1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains all the routines used when modifying on-disk SPA state. 29 * This includes opening, importing, destroying, exporting a pool, and syncing a 30 * pool. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zio.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/zap.h> 41 #include <sys/zil.h> 42 #include <sys/ddt.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/metaslab.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/txg.h> 48 #include <sys/avl.h> 49 #include <sys/dmu_traverse.h> 50 #include <sys/dmu_objset.h> 51 #include <sys/unique.h> 52 #include <sys/dsl_pool.h> 53 #include <sys/dsl_dataset.h> 54 #include <sys/dsl_dir.h> 55 #include <sys/dsl_prop.h> 56 #include <sys/dsl_synctask.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/arc.h> 59 #include <sys/callb.h> 60 #include <sys/systeminfo.h> 61 #include <sys/spa_boot.h> 62 #include <sys/zfs_ioctl.h> 63 64 #ifdef _KERNEL 65 #include <sys/zone.h> 66 #include <sys/bootprops.h> 67 #endif /* _KERNEL */ 68 69 #include "zfs_prop.h" 70 #include "zfs_comutil.h" 71 72 enum zti_modes { 73 zti_mode_fixed, /* value is # of threads (min 1) */ 74 zti_mode_online_percent, /* value is % of online CPUs */ 75 zti_mode_tune, /* fill from zio_taskq_tune_* */ 76 zti_nmodes 77 }; 78 79 #define ZTI_THREAD_FIX(n) { zti_mode_fixed, (n) } 80 #define ZTI_THREAD_PCT(n) { zti_mode_online_percent, (n) } 81 #define ZTI_THREAD_TUNE { zti_mode_tune, 0 } 82 83 #define ZTI_THREAD_ONE ZTI_THREAD_FIX(1) 84 85 typedef struct zio_taskq_info { 86 const char *zti_name; 87 struct { 88 enum zti_modes zti_mode; 89 uint_t zti_value; 90 } zti_nthreads[ZIO_TASKQ_TYPES]; 91 } zio_taskq_info_t; 92 93 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 94 "issue", "intr" 95 }; 96 97 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = { 98 /* ISSUE INTR */ 99 { "spa_zio_null", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 100 { "spa_zio_read", { ZTI_THREAD_FIX(8), ZTI_THREAD_TUNE } }, 101 { "spa_zio_write", { ZTI_THREAD_TUNE, ZTI_THREAD_FIX(8) } }, 102 { "spa_zio_free", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 103 { "spa_zio_claim", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 104 { "spa_zio_ioctl", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 105 }; 106 107 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent; 108 uint_t zio_taskq_tune_value = 80; /* #threads = 80% of # online CPUs */ 109 110 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); 111 static boolean_t spa_has_active_shared_spare(spa_t *spa); 112 113 /* 114 * ========================================================================== 115 * SPA properties routines 116 * ========================================================================== 117 */ 118 119 /* 120 * Add a (source=src, propname=propval) list to an nvlist. 121 */ 122 static void 123 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 124 uint64_t intval, zprop_source_t src) 125 { 126 const char *propname = zpool_prop_to_name(prop); 127 nvlist_t *propval; 128 129 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 130 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 131 132 if (strval != NULL) 133 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 134 else 135 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 136 137 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 138 nvlist_free(propval); 139 } 140 141 /* 142 * Get property values from the spa configuration. 143 */ 144 static void 145 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 146 { 147 uint64_t size; 148 uint64_t alloc; 149 uint64_t cap, version; 150 zprop_source_t src = ZPROP_SRC_NONE; 151 spa_config_dirent_t *dp; 152 153 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 154 155 if (spa->spa_root_vdev != NULL) { 156 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 157 size = metaslab_class_get_space(spa_normal_class(spa)); 158 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 159 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 160 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 161 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 162 size - alloc, src); 163 164 cap = (size == 0) ? 0 : (alloc * 100 / size); 165 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 166 167 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 168 ddt_get_pool_dedup_ratio(spa), src); 169 170 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 171 spa->spa_root_vdev->vdev_state, src); 172 173 version = spa_version(spa); 174 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 175 src = ZPROP_SRC_DEFAULT; 176 else 177 src = ZPROP_SRC_LOCAL; 178 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 179 } 180 181 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 182 183 if (spa->spa_root != NULL) 184 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 185 0, ZPROP_SRC_LOCAL); 186 187 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 188 if (dp->scd_path == NULL) { 189 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 190 "none", 0, ZPROP_SRC_LOCAL); 191 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 192 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 193 dp->scd_path, 0, ZPROP_SRC_LOCAL); 194 } 195 } 196 } 197 198 /* 199 * Get zpool property values. 200 */ 201 int 202 spa_prop_get(spa_t *spa, nvlist_t **nvp) 203 { 204 objset_t *mos = spa->spa_meta_objset; 205 zap_cursor_t zc; 206 zap_attribute_t za; 207 int err; 208 209 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 210 211 mutex_enter(&spa->spa_props_lock); 212 213 /* 214 * Get properties from the spa config. 215 */ 216 spa_prop_get_config(spa, nvp); 217 218 /* If no pool property object, no more prop to get. */ 219 if (spa->spa_pool_props_object == 0) { 220 mutex_exit(&spa->spa_props_lock); 221 return (0); 222 } 223 224 /* 225 * Get properties from the MOS pool property object. 226 */ 227 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 228 (err = zap_cursor_retrieve(&zc, &za)) == 0; 229 zap_cursor_advance(&zc)) { 230 uint64_t intval = 0; 231 char *strval = NULL; 232 zprop_source_t src = ZPROP_SRC_DEFAULT; 233 zpool_prop_t prop; 234 235 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 236 continue; 237 238 switch (za.za_integer_length) { 239 case 8: 240 /* integer property */ 241 if (za.za_first_integer != 242 zpool_prop_default_numeric(prop)) 243 src = ZPROP_SRC_LOCAL; 244 245 if (prop == ZPOOL_PROP_BOOTFS) { 246 dsl_pool_t *dp; 247 dsl_dataset_t *ds = NULL; 248 249 dp = spa_get_dsl(spa); 250 rw_enter(&dp->dp_config_rwlock, RW_READER); 251 if (err = dsl_dataset_hold_obj(dp, 252 za.za_first_integer, FTAG, &ds)) { 253 rw_exit(&dp->dp_config_rwlock); 254 break; 255 } 256 257 strval = kmem_alloc( 258 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 259 KM_SLEEP); 260 dsl_dataset_name(ds, strval); 261 dsl_dataset_rele(ds, FTAG); 262 rw_exit(&dp->dp_config_rwlock); 263 } else { 264 strval = NULL; 265 intval = za.za_first_integer; 266 } 267 268 spa_prop_add_list(*nvp, prop, strval, intval, src); 269 270 if (strval != NULL) 271 kmem_free(strval, 272 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 273 274 break; 275 276 case 1: 277 /* string property */ 278 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 279 err = zap_lookup(mos, spa->spa_pool_props_object, 280 za.za_name, 1, za.za_num_integers, strval); 281 if (err) { 282 kmem_free(strval, za.za_num_integers); 283 break; 284 } 285 spa_prop_add_list(*nvp, prop, strval, 0, src); 286 kmem_free(strval, za.za_num_integers); 287 break; 288 289 default: 290 break; 291 } 292 } 293 zap_cursor_fini(&zc); 294 mutex_exit(&spa->spa_props_lock); 295 out: 296 if (err && err != ENOENT) { 297 nvlist_free(*nvp); 298 *nvp = NULL; 299 return (err); 300 } 301 302 return (0); 303 } 304 305 /* 306 * Validate the given pool properties nvlist and modify the list 307 * for the property values to be set. 308 */ 309 static int 310 spa_prop_validate(spa_t *spa, nvlist_t *props) 311 { 312 nvpair_t *elem; 313 int error = 0, reset_bootfs = 0; 314 uint64_t objnum; 315 316 elem = NULL; 317 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 318 zpool_prop_t prop; 319 char *propname, *strval; 320 uint64_t intval; 321 objset_t *os; 322 char *slash; 323 324 propname = nvpair_name(elem); 325 326 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 327 return (EINVAL); 328 329 switch (prop) { 330 case ZPOOL_PROP_VERSION: 331 error = nvpair_value_uint64(elem, &intval); 332 if (!error && 333 (intval < spa_version(spa) || intval > SPA_VERSION)) 334 error = EINVAL; 335 break; 336 337 case ZPOOL_PROP_DELEGATION: 338 case ZPOOL_PROP_AUTOREPLACE: 339 case ZPOOL_PROP_LISTSNAPS: 340 case ZPOOL_PROP_AUTOEXPAND: 341 error = nvpair_value_uint64(elem, &intval); 342 if (!error && intval > 1) 343 error = EINVAL; 344 break; 345 346 case ZPOOL_PROP_BOOTFS: 347 /* 348 * If the pool version is less than SPA_VERSION_BOOTFS, 349 * or the pool is still being created (version == 0), 350 * the bootfs property cannot be set. 351 */ 352 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 353 error = ENOTSUP; 354 break; 355 } 356 357 /* 358 * Make sure the vdev config is bootable 359 */ 360 if (!vdev_is_bootable(spa->spa_root_vdev)) { 361 error = ENOTSUP; 362 break; 363 } 364 365 reset_bootfs = 1; 366 367 error = nvpair_value_string(elem, &strval); 368 369 if (!error) { 370 uint64_t compress; 371 372 if (strval == NULL || strval[0] == '\0') { 373 objnum = zpool_prop_default_numeric( 374 ZPOOL_PROP_BOOTFS); 375 break; 376 } 377 378 if (error = dmu_objset_hold(strval, FTAG, &os)) 379 break; 380 381 /* Must be ZPL and not gzip compressed. */ 382 383 if (dmu_objset_type(os) != DMU_OST_ZFS) { 384 error = ENOTSUP; 385 } else if ((error = dsl_prop_get_integer(strval, 386 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 387 &compress, NULL)) == 0 && 388 !BOOTFS_COMPRESS_VALID(compress)) { 389 error = ENOTSUP; 390 } else { 391 objnum = dmu_objset_id(os); 392 } 393 dmu_objset_rele(os, FTAG); 394 } 395 break; 396 397 case ZPOOL_PROP_FAILUREMODE: 398 error = nvpair_value_uint64(elem, &intval); 399 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 400 intval > ZIO_FAILURE_MODE_PANIC)) 401 error = EINVAL; 402 403 /* 404 * This is a special case which only occurs when 405 * the pool has completely failed. This allows 406 * the user to change the in-core failmode property 407 * without syncing it out to disk (I/Os might 408 * currently be blocked). We do this by returning 409 * EIO to the caller (spa_prop_set) to trick it 410 * into thinking we encountered a property validation 411 * error. 