pool in read-only mode. 2088 * This prevents things like resilvering recently removed devices. 2089 */ 2090 if (!mosconfig) 2091 spa->spa_mode = FREAD; 2092 2093 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2094 2095 spa->spa_load_state = state; 2096 2097 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2098 return (SET_ERROR(EINVAL)); 2099 2100 parse = (type == SPA_IMPORT_EXISTING ? 2101 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2102 2103 /* 2104 * Create "The Godfather" zio to hold all async IOs 2105 */ 2106 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2107 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2108 2109 /* 2110 * Parse the configuration into a vdev tree. We explicitly set the 2111 * value that will be returned by spa_version() since parsing the 2112 * configuration requires knowing the version number. 2113 */ 2114 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2115 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2116 spa_config_exit(spa, SCL_ALL, FTAG); 2117 2118 if (error != 0) 2119 return (error); 2120 2121 ASSERT(spa->spa_root_vdev == rvd); 2122 2123 if (type != SPA_IMPORT_ASSEMBLE) { 2124 ASSERT(spa_guid(spa) == pool_guid); 2125 } 2126 2127 /* 2128 * Try to open all vdevs, loading each label in the process. 2129 */ 2130 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2131 error = vdev_open(rvd); 2132 spa_config_exit(spa, SCL_ALL, FTAG); 2133 if (error != 0) 2134 return (error); 2135 2136 /* 2137 * We need to validate the vdev labels against the configuration that 2138 * we have in hand, which is dependent on the setting of mosconfig. If 2139 * mosconfig is true then we're validating the vdev labels based on 2140 * that config. Otherwise, we're validating against the cached config 2141 * (zpool.cache) that was read when we loaded the zfs module, and then 2142 * later we will recursively call spa_load() and validate against 2143 * the vdev config. 2144 * 2145 * If we're assembling a new pool that's been split off from an 2146 * existing pool, the labels haven't yet been updated so we skip 2147 * validation for now. 2148 */ 2149 if (type != SPA_IMPORT_ASSEMBLE) { 2150 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2151 error = vdev_validate(rvd, mosconfig); 2152 spa_config_exit(spa, SCL_ALL, FTAG); 2153 2154 if (error != 0) 2155 return (error); 2156 2157 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2158 return (SET_ERROR(ENXIO)); 2159 } 2160 2161 /* 2162 * Find the best uberblock. 2163 */ 2164 vdev_uberblock_load(rvd, ub, &label); 2165 2166 /* 2167 * If we weren't able to find a single valid uberblock, return failure. 2168 */ 2169 if (ub->ub_txg == 0) { 2170 nvlist_free(label); 2171 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2172 } 2173 2174 /* 2175 * If the pool has an unsupported version we can't open it. 2176 */ 2177 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2178 nvlist_free(label); 2179 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2180 } 2181 2182 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2183 nvlist_t *features; 2184 2185 /* 2186 * If we weren't able to find what's necessary for reading the 2187 * MOS in the label, return failure. 2188 */ 2189 if (label == NULL || nvlist_lookup_nvlist(label, 2190 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2191 nvlist_free(label); 2192 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2193 ENXIO)); 2194 } 2195 2196 /* 2197 * Update our in-core representation with the definitive values 2198 * from the label. 2199 */ 2200 nvlist_free(spa->spa_label_features); 2201 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2202 } 2203 2204 nvlist_free(label); 2205 2206 /* 2207 * Look through entries in the label nvlist's features_for_read. If 2208 * there is a feature listed there which we don't understand then we 2209 * cannot open a pool. 2210 */ 2211 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2212 nvlist_t *unsup_feat; 2213 2214 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2215 0); 2216 2217 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2218 NULL); nvp != NULL; 2219 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2220 if (!zfeature_is_supported(nvpair_name(nvp))) { 2221 VERIFY(nvlist_add_string(unsup_feat, 2222 nvpair_name(nvp), "") == 0); 2223 } 2224 } 2225 2226 if (!nvlist_empty(unsup_feat)) { 2227 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2228 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2229 nvlist_free(unsup_feat); 2230 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2231 ENOTSUP)); 2232 } 2233 2234 nvlist_free(unsup_feat); 2235 } 2236 2237 /* 2238 * If the vdev guid sum doesn't match the uberblock, we have an 2239 * incomplete configuration. We first check to see if the pool 2240 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2241 * If it is, defer the vdev_guid_sum check till later so we 2242 * can handle missing vdevs. 2243 */ 2244 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2245 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2246 rvd->vdev_guid_sum != ub->ub_guid_sum) 2247 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2248 2249 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2250 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2251 spa_try_repair(spa, config); 2252 spa_config_exit(spa, SCL_ALL, FTAG); 2253 nvlist_free(spa->spa_config_splitting); 2254 spa->spa_config_splitting = NULL; 2255 } 2256 2257 /* 2258 * Initialize internal SPA structures. 2259 */ 2260 spa->spa_state = POOL_STATE_ACTIVE; 2261 spa->spa_ubsync = spa->spa_uberblock; 2262 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2263 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2264 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2265 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2266 spa->spa_claim_max_txg = spa->spa_first_txg; 2267 spa->spa_prev_software_version = ub->ub_software_version; 2268 2269 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2270 if (error) 2271 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2272 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2273 2274 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2276 2277 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2278 boolean_t missing_feat_read = B_FALSE; 2279 nvlist_t *unsup_feat, *enabled_feat; 2280 2281 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2282 &spa->spa_feat_for_read_obj) != 0) { 2283 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2284 } 2285 2286 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2287 &spa->spa_feat_for_write_obj) != 0) { 2288 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2289 } 2290 2291 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2292 &spa->spa_feat_desc_obj) != 0) { 2293 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2294 } 2295 2296 enabled_feat = fnvlist_alloc(); 2297 unsup_feat = fnvlist_alloc(); 2298 2299 if (!feature_is_supported(spa->spa_meta_objset, 2300 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2301 unsup_feat, enabled_feat)) 2302 missing_feat_read = B_TRUE; 2303 2304 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2305 if (!feature_is_supported(spa->spa_meta_objset, 2306 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2307 unsup_feat, enabled_feat)) { 2308 missing_feat_write = B_TRUE; 2309 } 2310 } 2311 2312 fnvlist_add_nvlist(spa->spa_load_info, 2313 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2314 2315 if (!nvlist_empty(unsup_feat)) { 2316 fnvlist_add_nvlist(spa->spa_load_info, 2317 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2318 } 2319 2320 fnvlist_free(enabled_feat); 2321 fnvlist_free(unsup_feat); 2322 2323 if (!missing_feat_read) { 2324 fnvlist_add_boolean(spa->spa_load_info, 2325 ZPOOL_CONFIG_CAN_RDONLY); 2326 } 2327 2328 /* 2329 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2330 * twofold: to determine whether the pool is available for 2331 * import in read-write mode and (if it is not) whether the 2332 * pool is available for import in read-only mode. If the pool 2333 * is available for import in read-write mode, it is displayed 2334 * as available in userland; if it is not available for import 2335 * in read-only mode, it is displayed as unavailable in 2336 * userland. If the pool is available for import in read-only 2337 * mode but not read-write mode, it is displayed as unavailable 2338 * in userland with a special note that the pool is actually 2339 * available for open in read-only mode. 2340 * 2341 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2342 * missing a feature for write, we must first determine whether 2343 * the pool can be opened read-only before returning to 2344 * userland in order to know whether to display the 2345 * abovementioned note. 2346 */ 2347 if (missing_feat_read || (missing_feat_write && 2348 spa_writeable(spa))) { 2349 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2350 ENOTSUP)); 2351 } 2352 } 2353 2354 spa->spa_is_initializing = B_TRUE; 2355 error = dsl_pool_open(spa->spa_dsl_pool); 2356 spa->spa_is_initializing = B_FALSE; 2357 if (error != 0) 2358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2359 2360 if (!mosconfig) { 2361 uint64_t hostid; 2362 nvlist_t *policy = NULL, *nvconfig; 2363 2364 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2365 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2366 2367 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2368 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2369 char *hostname; 2370 unsigned long myhostid = 0; 2371 2372 VERIFY(nvlist_lookup_string(nvconfig, 2373 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2374 2375 #ifdef _KERNEL 2376 myhostid = zone_get_hostid(NULL); 2377 #else /* _KERNEL */ 2378 /* 2379 * We're emulating the system's hostid in userland, so 2380 * we can't use zone_get_hostid(). 2381 */ 2382 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2383 #endif /* _KERNEL */ 2384 if (hostid != 0 && myhostid != 0 && 2385 hostid != myhostid) { 2386 nvlist_free(nvconfig); 2387 cmn_err(CE_WARN, "pool '%s' could not be " 2388 "loaded as it was last accessed by " 2389 "another system (host: %s hostid: 0x%lx). " 2390 "See: http://illumos.org/msg/ZFS-8000-EY", 2391 spa_name(spa), hostname, 2392 (unsigned long)hostid); 2393 return (SET_ERROR(EBADF)); 2394 } 2395 } 2396 if (nvlist_lookup_nvlist(spa->spa_config, 2397 ZPOOL_REWIND_POLICY, &policy) == 0) 2398 VERIFY(nvlist_add_nvlist(nvconfig, 2399 ZPOOL_REWIND_POLICY, policy) == 0); 2400 2401 spa_config_set(spa, nvconfig); 2402 spa_unload(spa); 2403 spa_deactivate(spa); 2404 spa_activate(spa, orig_mode); 2405 2406 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2407 } 2408 2409 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2410 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2411 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2412 if (error != 0) 2413 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2414 2415 /* 2416 * Load the bit that tells us to use the new accounting function 2417 * (raid-z deflation). If we have an older pool, this will not 2418 * be present. 2419 */ 2420 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2421 if (error != 0 && error != ENOENT) 2422 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2423 2424 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2425 &spa->spa_creation_version); 2426 if (error != 0 && error != ENOENT) 2427 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2428 2429 /* 2430 * Load the persistent error log. If we have an older pool, this will 2431 * not be present. 2432 */ 2433 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2434 if (error != 0 && error != ENOENT) 2435 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2436 2437 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2438 &spa->spa_errlog_scrub); 2439 if (error != 0 && error != ENOENT) 2440 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2441 2442 /* 2443 * Load the history object. If we have an older pool, this 2444 * will not be present. 2445 */ 2446 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2447 if (error != 0 && error != ENOENT) 2448 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2449 2450 /* 2451 * If we're assembling the pool from the split-off vdevs of 2452 * an existing pool, we don't want to attach the spares & cache 2453 * devices. 2454 */ 2455 2456 /* 2457 * Load any hot spares for this pool. 2458 */ 2459 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2460 if (error != 0 && error != ENOENT) 2461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2462 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2463 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2464 if (load_nvlist(spa, spa->spa_spares.sav_object, 2465 &spa->spa_spares.sav_config) != 0) 2466 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2467 2468 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2469 spa_load_spares(spa); 2470 spa_config_exit(spa, SCL_ALL, FTAG); 2471 } else if (error == 0) { 2472 spa->spa_spares.sav_sync = B_TRUE; 2473 } 2474 2475 /* 2476 * Load any level 2 ARC devices for this pool. 2477 */ 2478 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2479 &spa->spa_l2cache.sav_object); 2480 if (error != 0 && error != ENOENT) 2481 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2482 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2483 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2484 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2485 &spa->spa_l2cache.sav_config) != 0) 2486 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2487 2488 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2489 spa_load_l2cache(spa); 2490 spa_config_exit(spa, SCL_ALL, FTAG); 2491 } else if (error == 0) { 2492 spa->spa_l2cache.sav_sync = B_TRUE; 2493 } 2494 2495 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2496 2497 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2498 if (error && error != ENOENT) 2499 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2500 2501 if (error == 0) { 2502 uint64_t autoreplace; 2503 2504 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2505 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2506 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2507 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2508 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2509 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2510 &spa->spa_dedup_ditto); 2511 2512 spa->spa_autoreplace = (autoreplace != 0); 2513 } 2514 2515 /* 2516 * If the 'autoreplace' property is set, then post a resource notifying 2517 * the ZFS DE that it should not issue any faults for unopenable 2518 * devices. We also iterate over the vdevs, and post a sysevent for any 2519 * unopenable vdevs so that the normal autoreplace handler can take 2520 * over. 2521 */ 2522 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2523 spa_check_removed(spa->spa_root_vdev); 2524 /* 2525 * For the import case, this is done in spa_import(), because 2526 * at this point we're using the spare definitions from 2527 * the MOS config, not necessarily from the userland config. 2528 */ 2529 if (state != SPA_LOAD_IMPORT) { 2530 spa_aux_check_removed(&spa->spa_spares); 2531 spa_aux_check_removed(&spa->spa_l2cache); 2532 } 2533 } 2534 2535 /* 2536 * Load the vdev state for all toplevel vdevs. 2537 */ 2538 vdev_load(rvd); 2539 2540 /* 2541 * Propagate the leaf DTLs we just loaded all the way up the tree. 2542 */ 2543 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2544 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2545 spa_config_exit(spa, SCL_ALL, FTAG); 2546 2547 /* 2548 * Load the DDTs (dedup tables). 2549 */ 2550 error = ddt_load(spa); 2551 if (error != 0) 2552 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2553 2554 spa_update_dspace(spa); 2555 2556 /* 2557 * Validate the config, using the MOS config to fill in any 2558 * information which might be missing. If we fail to validate 2559 * the config then declare the pool unfit for use. If we're 2560 * assembling a pool from a split, the log is not transferred 2561 * over. 2562 */ 2563 if (type != SPA_IMPORT_ASSEMBLE) { 2564 nvlist_t *nvconfig; 2565 2566 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2567 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2568 2569 if (!spa_config_valid(spa, nvconfig)) { 2570 nvlist_free(nvconfig); 2571 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2572 ENXIO)); 2573 } 2574 nvlist_free(nvconfig); 2575 2576 /* 2577 * Now that we've validated the config, check the state of the 2578 * root vdev. If it can't be opened, it indicates one or 2579 * more toplevel vdevs are faulted. 