412 */ 413 if (!error && spa_suspended(spa)) { 414 spa->spa_failmode = intval; 415 error = EIO; 416 } 417 break; 418 419 case ZPOOL_PROP_CACHEFILE: 420 if ((error = nvpair_value_string(elem, &strval)) != 0) 421 break; 422 423 if (strval[0] == '\0') 424 break; 425 426 if (strcmp(strval, "none") == 0) 427 break; 428 429 if (strval[0] != '/') { 430 error = EINVAL; 431 break; 432 } 433 434 slash = strrchr(strval, '/'); 435 ASSERT(slash != NULL); 436 437 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 438 strcmp(slash, "/..") == 0) 439 error = EINVAL; 440 break; 441 442 case ZPOOL_PROP_DEDUPDITTO: 443 if (spa_version(spa) < SPA_VERSION_DEDUP) 444 error = ENOTSUP; 445 else 446 error = nvpair_value_uint64(elem, &intval); 447 if (error == 0 && 448 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 449 error = EINVAL; 450 break; 451 } 452 453 if (error) 454 break; 455 } 456 457 if (!error && reset_bootfs) { 458 error = nvlist_remove(props, 459 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 460 461 if (!error) { 462 error = nvlist_add_uint64(props, 463 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 464 } 465 } 466 467 return (error); 468 } 469 470 void 471 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 472 { 473 char *cachefile; 474 spa_config_dirent_t *dp; 475 476 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 477 &cachefile) != 0) 478 return; 479 480 dp = kmem_alloc(sizeof (spa_config_dirent_t), 481 KM_SLEEP); 482 483 if (cachefile[0] == '\0') 484 dp->scd_path = spa_strdup(spa_config_path); 485 else if (strcmp(cachefile, "none") == 0) 486 dp->scd_path = NULL; 487 else 488 dp->scd_path = spa_strdup(cachefile); 489 490 list_insert_head(&spa->spa_config_list, dp); 491 if (need_sync) 492 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 493 } 494 495 int 496 spa_prop_set(spa_t *spa, nvlist_t *nvp) 497 { 498 int error; 499 nvpair_t *elem; 500 boolean_t need_sync = B_FALSE; 501 zpool_prop_t prop; 502 503 if ((error = spa_prop_validate(spa, nvp)) != 0) 504 return (error); 505 506 elem = NULL; 507 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 508 if ((prop = zpool_name_to_prop( 509 nvpair_name(elem))) == ZPROP_INVAL) 510 return (EINVAL); 511 512 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 513 continue; 514 515 need_sync = B_TRUE; 516 break; 517 } 518 519 if (need_sync) 520 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 521 spa, nvp, 3)); 522 else 523 return (0); 524 } 525 526 /* 527 * If the bootfs property value is dsobj, clear it. 528 */ 529 void 530 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 531 { 532 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 533 VERIFY(zap_remove(spa->spa_meta_objset, 534 spa->spa_pool_props_object, 535 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 536 spa->spa_bootfs = 0; 537 } 538 } 539 540 /* 541 * ========================================================================== 542 * SPA state manipulation (open/create/destroy/import/export) 543 * ========================================================================== 544 */ 545 546 static int 547 spa_error_entry_compare(const void *a, const void *b) 548 { 549 spa_error_entry_t *sa = (spa_error_entry_t *)a; 550 spa_error_entry_t *sb = (spa_error_entry_t *)b; 551 int ret; 552 553 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 554 sizeof (zbookmark_t)); 555 556 if (ret < 0) 557 return (-1); 558 else if (ret > 0) 559 return (1); 560 else 561 return (0); 562 } 563 564 /* 565 * Utility function which retrieves copies of the current logs and 566 * re-initializes them in the process. 567 */ 568 void 569 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 570 { 571 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 572 573 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 574 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 575 576 avl_create(&spa->spa_errlist_scrub, 577 spa_error_entry_compare, sizeof (spa_error_entry_t), 578 offsetof(spa_error_entry_t, se_avl)); 579 avl_create(&spa->spa_errlist_last, 580 spa_error_entry_compare, sizeof (spa_error_entry_t), 581 offsetof(spa_error_entry_t, se_avl)); 582 } 583 584 /* 585 * Activate an uninitialized pool. 586 */ 587 static void 588 spa_activate(spa_t *spa, int mode) 589 { 590 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 591 592 spa->spa_state = POOL_STATE_ACTIVE; 593 spa->spa_mode = mode; 594 595 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 596 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 597 598 for (int t = 0; t < ZIO_TYPES; t++) { 599 const zio_taskq_info_t *ztip = &zio_taskqs[t]; 600 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 601 enum zti_modes mode = ztip->zti_nthreads[q].zti_mode; 602 uint_t value = ztip->zti_nthreads[q].zti_value; 603 char name[32]; 604 605 (void) snprintf(name, sizeof (name), 606 "%s_%s", ztip->zti_name, zio_taskq_types[q]); 607 608 if (mode == zti_mode_tune) { 609 mode = zio_taskq_tune_mode; 610 value = zio_taskq_tune_value; 611 if (mode == zti_mode_tune) 612 mode = zti_mode_online_percent; 613 } 614 615 switch (mode) { 616 case zti_mode_fixed: 617 ASSERT3U(value, >=, 1); 618 value = MAX(value, 1); 619 620 spa->spa_zio_taskq[t][q] = taskq_create(name, 621 value, maxclsyspri, 50, INT_MAX, 622 TASKQ_PREPOPULATE); 623 break; 624 625 case zti_mode_online_percent: 626 spa->spa_zio_taskq[t][q] = taskq_create(name, 627 value, maxclsyspri, 50, INT_MAX, 628 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 629 break; 630 631 case zti_mode_tune: 632 default: 633 panic("unrecognized mode for " 634 "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) " 635 "in spa_activate()", 636 t, q, mode, value); 637 break; 638 } 639 } 640 } 641 642 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 643 offsetof(vdev_t, vdev_config_dirty_node)); 644 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 645 offsetof(vdev_t, vdev_state_dirty_node)); 646 647 txg_list_create(&spa->spa_vdev_txg_list, 648 offsetof(struct vdev, vdev_txg_node)); 649 650 avl_create(&spa->spa_errlist_scrub, 651 spa_error_entry_compare, sizeof (spa_error_entry_t), 652 offsetof(spa_error_entry_t, se_avl)); 653 avl_create(&spa->spa_errlist_last, 654 spa_error_entry_compare, sizeof (spa_error_entry_t), 655 offsetof(spa_error_entry_t, se_avl)); 656 } 657 658 /* 659 * Opposite of spa_activate(). 660 */ 661 static void 662 spa_deactivate(spa_t *spa) 663 { 664 ASSERT(spa->spa_sync_on == B_FALSE); 665 ASSERT(spa->spa_dsl_pool == NULL); 666 ASSERT(spa->spa_root_vdev == NULL); 667 ASSERT(spa->spa_async_zio_root == NULL); 668 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 669 670 txg_list_destroy(&spa->spa_vdev_txg_list); 671 672 list_destroy(&spa->spa_config_dirty_list); 673 list_destroy(&spa->spa_state_dirty_list); 674 675 for (int t = 0; t < ZIO_TYPES; t++) { 676 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 677 taskq_destroy(spa->spa_zio_taskq[t][q]); 678 spa->spa_zio_taskq[t][q] = NULL; 679 } 680 } 681 682 metaslab_class_destroy(spa->spa_normal_class); 683 spa->spa_normal_class = NULL; 684 685 metaslab_class_destroy(spa->spa_log_class); 686 spa->spa_log_class = NULL; 687 688 /* 689 * If this was part of an import or the open otherwise failed, we may 690 * still have errors left in the queues. Empty them just in case. 691 */ 692 spa_errlog_drain(spa); 693 694 avl_destroy(&spa->spa_errlist_scrub); 695 avl_destroy(&spa->spa_errlist_last); 696 697 spa->spa_state = POOL_STATE_UNINITIALIZED; 698 } 699 700 /* 701 * Verify a pool configuration, and construct the vdev tree appropriately. This 702 * will create all the necessary vdevs in the appropriate layout, with each vdev 703 * in the CLOSED state. This will prep the pool before open/creation/import. 704 * All vdev validation is done by the vdev_alloc() routine. 705 */ 706 static int 707 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 708 uint_t id, int atype) 709 { 710 nvlist_t **child; 711 uint_t children; 712 int error; 713 714 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 715 return (error); 716 717 if ((*vdp)->vdev_ops->vdev_op_leaf) 718 return (0); 719 720 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 721 &child, &children); 722 723 if (error == ENOENT) 724 return (0); 725 726 if (error) { 727 vdev_free(*vdp); 728 *vdp = NULL; 729 return (EINVAL); 730 } 731 732 for (int c = 0; c < children; c++) { 733 vdev_t *vd; 734 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 735 atype)) != 0) { 736 vdev_free(*vdp); 737 *vdp = NULL; 738 return (error); 739 } 740 } 741 742 ASSERT(*vdp != NULL); 743 744 return (0); 745 } 746 747 /* 748 * Opposite of spa_load(). 749 */ 750 static void 751 spa_unload(spa_t *spa) 752 { 753 int i; 754 755 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 756 757 /* 758 * Stop async tasks. 759 */ 760 spa_async_suspend(spa); 761 762 /* 763 * Stop syncing. 764 */ 765 if (spa->spa_sync_on) { 766 txg_sync_stop(spa->spa_dsl_pool); 767 spa->spa_sync_on = B_FALSE; 768 } 769 770 /* 771 * Wait for any outstanding async I/O to complete. 772 */ 773 if (spa->spa_async_zio_root != NULL) { 774 (void) zio_wait(spa->spa_async_zio_root); 775 spa->spa_async_zio_root = NULL; 776 } 777 778 /* 779 * Close the dsl pool. 780 */ 781 if (spa->spa_dsl_pool) { 782 dsl_pool_close(spa->spa_dsl_pool); 783 spa->spa_dsl_pool = NULL; 784 } 785 786 ddt_unload(spa); 787 788 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 789 790 /* 791 * Drop and purge level 2 cache 792 */ 793 spa_l2cache_drop(spa); 794 795 /* 796 * Close all vdevs. 797 */ 798 if (spa->spa_root_vdev) 799 vdev_free(spa->spa_root_vdev); 800 ASSERT(spa->spa_root_vdev == NULL); 801 802 for (i = 0; i < spa->spa_spares.sav_count; i++) 803 vdev_free(spa->spa_spares.sav_vdevs[i]); 804 if (spa->spa_spares.sav_vdevs) { 805 kmem_free(spa->spa_spares.sav_vdevs, 806 spa->spa_spares.sav_count * sizeof (void *)); 807 spa->spa_spares.sav_vdevs = NULL; 808 } 809 if (spa->spa_spares.sav_config) { 810 nvlist_free(spa->spa_spares.sav_config); 811 spa->spa_spares.sav_config = NULL; 812 } 813 spa->spa_spares.sav_count = 0; 814 815 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 816 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 817 if (spa->spa_l2cache.sav_vdevs) { 818 kmem_free(spa->spa_l2cache.sav_vdevs, 819 spa->spa_l2cache.sav_count * sizeof (void *)); 820 spa->spa_l2cache.sav_vdevs = NULL; 821 } 822 if (spa->spa_l2cache.sav_config) { 823 nvlist_free(spa->spa_l2cache.sav_config); 824 spa->spa_l2cache.sav_config = NULL; 825 } 826 spa->spa_l2cache.sav_count = 0; 827 828 spa->spa_async_suspended = 0; 829 830 spa_config_exit(spa, SCL_ALL, FTAG); 831 } 832 833 /* 834 * Load (or re-load) the current list of vdevs describing the active spares for 835 * this pool. When this is called, we have some form of basic information in 836 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 837 * then re-generate a more complete list including status information. 838 */ 839 static void 840 spa_load_spares(spa_t *spa) 841 { 842 nvlist_t **spares; 843 uint_t nspares; 844 int i; 845 vdev_t *vd, *tvd; 846 847 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 848 849 /* 850 * First, close and free any existing spare vdevs. 851 */ 852 for (i = 0; i < spa->spa_spares.sav_count; i++) { 853 vd = spa->spa_spares.sav_vdevs[i]; 854 855 /* Undo the call to spa_activate() below */ 856 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 857 B_FALSE)) != NULL && tvd->vdev_isspare) 858 spa_spare_remove(tvd); 859 vdev_close(vd); 860 vdev_free(vd); 861 } 862 863 if (spa->spa_spares.sav_vdevs) 864 kmem_free(spa->spa_spares.sav_vdevs, 865 spa->spa_spares.sav_count * sizeof (void *)); 866 867 if (spa->spa_spares.sav_config == NULL) 868 nspares = 0; 869 else 870 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 871 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 872 873 spa->spa_spares.sav_count = (int)nspares; 874 spa->spa_spares.sav_vdevs = NULL; 875 876 if (nspares == 0) 877 return; 878 879 /* 880 * Construct the array of vdevs, opening them to get status in the 881 * process. For each spare, there is potentially two different vdev_t 882 * structures associated with it: one in the list of spares (used only 883 * for basic validation purposes) and one in the active vdev 884 * configuration (if it's spared in). During this phase we open and 885 * validate each vdev on the spare list. If the vdev also exists in the 886 * active configuration, then we also mark this vdev as an active spare. 887 */ 888 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 889 KM_SLEEP); 890 for (i = 0; i < spa->spa_spares.sav_count; i++) { 891 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 892 VDEV_ALLOC_SPARE) == 0); 893 ASSERT(vd != NULL); 894 895 spa->spa_spares.sav_vdevs[i] = vd; 896 897 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 898 B_FALSE)) != NULL) { 899 if (!tvd->vdev_isspare) 900 spa_spare_add(tvd); 901 902 /* 903 * We only mark the spare active if we were successfully 904 * able to load the vdev. Otherwise, importing a pool 905 * with a bad active spare would result in strange 906 * behavior, because multiple pool would think the spare 907 * is actively in use. 908 * 909 * There is a vulnerability here to an equally bizarre 910 * circumstance, where a dead active spare is later 911 * brought back to life (onlined or otherwise). Given 912 * the rarity of this scenario, and the extra complexity 913 * it adds, we ignore the possibility. 914 */ 915 if (!vdev_is_dead(tvd)) 916 spa_spare_activate(tvd); 917 } 918 919 vd->vdev_top = vd; 920 vd->vdev_aux = &spa->spa_spares; 921 922 if (vdev_open(vd) != 0) 923 continue; 924 925 if (vdev_validate_aux(vd) == 0) 926 spa_spare_add(vd); 927 } 928 929 /* 930 * Recompute the stashed list of spares, with status information 931 * this time. 932 */ 933 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 934 DATA_TYPE_NVLIST_ARRAY) == 0); 935 936 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 937 KM_SLEEP); 938 for (i = 0; i < spa->spa_spares.sav_count; i++) 939 spares[i] = vdev_config_generate(spa, 940 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); 941 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 942 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 943 for (i = 0; i < spa->spa_spares.sav_count; i++) 944 nvlist_free(spares[i]); 945 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 946 } 947 948 /* 949 * Load (or re-load) the current list of vdevs describing the active l2cache for 950 * this pool. When this is called, we have some form of basic information in 951 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 952 * then re-generate a more complete list including status information. 953 * Devices which are already active have their details maintained, and are 954 * not re-opened. 955 */ 956 static void 957 spa_load_l2cache(spa_t *spa) 958 { 959 nvlist_t **l2cache; 960 uint_t nl2cache; 961 int i, j, oldnvdevs; 962 uint64_t guid; 963 vdev_t *vd, **oldvdevs, **newvdevs; 964 spa_aux_vdev_t *sav = &spa->spa_l2cache; 965 966 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 967 968 if (sav->sav_config != NULL) { 969 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 970 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 971 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 972 } else { 973 nl2cache = 0; 974 } 975 976 oldvdevs = sav->sav_vdevs; 977 oldnvdevs = sav->sav_count; 978 sav->sav_vdevs = NULL; 979 sav->sav_count = 0; 980 981 /* 982 * Process new nvlist of vdevs. 983 */ 984 for (i = 0; i < nl2cache; i++) { 985 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 986 &guid) == 0); 987 988 newvdevs[i] = NULL; 989 for (j = 0; j < oldnvdevs; j++) { 990 vd = oldvdevs[j]; 991 if (vd != NULL && guid == vd->vdev_guid) { 992 /* 993 * Retain previous vdev for add/remove ops. 994 */ 995 newvdevs[i] = vd; 996 oldvdevs[j] = NULL; 997 break; 998 } 999 } 1000 1001 if (newvdevs[i] == NULL) { 1002 /* 1003 * Create new vdev 1004 */ 1005 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1006 VDEV_ALLOC_L2CACHE) == 0); 1007 ASSERT(vd != NULL); 1008 newvdevs[i] = vd; 1009 1010 /* 1011 * Commit this vdev as an l2cache device, 1012 * even if it fails to open. 1013 */ 1014 spa_l2cache_add(vd); 1015 1016 vd->vdev_top = vd; 1017 vd->vdev_aux = sav; 1018 1019 spa_l2cache_activate(vd); 1020 1021 if (vdev_open(vd) != 0) 1022 continue; 1023 1024 (void) vdev_validate_aux(vd); 1025 1026 if (!vdev_is_dead(vd)) 1027 l2arc_add_vdev(spa, vd); 1028 } 1029 } 1030 1031 /* 1032 * Purge vdevs that were dropped 1033 */ 1034 for (i = 0; i < oldnvdevs; i++) { 1035 uint64_t pool; 1036 1037 vd = oldvdevs[i]; 1038 if (vd != NULL) { 1039 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1040 pool != 0ULL && l2arc_vdev_present(vd)) 1041 l2arc_remove_vdev(vd); 1042 (void) vdev_close(vd); 1043 spa_l2cache_remove(vd); 1044 } 1045 } 1046 1047 if (oldvdevs) 1048 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1049 1050 if (sav->sav_config == NULL) 1051 goto out; 1052 1053 sav->sav_vdevs = newvdevs; 1054 sav->sav_count = (int)nl2cache; 1055 1056 /* 1057 * Recompute the stashed list of l2cache devices, with status 1058 * information this time. 1059 */ 1060 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1061 DATA_TYPE_NVLIST_ARRAY) == 0); 1062 1063 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1064 for (i = 0; i < sav->sav_count; i++) 1065 l2cache[i] = vdev_config_generate(spa, 1066 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); 1067 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1068 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1069 out: 1070 for (i = 0; i < sav->sav_count; i++) 1071 nvlist_free(l2cache[i]); 1072 if (sav->sav_count) 1073 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1074 } 1075 1076 static int 1077 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1078 { 1079 dmu_buf_t *db; 1080 char *packed = NULL; 1081 size_t nvsize = 0; 1082 int error; 1083 *value = NULL; 1084 1085 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1086 nvsize = *(uint64_t *)db->db_data; 1087 dmu_buf_rele(db, FTAG); 1088 1089 packed = kmem_alloc(nvsize, KM_SLEEP); 1090 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1091 DMU_READ_PREFETCH); 1092 if (error == 0) 1093 error = nvlist_unpack(packed, nvsize, value, 0); 1094 kmem_free(packed, nvsize); 1095 1096 return (error); 1097 } 1098 1099 /* 1100 * Checks to see if the given vdev could not be opened, in which case we post a 1101 * sysevent to notify the autoreplace code that the device has been removed. 1102 */ 1103 static void 1104 spa_check_removed(vdev_t *vd) 1105 { 1106 for (int c = 0; c < vd->vdev_children; c++) 1107 spa_check_removed(vd->vdev_child[c]); 1108 1109 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1110 zfs_post_autoreplace(vd->vdev_spa, vd); 1111 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1112 } 1113 } 1114 1115 /* 1116 * Load the slog device state from the config object since it's possible 1117 * that the label does not contain the most up-to-date information. 1118 */ 1119 void 1120 spa_load_log_state(spa_t *spa, nvlist_t *nv) 1121 { 1122 vdev_t *ovd, *rvd = spa->spa_root_vdev; 1123 1124 /* 1125 * Load the original root vdev tree from the passed config. 1126 */ 1127 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1128 VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1129 1130 for (int c = 0; c < rvd->vdev_children; c++) { 1131 vdev_t *cvd = rvd->vdev_child[c]; 1132 if (cvd->vdev_islog) 1133 vdev_load_log_state(cvd, ovd->vdev_child[c]); 1134 } 1135 vdev_free(ovd); 1136 spa_config_exit(spa, SCL_ALL, FTAG); 1137 } 1138 1139 /* 1140 * Check for missing log devices 1141 */ 1142 int 1143 spa_check_logs(spa_t *spa) 1144 { 1145 switch (spa->spa_log_state) { 1146 case SPA_LOG_MISSING: 1147 /* need to recheck in case slog has been restored */ 1148 case SPA_LOG_UNKNOWN: 1149 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1150 DS_FIND_CHILDREN)) { 1151 spa->spa_log_state = SPA_LOG_MISSING; 1152 return (1); 1153 } 1154 break; 1155 } 1156 return (0); 1157 } 1158 1159 static void 1160 spa_aux_check_removed(spa_aux_vdev_t *sav) 1161 { 1162 for (int i = 0; i < sav->sav_count; i++) 1163 spa_check_removed(sav->sav_vdevs[i]); 1164 } 1165 1166 void 1167 spa_claim_notify(zio_t *zio) 1168 { 1169 spa_t *spa = zio->io_spa; 1170 1171 if (zio->io_error) 1172 return; 1173 1174 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1175 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1176 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1177 mutex_exit(&spa->spa_props_lock); 1178 } 1179 1180 typedef struct spa_load_error { 1181 uint64_t sle_metadata_count; 1182 uint64_t sle_data_count; 1183 } spa_load_error_t; 1184 1185 static void 1186 spa_load_verify_done(zio_t *zio) 1187 { 1188 blkptr_t *bp = zio->io_bp; 1189 spa_load_error_t *sle = zio->io_private; 1190 dmu_object_type_t type = BP_GET_TYPE(bp); 1191 int error = zio->io_error; 1192 1193 if (error) { 1194 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) && 1195 type != DMU_OT_INTENT_LOG) 1196 atomic_add_64(&sle->sle_metadata_count, 1); 1197 else 1198 atomic_add_64(&sle->sle_data_count, 1); 1199 } 1200 zio_data_buf_free(zio->io_data, zio->io_size); 1201 } 1202 1203 /*ARGSUSED*/ 1204 static int 1205 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1206 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1207 { 1208 if (bp != NULL) { 1209 zio_t *rio = arg; 1210 size_t size = BP_GET_PSIZE(bp); 1211 void *data = zio_data_buf_alloc(size); 1212 1213 zio_nowait(zio_read(rio, spa, bp, data, size, 1214 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1215 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1216 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1217 } 1218 return (0); 1219 } 1220 1221 static int 1222 spa_load_verify(spa_t *spa) 1223 { 1224 zio_t *rio; 1225 spa_load_error_t sle = { 0 }; 1226 zpool_rewind_policy_t policy; 1227 boolean_t verify_ok = B_FALSE; 1228 int error; 1229 1230 rio = zio_root(spa, NULL, &sle, 1231 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1232 1233 error = traverse_pool(spa, spa->spa_verify_min_txg, 1234 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1235 1236 (void) zio_wait(rio); 1237 1238 zpool_get_rewind_policy(spa->spa_config, &policy); 1239 1240 spa->spa_load_meta_errors = sle.sle_metadata_count; 1241 spa->spa_load_data_errors = sle.sle_data_count; 1242 1243 if (!error && sle.sle_metadata_count <= policy.zrp_maxmeta && 1244 sle.sle_data_count <= policy.zrp_maxdata) { 1245 verify_ok = B_TRUE; 1246 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1247 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1248 } else { 1249 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1250 } 1251 1252 if (error) { 1253 if (error != ENXIO && error != EIO) 1254 error = EIO; 1255 return (error); 1256 } 1257 1258 return (verify_ok ? 