2580 */ 2581 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2582 return (SET_ERROR(ENXIO)); 2583 2584 if (spa_check_logs(spa)) { 2585 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2586 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2587 } 2588 } 2589 2590 if (missing_feat_write) { 2591 ASSERT(state == SPA_LOAD_TRYIMPORT); 2592 2593 /* 2594 * At this point, we know that we can open the pool in 2595 * read-only mode but not read-write mode. We now have enough 2596 * information and can return to userland. 2597 */ 2598 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2599 } 2600 2601 /* 2602 * We've successfully opened the pool, verify that we're ready 2603 * to start pushing transactions. 2604 */ 2605 if (state != SPA_LOAD_TRYIMPORT) { 2606 if (error = spa_load_verify(spa)) 2607 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2608 error)); 2609 } 2610 2611 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2612 spa->spa_load_max_txg == UINT64_MAX)) { 2613 dmu_tx_t *tx; 2614 int need_update = B_FALSE; 2615 2616 ASSERT(state != SPA_LOAD_TRYIMPORT); 2617 2618 /* 2619 * Claim log blocks that haven't been committed yet. 2620 * This must all happen in a single txg. 2621 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2622 * invoked from zil_claim_log_block()'s i/o done callback. 2623 * Price of rollback is that we abandon the log. 2624 */ 2625 spa->spa_claiming = B_TRUE; 2626 2627 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2628 spa_first_txg(spa)); 2629 (void) dmu_objset_find(spa_name(spa), 2630 zil_claim, tx, DS_FIND_CHILDREN); 2631 dmu_tx_commit(tx); 2632 2633 spa->spa_claiming = B_FALSE; 2634 2635 spa_set_log_state(spa, SPA_LOG_GOOD); 2636 spa->spa_sync_on = B_TRUE; 2637 txg_sync_start(spa->spa_dsl_pool); 2638 2639 /* 2640 * Wait for all claims to sync. We sync up to the highest 2641 * claimed log block birth time so that claimed log blocks 2642 * don't appear to be from the future. spa_claim_max_txg 2643 * will have been set for us by either zil_check_log_chain() 2644 * (invoked from spa_check_logs()) or zil_claim() above. 2645 */ 2646 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2647 2648 /* 2649 * If the config cache is stale, or we have uninitialized 2650 * metaslabs (see spa_vdev_add()), then update the config. 2651 * 2652 * If this is a verbatim import, trust the current 2653 * in-core spa_config and update the disk labels. 2654 */ 2655 if (config_cache_txg != spa->spa_config_txg || 2656 state == SPA_LOAD_IMPORT || 2657 state == SPA_LOAD_RECOVER || 2658 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2659 need_update = B_TRUE; 2660 2661 for (int c = 0; c < rvd->vdev_children; c++) 2662 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2663 need_update = B_TRUE; 2664 2665 /* 2666 * Update the config cache asychronously in case we're the 2667 * root pool, in which case the config cache isn't writable yet. 2668 */ 2669 if (need_update) 2670 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2671 2672 /* 2673 * Check all DTLs to see if anything needs resilvering. 2674 */ 2675 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2676 vdev_resilver_needed(rvd, NULL, NULL)) 2677 spa_async_request(spa, SPA_ASYNC_RESILVER); 2678 2679 /* 2680 * Log the fact that we booted up (so that we can detect if 2681 * we rebooted in the middle of an operation). 2682 */ 2683 spa_history_log_version(spa, "open"); 2684 2685 /* 2686 * Delete any inconsistent datasets. 2687 */ 2688 (void) dmu_objset_find(spa_name(spa), 2689 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2690 2691 /* 2692 * Clean up any stale temporary dataset userrefs. 2693 */ 2694 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2695 } 2696 2697 return (0); 2698 } 2699 2700 static int 2701 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2702 { 2703 int mode = spa->spa_mode; 2704 2705 spa_unload(spa); 2706 spa_deactivate(spa); 2707 2708 spa->spa_load_max_txg--; 2709 2710 spa_activate(spa, mode); 2711 spa_async_suspend(spa); 2712 2713 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2714 } 2715 2716 /* 2717 * If spa_load() fails this function will try loading prior txg's. If 2718 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2719 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2720 * function will not rewind the pool and will return the same error as 2721 * spa_load(). 2722 */ 2723 static int 2724 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2725 uint64_t max_request, int rewind_flags) 2726 { 2727 nvlist_t *loadinfo = NULL; 2728 nvlist_t *config = NULL; 2729 int load_error, rewind_error; 2730 uint64_t safe_rewind_txg; 2731 uint64_t min_txg; 2732 2733 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2734 spa->spa_load_max_txg = spa->spa_load_txg; 2735 spa_set_log_state(spa, SPA_LOG_CLEAR); 2736 } else { 2737 spa->spa_load_max_txg = max_request; 2738 } 2739 2740 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2741 mosconfig); 2742 if (load_error == 0) 2743 return (0); 2744 2745 if (spa->spa_root_vdev != NULL) 2746 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2747 2748 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2749 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2750 2751 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2752 nvlist_free(config); 2753 return (load_error); 2754 } 2755 2756 if (state == SPA_LOAD_RECOVER) { 2757 /* Price of rolling back is discarding txgs, including log */ 2758 spa_set_log_state(spa, SPA_LOG_CLEAR); 2759 } else { 2760 /* 2761 * If we aren't rolling back save the load info from our first 2762 * import attempt so that we can restore it after attempting 2763 * to rewind. 2764 */ 2765 loadinfo = spa->spa_load_info; 2766 spa->spa_load_info = fnvlist_alloc(); 2767 } 2768 2769 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2770 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2771 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2772 TXG_INITIAL : safe_rewind_txg; 2773 2774 /* 2775 * Continue as long as we're finding errors, we're still within 2776 * the acceptable rewind range, and we're still finding uberblocks 2777 */ 2778 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2779 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2780 if (spa->spa_load_max_txg < safe_rewind_txg) 2781 spa->spa_extreme_rewind = B_TRUE; 2782 rewind_error = spa_load_retry(spa, state, mosconfig); 2783 } 2784 2785 spa->spa_extreme_rewind = B_FALSE; 2786 spa->spa_load_max_txg = UINT64_MAX; 2787 2788 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2789 spa_config_set(spa, config); 2790 2791 if (state == SPA_LOAD_RECOVER) { 2792 ASSERT3P(loadinfo, ==, NULL); 2793 return (rewind_error); 2794 } else { 2795 /* Store the rewind info as part of the initial load info */ 2796 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2797 spa->spa_load_info); 2798 2799 /* Restore the initial load info */ 2800 fnvlist_free(spa->spa_load_info); 2801 spa->spa_load_info = loadinfo; 2802 2803 return (load_error); 2804 } 2805 } 2806 2807 /* 2808 * Pool Open/Import 2809 * 2810 * The import case is identical to an open except that the configuration is sent 2811 * down from userland, instead of grabbed from the configuration cache. For the 2812 * case of an open, the pool configuration will exist in the 2813 * POOL_STATE_UNINITIALIZED state. 2814 * 2815 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2816 * the same time open the pool, without having to keep around the spa_t in some 2817 * ambiguous state. 2818 */ 2819 static int 2820 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2821 nvlist_t **config) 2822 { 2823 spa_t *spa; 2824 spa_load_state_t state = SPA_LOAD_OPEN; 2825 int error; 2826 int locked = B_FALSE; 2827 2828 *spapp = NULL; 2829 2830 /* 2831 * As disgusting as this is, we need to support recursive calls to this 2832 * function because dsl_dir_open() is called during spa_load(), and ends 2833 * up calling spa_open() again. The real fix is to figure out how to 2834 * avoid dsl_dir_open() calling this in the first place. 2835 */ 2836 if (mutex_owner(&spa_namespace_lock) != curthread) { 2837 mutex_enter(&spa_namespace_lock); 2838 locked = B_TRUE; 2839 } 2840 2841 if ((spa = spa_lookup(pool)) == NULL) { 2842 if (locked) 2843 mutex_exit(&spa_namespace_lock); 2844 return (SET_ERROR(ENOENT)); 2845 } 2846 2847 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2848 zpool_rewind_policy_t policy; 2849 2850 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2851 &policy); 2852 if (policy.zrp_request & ZPOOL_DO_REWIND) 2853 state = SPA_LOAD_RECOVER; 2854 2855 spa_activate(spa, spa_mode_global); 2856 2857 if (state != SPA_LOAD_RECOVER) 2858 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2859 2860 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2861 policy.zrp_request); 2862 2863 if (error == EBADF) { 2864 /* 2865 * If vdev_validate() returns failure (indicated by 2866 * EBADF), it indicates that one of the vdevs indicates 2867 * that the pool has been exported or destroyed. If 2868 * this is the case, the config cache is out of sync and 2869 * we should remove the pool from the namespace. 2870 */ 2871 spa_unload(spa); 2872 spa_deactivate(spa); 2873 spa_config_sync(spa, B_TRUE, B_TRUE); 2874 spa_remove(spa); 2875 if (locked) 2876 mutex_exit(&spa_namespace_lock); 2877 return (SET_ERROR(ENOENT)); 2878 } 2879 2880 if (error) { 2881 /* 2882 * We can't open the pool, but we still have useful 2883 * information: the state of each vdev after the 2884 * attempted vdev_open(). Return this to the user. 2885 */ 2886 if (config != NULL && spa->spa_config) { 2887 VERIFY(nvlist_dup(spa->spa_config, config, 2888 KM_SLEEP) == 0); 2889 VERIFY(nvlist_add_nvlist(*config, 2890 ZPOOL_CONFIG_LOAD_INFO, 2891 spa->spa_load_info) == 0); 2892 } 2893 spa_unload(spa); 2894 spa_deactivate(spa); 2895 spa->spa_last_open_failed = error; 2896 if (locked) 2897 mutex_exit(&spa_namespace_lock); 2898 *spapp = NULL; 2899 return (error); 2900 } 2901 } 2902 2903 spa_open_ref(spa, tag); 2904 2905 if (config != NULL) 2906 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2907 2908 /* 2909 * If we've recovered the pool, pass back any information we 2910 * gathered while doing the load. 2911 */ 2912 if (state == SPA_LOAD_RECOVER) { 2913 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2914 spa->spa_load_info) == 0); 2915 } 2916 2917 if (locked) { 2918 spa->spa_last_open_failed = 0; 2919 spa->spa_last_ubsync_txg = 0; 2920 spa->spa_load_txg = 0; 2921 mutex_exit(&spa_namespace_lock); 2922 } 2923 2924 *spapp = spa; 2925 2926 return (0); 2927 } 2928 2929 int 2930 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2931 nvlist_t **config) 2932 { 2933 return (spa_open_common(name, spapp, tag, policy, config)); 2934 } 2935 2936 int 2937 spa_open(const char *name, spa_t **spapp, void *tag) 2938 { 2939 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2940 } 2941 2942 /* 2943 * Lookup the given spa_t, incrementing the inject count in the process, 2944 * preventing it from being exported or destroyed. 2945 */ 2946 spa_t * 2947 spa_inject_addref(char *name) 2948 { 2949 spa_t *spa; 2950 2951 mutex_enter(&spa_namespace_lock); 2952 if ((spa = spa_lookup(name)) == NULL) { 2953 mutex_exit(&spa_namespace_lock); 2954 return (NULL); 2955 } 2956 spa->spa_inject_ref++; 2957 mutex_exit(&spa_namespace_lock); 2958 2959 return (spa); 2960 } 2961 2962 void 2963 spa_inject_delref(spa_t *spa) 2964 { 2965 mutex_enter(&spa_namespace_lock); 2966 spa->spa_inject_ref--; 2967 mutex_exit(&spa_namespace_lock); 2968 } 2969 2970 /* 2971 * Add spares device information to the nvlist. 2972 */ 2973 static void 2974 spa_add_spares(spa_t *spa, nvlist_t *config) 2975 { 2976 nvlist_t **spares; 2977 uint_t i, nspares; 2978 nvlist_t *nvroot; 2979 uint64_t guid; 2980 vdev_stat_t *vs; 2981 uint_t vsc; 2982 uint64_t pool; 2983 2984 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2985 2986 if (spa->spa_spares.sav_count == 0) 2987 return; 2988 2989 VERIFY(nvlist_lookup_nvlist(config, 2990 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2991 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2992 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2993 if (nspares != 0) { 2994 VERIFY(nvlist_add_nvlist_array(nvroot, 2995 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2996 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2997 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2998 2999 /* 3000 * Go through and find any spares which have since been 3001 * repurposed as an active spare. If this is the case, update 3002 * their status appropriately. 3003 */ 3004 for (i = 0; i < nspares; i++) { 3005 VERIFY(nvlist_lookup_uint64(spares[i], 3006 ZPOOL_CONFIG_GUID, &guid) == 0); 3007 if (spa_spare_exists(guid, &pool, NULL) && 3008 pool != 0ULL) { 3009 VERIFY(nvlist_lookup_uint64_array( 3010 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3011 (uint64_t **)&vs, &vsc) == 0); 3012 vs->vs_state = VDEV_STATE_CANT_OPEN; 3013 vs->vs_aux = VDEV_AUX_SPARED; 3014 } 3015 } 3016 } 3017 } 3018 3019 /* 3020 * Add l2cache device information to the nvlist, including vdev stats. 3021 */ 3022 static void 3023 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3024 { 3025 nvlist_t **l2cache; 3026 uint_t i, j, nl2cache; 3027 nvlist_t *nvroot; 3028 uint64_t guid; 3029 vdev_t *vd; 3030 vdev_stat_t *vs; 3031 uint_t vsc; 3032 3033 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3034 3035 if (spa->spa_l2cache.sav_count == 0) 3036 return; 3037 3038 VERIFY(nvlist_lookup_nvlist(config, 3039 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3040 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3041 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3042 if (nl2cache != 0) { 3043 VERIFY(nvlist_add_nvlist_array(nvroot, 3044 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3045 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3046 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3047 3048 /* 3049 * Update level 2 cache device stats. 3050 */ 3051 3052 for (i = 0; i < nl2cache; i++) { 3053 VERIFY(nvlist_lookup_uint64(l2cache[i], 3054 ZPOOL_CONFIG_GUID, &guid) == 0); 3055 3056 vd = NULL; 3057 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3058 if (guid == 3059 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3060 vd = spa->spa_l2cache.sav_vdevs[j]; 3061 break; 3062 } 3063 } 3064 ASSERT(vd != NULL); 3065 3066 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3067 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3068 == 0); 3069 vdev_get_stats(vd, vs); 3070 } 3071 } 3072 } 3073 3074 static void 3075 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3076 { 3077 nvlist_t *features; 3078 zap_cursor_t zc; 3079 zap_attribute_t za; 3080 3081 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3082 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3083 3084 if (spa->spa_feat_for_read_obj != 0) { 3085 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3086 spa->spa_feat_for_read_obj); 3087 zap_cursor_retrieve(&zc, &za) == 0; 3088 zap_cursor_advance(&zc)) { 3089 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3090 za.za_num_integers == 1); 3091 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3092 za.za_first_integer)); 3093 } 3094 zap_cursor_fini(&zc); 3095 } 3096 3097 if (spa->spa_feat_for_write_obj != 0) { 3098 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3099 spa->spa_feat_for_write_obj); 3100 zap_cursor_retrieve(&zc, &za) == 0; 3101 zap_cursor_advance(&zc)) { 3102 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3103 za.za_num_integers == 1); 3104 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3105 za.za_first_integer)); 3106 } 3107 zap_cursor_fini(&zc); 3108 } 3109 3110 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3111 features) == 0); 3112 nvlist_free(features); 3113 } 3114 3115 int 3116 spa_get_stats(const char *name, nvlist_t **config, 3117 char *altroot, size_t buflen) 3118 { 3119 int error; 3120 spa_t *spa; 3121 3122 *config = NULL; 3123 error = spa_open_common(name, &spa, FTAG, NULL, config); 3124 3125 if (spa != NULL) { 3126 /* 3127 * This still leaves a window of inconsistency where the spares 3128 * or l2cache devices could change and the config would be 3129 * self-inconsistent. 3130 */ 3131 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3132 3133 if (*config != NULL) { 3134 uint64_t loadtimes[2]; 3135 3136 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3137 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3138 VERIFY(nvlist_add_uint64_array(*config, 3139 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3140 3141 VERIFY(nvlist_add_uint64(*config, 3142 ZPOOL_CONFIG_ERRCOUNT, 3143 spa_get_errlog_size(spa)) == 0); 3144 3145 if (spa_suspended(spa)) 3146 VERIFY(nvlist_add_uint64(*config, 3147 ZPOOL_CONFIG_SUSPENDED, 3148 spa->spa_failmode) == 0); 3149 3150 spa_add_spares(spa, *config); 3151 spa_add_l2cache(spa, *config); 3152 spa_add_feature_stats(spa, *config); 3153 } 3154 } 3155 3156 /* 3157 * We want to get the alternate root even for faulted pools, so we cheat 3158 * and call spa_lookup() directly. 3159 */ 3160 if (altroot) { 3161 if (spa == NULL) { 3162 mutex_enter(&spa_namespace_lock); 3163 spa = spa_lookup(name); 3164 if (spa) 3165 spa_altroot(spa, altroot, buflen); 3166 else 3167 altroot[0] = '\0'; 3168 spa = NULL; 3169 mutex_exit(&spa_namespace_lock); 3170 } else { 3171 spa_altroot(spa, altroot, buflen); 3172 } 3173 } 3174 3175 if (spa != NULL) { 3176 spa_config_exit(spa, SCL_CONFIG, FTAG); 3177 spa_close(spa, FTAG); 3178 } 3179 3180 return (error); 3181 } 3182 3183 /* 3184 * Validate that the auxiliary device array is well formed. We must have an 3185 * array of nvlists, each which describes a valid leaf vdev. If this is an 3186 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3187 * specified, as long as they are well-formed. 3188 */ 3189 static int 3190 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3191 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3192 vdev_labeltype_t label) 3193 { 3194 nvlist_t **dev; 3195 uint_t i, ndev; 3196 vdev_t *vd; 3197 int error; 3198 3199 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3200 3201 /* 3202 * It's acceptable to have no devs specified. 3203 */ 3204 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3205 return (0); 3206 3207 if (ndev == 0) 3208 return (SET_ERROR(EINVAL)); 3209 3210 /* 3211 * Make sure the pool is formatted with a version that supports this 3212 * device type. 3213 */ 3214 if (spa_version(spa) < version) 3215 return (SET_ERROR(ENOTSUP)); 3216 3217 /* 3218 * Set the pending device list so we correctly handle device in-use 3219 * checking. 3220 */ 3221 sav->sav_pending = dev; 3222 sav->sav_npending = ndev; 3223 3224 for (i = 0; i < ndev; i++) { 3225 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3226 mode)) != 0) 3227 goto out; 3228 3229 if (!vd->vdev_ops->vdev_op_leaf) { 3230 vdev_free(vd); 3231 error = SET_ERROR(EINVAL); 3232 goto out; 3233 } 3234 3235 /* 3236 * The L2ARC currently only supports disk devices in 3237 * kernel context. For user-level testing, we allow it. 3238 */ 3239 #ifdef _KERNEL 3240 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3241 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3242 error = SET_ERROR(ENOTBLK); 3243 vdev_free(vd); 3244 goto out; 3245 } 3246 #endif 3247 vd->vdev_top = vd; 3248 3249 if ((error = vdev_open(vd)) == 0 && 3250 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3251 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3252 vd->vdev_guid) == 0); 3253 } 3254 3255 vdev_free(vd); 3256 3257 if (error && 3258 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3259 goto out; 3260 else 3261 error = 0; 3262 } 3263 3264 out: 3265 sav->sav_pending = NULL; 3266 sav->sav_npending = 0; 3267 return (error); 3268 } 3269 3270 static int 3271 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3272 { 3273 int error; 3274 3275 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3276 3277 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3278 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3279 VDEV_LABEL_SPARE)) != 0) { 3280 return (error); 3281 } 3282 3283 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3284 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3285 VDEV_LABEL_L2CACHE)); 3286 } 3287 3288 static void 3289 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3290 const char *config) 3291 { 3292 int i; 3293 3294 if (sav->sav_config != NULL) { 3295 nvlist_t **olddevs; 3296 uint_t oldndevs; 3297 nvlist_t **newdevs; 3298 3299 /* 3300 * Generate new dev list by concatentating with the 3301 * current dev list. 3302 */ 3303 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3304 &olddevs, &oldndevs) == 0); 3305 3306 newdevs = kmem_alloc(sizeof (void *) * 3307 (ndevs + oldndevs), KM_SLEEP); 3308 for (i = 0; i < oldndevs; i++) 3309 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3310 KM_SLEEP) == 0); 3311 for (i = 0; i < ndevs; i++) 3312 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3313 KM_SLEEP) == 0); 3314 3315 VERIFY(nvlist_remove(sav->sav_config, config, 3316 DATA_TYPE_NVLIST_ARRAY) == 0); 3317 3318 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3319 config, newdevs, ndevs + oldndevs) == 0); 3320 for (i = 0; i < oldndevs + ndevs; i++) 3321 nvlist_free(newdevs[i]); 3322 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3323 } else { 3324 /* 3325 * Generate a new dev list. 3326 */ 3327 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3328 KM_SLEEP) == 0); 3329 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3330 devs, ndevs) == 0); 3331 } 3332 } 3333 3334 /* 3335 * Stop and drop level 2 ARC devices 3336 */ 3337 void 3338 spa_l2cache_drop(spa_t *spa) 3339 { 3340 vdev_t *vd; 3341 int i; 3342 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3343 3344 for (i = 0; i < sav->sav_count; i++) { 3345 uint64_t pool; 3346 3347 vd = sav->sav_vdevs[i]; 3348 ASSERT(vd != NULL); 3349 3350 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3351 pool != 0ULL && l2arc_vdev_present(vd)) 3352 l2arc_remove_vdev(vd); 3353 } 3354 } 3355 3356 /* 3357 * Pool Creation 3358 */ 3359 int 3360 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3361 nvlist_t *zplprops) 3362 { 3363 spa_t *spa; 3364 char *altroot = NULL; 3365 vdev_t *rvd; 3366 dsl_pool_t *dp; 3367 dmu_tx_t *tx; 3368 int error = 0; 3369 uint64_t txg = TXG_INITIAL; 3370 nvlist_t **spares, **l2cache; 3371 uint_t nspares, nl2cache; 3372 uint64_t version, obj; 3373 boolean_t has_features; 3374 3375 /* 3376 * If this pool already exists, return failure. 3377 */ 3378 mutex_enter(&spa_namespace_lock); 3379 if (spa_lookup(pool) != NULL) { 3380 mutex_exit(&spa_namespace_lock); 3381 return (SET_ERROR(EEXIST)); 3382 } 3383 3384 /* 3385 * Allocate a new spa_t structure. 3386 */ 3387 (void) nvlist_lookup_string(props, 3388 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3389 spa = spa_add(pool, NULL, altroot); 3390 spa_activate(spa, spa_mode_global); 3391 3392 if (props && (error = spa_prop_validate(spa, props))) { 3393 spa_deactivate(spa); 3394 spa_remove(spa); 3395 mutex_exit(&spa_namespace_lock); 3396 return (error); 3397 } 3398 3399 has_features = B_FALSE; 3400 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3401 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3402 if (zpool_prop_feature(nvpair_name(elem))) 3403 has_features = B_TRUE; 3404 } 3405 3406 if (has_features || nvlist_lookup_uint64(props, 3407 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3408 version = SPA_VERSION; 3409 } 3410 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3411 3412 spa->spa_first_txg = txg; 3413 spa->spa_uberblock.ub_txg = txg - 1; 3414 spa->spa_uberblock.ub_version = version; 3415 spa->spa_ubsync = spa->spa_uberblock; 3416 3417 /* 3418 * Create "The Godfather" zio to hold all async IOs 3419 */ 3420 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3421 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3422 3423 /* 3424 * Create the root vdev. 3425 */ 3426 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3427 3428 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3429 3430 ASSERT(error != 0 || rvd != NULL); 3431 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3432 3433 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3434 error = SET_ERROR(EINVAL); 3435 3436 if (error == 0 && 3437 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3438 (error = spa_validate_aux(spa, nvroot, txg, 3439 VDEV_ALLOC_ADD)) == 0) { 3440 for (int c = 0; c < rvd->vdev_children; c++) { 3441 vdev_metaslab_set_size(rvd->vdev_child[c]); 3442 vdev_expand(rvd->vdev_child[c], txg); 3443 } 3444 } 3445 3446 spa_config_exit(spa, SCL_ALL, FTAG); 3447 3448 if (error != 0) { 3449 spa_unload(spa); 3450 spa_deactivate(spa); 3451 spa_remove(spa); 3452 mutex_exit(&spa_namespace_lock); 3453 return (error); 3454 } 3455 3456 /* 3457 * Get the list of spares, if specified. 3458 */ 3459 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3460 &spares, &nspares) == 0) { 3461 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3462 KM_SLEEP) == 0); 3463 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3464 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3465 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3466 spa_load_spares(spa); 3467 spa_config_exit(spa, SCL_ALL, FTAG); 3468 spa->spa_spares.sav_sync = B_TRUE; 3469 } 3470 3471 /* 3472 * Get the list of level 2 cache devices, if specified. 3473 */ 3474 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3475 &l2cache, &nl2cache) == 0) { 3476 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3477 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3478 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3479 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3480 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3481 spa_load_l2cache(spa); 3482 spa_config_exit(spa, SCL_ALL, FTAG); 3483 spa->spa_l2cache.sav_sync = B_TRUE; 3484 } 3485 3486 spa->spa_is_initializing = B_TRUE; 3487 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3488 spa->spa_meta_objset = dp->dp_meta_objset; 3489 spa->spa_is_initializing = B_FALSE; 3490 3491 /* 3492 * Create DDTs (dedup tables). 3493 */ 3494 ddt_create(spa); 3495 3496 spa_update_dspace(spa); 3497 3498 tx = dmu_tx_create_assigned(dp, txg); 3499 3500 /* 3501 * Create the pool config object. 3502 */ 3503 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3504 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3505 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3506 3507 if (zap_add(spa->spa_meta_objset, 3508 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3509 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3510 cmn_err(CE_PANIC, "failed to add pool config"); 3511 } 3512 3513 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3514 spa_feature_create_zap_objects(spa, tx); 3515 3516 if (zap_add(spa->spa_meta_objset, 3517 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3518 sizeof (uint64_t), 1, &version, tx) != 0) { 3519 cmn_err(CE_PANIC, "failed to add pool version"); 3520 } 3521 3522 /* Newly created pools with the right version are always deflated. */ 3523 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3524 spa->spa_deflate = TRUE; 3525 if (zap_add(spa->spa_meta_objset, 3526 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3527 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3528 cmn_err(CE_PANIC, "failed to add deflate"); 3529 } 3530 } 3531 3532 /* 3533 * Create the deferred-free bpobj. Turn off compression 3534 * because sync-to-convergence takes longer if the blocksize 3535 * keeps changing. 3536 */ 3537 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3538 dmu_object_set_compress(spa->spa_meta_objset, obj, 3539 ZIO_COMPRESS_OFF, tx); 3540 if (zap_add(spa->spa_meta_objset, 3541 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3542 sizeof (uint64_t), 1, &obj, tx) != 0) { 3543 cmn_err(CE_PANIC, "failed to add bpobj"); 3544 } 3545 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3546 spa->spa_meta_objset, obj)); 3547 3548 /* 3549 * Create the pool's history object. 3550 */ 3551 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3552 spa_history_create_obj(spa, tx); 3553 3554 /* 3555 * Set pool properties. 3556 */ 3557 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3558 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3559 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3560 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3561 3562 if (props != NULL) { 3563 spa_configfile_set(spa, props, B_FALSE); 3564 spa_sync_props(props, tx); 3565 } 3566 3567 dmu_tx_commit(tx); 3568 3569 spa->spa_sync_on = B_TRUE; 3570 txg_sync_start(spa->spa_dsl_pool); 3571 3572 /* 3573 * We explicitly wait for the first transaction to complete so that our 3574 * bean counters are appropriately updated. 3575 */ 3576 txg_wait_synced(spa->spa_dsl_pool, txg); 3577 3578 spa_config_sync(spa, B_FALSE, B_TRUE); 3579 3580 spa_history_log_version(spa, "create"); 3581 3582 spa->spa_minref = refcount_count(&spa->spa_refcount); 3583 3584 mutex_exit(&spa_namespace_lock); 3585 3586 return (0); 3587 } 3588 3589 #ifdef _KERNEL 3590 /* 3591 * Get the root pool information from the root disk, then import the root pool 3592 * during the system boot up time. 3593 */ 3594 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3595 3596 static nvlist_t * 3597 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3598 { 3599 nvlist_t *config; 3600 nvlist_t *nvtop, *nvroot; 3601 uint64_t pgid; 3602 3603 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3604 return (NULL); 3605 3606 /* 3607 * Add this top-level vdev to the child array. 3608 */ 3609 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3610 &nvtop) == 0); 3611 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3612 &pgid) == 0); 3613 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3614 3615 /* 3616 * Put this pool's top-level vdevs into a root vdev. 3617 */ 3618 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3619 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3620 VDEV_TYPE_ROOT) == 0); 3621 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3622 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3623 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3624 &nvtop, 1) == 0); 3625 3626 /* 3627 * Replace the existing vdev_tree with the new root vdev in 3628 * this pool's configuration (remove the old, add the new). 3629 */ 3630 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3631 nvlist_free(nvroot); 3632 return (config); 3633 } 3634 3635 /* 3636 * Walk the vdev tree and see if we can find a device with "better" 3637 * configuration. A configuration is "better" if the label on that 3638 * device has a more recent txg. 3639 */ 3640 static void 3641 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3642 { 3643 for (int c = 0; c < vd->vdev_children; c++) 3644 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3645 3646 if (vd->vdev_ops->vdev_op_leaf) { 3647 nvlist_t *label; 3648 uint64_t label_txg; 3649 3650 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3651 &label) != 0) 3652 return; 3653 3654 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3655 &label_txg) == 0); 3656 3657 /* 3658 * Do we have a better boot device? 3659 */ 3660 if (label_txg > *txg) { 3661 *txg = label_txg; 3662 *avd = vd; 3663 } 3664 nvlist_free(label); 3665 } 3666 } 3667 3668 /* 3669 * Import a root pool. 3670 * 3671 * For x86. devpath_list will consist of devid and/or physpath name of 3672 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3673 * The GRUB "findroot" command will return the vdev we should boot. 3674 * 3675 * For Sparc, devpath_list consists the physpath name of the booting device 3676 * no matter the rootpool is a single device pool or a mirrored pool. 3677 * e.g. 3678 * "/pci@1f,0/ide@d/disk@0,0:a" 3679 */ 3680 int 3681 spa_import_rootpool(char *devpath, char *devid) 3682 { 3683 spa_t *spa; 3684 vdev_t *rvd, *bvd, *avd = NULL; 3685 nvlist_t *config, *nvtop; 3686 uint64_t guid, txg; 3687 char *pname; 3688 int error; 3689 3690 /* 3691 * Read the label from the boot device and generate a configuration. 3692 */ 3693 config = spa_generate_rootconf(devpath, devid, &guid); 3694 #if defined(_OBP) && defined(_KERNEL) 3695 if (config == NULL) { 3696 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3697 /* iscsi boot */ 3698 get_iscsi_bootpath_phy(devpath); 3699 config = spa_generate_rootconf(devpath, devid, &guid); 3700 } 3701 } 3702 #endif 3703 if (config == NULL) { 3704 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3705 devpath); 3706 return (SET_ERROR(EIO)); 3707 } 3708 3709 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3710 &pname) == 0); 3711 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3712 3713 mutex_enter(&spa_namespace_lock); 3714 if ((spa = spa_lookup(pname)) != NULL) { 3715 /* 3716 * Remove the existing root pool from the namespace so that we 3717 * can replace it with the correct config we just read in. 3718 */ 3719 spa_remove(spa); 3720 } 3721 3722 spa = spa_add(pname, config, NULL); 3723 spa->spa_is_root = B_TRUE; 3724 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3725 3726 /* 3727 * Build up a vdev tree based on the boot device's label config. 