0 : EIO); 1259 } 1260 1261 /* 1262 * Load an existing storage pool, using the pool's builtin spa_config as a 1263 * source of configuration information. 1264 */ 1265 static int 1266 spa_load(spa_t *spa, spa_load_state_t state, int mosconfig) 1267 { 1268 int error = 0; 1269 nvlist_t *nvconfig, *nvroot = NULL; 1270 vdev_t *rvd; 1271 uberblock_t *ub = &spa->spa_uberblock; 1272 uint64_t config_cache_txg = spa->spa_config_txg; 1273 uint64_t pool_guid; 1274 uint64_t version; 1275 uint64_t autoreplace = 0; 1276 int orig_mode = spa->spa_mode; 1277 char *ereport = FM_EREPORT_ZFS_POOL; 1278 nvlist_t *config = spa->spa_config; 1279 1280 /* 1281 * If this is an untrusted config, access the pool in read-only mode. 1282 * This prevents things like resilvering recently removed devices. 1283 */ 1284 if (!mosconfig) 1285 spa->spa_mode = FREAD; 1286 1287 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1288 1289 spa->spa_load_state = state; 1290 1291 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1292 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 1293 error = EINVAL; 1294 goto out; 1295 } 1296 1297 /* 1298 * Versioning wasn't explicitly added to the label until later, so if 1299 * it's not present treat it as the initial version. 1300 */ 1301 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0) 1302 version = SPA_VERSION_INITIAL; 1303 1304 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1305 &spa->spa_config_txg); 1306 1307 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1308 spa_guid_exists(pool_guid, 0)) { 1309 error = EEXIST; 1310 goto out; 1311 } 1312 1313 spa->spa_load_guid = pool_guid; 1314 1315 /* 1316 * Create "The Godfather" zio to hold all async IOs 1317 */ 1318 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1319 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1320 1321 /* 1322 * Parse the configuration into a vdev tree. We explicitly set the 1323 * value that will be returned by spa_version() since parsing the 1324 * configuration requires knowing the version number. 1325 */ 1326 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1327 spa->spa_ubsync.ub_version = version; 1328 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD); 1329 spa_config_exit(spa, SCL_ALL, FTAG); 1330 1331 if (error != 0) 1332 goto out; 1333 1334 ASSERT(spa->spa_root_vdev == rvd); 1335 ASSERT(spa_guid(spa) == pool_guid); 1336 1337 /* 1338 * Try to open all vdevs, loading each label in the process. 1339 */ 1340 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1341 error = vdev_open(rvd); 1342 spa_config_exit(spa, SCL_ALL, FTAG); 1343 if (error != 0) 1344 goto out; 1345 1346 /* 1347 * We need to validate the vdev labels against the configuration that 1348 * we have in hand, which is dependent on the setting of mosconfig. If 1349 * mosconfig is true then we're validating the vdev labels based on 1350 * that config. Otherwise, we're validating against the cached config 1351 * (zpool.cache) that was read when we loaded the zfs module, and then 1352 * later we will recursively call spa_load() and validate against 1353 * the vdev config. 1354 */ 1355 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1356 error = vdev_validate(rvd); 1357 spa_config_exit(spa, SCL_ALL, FTAG); 1358 if (error != 0) 1359 goto out; 1360 1361 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1362 error = ENXIO; 1363 goto out; 1364 } 1365 1366 /* 1367 * Find the best uberblock. 1368 */ 1369 vdev_uberblock_load(NULL, rvd, ub); 1370 1371 /* 1372 * If we weren't able to find a single valid uberblock, return failure. 1373 */ 1374 if (ub->ub_txg == 0) { 1375 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1376 VDEV_AUX_CORRUPT_DATA); 1377 error = ENXIO; 1378 goto out; 1379 } 1380 1381 /* 1382 * If the pool is newer than the code, we can't open it. 1383 */ 1384 if (ub->ub_version > SPA_VERSION) { 1385 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1386 VDEV_AUX_VERSION_NEWER); 1387 error = ENOTSUP; 1388 goto out; 1389 } 1390 1391 /* 1392 * If the vdev guid sum doesn't match the uberblock, we have an 1393 * incomplete configuration. 1394 */ 1395 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { 1396 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1397 VDEV_AUX_BAD_GUID_SUM); 1398 error = ENXIO; 1399 goto out; 1400 } 1401 1402 /* 1403 * Initialize internal SPA structures. 1404 */ 1405 spa->spa_state = POOL_STATE_ACTIVE; 1406 spa->spa_ubsync = spa->spa_uberblock; 1407 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 1408 TXG_INITIAL : spa_last_synced_txg(spa) - TXG_DEFER_SIZE; 1409 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 1410 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 1411 spa->spa_claim_max_txg = spa->spa_first_txg; 1412 1413 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1414 if (error) { 1415 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1416 VDEV_AUX_CORRUPT_DATA); 1417 error = EIO; 1418 goto out; 1419 } 1420 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1421 1422 if (zap_lookup(spa->spa_meta_objset, 1423 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 1424 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) { 1425 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1426 VDEV_AUX_CORRUPT_DATA); 1427 error = EIO; 1428 goto out; 1429 } 1430 1431 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) { 1432 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1433 VDEV_AUX_CORRUPT_DATA); 1434 error = EIO; 1435 goto out; 1436 } 1437 1438 if (!mosconfig) { 1439 uint64_t hostid; 1440 1441 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 1442 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1443 char *hostname; 1444 unsigned long myhostid = 0; 1445 1446 VERIFY(nvlist_lookup_string(nvconfig, 1447 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1448 1449 #ifdef _KERNEL 1450 myhostid = zone_get_hostid(NULL); 1451 #else /* _KERNEL */ 1452 /* 1453 * We're emulating the system's hostid in userland, so 1454 * we can't use zone_get_hostid(). 1455 */ 1456 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1457 #endif /* _KERNEL */ 1458 if (hostid != 0 && myhostid != 0 && 1459 hostid != myhostid) { 1460 cmn_err(CE_WARN, "pool '%s' could not be " 1461 "loaded as it was last accessed by " 1462 "another system (host: %s hostid: 0x%lx). " 1463 "See: http://www.sun.com/msg/ZFS-8000-EY", 1464 spa_name(spa), hostname, 1465 (unsigned long)hostid); 1466 error = EBADF; 1467 goto out; 1468 } 1469 } 1470 1471 spa_config_set(spa, nvconfig); 1472 spa_unload(spa); 1473 spa_deactivate(spa); 1474 spa_activate(spa, orig_mode); 1475 1476 return (spa_load(spa, state, B_TRUE)); 1477 } 1478 1479 if (zap_lookup(spa->spa_meta_objset, 1480 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 1481 sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj) != 0) { 1482 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1483 VDEV_AUX_CORRUPT_DATA); 1484 error = EIO; 1485 goto out; 1486 } 1487 1488 /* 1489 * Load the bit that tells us to use the new accounting function 1490 * (raid-z deflation). If we have an older pool, this will not 1491 * be present. 1492 */ 1493 error = zap_lookup(spa->spa_meta_objset, 1494 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 1495 sizeof (uint64_t), 1, &spa->spa_deflate); 1496 if (error != 0 && error != ENOENT) { 1497 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1498 VDEV_AUX_CORRUPT_DATA); 1499 error = EIO; 1500 goto out; 1501 } 1502 1503 /* 1504 * Load the persistent error log. If we have an older pool, this will 1505 * not be present. 1506 */ 1507 error = zap_lookup(spa->spa_meta_objset, 1508 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, 1509 sizeof (uint64_t), 1, &spa->spa_errlog_last); 1510 if (error != 0 && error != ENOENT) { 1511 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1512 VDEV_AUX_CORRUPT_DATA); 1513 error = EIO; 1514 goto out; 1515 } 1516 1517 error = zap_lookup(spa->spa_meta_objset, 1518 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, 1519 sizeof (uint64_t), 1, &spa->spa_errlog_scrub); 1520 if (error != 0 && error != ENOENT) { 1521 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1522 VDEV_AUX_CORRUPT_DATA); 1523 error = EIO; 1524 goto out; 1525 } 1526 1527 /* 1528 * Load the history object. If we have an older pool, this 1529 * will not be present. 1530 */ 1531 error = zap_lookup(spa->spa_meta_objset, 1532 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, 1533 sizeof (uint64_t), 1, &spa->spa_history); 1534 if (error != 0 && error != ENOENT) { 1535 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1536 VDEV_AUX_CORRUPT_DATA); 1537 error = EIO; 1538 goto out; 1539 } 1540 1541 /* 1542 * Load any hot spares for this pool. 1543 */ 1544 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1545 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object); 1546 if (error != 0 && error != ENOENT) { 1547 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1548 VDEV_AUX_CORRUPT_DATA); 1549 error = EIO; 1550 goto out; 1551 } 1552 if (error == 0) { 1553 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1554 if (load_nvlist(spa, spa->spa_spares.sav_object, 1555 &spa->spa_spares.sav_config) != 0) { 1556 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1557 VDEV_AUX_CORRUPT_DATA); 1558 error = EIO; 1559 goto out; 1560 } 1561 1562 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1563 spa_load_spares(spa); 1564 spa_config_exit(spa, SCL_ALL, FTAG); 1565 } 1566 1567 /* 1568 * Load any level 2 ARC devices for this pool. 1569 */ 1570 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1571 DMU_POOL_L2CACHE, sizeof (uint64_t), 1, 1572 &spa->spa_l2cache.sav_object); 1573 if (error != 0 && error != ENOENT) { 1574 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1575 VDEV_AUX_CORRUPT_DATA); 1576 error = EIO; 1577 goto out; 1578 } 1579 if (error == 0) { 1580 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1581 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1582 &spa->spa_l2cache.sav_config) != 0) { 1583 vdev_set_state(rvd, B_TRUE, 1584 VDEV_STATE_CANT_OPEN, 1585 VDEV_AUX_CORRUPT_DATA); 1586 error = EIO; 1587 goto out; 1588 } 1589 1590 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1591 spa_load_l2cache(spa); 1592 spa_config_exit(spa, SCL_ALL, FTAG); 1593 } 1594 1595 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1596 1597 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1598 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object); 1599 1600 if (error && error != ENOENT) { 1601 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1602 VDEV_AUX_CORRUPT_DATA); 1603 error = EIO; 1604 goto out; 1605 } 1606 1607 if (error == 0) { 1608 (void) zap_lookup(spa->spa_meta_objset, 1609 spa->spa_pool_props_object, 1610 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 1611 sizeof (uint64_t), 1, &spa->spa_bootfs); 1612 (void) zap_lookup(spa->spa_meta_objset, 1613 spa->spa_pool_props_object, 1614 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1615 sizeof (uint64_t), 1, &autoreplace); 1616 spa->spa_autoreplace = (autoreplace != 0); 1617 (void) zap_lookup(spa->spa_meta_objset, 1618 spa->spa_pool_props_object, 1619 zpool_prop_to_name(ZPOOL_PROP_DELEGATION), 1620 sizeof (uint64_t), 1, &spa->spa_delegation); 1621 (void) zap_lookup(spa->spa_meta_objset, 1622 spa->spa_pool_props_object, 1623 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), 1624 sizeof (uint64_t), 1, &spa->spa_failmode); 1625 (void) zap_lookup(spa->spa_meta_objset, 1626 spa->spa_pool_props_object, 1627 zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND), 1628 sizeof (uint64_t), 1, &spa->spa_autoexpand); 1629 (void) zap_lookup(spa->spa_meta_objset, 1630 spa->spa_pool_props_object, 1631 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO), 1632 sizeof (uint64_t), 1, &spa->spa_dedup_ditto); 1633 } 1634 1635 /* 1636 * If the 'autoreplace' property is set, then post a resource notifying 1637 * the ZFS DE that it should not issue any faults for unopenable 1638 * devices. We also iterate over the vdevs, and post a sysevent for any 1639 * unopenable vdevs so that the normal autoreplace handler can take 1640 * over. 1641 */ 1642 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 1643 spa_check_removed(spa->spa_root_vdev); 1644 /* 1645 * For the import case, this is done in spa_import(), because 1646 * at this point we're using the spare definitions from 1647 * the MOS config, not necessarily from the userland config. 1648 */ 1649 if (state != SPA_LOAD_IMPORT) { 1650 spa_aux_check_removed(&spa->spa_spares); 1651 spa_aux_check_removed(&spa->spa_l2cache); 1652 } 1653 } 1654 1655 /* 1656 * Load the vdev state for all toplevel vdevs. 1657 */ 1658 vdev_load(rvd); 1659 1660 /* 1661 * Propagate the leaf DTLs we just loaded all the way up the tree. 1662 */ 1663 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1664 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1665 spa_config_exit(spa, SCL_ALL, FTAG); 1666 1667 /* 1668 * Check the state of the root vdev. If it can't be opened, it 1669 * indicates one or more toplevel vdevs are faulted. 1670 */ 1671 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1672 error = ENXIO; 1673 goto out; 1674 } 1675 1676 /* 1677 * Load the DDTs (dedup tables). 1678 */ 1679 error = ddt_load(spa); 1680 if (error != 0) { 1681 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1682 VDEV_AUX_CORRUPT_DATA); 1683 error = EIO; 1684 goto out; 1685 } 1686 1687 spa_update_dspace(spa); 1688 1689 if (state != SPA_LOAD_TRYIMPORT) { 1690 error = spa_load_verify(spa); 1691 if (error) { 1692 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1693 VDEV_AUX_CORRUPT_DATA); 1694 goto out; 1695 } 1696 } 1697 1698 /* 1699 * Load the intent log state and check log integrity. 1700 */ 1701 VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE, 1702 &nvroot) == 0); 1703 spa_load_log_state(spa, nvroot); 1704 nvlist_free(nvconfig); 1705 1706 if (spa_check_logs(spa)) { 1707 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1708 VDEV_AUX_BAD_LOG); 1709 error = ENXIO; 1710 ereport = FM_EREPORT_ZFS_LOG_REPLAY; 1711 goto out; 1712 } 1713 1714 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 1715 spa->spa_load_max_txg == UINT64_MAX)) { 1716 dmu_tx_t *tx; 1717 int need_update = B_FALSE; 1718 1719 ASSERT(state != SPA_LOAD_TRYIMPORT); 1720 1721 /* 1722 * Claim log blocks that haven't been committed yet. 1723 * This must all happen in a single txg. 1724 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 1725 * invoked from zil_claim_log_block()'s i/o done callback. 1726 * Price of rollback is that we abandon the log. 1727 */ 1728 spa->spa_claiming = B_TRUE; 1729 1730 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 1731 spa_first_txg(spa)); 1732 (void) dmu_objset_find(spa_name(spa), 1733 zil_claim, tx, DS_FIND_CHILDREN); 1734 dmu_tx_commit(tx); 1735 1736 spa->spa_claiming = B_FALSE; 1737 1738 spa->spa_log_state = SPA_LOG_GOOD; 1739 spa->spa_sync_on = B_TRUE; 1740 txg_sync_start(spa->spa_dsl_pool); 1741 1742 /* 1743 * Wait for all claims to sync. We sync up to the highest 1744 * claimed log block birth time so that claimed log blocks 1745 * don't appear to be from the future. spa_claim_max_txg 1746 * will have been set for us by either zil_check_log_chain() 1747 * (invoked from spa_check_logs()) or zil_claim() above. 1748 */ 1749 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 1750 1751 /* 1752 * If the config cache is stale, or we have uninitialized 1753 * metaslabs (see spa_vdev_add()), then update the config. 1754 * 1755 * If spa_load_verbatim is true, trust the current 1756 * in-core spa_config and update the disk labels. 1757 */ 1758 if (config_cache_txg != spa->spa_config_txg || 1759 state == SPA_LOAD_IMPORT || spa->spa_load_verbatim || 1760 state == SPA_LOAD_RECOVER) 1761 need_update = B_TRUE; 1762 1763 for (int c = 0; c < rvd->vdev_children; c++) 1764 if (rvd->vdev_child[c]->vdev_ms_array == 0) 1765 need_update = B_TRUE; 1766 1767 /* 1768 * Update the config cache asychronously in case we're the 1769 * root pool, in which case the config cache isn't writable yet. 1770 */ 1771 if (need_update) 1772 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 1773 1774 /* 1775 * Check all DTLs to see if anything needs resilvering. 1776 */ 1777 if (vdev_resilver_needed(rvd, NULL, NULL)) 1778 spa_async_request(spa, SPA_ASYNC_RESILVER); 1779 1780 /* 1781 * Delete any inconsistent datasets. 1782 */ 1783 (void) dmu_objset_find(spa_name(spa), 1784 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 1785 1786 /* 1787 * Clean up any stale temporary dataset userrefs. 1788 */ 1789 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 1790 } 1791 1792 error = 0; 1793 out: 1794 1795 spa->spa_minref = refcount_count(&spa->spa_refcount); 1796 if (error && error != EBADF) 1797 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1798 spa->spa_load_state = SPA_LOAD_NONE; 1799 spa->spa_ena = 0; 1800 1801 return (error); 1802 } 1803 1804 static int 1805 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 1806 { 1807 spa_unload(spa); 1808 spa_deactivate(spa); 1809 1810 spa->spa_load_max_txg--; 1811 1812 spa_activate(spa, spa_mode_global); 1813 spa_async_suspend(spa); 1814 1815 return (spa_load(spa, state, mosconfig)); 1816 } 1817 1818 static int 1819 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 1820 uint64_t max_request, boolean_t extreme) 1821 { 1822 nvlist_t *config = NULL; 1823 int load_error, rewind_error; 1824 uint64_t safe_rollback_txg; 1825 uint64_t min_txg; 1826 1827 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 1828 spa->spa_load_max_txg = spa->spa_load_txg; 1829 spa->spa_log_state = SPA_LOG_CLEAR; 1830 } else { 1831 spa->spa_load_max_txg = max_request; 1832 } 1833 1834 load_error = rewind_error = spa_load(spa, state, mosconfig); 1835 if (load_error == 0) 1836 return (0); 1837 1838 if (spa->spa_root_vdev != NULL) 1839 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 1840 1841 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 1842 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 1843 1844 /* specific txg requested */ 1845 if (spa->spa_load_max_txg != UINT64_MAX && !extreme) { 1846 nvlist_free(config); 1847 return (load_error); 1848 } 1849 1850 /* Price of rolling back is discarding txgs, including log */ 1851 if (state == SPA_LOAD_RECOVER) 1852 spa->spa_log_state = SPA_LOG_CLEAR; 1853 1854 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1855 safe_rollback_txg = spa->spa_uberblock.ub_txg - TXG_DEFER_SIZE; 1856 1857 min_txg = extreme ? TXG_INITIAL : safe_rollback_txg; 1858 while (rewind_error && (spa->spa_uberblock.ub_txg >= min_txg)) { 1859 if (spa->spa_load_max_txg < safe_rollback_txg) 1860 spa->spa_extreme_rewind = B_TRUE; 1861 rewind_error = spa_load_retry(spa, state, mosconfig); 1862 } 1863 1864 if (config) 1865 spa_rewind_data_to_nvlist(spa, config); 1866 1867 spa->spa_extreme_rewind = B_FALSE; 1868 spa->spa_load_max_txg = UINT64_MAX; 1869 1870 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 1871 spa_config_set(spa, config); 1872 1873 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error); 1874 } 1875 1876 /* 1877 * Pool Open/Import 1878 * 1879 * The import case is identical to an open except that the configuration is sent 1880 * down from userland, instead of grabbed from the configuration cache. For the 1881 * case of an open, the pool configuration will exist in the 1882 * POOL_STATE_UNINITIALIZED state. 1883 * 1884 * The stats information (gen/count/ustats) is used to gather vdev statistics at 1885 * the same time open the pool, without having to keep around the spa_t in some 1886 * ambiguous state. 1887 */ 1888 static int 1889 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 1890 nvlist_t **config) 1891 { 1892 spa_t *spa; 1893 boolean_t norewind; 1894 boolean_t extreme; 1895 zpool_rewind_policy_t policy; 1896 spa_load_state_t state = SPA_LOAD_OPEN; 1897 int error; 1898 int locked = B_FALSE; 1899 1900 *spapp = NULL; 1901 1902 zpool_get_rewind_policy(nvpolicy, &policy); 1903 if (policy.zrp_request & ZPOOL_DO_REWIND) 1904 state = SPA_LOAD_RECOVER; 1905 norewind = (policy.zrp_request == ZPOOL_NO_REWIND); 1906 extreme = ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0); 1907 1908 /* 1909 * As disgusting as this is, we need to support recursive calls to this 1910 * function because dsl_dir_open() is called during spa_load(), and ends 1911 * up calling spa_open() again. The real fix is to figure out how to 1912 * avoid dsl_dir_open() calling this in the first place. 