3728 */ 3729 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3730 &nvtop) == 0); 3731 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3732 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3733 VDEV_ALLOC_ROOTPOOL); 3734 spa_config_exit(spa, SCL_ALL, FTAG); 3735 if (error) { 3736 mutex_exit(&spa_namespace_lock); 3737 nvlist_free(config); 3738 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3739 pname); 3740 return (error); 3741 } 3742 3743 /* 3744 * Get the boot vdev. 3745 */ 3746 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3747 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3748 (u_longlong_t)guid); 3749 error = SET_ERROR(ENOENT); 3750 goto out; 3751 } 3752 3753 /* 3754 * Determine if there is a better boot device. 3755 */ 3756 avd = bvd; 3757 spa_alt_rootvdev(rvd, &avd, &txg); 3758 if (avd != bvd) { 3759 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3760 "try booting from '%s'", avd->vdev_path); 3761 error = SET_ERROR(EINVAL); 3762 goto out; 3763 } 3764 3765 /* 3766 * If the boot device is part of a spare vdev then ensure that 3767 * we're booting off the active spare. 3768 */ 3769 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3770 !bvd->vdev_isspare) { 3771 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3772 "try booting from '%s'", 3773 bvd->vdev_parent-> 3774 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3775 error = SET_ERROR(EINVAL); 3776 goto out; 3777 } 3778 3779 error = 0; 3780 out: 3781 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3782 vdev_free(rvd); 3783 spa_config_exit(spa, SCL_ALL, FTAG); 3784 mutex_exit(&spa_namespace_lock); 3785 3786 nvlist_free(config); 3787 return (error); 3788 } 3789 3790 #endif 3791 3792 /* 3793 * Import a non-root pool into the system. 3794 */ 3795 int 3796 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3797 { 3798 spa_t *spa; 3799 char *altroot = NULL; 3800 spa_load_state_t state = SPA_LOAD_IMPORT; 3801 zpool_rewind_policy_t policy; 3802 uint64_t mode = spa_mode_global; 3803 uint64_t readonly = B_FALSE; 3804 int error; 3805 nvlist_t *nvroot; 3806 nvlist_t **spares, **l2cache; 3807 uint_t nspares, nl2cache; 3808 3809 /* 3810 * If a pool with this name exists, return failure. 3811 */ 3812 mutex_enter(&spa_namespace_lock); 3813 if (spa_lookup(pool) != NULL) { 3814 mutex_exit(&spa_namespace_lock); 3815 return (SET_ERROR(EEXIST)); 3816 } 3817 3818 /* 3819 * Create and initialize the spa structure. 3820 */ 3821 (void) nvlist_lookup_string(props, 3822 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3823 (void) nvlist_lookup_uint64(props, 3824 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3825 if (readonly) 3826 mode = FREAD; 3827 spa = spa_add(pool, config, altroot); 3828 spa->spa_import_flags = flags; 3829 3830 /* 3831 * Verbatim import - Take a pool and insert it into the namespace 3832 * as if it had been loaded at boot. 3833 */ 3834 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3835 if (props != NULL) 3836 spa_configfile_set(spa, props, B_FALSE); 3837 3838 spa_config_sync(spa, B_FALSE, B_TRUE); 3839 3840 mutex_exit(&spa_namespace_lock); 3841 spa_history_log_version(spa, "import"); 3842 3843 return (0); 3844 } 3845 3846 spa_activate(spa, mode); 3847 3848 /* 3849 * Don't start async tasks until we know everything is healthy. 3850 */ 3851 spa_async_suspend(spa); 3852 3853 zpool_get_rewind_policy(config, &policy); 3854 if (policy.zrp_request & ZPOOL_DO_REWIND) 3855 state = SPA_LOAD_RECOVER; 3856 3857 /* 3858 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3859 * because the user-supplied config is actually the one to trust when 3860 * doing an import. 3861 */ 3862 if (state != SPA_LOAD_RECOVER) 3863 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3864 3865 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3866 policy.zrp_request); 3867 3868 /* 3869 * Propagate anything learned while loading the pool and pass it 3870 * back to caller (i.e. rewind info, missing devices, etc). 3871 */ 3872 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3873 spa->spa_load_info) == 0); 3874 3875 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3876 /* 3877 * Toss any existing sparelist, as it doesn't have any validity 3878 * anymore, and conflicts with spa_has_spare(). 3879 */ 3880 if (spa->spa_spares.sav_config) { 3881 nvlist_free(spa->spa_spares.sav_config); 3882 spa->spa_spares.sav_config = NULL; 3883 spa_load_spares(spa); 3884 } 3885 if (spa->spa_l2cache.sav_config) { 3886 nvlist_free(spa->spa_l2cache.sav_config); 3887 spa->spa_l2cache.sav_config = NULL; 3888 spa_load_l2cache(spa); 3889 } 3890 3891 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3892 &nvroot) == 0); 3893 if (error == 0) 3894 error = spa_validate_aux(spa, nvroot, -1ULL, 3895 VDEV_ALLOC_SPARE); 3896 if (error == 0) 3897 error = spa_validate_aux(spa, nvroot, -1ULL, 3898 VDEV_ALLOC_L2CACHE); 3899 spa_config_exit(spa, SCL_ALL, FTAG); 3900 3901 if (props != NULL) 3902 spa_configfile_set(spa, props, B_FALSE); 3903 3904 if (error != 0 || (props && spa_writeable(spa) && 3905 (error = spa_prop_set(spa, props)))) { 3906 spa_unload(spa); 3907 spa_deactivate(spa); 3908 spa_remove(spa); 3909 mutex_exit(&spa_namespace_lock); 3910 return (error); 3911 } 3912 3913 spa_async_resume(spa); 3914 3915 /* 3916 * Override any spares and level 2 cache devices as specified by 3917 * the user, as these may have correct device names/devids, etc. 3918 */ 3919 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3920 &spares, &nspares) == 0) { 3921 if (spa->spa_spares.sav_config) 3922 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3923 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3924 else 3925 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3926 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3927 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3928 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3929 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3930 spa_load_spares(spa); 3931 spa_config_exit(spa, SCL_ALL, FTAG); 3932 spa->spa_spares.sav_sync = B_TRUE; 3933 } 3934 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3935 &l2cache, &nl2cache) == 0) { 3936 if (spa->spa_l2cache.sav_config) 3937 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3938 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3939 else 3940 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3941 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3942 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3943 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3944 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3945 spa_load_l2cache(spa); 3946 spa_config_exit(spa, SCL_ALL, FTAG); 3947 spa->spa_l2cache.sav_sync = B_TRUE; 3948 } 3949 3950 /* 3951 * Check for any removed devices. 3952 */ 3953 if (spa->spa_autoreplace) { 3954 spa_aux_check_removed(&spa->spa_spares); 3955 spa_aux_check_removed(&spa->spa_l2cache); 3956 } 3957 3958 if (spa_writeable(spa)) { 3959 /* 3960 * Update the config cache to include the newly-imported pool. 3961 */ 3962 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3963 } 3964 3965 /* 3966 * It's possible that the pool was expanded while it was exported. 3967 * We kick off an async task to handle this for us. 3968 */ 3969 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3970 3971 mutex_exit(&spa_namespace_lock); 3972 spa_history_log_version(spa, "import"); 3973 3974 return (0); 3975 } 3976 3977 nvlist_t * 3978 spa_tryimport(nvlist_t *tryconfig) 3979 { 3980 nvlist_t *config = NULL; 3981 char *poolname; 3982 spa_t *spa; 3983 uint64_t state; 3984 int error; 3985 3986 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3987 return (NULL); 3988 3989 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3990 return (NULL); 3991 3992 /* 3993 * Create and initialize the spa structure. 3994 */ 3995 mutex_enter(&spa_namespace_lock); 3996 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3997 spa_activate(spa, FREAD); 3998 3999 /* 4000 * Pass off the heavy lifting to spa_load(). 4001 * Pass TRUE for mosconfig because the user-supplied config 4002 * is actually the one to trust when doing an import. 4003 */ 4004 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4005 4006 /* 4007 * If 'tryconfig' was at least parsable, return the current config. 4008 */ 4009 if (spa->spa_root_vdev != NULL) { 4010 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4011 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4012 poolname) == 0); 4013 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4014 state) == 0); 4015 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4016 spa->spa_uberblock.ub_timestamp) == 0); 4017 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4018 spa->spa_load_info) == 0); 4019 4020 /* 4021 * If the bootfs property exists on this pool then we 4022 * copy it out so that external consumers can tell which 4023 * pools are bootable. 4024 */ 4025 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4026 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4027 4028 /* 4029 * We have to play games with the name since the 4030 * pool was opened as TRYIMPORT_NAME. 4031 */ 4032 if (dsl_dsobj_to_dsname(spa_name(spa), 4033 spa->spa_bootfs, tmpname) == 0) { 4034 char *cp; 4035 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4036 4037 cp = strchr(tmpname, '/'); 4038 if (cp == NULL) { 4039 (void) strlcpy(dsname, tmpname, 4040 MAXPATHLEN); 4041 } else { 4042 (void) snprintf(dsname, MAXPATHLEN, 4043 "%s/%s", poolname, ++cp); 4044 } 4045 VERIFY(nvlist_add_string(config, 4046 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4047 kmem_free(dsname, MAXPATHLEN); 4048 } 4049 kmem_free(tmpname, MAXPATHLEN); 4050 } 4051 4052 /* 4053 * Add the list of hot spares and level 2 cache devices. 4054 */ 4055 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4056 spa_add_spares(spa, config); 4057 spa_add_l2cache(spa, config); 4058 spa_config_exit(spa, SCL_CONFIG, FTAG); 4059 } 4060 4061 spa_unload(spa); 4062 spa_deactivate(spa); 4063 spa_remove(spa); 4064 mutex_exit(&spa_namespace_lock); 4065 4066 return (config); 4067 } 4068 4069 /* 4070 * Pool export/destroy 4071 * 4072 * The act of destroying or exporting a pool is very simple. We make sure there 4073 * is no more pending I/O and any references to the pool are gone. Then, we 4074 * update the pool state and sync all the labels to disk, removing the 4075 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4076 * we don't sync the labels or remove the configuration cache. 4077 */ 4078 static int 4079 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4080 boolean_t force, boolean_t hardforce) 4081 { 4082 spa_t *spa; 4083 4084 if (oldconfig) 4085 *oldconfig = NULL; 4086 4087 if (!(spa_mode_global & FWRITE)) 4088 return (SET_ERROR(EROFS)); 4089 4090 mutex_enter(&spa_namespace_lock); 4091 if ((spa = spa_lookup(pool)) == NULL) { 4092 mutex_exit(&spa_namespace_lock); 4093 return (SET_ERROR(ENOENT)); 4094 } 4095 4096 /* 4097 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4098 * reacquire the namespace lock, and see if we can export. 4099 */ 4100 spa_open_ref(spa, FTAG); 4101 mutex_exit(&spa_namespace_lock); 4102 spa_async_suspend(spa); 4103 mutex_enter(&spa_namespace_lock); 4104 spa_close(spa, FTAG); 4105 4106 /* 4107 * The pool will be in core if it's openable, 4108 * in which case we can modify its state. 4109 */ 4110 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4111 /* 4112 * Objsets may be open only because they're dirty, so we 4113 * have to force it to sync before checking spa_refcnt. 4114 */ 4115 txg_wait_synced(spa->spa_dsl_pool, 0); 4116 4117 /* 4118 * A pool cannot be exported or destroyed if there are active 4119 * references. If we are resetting a pool, allow references by 4120 * fault injection handlers. 4121 */ 4122 if (!spa_refcount_zero(spa) || 4123 (spa->spa_inject_ref != 0 && 4124 new_state != POOL_STATE_UNINITIALIZED)) { 4125 spa_async_resume(spa); 4126 mutex_exit(&spa_namespace_lock); 4127 return (SET_ERROR(EBUSY)); 4128 } 4129 4130 /* 4131 * A pool cannot be exported if it has an active shared spare. 4132 * This is to prevent other pools stealing the active spare 4133 * from an exported pool. At user's own will, such pool can 4134 * be forcedly exported. 4135 */ 4136 if (!force && new_state == POOL_STATE_EXPORTED && 4137 spa_has_active_shared_spare(spa)) { 4138 spa_async_resume(spa); 4139 mutex_exit(&spa_namespace_lock); 4140 return (SET_ERROR(EXDEV)); 4141 } 4142 4143 /* 4144 * We want this to be reflected on every label, 4145 * so mark them all dirty. spa_unload() will do the 4146 * final sync that pushes these changes out. 4147 */ 4148 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4149 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4150 spa->spa_state = new_state; 4151 spa->spa_final_txg = spa_last_synced_txg(spa) + 4152 TXG_DEFER_SIZE + 1; 4153 vdev_config_dirty(spa->spa_root_vdev); 4154 spa_config_exit(spa, SCL_ALL, FTAG); 4155 } 4156 } 4157 4158 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4159 4160 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4161 spa_unload(spa); 4162 spa_deactivate(spa); 4163 } 4164 4165 if (oldconfig && spa->spa_config) 4166 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4167 4168 if (new_state != POOL_STATE_UNINITIALIZED) { 4169 if (!hardforce) 4170 spa_config_sync(spa, B_TRUE, B_TRUE); 4171 spa_remove(spa); 4172 } 4173 mutex_exit(&spa_namespace_lock); 4174 4175 return (0); 4176 } 4177 4178 /* 4179 * Destroy a storage pool. 4180 */ 4181 int 4182 spa_destroy(char *pool) 4183 { 4184 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4185 B_FALSE, B_FALSE)); 4186 } 4187 4188 /* 4189 * Export a storage pool. 4190 */ 4191 int 4192 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4193 boolean_t hardforce) 4194 { 4195 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4196 force, hardforce)); 4197 } 4198 4199 /* 4200 * Similar to spa_export(), this unloads the spa_t without actually removing it 4201 * from the namespace in any way. 4202 */ 4203 int 4204 spa_reset(char *pool) 4205 { 4206 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4207 B_FALSE, B_FALSE)); 4208 } 4209 4210 /* 4211 * ========================================================================== 4212 * Device manipulation 4213 * ========================================================================== 4214 */ 4215 4216 /* 4217 * Add a device to a storage pool. 4218 */ 4219 int 4220 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4221 { 4222 uint64_t txg, id; 4223 int error; 4224 vdev_t *rvd = spa->spa_root_vdev; 4225 vdev_t *vd, *tvd; 4226 nvlist_t **spares, **l2cache; 4227 uint_t nspares, nl2cache; 4228 4229 ASSERT(spa_writeable(spa)); 4230 4231 txg = spa_vdev_enter(spa); 4232 4233 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4234 VDEV_ALLOC_ADD)) != 0) 4235 return (spa_vdev_exit(spa, NULL, txg, error)); 4236 4237 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4238 4239 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4240 &nspares) != 0) 4241 nspares = 0; 4242 4243 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4244 &nl2cache) != 0) 4245 nl2cache = 0; 4246 4247 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4248 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4249 4250 if (vd->vdev_children != 0 && 4251 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4252 return (spa_vdev_exit(spa, vd, txg, error)); 4253 4254 /* 4255 * We must validate the spares and l2cache devices after checking the 4256 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4257 */ 4258 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4259 return (spa_vdev_exit(spa, vd, txg, error)); 4260 4261 /* 4262 * Transfer each new top-level vdev from vd to rvd. 4263 */ 4264 for (int c = 0; c < vd->vdev_children; c++) { 4265 4266 /* 4267 * Set the vdev id to the first hole, if one exists. 4268 */ 4269 for (id = 0; id < rvd->vdev_children; id++) { 4270 if (rvd->vdev_child[id]->vdev_ishole) { 4271 vdev_free(rvd->vdev_child[id]); 4272 break; 4273 } 4274 } 4275 tvd = vd->vdev_child[c]; 4276 vdev_remove_child(vd, tvd); 4277 tvd->vdev_id = id; 4278 vdev_add_child(rvd, tvd); 4279 vdev_config_dirty(tvd); 4280 } 4281 4282 if (nspares != 0) { 4283 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4284 ZPOOL_CONFIG_SPARES); 4285 spa_load_spares(spa); 4286 spa->spa_spares.sav_sync = B_TRUE; 4287 } 4288 4289 if (nl2cache != 0) { 4290 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4291 ZPOOL_CONFIG_L2CACHE); 4292 spa_load_l2cache(spa); 4293 spa->spa_l2cache.sav_sync = B_TRUE; 4294 } 4295 4296 /* 4297 * We have to be careful when adding new vdevs to an existing pool. 4298 * If other threads start allocating from these vdevs before we 4299 * sync the config cache, and we lose power, then upon reboot we may 4300 * fail to open the pool because there are DVAs that the config cache 4301 * can't translate. Therefore, we first add the vdevs without 4302 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4303 * and then let spa_config_update() initialize the new metaslabs. 