1913 */ 1914 if (mutex_owner(&spa_namespace_lock) != curthread) { 1915 mutex_enter(&spa_namespace_lock); 1916 locked = B_TRUE; 1917 } 1918 1919 if ((spa = spa_lookup(pool)) == NULL) { 1920 if (locked) 1921 mutex_exit(&spa_namespace_lock); 1922 return (ENOENT); 1923 } 1924 1925 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 1926 1927 spa_activate(spa, spa_mode_global); 1928 1929 if (spa->spa_last_open_failed && norewind) { 1930 if (config != NULL && spa->spa_config) 1931 VERIFY(nvlist_dup(spa->spa_config, 1932 config, KM_SLEEP) == 0); 1933 spa_deactivate(spa); 1934 if (locked) 1935 mutex_exit(&spa_namespace_lock); 1936 return (spa->spa_last_open_failed); 1937 } 1938 1939 if (state != SPA_LOAD_RECOVER) 1940 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 1941 1942 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 1943 extreme); 1944 1945 if (error == EBADF) { 1946 /* 1947 * If vdev_validate() returns failure (indicated by 1948 * EBADF), it indicates that one of the vdevs indicates 1949 * that the pool has been exported or destroyed. If 1950 * this is the case, the config cache is out of sync and 1951 * we should remove the pool from the namespace. 1952 */ 1953 spa_unload(spa); 1954 spa_deactivate(spa); 1955 spa_config_sync(spa, B_TRUE, B_TRUE); 1956 spa_remove(spa); 1957 if (locked) 1958 mutex_exit(&spa_namespace_lock); 1959 return (ENOENT); 1960 } 1961 1962 if (error) { 1963 /* 1964 * We can't open the pool, but we still have useful 1965 * information: the state of each vdev after the 1966 * attempted vdev_open(). Return this to the user. 1967 */ 1968 if (config != NULL && spa->spa_config) 1969 VERIFY(nvlist_dup(spa->spa_config, config, 1970 KM_SLEEP) == 0); 1971 spa_unload(spa); 1972 spa_deactivate(spa); 1973 spa->spa_last_open_failed = error; 1974 if (locked) 1975 mutex_exit(&spa_namespace_lock); 1976 *spapp = NULL; 1977 return (error); 1978 } 1979 1980 } 1981 1982 spa_open_ref(spa, tag); 1983 1984 1985 if (config != NULL) 1986 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 1987 1988 if (locked) { 1989 spa->spa_last_open_failed = 0; 1990 spa->spa_last_ubsync_txg = 0; 1991 spa->spa_load_txg = 0; 1992 mutex_exit(&spa_namespace_lock); 1993 } 1994 1995 *spapp = spa; 1996 1997 return (0); 1998 } 1999 2000 int 2001 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2002 nvlist_t **config) 2003 { 2004 return (spa_open_common(name, spapp, tag, policy, config)); 2005 } 2006 2007 int 2008 spa_open(const char *name, spa_t **spapp, void *tag) 2009 { 2010 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2011 } 2012 2013 /* 2014 * Lookup the given spa_t, incrementing the inject count in the process, 2015 * preventing it from being exported or destroyed. 2016 */ 2017 spa_t * 2018 spa_inject_addref(char *name) 2019 { 2020 spa_t *spa; 2021 2022 mutex_enter(&spa_namespace_lock); 2023 if ((spa = spa_lookup(name)) == NULL) { 2024 mutex_exit(&spa_namespace_lock); 2025 return (NULL); 2026 } 2027 spa->spa_inject_ref++; 2028 mutex_exit(&spa_namespace_lock); 2029 2030 return (spa); 2031 } 2032 2033 void 2034 spa_inject_delref(spa_t *spa) 2035 { 2036 mutex_enter(&spa_namespace_lock); 2037 spa->spa_inject_ref--; 2038 mutex_exit(&spa_namespace_lock); 2039 } 2040 2041 /* 2042 * Add spares device information to the nvlist. 2043 */ 2044 static void 2045 spa_add_spares(spa_t *spa, nvlist_t *config) 2046 { 2047 nvlist_t **spares; 2048 uint_t i, nspares; 2049 nvlist_t *nvroot; 2050 uint64_t guid; 2051 vdev_stat_t *vs; 2052 uint_t vsc; 2053 uint64_t pool; 2054 2055 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2056 2057 if (spa->spa_spares.sav_count == 0) 2058 return; 2059 2060 VERIFY(nvlist_lookup_nvlist(config, 2061 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2062 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2063 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2064 if (nspares != 0) { 2065 VERIFY(nvlist_add_nvlist_array(nvroot, 2066 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2067 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2068 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2069 2070 /* 2071 * Go through and find any spares which have since been 2072 * repurposed as an active spare. If this is the case, update 2073 * their status appropriately. 2074 */ 2075 for (i = 0; i < nspares; i++) { 2076 VERIFY(nvlist_lookup_uint64(spares[i], 2077 ZPOOL_CONFIG_GUID, &guid) == 0); 2078 if (spa_spare_exists(guid, &pool, NULL) && 2079 pool != 0ULL) { 2080 VERIFY(nvlist_lookup_uint64_array( 2081 spares[i], ZPOOL_CONFIG_STATS, 2082 (uint64_t **)&vs, &vsc) == 0); 2083 vs->vs_state = VDEV_STATE_CANT_OPEN; 2084 vs->vs_aux = VDEV_AUX_SPARED; 2085 } 2086 } 2087 } 2088 } 2089 2090 /* 2091 * Add l2cache device information to the nvlist, including vdev stats. 2092 */ 2093 static void 2094 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2095 { 2096 nvlist_t **l2cache; 2097 uint_t i, j, nl2cache; 2098 nvlist_t *nvroot; 2099 uint64_t guid; 2100 vdev_t *vd; 2101 vdev_stat_t *vs; 2102 uint_t vsc; 2103 2104 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2105 2106 if (spa->spa_l2cache.sav_count == 0) 2107 return; 2108 2109 VERIFY(nvlist_lookup_nvlist(config, 2110 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2111 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2112 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2113 if (nl2cache != 0) { 2114 VERIFY(nvlist_add_nvlist_array(nvroot, 2115 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2116 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2117 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2118 2119 /* 2120 * Update level 2 cache device stats. 2121 */ 2122 2123 for (i = 0; i < nl2cache; i++) { 2124 VERIFY(nvlist_lookup_uint64(l2cache[i], 2125 ZPOOL_CONFIG_GUID, &guid) == 0); 2126 2127 vd = NULL; 2128 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2129 if (guid == 2130 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2131 vd = spa->spa_l2cache.sav_vdevs[j]; 2132 break; 2133 } 2134 } 2135 ASSERT(vd != NULL); 2136 2137 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2138 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); 2139 vdev_get_stats(vd, vs); 2140 } 2141 } 2142 } 2143 2144 int 2145 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 2146 { 2147 int error; 2148 spa_t *spa; 2149 2150 *config = NULL; 2151 error = spa_open_common(name, &spa, FTAG, NULL, config); 2152 2153 if (spa != NULL) { 2154 /* 2155 * This still leaves a window of inconsistency where the spares 2156 * or l2cache devices could change and the config would be 2157 * self-inconsistent. 2158 */ 2159 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2160 2161 if (*config != NULL) { 2162 VERIFY(nvlist_add_uint64(*config, 2163 ZPOOL_CONFIG_ERRCOUNT, 2164 spa_get_errlog_size(spa)) == 0); 2165 2166 if (spa_suspended(spa)) 2167 VERIFY(nvlist_add_uint64(*config, 2168 ZPOOL_CONFIG_SUSPENDED, 2169 spa->spa_failmode) == 0); 2170 2171 spa_add_spares(spa, *config); 2172 spa_add_l2cache(spa, *config); 2173 } 2174 } 2175 2176 /* 2177 * We want to get the alternate root even for faulted pools, so we cheat 2178 * and call spa_lookup() directly. 2179 */ 2180 if (altroot) { 2181 if (spa == NULL) { 2182 mutex_enter(&spa_namespace_lock); 2183 spa = spa_lookup(name); 2184 if (spa) 2185 spa_altroot(spa, altroot, buflen); 2186 else 2187 altroot[0] = '\0'; 2188 spa = NULL; 2189 mutex_exit(&spa_namespace_lock); 2190 } else { 2191 spa_altroot(spa, altroot, buflen); 2192 } 2193 } 2194 2195 if (spa != NULL) { 2196 spa_config_exit(spa, SCL_CONFIG, FTAG); 2197 spa_close(spa, FTAG); 2198 } 2199 2200 return (error); 2201 } 2202 2203 /* 2204 * Validate that the auxiliary device array is well formed. We must have an 2205 * array of nvlists, each which describes a valid leaf vdev. If this is an 2206 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 2207 * specified, as long as they are well-formed. 2208 */ 2209 static int 2210 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 2211 spa_aux_vdev_t *sav, const char *config, uint64_t version, 2212 vdev_labeltype_t label) 2213 { 2214 nvlist_t **dev; 2215 uint_t i, ndev; 2216 vdev_t *vd; 2217 int error; 2218 2219 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2220 2221 /* 2222 * It's acceptable to have no devs specified. 2223 */ 2224 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 2225 return (0); 2226 2227 if (ndev == 0) 2228 return (EINVAL); 2229 2230 /* 2231 * Make sure the pool is formatted with a version that supports this 2232 * device type. 2233 */ 2234 if (spa_version(spa) < version) 2235 return (ENOTSUP); 2236 2237 /* 2238 * Set the pending device list so we correctly handle device in-use 2239 * checking. 2240 */ 2241 sav->sav_pending = dev; 2242 sav->sav_npending = ndev; 2243 2244 for (i = 0; i < ndev; i++) { 2245 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 2246 mode)) != 0) 2247 goto out; 2248 2249 if (!vd->vdev_ops->vdev_op_leaf) { 2250 vdev_free(vd); 2251 error = EINVAL; 2252 goto out; 2253 } 2254 2255 /* 2256 * The L2ARC currently only supports disk devices in 2257 * kernel context. For user-level testing, we allow it. 2258 */ 2259 #ifdef _KERNEL 2260 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 2261 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 2262 error = ENOTBLK; 2263 goto out; 2264 } 2265 #endif 2266 vd->vdev_top = vd; 2267 2268 if ((error = vdev_open(vd)) == 0 && 2269 (error = vdev_label_init(vd, crtxg, label)) == 0) { 2270 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 2271 vd->vdev_guid) == 0); 2272 } 2273 2274 vdev_free(vd); 2275 2276 if (error && 2277 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 2278 goto out; 2279 else 2280 error = 0; 2281 } 2282 2283 out: 2284 sav->sav_pending = NULL; 2285 sav->sav_npending = 0; 2286 return (error); 2287 } 2288 2289 static int 2290 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2291 { 2292 int error; 2293 2294 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2295 2296 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2297 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2298 VDEV_LABEL_SPARE)) != 0) { 2299 return (error); 2300 } 2301 2302 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2303 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2304 VDEV_LABEL_L2CACHE)); 2305 } 2306 2307 static void 2308 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2309 const char *config) 2310 { 2311 int i; 2312 2313 if (sav->sav_config != NULL) { 2314 nvlist_t **olddevs; 2315 uint_t oldndevs; 2316 nvlist_t **newdevs; 2317 2318 /* 2319 * Generate new dev list by concatentating with the 2320 * current dev list. 2321 */ 2322 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2323 &olddevs, &oldndevs) == 0); 2324 2325 newdevs = kmem_alloc(sizeof (void *) * 2326 (ndevs + oldndevs), KM_SLEEP); 2327 for (i = 0; i < oldndevs; i++) 2328 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2329 KM_SLEEP) == 0); 2330 for (i = 0; i < ndevs; i++) 2331 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2332 KM_SLEEP) == 0); 2333 2334 VERIFY(nvlist_remove(sav->sav_config, config, 2335 DATA_TYPE_NVLIST_ARRAY) == 0); 2336 2337 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2338 config, newdevs, ndevs + oldndevs) == 0); 2339 for (i = 0; i < oldndevs + ndevs; i++) 2340 nvlist_free(newdevs[i]); 2341 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2342 } else { 2343 /* 2344 * Generate a new dev list. 2345 */ 2346 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2347 KM_SLEEP) == 0); 2348 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2349 devs, ndevs) == 0); 2350 } 2351 } 2352 2353 /* 2354 * Stop and drop level 2 ARC devices 2355 */ 2356 void 2357 spa_l2cache_drop(spa_t *spa) 2358 { 2359 vdev_t *vd; 2360 int i; 2361 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2362 2363 for (i = 0; i < sav->sav_count; i++) { 2364 uint64_t pool; 2365 2366 vd = sav->sav_vdevs[i]; 2367 ASSERT(vd != NULL); 2368 2369 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2370 pool != 0ULL && l2arc_vdev_present(vd)) 2371 l2arc_remove_vdev(vd); 2372 if (vd->vdev_isl2cache) 2373 spa_l2cache_remove(vd); 2374 vdev_clear_stats(vd); 2375 (void) vdev_close(vd); 2376 } 2377 } 2378 2379 /* 2380 * Pool Creation 2381 */ 2382 int 2383 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2384 const char *history_str, nvlist_t *zplprops) 2385 { 2386 spa_t *spa; 2387 char *altroot = NULL; 2388 vdev_t *rvd; 2389 dsl_pool_t *dp; 2390 dmu_tx_t *tx; 2391 int error = 0; 2392 uint64_t txg = TXG_INITIAL; 2393 nvlist_t **spares, **l2cache; 2394 uint_t nspares, nl2cache; 2395 uint64_t version; 2396 2397 /* 2398 * If this pool already exists, return failure. 