4304 * 4305 * spa_load() checks for added-but-not-initialized vdevs, so that 4306 * if we lose power at any point in this sequence, the remaining 4307 * steps will be completed the next time we load the pool. 4308 */ 4309 (void) spa_vdev_exit(spa, vd, txg, 0); 4310 4311 mutex_enter(&spa_namespace_lock); 4312 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4313 mutex_exit(&spa_namespace_lock); 4314 4315 return (0); 4316 } 4317 4318 /* 4319 * Attach a device to a mirror. The arguments are the path to any device 4320 * in the mirror, and the nvroot for the new device. If the path specifies 4321 * a device that is not mirrored, we automatically insert the mirror vdev. 4322 * 4323 * If 'replacing' is specified, the new device is intended to replace the 4324 * existing device; in this case the two devices are made into their own 4325 * mirror using the 'replacing' vdev, which is functionally identical to 4326 * the mirror vdev (it actually reuses all the same ops) but has a few 4327 * extra rules: you can't attach to it after it's been created, and upon 4328 * completion of resilvering, the first disk (the one being replaced) 4329 * is automatically detached. 4330 */ 4331 int 4332 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4333 { 4334 uint64_t txg, dtl_max_txg; 4335 vdev_t *rvd = spa->spa_root_vdev; 4336 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4337 vdev_ops_t *pvops; 4338 char *oldvdpath, *newvdpath; 4339 int newvd_isspare; 4340 int error; 4341 4342 ASSERT(spa_writeable(spa)); 4343 4344 txg = spa_vdev_enter(spa); 4345 4346 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4347 4348 if (oldvd == NULL) 4349 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4350 4351 if (!oldvd->vdev_ops->vdev_op_leaf) 4352 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4353 4354 pvd = oldvd->vdev_parent; 4355 4356 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4357 VDEV_ALLOC_ATTACH)) != 0) 4358 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4359 4360 if (newrootvd->vdev_children != 1) 4361 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4362 4363 newvd = newrootvd->vdev_child[0]; 4364 4365 if (!newvd->vdev_ops->vdev_op_leaf) 4366 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4367 4368 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4369 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4370 4371 /* 4372 * Spares can't replace logs 4373 */ 4374 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4375 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4376 4377 if (!replacing) { 4378 /* 4379 * For attach, the only allowable parent is a mirror or the root 4380 * vdev. 4381 */ 4382 if (pvd->vdev_ops != &vdev_mirror_ops && 4383 pvd->vdev_ops != &vdev_root_ops) 4384 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4385 4386 pvops = &vdev_mirror_ops; 4387 } else { 4388 /* 4389 * Active hot spares can only be replaced by inactive hot 4390 * spares. 4391 */ 4392 if (pvd->vdev_ops == &vdev_spare_ops && 4393 oldvd->vdev_isspare && 4394 !spa_has_spare(spa, newvd->vdev_guid)) 4395 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4396 4397 /* 4398 * If the source is a hot spare, and the parent isn't already a 4399 * spare, then we want to create a new hot spare. Otherwise, we 4400 * want to create a replacing vdev. The user is not allowed to 4401 * attach to a spared vdev child unless the 'isspare' state is 4402 * the same (spare replaces spare, non-spare replaces 4403 * non-spare). 4404 */ 4405 if (pvd->vdev_ops == &vdev_replacing_ops && 4406 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4407 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4408 } else if (pvd->vdev_ops == &vdev_spare_ops && 4409 newvd->vdev_isspare != oldvd->vdev_isspare) { 4410 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4411 } 4412 4413 if (newvd->vdev_isspare) 4414 pvops = &vdev_spare_ops; 4415 else 4416 pvops = &vdev_replacing_ops; 4417 } 4418 4419 /* 4420 * Make sure the new device is big enough. 4421 */ 4422 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4423 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4424 4425 /* 4426 * The new device cannot have a higher alignment requirement 4427 * than the top-level vdev. 4428 */ 4429 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4430 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4431 4432 /* 4433 * If this is an in-place replacement, update oldvd's path and devid 4434 * to make it distinguishable from newvd, and unopenable from now on. 4435 */ 4436 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4437 spa_strfree(oldvd->vdev_path); 4438 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4439 KM_SLEEP); 4440 (void) sprintf(oldvd->vdev_path, "%s/%s", 4441 newvd->vdev_path, "old"); 4442 if (oldvd->vdev_devid != NULL) { 4443 spa_strfree(oldvd->vdev_devid); 4444 oldvd->vdev_devid = NULL; 4445 } 4446 } 4447 4448 /* mark the device being resilvered */ 4449 newvd->vdev_resilver_txg = txg; 4450 4451 /* 4452 * If the parent is not a mirror, or if we're replacing, insert the new 4453 * mirror/replacing/spare vdev above oldvd. 4454 */ 4455 if (pvd->vdev_ops != pvops) 4456 pvd = vdev_add_parent(oldvd, pvops); 4457 4458 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4459 ASSERT(pvd->vdev_ops == pvops); 4460 ASSERT(oldvd->vdev_parent == pvd); 4461 4462 /* 4463 * Extract the new device from its root and add it to pvd. 4464 */ 4465 vdev_remove_child(newrootvd, newvd); 4466 newvd->vdev_id = pvd->vdev_children; 4467 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4468 vdev_add_child(pvd, newvd); 4469 4470 tvd = newvd->vdev_top; 4471 ASSERT(pvd->vdev_top == tvd); 4472 ASSERT(tvd->vdev_parent == rvd); 4473 4474 vdev_config_dirty(tvd); 4475 4476 /* 4477 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4478 * for any dmu_sync-ed blocks. It will propagate upward when 4479 * spa_vdev_exit() calls vdev_dtl_reassess(). 4480 */ 4481 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4482 4483 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4484 dtl_max_txg - TXG_INITIAL); 4485 4486 if (newvd->vdev_isspare) { 4487 spa_spare_activate(newvd); 4488 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4489 } 4490 4491 oldvdpath = spa_strdup(oldvd->vdev_path); 4492 newvdpath = spa_strdup(newvd->vdev_path); 4493 newvd_isspare = newvd->vdev_isspare; 4494 4495 /* 4496 * Mark newvd's DTL dirty in this txg. 4497 */ 4498 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4499 4500 /* 4501 * Restart the resilver 4502 */ 4503 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4504 4505 /* 4506 * Commit the config 4507 */ 4508 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4509 4510 spa_history_log_internal(spa, "vdev attach", NULL, 4511 "%s vdev=%s %s vdev=%s", 4512 replacing && newvd_isspare ? "spare in" : 4513 replacing ? "replace" : "attach", newvdpath, 4514 replacing ? "for" : "to", oldvdpath); 4515 4516 spa_strfree(oldvdpath); 4517 spa_strfree(newvdpath); 4518 4519 if (spa->spa_bootfs) 4520 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4521 4522 return (0); 4523 } 4524 4525 /* 4526 * Detach a device from a mirror or replacing vdev. 4527 * 4528 * If 'replace_done' is specified, only detach if the parent 4529 * is a replacing vdev. 4530 */ 4531 int 4532 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4533 { 4534 uint64_t txg; 4535 int error; 4536 vdev_t *rvd = spa->spa_root_vdev; 4537 vdev_t *vd, *pvd, *cvd, *tvd; 4538 boolean_t unspare = B_FALSE; 4539 uint64_t unspare_guid = 0; 4540 char *vdpath; 4541 4542 ASSERT(spa_writeable(spa)); 4543 4544 txg = spa_vdev_enter(spa); 4545 4546 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4547 4548 if (vd == NULL) 4549 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4550 4551 if (!vd->vdev_ops->vdev_op_leaf) 4552 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4553 4554 pvd = vd->vdev_parent; 4555 4556 /* 4557 * If the parent/child relationship is not as expected, don't do it. 4558 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4559 * vdev that's replacing B with C. The user's intent in replacing 4560 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4561 * the replace by detaching C, the expected behavior is to end up 4562 * M(A,B). But suppose that right after deciding to detach C, 4563 * the replacement of B completes. We would have M(A,C), and then 4564 * ask to detach C, which would leave us with just A -- not what 4565 * the user wanted. To prevent this, we make sure that the 4566 * parent/child relationship hasn't changed -- in this example, 4567 * that C's parent is still the replacing vdev R. 4568 */ 4569 if (pvd->vdev_guid != pguid && pguid != 0) 4570 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4571 4572 /* 4573 * Only 'replacing' or 'spare' vdevs can be replaced. 4574 */ 4575 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4576 pvd->vdev_ops != &vdev_spare_ops) 4577 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4578 4579 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4580 spa_version(spa) >= SPA_VERSION_SPARES); 4581 4582 /* 4583 * Only mirror, replacing, and spare vdevs support detach. 4584 */ 4585 if (pvd->vdev_ops != &vdev_replacing_ops && 4586 pvd->vdev_ops != &vdev_mirror_ops && 4587 pvd->vdev_ops != &vdev_spare_ops) 4588 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4589 4590 /* 4591 * If this device has the only valid copy of some data, 4592 * we cannot safely detach it. 4593 */ 4594 if (vdev_dtl_required(vd)) 4595 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4596 4597 ASSERT(pvd->vdev_children >= 2); 4598 4599 /* 4600 * If we are detaching the second disk from a replacing vdev, then 4601 * check to see if we changed the original vdev's path to have "/old" 4602 * at the end in spa_vdev_attach(). If so, undo that change now. 4603 */ 4604 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4605 vd->vdev_path != NULL) { 4606 size_t len = strlen(vd->vdev_path); 4607 4608 for (int c = 0; c < pvd->vdev_children; c++) { 4609 cvd = pvd->vdev_child[c]; 4610 4611 if (cvd == vd || cvd->vdev_path == NULL) 4612 continue; 4613 4614 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4615 strcmp(cvd->vdev_path + len, "/old") == 0) { 4616 spa_strfree(cvd->vdev_path); 4617 cvd->vdev_path = spa_strdup(vd->vdev_path); 4618 break; 4619 } 4620 } 4621 } 4622 4623 /* 4624 * If we are detaching the original disk from a spare, then it implies 4625 * that the spare should become a real disk, and be removed from the 4626 * active spare list for the pool. 4627 */ 4628 if (pvd->vdev_ops == &vdev_spare_ops && 4629 vd->vdev_id == 0 && 4630 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4631 unspare = B_TRUE; 4632 4633 /* 4634 * Erase the disk labels so the disk can be used for other things. 4635 * This must be done after all other error cases are handled, 4636 * but before we disembowel vd (so we can still do I/O to it). 4637 * But if we can't do it, don't treat the error as fatal -- 4638 * it may be that the unwritability of the disk is the reason 4639 * it's being detached! 4640 */ 4641 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4642 4643 /* 4644 * Remove vd from its parent and compact the parent's children. 4645 */ 4646 vdev_remove_child(pvd, vd); 4647 vdev_compact_children(pvd); 4648 4649 /* 4650 * Remember one of the remaining children so we can get tvd below. 4651 */ 4652 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4653 4654 /* 4655 * If we need to remove the remaining child from the list of hot spares, 4656 * do it now, marking the vdev as no longer a spare in the process. 4657 * We must do this before vdev_remove_parent(), because that can 4658 * change the GUID if it creates a new toplevel GUID. For a similar 4659 * reason, we must remove the spare now, in the same txg as the detach; 4660 * otherwise someone could attach a new sibling, change the GUID, and 4661 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4662 */ 4663 if (unspare) { 4664 ASSERT(cvd->vdev_isspare); 4665 spa_spare_remove(cvd); 4666 unspare_guid = cvd->vdev_guid; 4667 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4668 cvd->vdev_unspare = B_TRUE; 4669 } 4670 4671 /* 4672 * If the parent mirror/replacing vdev only has one child, 4673 * the parent is no longer needed. Remove it from the tree. 4674 */ 4675 if (pvd->vdev_children == 1) { 4676 if (pvd->vdev_ops == &vdev_spare_ops) 4677 cvd->vdev_unspare = B_FALSE; 4678 vdev_remove_parent(cvd); 4679 } 4680 4681 4682 /* 4683 * We don't set tvd until now because the parent we just removed 4684 * may have been the previous top-level vdev. 4685 */ 4686 tvd = cvd->vdev_top; 4687 ASSERT(tvd->vdev_parent == rvd); 4688 4689 /* 4690 * Reevaluate the parent vdev state. 4691 */ 4692 vdev_propagate_state(cvd); 4693 4694 /* 4695 * If the 'autoexpand' property is set on the pool then automatically 4696 * try to expand the size of the pool. For example if the device we 4697 * just detached was smaller than the others, it may be possible to 4698 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4699 * first so that we can obtain the updated sizes of the leaf vdevs. 4700 */ 4701 if (spa->spa_autoexpand) { 4702 vdev_reopen(tvd); 4703 vdev_expand(tvd, txg); 4704 } 4705 4706 vdev_config_dirty(tvd); 4707 4708 /* 4709 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4710 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4711 * But first make sure we're not on any *other* txg's DTL list, to 4712 * prevent vd from being accessed after it's freed. 4713 */ 4714 vdpath = spa_strdup(vd->vdev_path); 4715 for (int t = 0; t < TXG_SIZE; t++) 4716 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4717 vd->vdev_detached = B_TRUE; 4718 vdev_dirty(tvd, VDD_DTL, vd, txg); 4719 4720 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4721 4722 /* hang on to the spa before we release the lock */ 4723 spa_open_ref(spa, FTAG); 4724 4725 error = spa_vdev_exit(spa, vd, txg, 0); 4726 4727 spa_history_log_internal(spa, "detach", NULL, 4728 "vdev=%s", vdpath); 4729 spa_strfree(vdpath); 4730 4731 /* 4732 * If this was the removal of the original device in a hot spare vdev, 4733 * then we want to go through and remove the device from the hot spare 4734 * list of every other pool. 4735 */ 4736 if (unspare) { 4737 spa_t *altspa = NULL; 4738 4739 mutex_enter(&spa_namespace_lock); 4740 while ((altspa = spa_next(altspa)) != NULL) { 4741 if (altspa->spa_state != POOL_STATE_ACTIVE || 4742 altspa == spa) 4743 continue; 4744 4745 spa_open_ref(altspa, FTAG); 4746 mutex_exit(&spa_namespace_lock); 4747 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4748 mutex_enter(&spa_namespace_lock); 4749 spa_close(altspa, FTAG); 4750 } 4751 mutex_exit(&spa_namespace_lock); 4752 4753 /* search the rest of the vdevs for spares to remove */ 4754 spa_vdev_resilver_done(spa); 4755 } 4756 4757 /* all done with the spa; OK to release */ 4758 mutex_enter(&spa_namespace_lock); 4759 spa_close(spa, FTAG); 4760 mutex_exit(&spa_namespace_lock); 4761 4762 return (error); 4763 } 4764 4765 /* 4766 * Split a set of devices from their mirrors, and create a new pool from them. 4767 */ 4768 int 4769 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4770 nvlist_t *props, boolean_t exp) 4771 { 4772 int error = 0; 4773 uint64_t txg, *glist; 4774 spa_t *newspa; 4775 uint_t c, children, lastlog; 4776 nvlist_t **child, *nvl, *tmp; 4777 dmu_tx_t *tx; 4778 char *altroot = NULL; 4779 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4780 boolean_t activate_slog; 4781 4782 ASSERT(spa_writeable(spa)); 4783 4784 txg = spa_vdev_enter(spa); 4785 4786 /* clear the log and flush everything up to now */ 4787 activate_slog = spa_passivate_log(spa); 4788 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4789 error = spa_offline_log(spa); 4790 txg = spa_vdev_config_enter(spa); 4791 4792 if (activate_slog) 4793 spa_activate_log(spa); 4794 4795 if (error != 0) 4796 return (spa_vdev_exit(spa, NULL, txg, error)); 4797 4798 /* check new spa name before going any further */ 4799 if (spa_lookup(newname) != NULL) 4800 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4801 4802 /* 4803 * scan through all the children to ensure they're all mirrors 4804 */ 4805 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4806 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4807 &children) != 0) 4808 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4809 4810 /* first, check to ensure we've got the right child count */ 4811 rvd = spa->spa_root_vdev; 4812 lastlog = 0; 4813 for (c = 0; c < rvd->vdev_children; c++) { 4814 vdev_t *vd = rvd->vdev_child[c]; 4815 4816 /* don't count the holes & logs as children */ 4817 if (vd->vdev_islog || vd->vdev_ishole) { 4818 if (lastlog == 0) 4819 lastlog = c; 4820 continue; 4821 } 4822 4823 lastlog = 0; 4824 } 4825 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4826 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4827 4828 /* next, ensure no spare or cache devices are part of the split */ 4829 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4830 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4831 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4832 4833 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4834 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4835 4836 /* then, loop over each vdev and validate it */ 4837 for (c = 0; c < children; c++) { 4838 uint64_t is_hole = 0; 4839 4840 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4841 &is_hole); 4842 4843 if (is_hole != 0) { 4844 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4845 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4846 continue; 4847 } else { 4848 error = SET_ERROR(EINVAL); 4849 break; 4850 } 4851 } 4852 4853 /* which disk is going to be split? */ 4854 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4855 &glist[c]) != 0) { 4856 error = SET_ERROR(EINVAL); 4857 break; 4858 } 4859 4860 /* look it up in the spa */ 4861 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4862 if (vml[c] == NULL) { 4863 error = SET_ERROR(ENODEV); 4864 break; 4865 } 4866 4867 /* make sure there's nothing stopping the split */ 4868 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4869 vml[c]->vdev_islog || 4870 vml[c]->vdev_ishole || 4871 vml[c]->vdev_isspare || 4872 vml[c]->vdev_isl2cache || 4873 !vdev_writeable(vml[c]) || 4874 vml[c]->vdev_children != 0 || 4875 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4876 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4877 error = SET_ERROR(EINVAL); 4878 break; 4879 } 4880 4881 if (vdev_dtl_required(vml[c])) { 4882 error = SET_ERROR(EBUSY); 4883 break; 4884 } 4885 4886 /* we need certain info from the top level */ 4887 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4888 vml[c]->vdev_top->vdev_ms_array) == 0); 4889 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4890 vml[c]->vdev_top->vdev_ms_shift) == 0); 4891 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4892 vml[c]->vdev_top->vdev_asize) == 0); 4893 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4894 vml[c]->vdev_top->vdev_ashift) == 0); 4895 } 4896 4897 if (error != 0) { 4898 kmem_free(vml, children * sizeof (vdev_t *)); 4899 kmem_free(glist, children * sizeof (uint64_t)); 4900 return (spa_vdev_exit(spa, NULL, txg, error)); 4901 } 4902 4903 /* stop writers from using the disks */ 4904 for (c = 0; c < children; c++) { 4905 if (vml[c] != NULL) 4906 vml[c]->vdev_offline = B_TRUE; 4907 } 4908 vdev_reopen(spa->spa_root_vdev); 4909 4910 /* 4911 * Temporarily record the splitting vdevs in the spa config. This 4912 * will disappear once the config is regenerated. 4913 */ 4914 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4915 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4916 glist, children) == 0); 4917 kmem_free(glist, children * sizeof (uint64_t)); 4918 4919 mutex_enter(&spa->spa_props_lock); 4920 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4921 nvl) == 0); 4922 mutex_exit(&spa->spa_props_lock); 4923 spa->spa_config_splitting = nvl; 4924 vdev_config_dirty(spa->spa_root_vdev); 4925 4926 /* configure and create the new pool */ 4927 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4928 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4929 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4930 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4931 spa_version(spa)) == 0); 4932 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4933 spa->spa_config_txg) == 0); 4934 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4935 spa_generate_guid(NULL)) == 0); 4936 (void) nvlist_lookup_string(props, 4937 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4938 4939 /* add the new pool to the namespace */ 4940 newspa = spa_add(newname, config, altroot); 4941 newspa->spa_config_txg = spa->spa_config_txg; 4942 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4943 4944 /* release the spa config lock, retaining the namespace lock */ 4945 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4946 4947 if (zio_injection_enabled) 4948 zio_handle_panic_injection(spa, FTAG, 1); 4949 4950 spa_activate(newspa, spa_mode_global); 4951 spa_async_suspend(newspa); 4952 4953 /* create the new pool from the disks of the original pool */ 4954 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4955 if (error) 4956 goto out; 4957 4958 /* if that worked, generate a real config for the new pool */ 4959 if (newspa->spa_root_vdev != NULL) { 4960 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4961 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4962 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4963 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4964 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4965 B_TRUE)); 4966 } 4967 4968 /* set the props */ 4969 if (props != NULL) { 4970 spa_configfile_set(newspa, props, B_FALSE); 4971 error = spa_prop_set(newspa, props); 4972 if (error) 4973 goto out; 4974 } 4975 4976 /* flush everything */ 4977 txg = spa_vdev_config_enter(newspa); 4978 vdev_config_dirty(newspa->spa_root_vdev); 4979 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4980 4981 if (zio_injection_enabled) 4982 zio_handle_panic_injection(spa, FTAG, 2); 4983 4984 spa_async_resume(newspa); 4985 4986 /* finally, update the original pool's config */ 4987 txg = spa_vdev_config_enter(spa); 4988 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4989 error = dmu_tx_assign(tx, TXG_WAIT); 4990 if (error != 0) 4991 dmu_tx_abort(tx); 4992 for (c = 0; c < children; c++) { 4993 if (vml[c] != NULL) { 4994 vdev_split(vml[c]); 4995 if (error == 0) 4996 spa_history_log_internal(spa, "detach", tx, 4997 "vdev=%s", vml[c]->vdev_path); 4998 vdev_free(vml[c]); 4999 } 5000 } 5001 vdev_config_dirty(spa->spa_root_vdev); 5002 spa->spa_config_splitting = NULL; 5003 nvlist_free(nvl); 5004 if (error == 0) 5005 dmu_tx_commit(tx); 5006 (void) spa_vdev_exit(spa, NULL, txg, 0); 5007 5008 if (zio_injection_enabled) 5009 zio_handle_panic_injection(spa, FTAG, 3); 5010 5011 /* split is complete; log a history record */ 5012 spa_history_log_internal(newspa, "split", NULL, 5013 "from pool %s", spa_name(spa)); 5014 5015 kmem_free(vml, children * sizeof (vdev_t *)); 5016 5017 /* if we're not going to mount the filesystems in userland, export */ 5018 if (exp) 5019 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5020 B_FALSE, B_FALSE); 5021 5022 return (error); 5023 5024 out: 5025 spa_unload(newspa); 5026 spa_deactivate(newspa); 5027 spa_remove(newspa); 5028 5029 txg = spa_vdev_config_enter(spa); 5030 5031 /* re-online all offlined disks */ 5032 for (c = 0; c < children; c++) { 5033 if (vml[c] != NULL) 5034 vml[c]->vdev_offline = B_FALSE; 5035 } 5036 vdev_reopen(spa->spa_root_vdev); 5037 5038 nvlist_free(spa->spa_config_splitting); 5039 spa->spa_config_splitting = NULL; 5040 (void) spa_vdev_exit(spa, NULL, txg, error); 5041 5042 kmem_free(vml, children * sizeof (vdev_t *)); 5043 return (error); 5044 } 5045 5046 static nvlist_t * 5047 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5048 { 5049 for (int i = 0; i < count; i++) { 5050 uint64_t guid; 5051 5052 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5053 &guid) == 0); 5054 5055 if (guid == target_guid) 5056 return (nvpp[i]); 5057 } 5058 5059 return (NULL); 5060 } 5061 5062 static void 5063 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5064 nvlist_t *dev_to_remove) 5065 { 5066 nvlist_t **newdev = NULL; 5067 5068 if (count > 1) 5069 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5070 5071 for (int i = 0, j = 0; i < count; i++) { 5072 if (dev[i] == dev_to_remove) 5073 continue; 5074 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5075 } 5076 5077 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5078 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5079 5080 for (int i = 0; i < count - 1; i++) 5081 nvlist_free(newdev[i]); 5082 5083 if (count > 1) 5084 kmem_free(newdev, (count - 1) * sizeof (void *)); 5085 } 5086 5087 /* 5088 * Evacuate the device. 5089 */ 5090 static int 5091 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5092 { 5093 uint64_t txg; 5094 int error = 0; 5095 5096 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5097 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5098 ASSERT(vd == vd->vdev_top); 5099 5100 /* 5101 * Evacuate the device. We don't hold the config lock as writer 5102 * since we need to do I/O but we do keep the 5103 * spa_namespace_lock held. Once this completes the device 5104 * should no longer have any blocks allocated on it. 5105 */ 5106 if (vd->vdev_islog) { 5107 if (vd->vdev_stat.vs_alloc != 0) 5108 error = spa_offline_log(spa); 5109 } else { 5110 error = SET_ERROR(ENOTSUP); 5111 } 5112 5113 if (error) 5114 return (error); 5115 5116 /* 5117 * The evacuation succeeded. Remove any remaining MOS metadata 5118 * associated with this vdev, and wait for these changes to sync. 5119 */ 5120 ASSERT0(vd->vdev_stat.vs_alloc); 5121 txg = spa_vdev_config_enter(spa); 5122 vd->vdev_removing = B_TRUE; 5123 vdev_dirty(vd, 0, NULL, txg); 5124 vdev_config_dirty(vd); 5125 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5126 5127 return (0); 5128 } 5129 5130 /* 5131 * Complete the removal by cleaning up the namespace. 5132 */ 5133 static void 5134 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5135 { 5136 vdev_t *rvd = spa->spa_root_vdev; 5137 uint64_t id = vd->vdev_id; 5138 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5139 5140 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5141 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5142 ASSERT(vd == vd->vdev_top); 5143 5144 /* 5145 * Only remove any devices which are empty. 5146 */ 5147 if (vd->vdev_stat.vs_alloc != 0) 5148 return; 5149 5150 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5151 5152 if (list_link_active(&vd->vdev_state_dirty_node)) 5153 vdev_state_clean(vd); 5154 if (list_link_active(&vd->vdev_config_dirty_node)) 5155 vdev_config_clean(vd); 5156 5157 vdev_free(vd); 5158 5159 if (last_vdev) { 5160 vdev_compact_children(rvd); 5161 } else { 5162 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5163 vdev_add_child(rvd, vd); 5164 } 5165 vdev_config_dirty(rvd); 5166 5167 /* 5168 * Reassess the health of our root vdev. 5169 */ 5170 vdev_reopen(rvd); 5171 } 5172 5173 /* 5174 * Remove a device from the pool - 5175 * 5176 * Removing a device from the vdev namespace requires several steps 5177 * and can take a significant amount of time. As a result we use 5178 * the spa_vdev_config_[enter/exit] functions which allow us to 5179 * grab and release the spa_config_lock while still holding the namespace 5180 * lock. During each step the configuration is synced out. 5181 * 5182 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5183 * devices. 5184 */ 5185 int 5186 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5187 { 5188 vdev_t *vd; 5189 metaslab_group_t *mg; 5190 nvlist_t **spares, **l2cache, *nv; 5191 uint64_t txg = 0; 5192 uint_t nspares, nl2cache; 5193 int error = 0; 5194 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5195 5196 ASSERT(spa_writeable(spa)); 5197 5198 if (!locked) 5199 txg = spa_vdev_enter(spa); 5200 5201 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5202 5203 if (spa->spa_spares.sav_vdevs != NULL && 5204 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5205 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5206 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5207 /* 5208 * Only remove the hot spare if it's not currently in use 5209 * in this pool. 5210 */ 5211 if (vd == NULL || unspare) { 5212 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5213 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5214 spa_load_spares(spa); 5215 spa->spa_spares.sav_sync = B_TRUE; 5216 } else { 5217 error = SET_ERROR(EBUSY); 5218 } 5219 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5220 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5221 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5222 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5223 /* 5224 * Cache devices can always be removed. 5225 */ 5226 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5227 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5228 spa_load_l2cache(spa); 5229 spa->spa_l2cache.sav_sync = B_TRUE; 5230 } else if (vd != NULL && vd->vdev_islog) { 5231 ASSERT(!locked); 5232 ASSERT(vd == vd->vdev_top); 5233 5234 /* 5235 * XXX - Once we have bp-rewrite this should 5236 * become the common case. 5237 */ 5238 5239 mg = vd->vdev_mg; 5240 5241 /* 5242 * Stop allocating from this vdev. 5243 */ 5244 metaslab_group_passivate(mg); 5245 5246 /* 5247 * Wait for the youngest allocations and frees to sync, 5248 * and then wait for the deferral of those frees to finish. 5249 */ 5250 spa_vdev_config_exit(spa, NULL, 5251 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5252 5253 /* 5254 * Attempt to evacuate the vdev. 5255 */ 5256 error = spa_vdev_remove_evacuate(spa, vd); 5257 5258 txg = spa_vdev_config_enter(spa); 5259 5260 /* 5261 * If we couldn't evacuate the vdev, unwind. 5262 */ 5263 if (error) { 5264 metaslab_group_activate(mg); 5265 return (spa_vdev_exit(spa, NULL, txg, error)); 5266 } 5267 5268 /* 5269 * Clean up the vdev namespace. 5270 */ 5271 spa_vdev_remove_from_namespace(spa, vd); 5272 5273 } else if (vd != NULL) { 5274 /* 5275 * Normal vdevs cannot be removed (yet). 