2399 */ 2400 mutex_enter(&spa_namespace_lock); 2401 if (spa_lookup(pool) != NULL) { 2402 mutex_exit(&spa_namespace_lock); 2403 return (EEXIST); 2404 } 2405 2406 /* 2407 * Allocate a new spa_t structure. 2408 */ 2409 (void) nvlist_lookup_string(props, 2410 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2411 spa = spa_add(pool, NULL, altroot); 2412 spa_activate(spa, spa_mode_global); 2413 2414 if (props && (error = spa_prop_validate(spa, props))) { 2415 spa_deactivate(spa); 2416 spa_remove(spa); 2417 mutex_exit(&spa_namespace_lock); 2418 return (error); 2419 } 2420 2421 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2422 &version) != 0) 2423 version = SPA_VERSION; 2424 ASSERT(version <= SPA_VERSION); 2425 2426 spa->spa_first_txg = txg; 2427 spa->spa_uberblock.ub_txg = txg - 1; 2428 spa->spa_uberblock.ub_version = version; 2429 spa->spa_ubsync = spa->spa_uberblock; 2430 2431 /* 2432 * Create "The Godfather" zio to hold all async IOs 2433 */ 2434 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2435 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2436 2437 /* 2438 * Create the root vdev. 2439 */ 2440 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2441 2442 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2443 2444 ASSERT(error != 0 || rvd != NULL); 2445 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2446 2447 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2448 error = EINVAL; 2449 2450 if (error == 0 && 2451 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2452 (error = spa_validate_aux(spa, nvroot, txg, 2453 VDEV_ALLOC_ADD)) == 0) { 2454 for (int c = 0; c < rvd->vdev_children; c++) { 2455 vdev_metaslab_set_size(rvd->vdev_child[c]); 2456 vdev_expand(rvd->vdev_child[c], txg); 2457 } 2458 } 2459 2460 spa_config_exit(spa, SCL_ALL, FTAG); 2461 2462 if (error != 0) { 2463 spa_unload(spa); 2464 spa_deactivate(spa); 2465 spa_remove(spa); 2466 mutex_exit(&spa_namespace_lock); 2467 return (error); 2468 } 2469 2470 /* 2471 * Get the list of spares, if specified. 2472 */ 2473 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2474 &spares, &nspares) == 0) { 2475 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2476 KM_SLEEP) == 0); 2477 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2478 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2479 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2480 spa_load_spares(spa); 2481 spa_config_exit(spa, SCL_ALL, FTAG); 2482 spa->spa_spares.sav_sync = B_TRUE; 2483 } 2484 2485 /* 2486 * Get the list of level 2 cache devices, if specified. 2487 */ 2488 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2489 &l2cache, &nl2cache) == 0) { 2490 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2491 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2492 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2493 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2494 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2495 spa_load_l2cache(spa); 2496 spa_config_exit(spa, SCL_ALL, FTAG); 2497 spa->spa_l2cache.sav_sync = B_TRUE; 2498 } 2499 2500 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2501 spa->spa_meta_objset = dp->dp_meta_objset; 2502 2503 /* 2504 * Create DDTs (dedup tables). 2505 */ 2506 ddt_create(spa); 2507 2508 spa_update_dspace(spa); 2509 2510 tx = dmu_tx_create_assigned(dp, txg); 2511 2512 /* 2513 * Create the pool config object. 2514 */ 2515 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2516 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2517 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2518 2519 if (zap_add(spa->spa_meta_objset, 2520 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2521 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2522 cmn_err(CE_PANIC, "failed to add pool config"); 2523 } 2524 2525 /* Newly created pools with the right version are always deflated. */ 2526 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2527 spa->spa_deflate = TRUE; 2528 if (zap_add(spa->spa_meta_objset, 2529 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2530 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2531 cmn_err(CE_PANIC, "failed to add deflate"); 2532 } 2533 } 2534 2535 /* 2536 * Create the deferred-free bplist object. Turn off compression 2537 * because sync-to-convergence takes longer if the blocksize 2538 * keeps changing. 2539 */ 2540 spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset, 2541 1 << 14, tx); 2542 dmu_object_set_compress(spa->spa_meta_objset, 2543 spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx); 2544 2545 if (zap_add(spa->spa_meta_objset, 2546 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 2547 sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) { 2548 cmn_err(CE_PANIC, "failed to add bplist"); 2549 } 2550 2551 /* 2552 * Create the pool's history object. 2553 */ 2554 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2555 spa_history_create_obj(spa, tx); 2556 2557 /* 2558 * Set pool properties. 2559 */ 2560 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2561 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2562 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2563 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 2564 2565 if (props != NULL) { 2566 spa_configfile_set(spa, props, B_FALSE); 2567 spa_sync_props(spa, props, CRED(), tx); 2568 } 2569 2570 dmu_tx_commit(tx); 2571 2572 spa->spa_sync_on = B_TRUE; 2573 txg_sync_start(spa->spa_dsl_pool); 2574 2575 /* 2576 * We explicitly wait for the first transaction to complete so that our 2577 * bean counters are appropriately updated. 2578 */ 2579 txg_wait_synced(spa->spa_dsl_pool, txg); 2580 2581 spa_config_sync(spa, B_FALSE, B_TRUE); 2582 2583 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2584 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2585 spa_history_log_version(spa, LOG_POOL_CREATE); 2586 2587 spa->spa_minref = refcount_count(&spa->spa_refcount); 2588 2589 mutex_exit(&spa_namespace_lock); 2590 2591 return (0); 2592 } 2593 2594 #ifdef _KERNEL 2595 /* 2596 * Get the root pool information from the root disk, then import the root pool 2597 * during the system boot up time. 2598 */ 2599 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 2600 2601 static nvlist_t * 2602 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 2603 { 2604 nvlist_t *config; 2605 nvlist_t *nvtop, *nvroot; 2606 uint64_t pgid; 2607 2608 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 2609 return (NULL); 2610 2611 /* 2612 * Add this top-level vdev to the child array. 2613 */ 2614 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2615 &nvtop) == 0); 2616 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 2617 &pgid) == 0); 2618 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 2619 2620 /* 2621 * Put this pool's top-level vdevs into a root vdev. 2622 */ 2623 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2624 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 2625 VDEV_TYPE_ROOT) == 0); 2626 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2627 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2628 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2629 &nvtop, 1) == 0); 2630 2631 /* 2632 * Replace the existing vdev_tree with the new root vdev in 2633 * this pool's configuration (remove the old, add the new). 2634 */ 2635 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2636 nvlist_free(nvroot); 2637 return (config); 2638 } 2639 2640 /* 2641 * Walk the vdev tree and see if we can find a device with "better" 2642 * configuration. A configuration is "better" if the label on that 2643 * device has a more recent txg. 2644 */ 2645 static void 2646 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 2647 { 2648 for (int c = 0; c < vd->vdev_children; c++) 2649 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 2650 2651 if (vd->vdev_ops->vdev_op_leaf) { 2652 nvlist_t *label; 2653 uint64_t label_txg; 2654 2655 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 2656 &label) != 0) 2657 return; 2658 2659 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 2660 &label_txg) == 0); 2661 2662 /* 2663 * Do we have a better boot device? 2664 */ 2665 if (label_txg > *txg) { 2666 *txg = label_txg; 2667 *avd = vd; 2668 } 2669 nvlist_free(label); 2670 } 2671 } 2672 2673 /* 2674 * Import a root pool. 2675 * 2676 * For x86. devpath_list will consist of devid and/or physpath name of 2677 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2678 * The GRUB "findroot" command will return the vdev we should boot. 2679 * 2680 * For Sparc, devpath_list consists the physpath name of the booting device 2681 * no matter the rootpool is a single device pool or a mirrored pool. 2682 * e.g. 2683 * "/pci@1f,0/ide@d/disk@0,0:a" 2684 */ 2685 int 2686 spa_import_rootpool(char *devpath, char *devid) 2687 { 2688 spa_t *spa; 2689 vdev_t *rvd, *bvd, *avd = NULL; 2690 nvlist_t *config, *nvtop; 2691 uint64_t guid, txg; 2692 char *pname; 2693 int error; 2694 2695 /* 2696 * Read the label from the boot device and generate a configuration. 2697 */ 2698 config = spa_generate_rootconf(devpath, devid, &guid); 2699 #if defined(_OBP) && defined(_KERNEL) 2700 if (config == NULL) { 2701 if (strstr(devpath, "/iscsi/ssd") != NULL) { 2702 /* iscsi boot */ 2703 get_iscsi_bootpath_phy(devpath); 2704 config = spa_generate_rootconf(devpath, devid, &guid); 2705 } 2706 } 2707 #endif 2708 if (config == NULL) { 2709 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 2710 devpath); 2711 return (EIO); 2712 } 2713 2714 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 2715 &pname) == 0); 2716 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 2717 2718 mutex_enter(&spa_namespace_lock); 2719 if ((spa = spa_lookup(pname)) != NULL) { 2720 /* 2721 * Remove the existing root pool from the namespace so that we 2722 * can replace it with the correct config we just read in. 2723 */ 2724 spa_remove(spa); 2725 } 2726 2727 spa = spa_add(pname, config, NULL); 2728 spa->spa_is_root = B_TRUE; 2729 spa->spa_load_verbatim = B_TRUE; 2730 2731 /* 2732 * Build up a vdev tree based on the boot device's label config. 