5276 */ 5277 error = SET_ERROR(ENOTSUP); 5278 } else { 5279 /* 5280 * There is no vdev of any kind with the specified guid. 5281 */ 5282 error = SET_ERROR(ENOENT); 5283 } 5284 5285 if (!locked) 5286 return (spa_vdev_exit(spa, NULL, txg, error)); 5287 5288 return (error); 5289 } 5290 5291 /* 5292 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5293 * currently spared, so we can detach it. 5294 */ 5295 static vdev_t * 5296 spa_vdev_resilver_done_hunt(vdev_t *vd) 5297 { 5298 vdev_t *newvd, *oldvd; 5299 5300 for (int c = 0; c < vd->vdev_children; c++) { 5301 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5302 if (oldvd != NULL) 5303 return (oldvd); 5304 } 5305 5306 /* 5307 * Check for a completed replacement. We always consider the first 5308 * vdev in the list to be the oldest vdev, and the last one to be 5309 * the newest (see spa_vdev_attach() for how that works). In 5310 * the case where the newest vdev is faulted, we will not automatically 5311 * remove it after a resilver completes. This is OK as it will require 5312 * user intervention to determine which disk the admin wishes to keep. 5313 */ 5314 if (vd->vdev_ops == &vdev_replacing_ops) { 5315 ASSERT(vd->vdev_children > 1); 5316 5317 newvd = vd->vdev_child[vd->vdev_children - 1]; 5318 oldvd = vd->vdev_child[0]; 5319 5320 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5321 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5322 !vdev_dtl_required(oldvd)) 5323 return (oldvd); 5324 } 5325 5326 /* 5327 * Check for a completed resilver with the 'unspare' flag set. 5328 */ 5329 if (vd->vdev_ops == &vdev_spare_ops) { 5330 vdev_t *first = vd->vdev_child[0]; 5331 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5332 5333 if (last->vdev_unspare) { 5334 oldvd = first; 5335 newvd = last; 5336 } else if (first->vdev_unspare) { 5337 oldvd = last; 5338 newvd = first; 5339 } else { 5340 oldvd = NULL; 5341 } 5342 5343 if (oldvd != NULL && 5344 vdev_dtl_empty(newvd, DTL_MISSING) && 5345 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5346 !vdev_dtl_required(oldvd)) 5347 return (oldvd); 5348 5349 /* 5350 * If there are more than two spares attached to a disk, 5351 * and those spares are not required, then we want to 5352 * attempt to free them up now so that they can be used 5353 * by other pools. Once we're back down to a single 5354 * disk+spare, we stop removing them. 5355 */ 5356 if (vd->vdev_children > 2) { 5357 newvd = vd->vdev_child[1]; 5358 5359 if (newvd->vdev_isspare && last->vdev_isspare && 5360 vdev_dtl_empty(last, DTL_MISSING) && 5361 vdev_dtl_empty(last, DTL_OUTAGE) && 5362 !vdev_dtl_required(newvd)) 5363 return (newvd); 5364 } 5365 } 5366 5367 return (NULL); 5368 } 5369 5370 static void 5371 spa_vdev_resilver_done(spa_t *spa) 5372 { 5373 vdev_t *vd, *pvd, *ppvd; 5374 uint64_t guid, sguid, pguid, ppguid; 5375 5376 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5377 5378 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5379 pvd = vd->vdev_parent; 5380 ppvd = pvd->vdev_parent; 5381 guid = vd->vdev_guid; 5382 pguid = pvd->vdev_guid; 5383 ppguid = ppvd->vdev_guid; 5384 sguid = 0; 5385 /* 5386 * If we have just finished replacing a hot spared device, then 5387 * we need to detach the parent's first child (the original hot 5388 * spare) as well. 5389 */ 5390 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5391 ppvd->vdev_children == 2) { 5392 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5393 sguid = ppvd->vdev_child[1]->vdev_guid; 5394 } 5395 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5396 5397 spa_config_exit(spa, SCL_ALL, FTAG); 5398 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5399 return; 5400 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5401 return; 5402 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5403 } 5404 5405 spa_config_exit(spa, SCL_ALL, FTAG); 5406 } 5407 5408 /* 5409 * Update the stored path or FRU for this vdev. 5410 */ 5411 int 5412 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5413 boolean_t ispath) 5414 { 5415 vdev_t *vd; 5416 boolean_t sync = B_FALSE; 5417 5418 ASSERT(spa_writeable(spa)); 5419 5420 spa_vdev_state_enter(spa, SCL_ALL); 5421 5422 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5423 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5424 5425 if (!vd->vdev_ops->vdev_op_leaf) 5426 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5427 5428 if (ispath) { 5429 if (strcmp(value, vd->vdev_path) != 0) { 5430 spa_strfree(vd->vdev_path); 5431 vd->vdev_path = spa_strdup(value); 5432 sync = B_TRUE; 5433 } 5434 } else { 5435 if (vd->vdev_fru == NULL) { 5436 vd->vdev_fru = spa_strdup(value); 5437 sync = B_TRUE; 5438 } else if (strcmp(value, vd->vdev_fru) != 0) { 5439 spa_strfree(vd->vdev_fru); 5440 vd->vdev_fru = spa_strdup(value); 5441 sync = B_TRUE; 5442 } 5443 } 5444 5445 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5446 } 5447 5448 int 5449 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5450 { 5451 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5452 } 5453 5454 int 5455 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5456 { 5457 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5458 } 5459 5460 /* 5461 * ========================================================================== 5462 * SPA Scanning 5463 * ========================================================================== 5464 */ 5465 5466 int 5467 spa_scan_stop(spa_t *spa) 5468 { 5469 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5470 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5471 return (SET_ERROR(EBUSY)); 5472 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5473 } 5474 5475 int 5476 spa_scan(spa_t *spa, pool_scan_func_t func) 5477 { 5478 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5479 5480 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5481 return (SET_ERROR(ENOTSUP)); 5482 5483 /* 5484 * If a resilver was requested, but there is no DTL on a 5485 * writeable leaf device, we have nothing to do. 5486 */ 5487 if (func == POOL_SCAN_RESILVER && 5488 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5489 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5490 return (0); 5491 } 5492 5493 return (dsl_scan(spa->spa_dsl_pool, func)); 5494 } 5495 5496 /* 5497 * ========================================================================== 5498 * SPA async task processing 5499 * ========================================================================== 5500 */ 5501 5502 static void 5503 spa_async_remove(spa_t *spa, vdev_t *vd) 5504 { 5505 if (vd->vdev_remove_wanted) { 5506 vd->vdev_remove_wanted = B_FALSE; 5507 vd->vdev_delayed_close = B_FALSE; 5508 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5509 5510 /* 5511 * We want to clear the stats, but we don't want to do a full 5512 * vdev_clear() as that will cause us to throw away 5513 * degraded/faulted state as well as attempt to reopen the 5514 * device, all of which is a waste. 5515 */ 5516 vd->vdev_stat.vs_read_errors = 0; 5517 vd->vdev_stat.vs_write_errors = 0; 5518 vd->vdev_stat.vs_checksum_errors = 0; 5519 5520 vdev_state_dirty(vd->vdev_top); 5521 } 5522 5523 for (int c = 0; c < vd->vdev_children; c++) 5524 spa_async_remove(spa, vd->vdev_child[c]); 5525 } 5526 5527 static void 5528 spa_async_probe(spa_t *spa, vdev_t *vd) 5529 { 5530 if (vd->vdev_probe_wanted) { 5531 vd->vdev_probe_wanted = B_FALSE; 5532 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5533 } 5534 5535 for (int c = 0; c < vd->vdev_children; c++) 5536 spa_async_probe(spa, vd->vdev_child[c]); 5537 } 5538 5539 static void 5540 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5541 { 5542 sysevent_id_t eid; 5543 nvlist_t *attr; 5544 char *physpath; 5545 5546 if (!spa->spa_autoexpand) 5547 return; 5548 5549 for (int c = 0; c < vd->vdev_children; c++) { 5550 vdev_t *cvd = vd->vdev_child[c]; 5551 spa_async_autoexpand(spa, cvd); 5552 } 5553 5554 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5555 return; 5556 5557 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5558 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5559 5560 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5561 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5562 5563 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5564 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5565 5566 nvlist_free(attr); 5567 kmem_free(physpath, MAXPATHLEN); 5568 } 5569 5570 static void 5571 spa_async_thread(spa_t *spa) 5572 { 5573 int tasks; 5574 5575 ASSERT(spa->spa_sync_on); 5576 5577 mutex_enter(&spa->spa_async_lock); 5578 tasks = spa->spa_async_tasks; 5579 spa->spa_async_tasks = 0; 5580 mutex_exit(&spa->spa_async_lock); 5581 5582 /* 5583 * See if the config needs to be updated. 5584 */ 5585 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5586 uint64_t old_space, new_space; 5587 5588 mutex_enter(&spa_namespace_lock); 5589 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5590 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5591 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5592 mutex_exit(&spa_namespace_lock); 5593 5594 /* 5595 * If the pool grew as a result of the config update, 5596 * then log an internal history event. 5597 */ 5598 if (new_space != old_space) { 5599 spa_history_log_internal(spa, "vdev online", NULL, 5600 "pool '%s' size: %llu(+%llu)", 5601 spa_name(spa), new_space, new_space - old_space); 5602 } 5603 } 5604 5605 /* 5606 * See if any devices need to be marked REMOVED. 5607 */ 5608 if (tasks & SPA_ASYNC_REMOVE) { 5609 spa_vdev_state_enter(spa, SCL_NONE); 5610 spa_async_remove(spa, spa->spa_root_vdev); 5611 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5612 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5613 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5614 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5615 (void) spa_vdev_state_exit(spa, NULL, 0); 5616 } 5617 5618 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5619 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5620 spa_async_autoexpand(spa, spa->spa_root_vdev); 5621 spa_config_exit(spa, SCL_CONFIG, FTAG); 5622 } 5623 5624 /* 5625 * See if any devices need to be probed. 5626 */ 5627 if (tasks & SPA_ASYNC_PROBE) { 5628 spa_vdev_state_enter(spa, SCL_NONE); 5629 spa_async_probe(spa, spa->spa_root_vdev); 5630 (void) spa_vdev_state_exit(spa, NULL, 0); 5631 } 5632 5633 /* 5634 * If any devices are done replacing, detach them. 5635 */ 5636 if (tasks & SPA_ASYNC_RESILVER_DONE) 5637 spa_vdev_resilver_done(spa); 5638 5639 /* 5640 * Kick off a resilver. 5641 */ 5642 if (tasks & SPA_ASYNC_RESILVER) 5643 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5644 5645 /* 5646 * Let the world know that we're done. 5647 */ 5648 mutex_enter(&spa->spa_async_lock); 5649 spa->spa_async_thread = NULL; 5650 cv_broadcast(&spa->spa_async_cv); 5651 mutex_exit(&spa->spa_async_lock); 5652 thread_exit(); 5653 } 5654 5655 void 5656 spa_async_suspend(spa_t *spa) 5657 { 5658 mutex_enter(&spa->spa_async_lock); 5659 spa->spa_async_suspended++; 5660 while (spa->spa_async_thread != NULL) 5661 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5662 mutex_exit(&spa->spa_async_lock); 5663 } 5664 5665 void 5666 spa_async_resume(spa_t *spa) 5667 { 5668 mutex_enter(&spa->spa_async_lock); 5669 ASSERT(spa->spa_async_suspended != 0); 5670 spa->spa_async_suspended--; 5671 mutex_exit(&spa->spa_async_lock); 5672 } 5673 5674 static boolean_t 5675 spa_async_tasks_pending(spa_t *spa) 5676 { 5677 uint_t non_config_tasks; 5678 uint_t config_task; 5679 boolean_t config_task_suspended; 5680 5681 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5682 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5683 if (spa->spa_ccw_fail_time == 0) { 5684 config_task_suspended = B_FALSE; 5685 } else { 5686 config_task_suspended = 5687 (gethrtime() - spa->spa_ccw_fail_time) < 5688 (zfs_ccw_retry_interval * NANOSEC); 5689 } 5690 5691 return (non_config_tasks || (config_task && !config_task_suspended)); 5692 } 5693 5694 static void 5695 spa_async_dispatch(spa_t *spa) 5696 { 5697 mutex_enter(&spa->spa_async_lock); 5698 if (spa_async_tasks_pending(spa) && 5699 !spa->spa_async_suspended && 5700 spa->spa_async_thread == NULL && 5701 rootdir != NULL) 5702 spa->spa_async_thread = thread_create(NULL, 0, 5703 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5704 mutex_exit(&spa->spa_async_lock); 5705 } 5706 5707 void 5708 spa_async_request(spa_t *spa, int task) 5709 { 5710 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5711 mutex_enter(&spa->spa_async_lock); 5712 spa->spa_async_tasks |= task; 5713 mutex_exit(&spa->spa_async_lock); 5714 } 5715 5716 /* 5717 * ========================================================================== 5718 * SPA syncing routines 5719 * ========================================================================== 5720 */ 5721 5722 static int 5723 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5724 { 5725 bpobj_t *bpo = arg; 5726 bpobj_enqueue(bpo, bp, tx); 5727 return (0); 5728 } 5729 5730 static int 5731 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5732 { 5733 zio_t *zio = arg; 5734 5735 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5736 zio->io_flags)); 5737 return (0); 5738 } 5739 5740 static void 5741 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5742 { 5743 char *packed = NULL; 5744 size_t bufsize; 5745 size_t nvsize = 0; 5746 dmu_buf_t *db; 5747 5748 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5749 5750 /* 5751 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5752 * information. This avoids the dbuf_will_dirty() path and 5753 * saves us a pre-read to get data we don't actually care about. 5754 */ 5755 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5756 packed = kmem_alloc(bufsize, KM_SLEEP); 5757 5758 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5759 KM_SLEEP) == 0); 5760 bzero(packed + nvsize, bufsize - nvsize); 5761 5762 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5763 5764 kmem_free(packed, bufsize); 5765 5766 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5767 dmu_buf_will_dirty(db, tx); 5768 *(uint64_t *)db->db_data = nvsize; 5769 dmu_buf_rele(db, FTAG); 5770 } 5771 5772 static void 5773 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5774 const char *config, const char *entry) 5775 { 5776 nvlist_t *nvroot; 5777 nvlist_t **list; 5778 int i; 5779 5780 if (!sav->sav_sync) 5781 return; 5782 5783 /* 5784 * Update the MOS nvlist describing the list of available devices. 5785 * spa_validate_aux() will have already made sure this nvlist is 5786 * valid and the vdevs are labeled appropriately. 5787 */ 5788 if (sav->sav_object == 0) { 5789 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5790 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5791 sizeof (uint64_t), tx); 5792 VERIFY(zap_update(spa->spa_meta_objset, 5793 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5794 &sav->sav_object, tx) == 0); 5795 } 5796 5797 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5798 if (sav->sav_count == 0) { 5799 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5800 } else { 5801 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5802 for (i = 0; i < sav->sav_count; i++) 5803 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5804 B_FALSE, VDEV_CONFIG_L2CACHE); 5805 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5806 sav->sav_count) == 0); 5807 for (i = 0; i < sav->sav_count; i++) 5808 nvlist_free(list[i]); 5809 kmem_free(list, sav->sav_count * sizeof (void *)); 5810 } 5811 5812 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5813 nvlist_free(nvroot); 5814 5815 sav->sav_sync = B_FALSE; 5816 } 5817 5818 static void 5819 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5820 { 5821 nvlist_t *config; 5822 5823 if (list_is_empty(&spa->spa_config_dirty_list)) 5824 return; 5825 5826 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5827 5828 config = spa_config_generate(spa, spa->spa_root_vdev, 5829 dmu_tx_get_txg(tx), B_FALSE); 5830 5831 /* 5832 * If we're upgrading the spa version then make sure that 5833 * the config object gets updated with the correct version. 5834 */ 5835 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5836 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5837 spa->spa_uberblock.ub_version); 5838 5839 spa_config_exit(spa, SCL_STATE, FTAG); 5840 5841 if (spa->spa_config_syncing) 5842 nvlist_free(spa->spa_config_syncing); 5843 spa->spa_config_syncing = config; 5844 5845 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5846 } 5847 5848 static void 5849 spa_sync_version(void *arg, dmu_tx_t *tx) 5850 { 5851 uint64_t *versionp = arg; 5852 uint64_t version = *versionp; 5853 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5854 5855 /* 5856 * Setting the version is special cased when first creating the pool. 5857 */ 5858 ASSERT(tx->tx_txg != TXG_INITIAL); 5859 5860 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5861 ASSERT(version >= spa_version(spa)); 5862 5863 spa->spa_uberblock.ub_version = version; 5864 vdev_config_dirty(spa->spa_root_vdev); 5865 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5866 } 5867 5868 /* 5869 * Set zpool properties. 5870 */ 5871 static void 5872 spa_sync_props(void *arg, dmu_tx_t *tx) 5873 { 5874 nvlist_t *nvp = arg; 5875 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5876 objset_t *mos = spa->spa_meta_objset; 5877 nvpair_t *elem = NULL; 5878 5879 mutex_enter(&spa->spa_props_lock); 5880 5881 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5882 uint64_t intval; 5883 char *strval, *fname; 5884 zpool_prop_t prop; 5885 const char *propname; 5886 zprop_type_t proptype; 5887 zfeature_info_t *feature; 5888 5889 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5890 case ZPROP_INVAL: 5891 /* 5892 * We checked this earlier in spa_prop_validate(). 5893 */ 5894 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5895 5896 fname = strchr(nvpair_name(elem), '@') + 1; 5897 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature)); 5898 5899 spa_feature_enable(spa, feature, tx); 5900 spa_history_log_internal(spa, "set", tx, 5901 "%s=enabled", nvpair_name(elem)); 5902 break; 5903 5904 case ZPOOL_PROP_VERSION: 5905 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5906 /* 5907 * The version is synced seperatly before other 5908 * properties and should be correct by now. 5909 */ 5910 ASSERT3U(spa_version(spa), >=, intval); 5911 break; 5912 5913 case ZPOOL_PROP_ALTROOT: 5914 /* 5915 * 'altroot' is a non-persistent property. It should 5916 * have been set temporarily at creation or import time. 5917 */ 5918 ASSERT(spa->spa_root != NULL); 5919 break; 5920 5921 case ZPOOL_PROP_READONLY: 5922 case ZPOOL_PROP_CACHEFILE: 5923 /* 5924 * 'readonly' and 'cachefile' are also non-persisitent 5925 * properties. 5926 */ 5927 break; 5928 case ZPOOL_PROP_COMMENT: 5929 VERIFY(nvpair_value_string(elem, &strval) == 0); 5930 if (spa->spa_comment != NULL) 5931 spa_strfree(spa->spa_comment); 5932 spa->spa_comment = spa_strdup(strval); 5933 /* 5934 * We need to dirty the configuration on all the vdevs 5935 * so that their labels get updated. It's unnecessary 5936 * to do this for pool creation since the vdev's 5937 * configuratoin has already been dirtied. 5938 */ 5939 if (tx->tx_txg != TXG_INITIAL) 5940 vdev_config_dirty(spa->spa_root_vdev); 5941 spa_history_log_internal(spa, "set", tx, 5942 "%s=%s", nvpair_name(elem), strval); 5943 break; 5944 default: 5945 /* 5946 * Set pool property values in the poolprops mos object. 5947 */ 5948 if (spa->spa_pool_props_object == 0) { 5949 spa->spa_pool_props_object = 5950 zap_create_link(mos, DMU_OT_POOL_PROPS, 5951 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5952 tx); 5953 } 5954 5955 /* normalize the property name */ 5956 propname = zpool_prop_to_name(prop); 5957 proptype = zpool_prop_get_type(prop); 5958 5959 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5960 ASSERT(proptype == PROP_TYPE_STRING); 5961 VERIFY(nvpair_value_string(elem, &strval) == 0); 5962 VERIFY(zap_update(mos, 5963 spa->spa_pool_props_object, propname, 5964 1, strlen(strval) + 1, strval, tx) == 0); 5965 spa_history_log_internal(spa, "set", tx, 5966 "%s=%s", nvpair_name(elem), strval); 5967 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5968 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5969 5970 if (proptype == PROP_TYPE_INDEX) { 5971 const char *unused; 5972 VERIFY(zpool_prop_index_to_string( 5973 prop, intval, &unused) == 0); 5974 } 5975 VERIFY(zap_update(mos, 5976 spa->spa_pool_props_object, propname, 5977 8, 1, &intval, tx) == 0); 5978 spa_history_log_internal(spa, "set", tx, 5979 "%s=%lld", nvpair_name(elem), intval); 5980 } else { 5981 ASSERT(0); /* not allowed */ 5982 } 5983 5984 switch (prop) { 5985 case ZPOOL_PROP_DELEGATION: 5986 spa->spa_delegation = intval; 5987 break; 5988 case ZPOOL_PROP_BOOTFS: 5989 spa->spa_bootfs = intval; 5990 break; 5991 case ZPOOL_PROP_FAILUREMODE: 5992 spa->spa_failmode = intval; 5993 break; 5994 case ZPOOL_PROP_AUTOEXPAND: 5995 spa->spa_autoexpand = intval; 5996 if (tx->tx_txg != TXG_INITIAL) 5997 spa_async_request(spa, 5998 SPA_ASYNC_AUTOEXPAND); 5999 break; 6000 case ZPOOL_PROP_DEDUPDITTO: 6001 spa->spa_dedup_ditto = intval; 6002 break; 6003 default: 6004 break; 6005 } 6006 } 6007 6008 } 6009 6010 mutex_exit(&spa->spa_props_lock); 6011 } 6012 6013 /* 6014 * Perform one-time upgrade on-disk changes. spa_version() does not 6015 * reflect the new version this txg, so there must be no changes this 6016 * txg to anything that the upgrade code depends on after it executes. 6017 * Therefore this must be called after dsl_pool_sync() does the sync 6018 * tasks. 6019 */ 6020 static void 6021 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6022 { 6023 dsl_pool_t *dp = spa->spa_dsl_pool; 6024 6025 ASSERT(spa->spa_sync_pass == 1); 6026 6027 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6028 6029 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6030 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6031 dsl_pool_create_origin(dp, tx); 6032 6033 /* Keeping the origin open increases spa_minref */ 6034 spa->spa_minref += 3; 6035 } 6036 6037 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6038 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6039 dsl_pool_upgrade_clones(dp, tx); 6040 } 6041 6042 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6043 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6044 dsl_pool_upgrade_dir_clones(dp, tx); 6045 6046 /* Keeping the freedir open increases spa_minref */ 6047 spa->spa_minref += 3; 6048 } 6049 6050 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6051 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6052 spa_feature_create_zap_objects(spa, tx); 6053 } 6054 rrw_exit(&dp->dp_config_rwlock, FTAG); 6055 } 6056 6057 /* 6058 * Sync the specified transaction group. New blocks may be dirtied as 6059 * part of the process, so we iterate until it converges. 6060 */ 6061 void 6062 spa_sync(spa_t *spa, uint64_t txg) 6063 { 6064 dsl_pool_t *dp = spa->spa_dsl_pool; 6065 objset_t *mos = spa->spa_meta_objset; 6066 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 6067 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6068 vdev_t *rvd = spa->spa_root_vdev; 6069 vdev_t *vd; 6070 dmu_tx_t *tx; 6071 int error; 6072 6073 VERIFY(spa_writeable(spa)); 6074 6075 /* 6076 * Lock out configuration changes. 6077 */ 6078 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6079 6080 spa->spa_syncing_txg = txg; 6081 spa->spa_sync_pass = 0; 6082 6083 /* 6084 * If there are any pending vdev state changes, convert them 6085 * into config changes that go out with this transaction group. 6086 */ 6087 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6088 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6089 /* 6090 * We need the write lock here because, for aux vdevs, 6091 * calling vdev_config_dirty() modifies sav_config. 6092 * This is ugly and will become unnecessary when we 6093 * eliminate the aux vdev wart by integrating all vdevs 6094 * into the root vdev tree. 6095 */ 6096 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6097 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6098 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6099 vdev_state_clean(vd); 6100 vdev_config_dirty(vd); 6101 } 6102 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6103 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6104 } 6105 spa_config_exit(spa, SCL_STATE, FTAG); 6106 6107 tx = dmu_tx_create_assigned(dp, txg); 6108 6109 spa->spa_sync_starttime = gethrtime(); 6110 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6111 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6112 6113 /* 6114 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6115 * set spa_deflate if we have no raid-z vdevs. 6116 */ 6117 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6118 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6119 int i; 6120 6121 for (i = 0; i < rvd->vdev_children; i++) { 6122 vd = rvd->vdev_child[i]; 6123 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6124 break; 6125 } 6126 if (i == rvd->vdev_children) { 6127 spa->spa_deflate = TRUE; 6128 VERIFY(0 == zap_add(spa->spa_meta_objset, 6129 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6130 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6131 } 6132 } 6133 6134 /* 6135 * If anything has changed in this txg, or if someone is waiting 6136 * for this txg to sync (eg, spa_vdev_remove()), push the 6137 * deferred frees from the previous txg. If not, leave them 6138 * alone so that we don't generate work on an otherwise idle 6139 * system. 6140 */ 6141 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6142 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6143 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6144 ((dsl_scan_active(dp->dp_scan) || 6145 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6146 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6147 VERIFY3U(bpobj_iterate(defer_bpo, 6148 spa_free_sync_cb, zio, tx), ==, 0); 6149 VERIFY0(zio_wait(zio)); 6150 } 6151 6152 /* 6153 * Iterate to convergence. 6154 */ 6155 do { 6156 int pass = ++spa->spa_sync_pass; 6157 6158 spa_sync_config_object(spa, tx); 6159 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6160 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6161 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6162 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6163 spa_errlog_sync(spa, txg); 6164 dsl_pool_sync(dp, txg); 6165 6166 if (pass < zfs_sync_pass_deferred_free) { 6167 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6168 bplist_iterate(free_bpl, spa_free_sync_cb, 6169 zio, tx); 6170 VERIFY(zio_wait(zio) == 0); 6171 } else { 6172 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6173 defer_bpo, tx); 6174 } 6175 6176 ddt_sync(spa, txg); 6177 dsl_scan_sync(dp, tx); 6178 6179 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6180 vdev_sync(vd, txg); 6181 6182 if (pass == 1) 6183 spa_sync_upgrades(spa, tx); 6184 6185 } while (dmu_objset_is_dirty(mos, txg)); 6186 6187 /* 6188 * Rewrite the vdev configuration (which includes the uberblock) 6189 * to commit the transaction group. 6190 * 6191 * If there are no dirty vdevs, we sync the uberblock to a few 6192 * random top-level vdevs that are known to be visible in the 6193 * config cache (see spa_vdev_add() for a complete description). 6194 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6195 */ 6196 for (;;) { 6197 /* 6198 * We hold SCL_STATE to prevent vdev open/close/etc. 6199 * while we're attempting to write the vdev labels. 6200 */ 6201 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6202 6203 if (list_is_empty(&spa->spa_config_dirty_list)) { 6204 vdev_t *svd[SPA_DVAS_PER_BP]; 6205 int svdcount = 0; 6206 int children = rvd->vdev_children; 6207 int c0 = spa_get_random(children); 6208 6209 for (int c = 0; c < children; c++) { 6210 vd = rvd->vdev_child[(c0 + c) % children]; 6211 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6212 continue; 6213 svd[svdcount++] = vd; 6214 if (svdcount == SPA_DVAS_PER_BP) 6215 break; 6216 } 6217 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6218 if (error != 0) 6219 error = vdev_config_sync(svd, svdcount, txg, 6220 B_TRUE); 6221 } else { 6222 error = vdev_config_sync(rvd->vdev_child, 6223 rvd->vdev_children, txg, B_FALSE); 6224 if (error != 0) 6225 error = vdev_config_sync(rvd->vdev_child, 6226 rvd->vdev_children, txg, B_TRUE); 6227 } 6228 6229 if (error == 0) 6230 spa->spa_last_synced_guid = rvd->vdev_guid; 6231 6232 spa_config_exit(spa, SCL_STATE, FTAG); 6233 6234 if (error == 0) 6235 break; 6236 zio_suspend(spa, NULL); 6237 zio_resume_wait(spa); 6238 } 6239 dmu_tx_commit(tx); 6240 6241 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6242 6243 /* 6244 * Clear the dirty config list. 6245 */ 6246 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6247 vdev_config_clean(vd); 6248 6249 /* 6250 * Now that the new config has synced transactionally, 6251 * let it become visible to the config cache. 6252 */ 6253 if (spa->spa_config_syncing != NULL) { 6254 spa_config_set(spa, spa->spa_config_syncing); 6255 spa->spa_config_txg = txg; 6256 spa->spa_config_syncing = NULL; 6257 } 6258 6259 spa->spa_ubsync = spa->spa_uberblock; 6260 6261 dsl_pool_sync_done(dp, txg); 6262 6263 /* 6264 * Update usable space statistics. 6265 */ 6266 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6267 vdev_sync_done(vd, txg); 6268 6269 spa_update_dspace(spa); 6270 6271 /* 6272 * It had better be the case that we didn't dirty anything 6273 * since vdev_config_sync(). 6274 */ 6275 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6276 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6277 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6278 6279 spa->spa_sync_pass = 0; 6280 6281 spa_config_exit(spa, SCL_CONFIG, FTAG); 6282 6283 spa_handle_ignored_writes(spa); 6284 6285 /* 6286 * If any async tasks have been requested, kick them off. 6287 */ 6288 spa_async_dispatch(spa); 6289 } 6290 6291 /* 6292 * Sync all pools. We don't want to hold the namespace lock across these 6293 * operations, so we take a reference on the spa_t and drop the lock during the 6294 * sync. 6295 */ 6296 void 6297 spa_sync_allpools(void) 6298 { 6299 spa_t *spa = NULL; 6300 mutex_enter(&spa_namespace_lock); 6301 while ((spa = spa_next(spa)) != NULL) { 6302 if (spa_state(spa) != POOL_STATE_ACTIVE || 6303 !spa_writeable(spa) || spa_suspended(spa)) 6304 continue; 6305 spa_open_ref(spa, FTAG); 6306 mutex_exit(&spa_namespace_lock); 6307 txg_wait_synced(spa_get_dsl(spa), 0); 6308 mutex_enter(&spa_namespace_lock); 6309 spa_close(spa, FTAG); 6310 } 6311 mutex_exit(&spa_namespace_lock); 6312 } 6313 6314 /* 6315 * ========================================================================== 6316 * Miscellaneous routines 6317 * ========================================================================== 6318 */ 6319 6320 /* 6321 * Remove all pools in the system. 6322 */ 6323 void 6324 spa_evict_all(void) 6325 { 6326 spa_t *spa; 6327 6328 /* 6329 * Remove all cached state. All pools should be closed now, 6330 * so every spa in the AVL tree should be unreferenced. 6331 */ 6332 mutex_enter(&spa_namespace_lock); 6333 while ((spa = spa_next(NULL)) != NULL) { 6334 /* 6335 * Stop async tasks. The async thread may need to detach 6336 * a device that's been replaced, which requires grabbing 6337 * spa_namespace_lock, so we must drop it here. 6338 */ 6339 spa_open_ref(spa, FTAG); 6340 mutex_exit(&spa_namespace_lock); 6341 spa_async_suspend(spa); 6342 mutex_enter(&spa_namespace_lock); 6343 spa_close(spa, FTAG); 6344 6345 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6346 spa_unload(spa); 6347 spa_deactivate(spa); 6348 } 6349 spa_remove(spa); 6350 } 6351 mutex_exit(&spa_namespace_lock); 6352 } 6353 6354 vdev_t * 6355 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6356 { 6357 vdev_t *vd; 6358 int i; 6359 6360 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6361 return (vd); 6362 6363 if (aux) { 6364 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6365 vd = spa->spa_l2cache.sav_vdevs[i]; 6366 if (vd->vdev_guid == guid) 6367 return (vd); 6368 } 6369 6370 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6371 vd = spa->spa_spares.sav_vdevs[i]; 6372 if (vd->vdev_guid == guid) 6373 return (vd); 6374 } 6375 } 6376 6377 return (NULL); 6378 } 6379 6380 void 6381 spa_upgrade(spa_t *spa, uint64_t version) 6382 { 6383 ASSERT(spa_writeable(spa)); 6384 6385 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6386 6387 /* 6388 * This should only be called for a non-faulted pool, and since a 6389 * future version would result in an unopenable pool, this shouldn't be 6390 * possible. 6391 */ 6392 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6393 ASSERT(version >= spa->spa_uberblock.ub_version); 6394 6395 spa->spa_uberblock.ub_version = version; 6396 vdev_config_dirty(spa->spa_root_vdev); 6397 6398 spa_config_exit(spa, SCL_ALL, FTAG); 6399 6400 txg_wait_synced(spa_get_dsl(spa), 0); 6401 } 6402 6403 boolean_t 6404 spa_has_spare(spa_t *spa, uint64_t guid) 6405 { 6406 int i; 6407 uint64_t spareguid; 6408 spa_aux_vdev_t *sav = &spa->spa_spares; 6409 6410 for (i = 0; i < sav->sav_count; i++) 6411 if (sav->sav_vdevs[i]->vdev_guid == guid) 6412 return (B_TRUE); 6413 6414 for (i = 0; i < sav->sav_npending; i++) { 6415 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6416 &spareguid) == 0 && spareguid == guid) 6417 return (B_TRUE); 6418 } 6419 6420 return (B_FALSE); 6421 } 6422 6423 /* 6424 * Check if a pool has an active shared spare device. 6425 * Note: reference count of an active spare is 2, as a spare and as a replace 6426 */ 6427 static boolean_t 6428 spa_has_active_shared_spare(spa_t *spa) 6429 { 6430 int i, refcnt; 6431 uint64_t pool; 6432 spa_aux_vdev_t *sav = &spa->spa_spares; 6433 6434 for (i = 0; i < sav->sav_count; i++) { 6435 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6436 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6437 refcnt > 2) 6438 return (B_TRUE); 6439 } 6440 6441 return (B_FALSE); 6442 } 6443 6444 /* 6445 * Post a sysevent corresponding to the given event. The 'name' must be one of 6446 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6447 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6448 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6449 * or zdb as real changes. 6450 */ 6451 void 6452 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6453 { 6454 #ifdef _KERNEL 6455 sysevent_t *ev; 6456 sysevent_attr_list_t *attr = NULL; 6457 sysevent_value_t value; 6458 sysevent_id_t eid; 6459 6460 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6461 SE_SLEEP); 6462 6463 value.value_type = SE_DATA_TYPE_STRING; 6464 value.value.sv_string = spa_name(spa); 6465 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6466 goto done; 6467 6468 value.value_type = SE_DATA_TYPE_UINT64; 6469 value.value.sv_uint64 = spa_guid(spa); 6470 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6471 goto done; 6472 6473 if (vd) { 6474 value.value_type = SE_DATA_TYPE_UINT64; 6475 value.value.sv_uint64 = vd->vdev_guid; 6476 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6477 SE_SLEEP) != 0) 6478 goto done; 6479 6480 if (vd->vdev_path) { 6481 value.value_type = SE_DATA_TYPE_STRING; 6482 value.value.sv_string = vd->vdev_path; 6483 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6484 &value, SE_SLEEP) != 0) 6485 goto done; 6486 } 6487 } 6488 6489 if (sysevent_attach_attributes(ev, attr) != 0) 6490 goto done; 6491 attr = NULL; 6492 6493 (void) log_sysevent(ev, SE_SLEEP, &eid); 6494 6495 done: 6496 if (attr) 6497 sysevent_free_attr(attr); 6498 sysevent_free(ev); 6499 #endif 6500 } 6501