2733 */ 2734 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2735 &nvtop) == 0); 2736 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2737 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 2738 VDEV_ALLOC_ROOTPOOL); 2739 spa_config_exit(spa, SCL_ALL, FTAG); 2740 if (error) { 2741 mutex_exit(&spa_namespace_lock); 2742 nvlist_free(config); 2743 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 2744 pname); 2745 return (error); 2746 } 2747 2748 /* 2749 * Get the boot vdev. 2750 */ 2751 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 2752 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 2753 (u_longlong_t)guid); 2754 error = ENOENT; 2755 goto out; 2756 } 2757 2758 /* 2759 * Determine if there is a better boot device. 2760 */ 2761 avd = bvd; 2762 spa_alt_rootvdev(rvd, &avd, &txg); 2763 if (avd != bvd) { 2764 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 2765 "try booting from '%s'", avd->vdev_path); 2766 error = EINVAL; 2767 goto out; 2768 } 2769 2770 /* 2771 * If the boot device is part of a spare vdev then ensure that 2772 * we're booting off the active spare. 2773 */ 2774 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 2775 !bvd->vdev_isspare) { 2776 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 2777 "try booting from '%s'", 2778 bvd->vdev_parent->vdev_child[1]->vdev_path); 2779 error = EINVAL; 2780 goto out; 2781 } 2782 2783 error = 0; 2784 spa_history_log_version(spa, LOG_POOL_IMPORT); 2785 out: 2786 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2787 vdev_free(rvd); 2788 spa_config_exit(spa, SCL_ALL, FTAG); 2789 mutex_exit(&spa_namespace_lock); 2790 2791 nvlist_free(config); 2792 return (error); 2793 } 2794 2795 #endif 2796 2797 /* 2798 * Take a pool and insert it into the namespace as if it had been loaded at 2799 * boot. 2800 */ 2801 int 2802 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props) 2803 { 2804 spa_t *spa; 2805 zpool_rewind_policy_t policy; 2806 char *altroot = NULL; 2807 2808 mutex_enter(&spa_namespace_lock); 2809 if (spa_lookup(pool) != NULL) { 2810 mutex_exit(&spa_namespace_lock); 2811 return (EEXIST); 2812 } 2813 2814 (void) nvlist_lookup_string(props, 2815 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2816 spa = spa_add(pool, config, altroot); 2817 2818 zpool_get_rewind_policy(config, &policy); 2819 spa->spa_load_max_txg = policy.zrp_txg; 2820 2821 spa->spa_load_verbatim = B_TRUE; 2822 2823 if (props != NULL) 2824 spa_configfile_set(spa, props, B_FALSE); 2825 2826 spa_config_sync(spa, B_FALSE, B_TRUE); 2827 2828 mutex_exit(&spa_namespace_lock); 2829 spa_history_log_version(spa, LOG_POOL_IMPORT); 2830 2831 return (0); 2832 } 2833 2834 /* 2835 * Import a non-root pool into the system. 2836 */ 2837 int 2838 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 2839 { 2840 spa_t *spa; 2841 char *altroot = NULL; 2842 spa_load_state_t state = SPA_LOAD_IMPORT; 2843 zpool_rewind_policy_t policy; 2844 int error; 2845 nvlist_t *nvroot; 2846 nvlist_t **spares, **l2cache; 2847 uint_t nspares, nl2cache; 2848 2849 /* 2850 * If a pool with this name exists, return failure. 2851 */ 2852 mutex_enter(&spa_namespace_lock); 2853 if ((spa = spa_lookup(pool)) != NULL) { 2854 mutex_exit(&spa_namespace_lock); 2855 return (EEXIST); 2856 } 2857 2858 zpool_get_rewind_policy(config, &policy); 2859 if (policy.zrp_request & ZPOOL_DO_REWIND) 2860 state = SPA_LOAD_RECOVER; 2861 2862 /* 2863 * Create and initialize the spa structure. 2864 */ 2865 (void) nvlist_lookup_string(props, 2866 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2867 spa = spa_add(pool, config, altroot); 2868 spa_activate(spa, spa_mode_global); 2869 2870 /* 2871 * Don't start async tasks until we know everything is healthy. 2872 */ 2873 spa_async_suspend(spa); 2874 2875 /* 2876 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 2877 * because the user-supplied config is actually the one to trust when 2878 * doing an import. 2879 */ 2880 if (state != SPA_LOAD_RECOVER) 2881 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2882 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 2883 ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0)); 2884 2885 /* 2886 * Propagate anything learned about failing or best txgs 2887 * back to caller 2888 */ 2889 spa_rewind_data_to_nvlist(spa, config); 2890 2891 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2892 /* 2893 * Toss any existing sparelist, as it doesn't have any validity 2894 * anymore, and conflicts with spa_has_spare(). 2895 */ 2896 if (spa->spa_spares.sav_config) { 2897 nvlist_free(spa->spa_spares.sav_config); 2898 spa->spa_spares.sav_config = NULL; 2899 spa_load_spares(spa); 2900 } 2901 if (spa->spa_l2cache.sav_config) { 2902 nvlist_free(spa->spa_l2cache.sav_config); 2903 spa->spa_l2cache.sav_config = NULL; 2904 spa_load_l2cache(spa); 2905 } 2906 2907 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2908 &nvroot) == 0); 2909 if (error == 0) 2910 error = spa_validate_aux(spa, nvroot, -1ULL, 2911 VDEV_ALLOC_SPARE); 2912 if (error == 0) 2913 error = spa_validate_aux(spa, nvroot, -1ULL, 2914 VDEV_ALLOC_L2CACHE); 2915 spa_config_exit(spa, SCL_ALL, FTAG); 2916 2917 if (props != NULL) 2918 spa_configfile_set(spa, props, B_FALSE); 2919 2920 if (error != 0 || (props && spa_writeable(spa) && 2921 (error = spa_prop_set(spa, props)))) { 2922 spa_unload(spa); 2923 spa_deactivate(spa); 2924 spa_remove(spa); 2925 mutex_exit(&spa_namespace_lock); 2926 return (error); 2927 } 2928 2929 spa_async_resume(spa); 2930 2931 /* 2932 * Override any spares and level 2 cache devices as specified by 2933 * the user, as these may have correct device names/devids, etc. 2934 */ 2935 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2936 &spares, &nspares) == 0) { 2937 if (spa->spa_spares.sav_config) 2938 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 2939 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 2940 else 2941 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 2942 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2943 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2944 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2945 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2946 spa_load_spares(spa); 2947 spa_config_exit(spa, SCL_ALL, FTAG); 2948 spa->spa_spares.sav_sync = B_TRUE; 2949 } 2950 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2951 &l2cache, &nl2cache) == 0) { 2952 if (spa->spa_l2cache.sav_config) 2953 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 2954 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 2955 else 2956 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2957 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2958 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2959 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2960 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2961 spa_load_l2cache(spa); 2962 spa_config_exit(spa, SCL_ALL, FTAG); 2963 spa->spa_l2cache.sav_sync = B_TRUE; 2964 } 2965 2966 /* 2967 * Check for any removed devices. 2968 */ 2969 if (spa->spa_autoreplace) { 2970 spa_aux_check_removed(&spa->spa_spares); 2971 spa_aux_check_removed(&spa->spa_l2cache); 2972 } 2973 2974 if (spa_writeable(spa)) { 2975 /* 2976 * Update the config cache to include the newly-imported pool. 2977 */ 2978 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2979 } 2980 2981 /* 2982 * It's possible that the pool was expanded while it was exported. 2983 * We kick off an async task to handle this for us. 2984 */ 2985 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 2986 2987 mutex_exit(&spa_namespace_lock); 2988 spa_history_log_version(spa, LOG_POOL_IMPORT); 2989 2990 return (0); 2991 } 2992 2993 2994 /* 2995 * This (illegal) pool name is used when temporarily importing a spa_t in order 2996 * to get the vdev stats associated with the imported devices. 2997 */ 2998 #define TRYIMPORT_NAME "$import" 2999 3000 nvlist_t * 3001 spa_tryimport(nvlist_t *tryconfig) 3002 { 3003 nvlist_t *config = NULL; 3004 char *poolname; 3005 spa_t *spa; 3006 uint64_t state; 3007 int error; 3008 3009 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3010 return (NULL); 3011 3012 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3013 return (NULL); 3014 3015 /* 3016 * Create and initialize the spa structure. 3017 */ 3018 mutex_enter(&spa_namespace_lock); 3019 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3020 spa_activate(spa, FREAD); 3021 3022 /* 3023 * Pass off the heavy lifting to spa_load(). 3024 * Pass TRUE for mosconfig because the user-supplied config 3025 * is actually the one to trust when doing an import. 3026 */ 3027 error = spa_load(spa, SPA_LOAD_TRYIMPORT, B_TRUE); 3028 3029 /* 3030 * If 'tryconfig' was at least parsable, return the current config. 3031 */ 3032 if (spa->spa_root_vdev != NULL) { 3033 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3034 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3035 poolname) == 0); 3036 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3037 state) == 0); 3038 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3039 spa->spa_uberblock.ub_timestamp) == 0); 3040 3041 /* 3042 * If the bootfs property exists on this pool then we 3043 * copy it out so that external consumers can tell which 3044 * pools are bootable. 3045 */ 3046 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3047 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3048 3049 /* 3050 * We have to play games with the name since the 3051 * pool was opened as TRYIMPORT_NAME. 3052 */ 3053 if (dsl_dsobj_to_dsname(spa_name(spa), 3054 spa->spa_bootfs, tmpname) == 0) { 3055 char *cp; 3056 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3057 3058 cp = strchr(tmpname, '/'); 3059 if (cp == NULL) { 3060 (void) strlcpy(dsname, tmpname, 3061 MAXPATHLEN); 3062 } else { 3063 (void) snprintf(dsname, MAXPATHLEN, 3064 "%s/%s", poolname, ++cp); 3065 } 3066 VERIFY(nvlist_add_string(config, 3067 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3068 kmem_free(dsname, MAXPATHLEN); 3069 } 3070 kmem_free(tmpname, MAXPATHLEN); 3071 } 3072 3073 /* 3074 * Add the list of hot spares and level 2 cache devices. 3075 */ 3076 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3077 spa_add_spares(spa, config); 3078 spa_add_l2cache(spa, config); 3079 spa_config_exit(spa, SCL_CONFIG, FTAG); 3080 } 3081 3082 spa_unload(spa); 3083 spa_deactivate(spa); 3084 spa_remove(spa); 3085 mutex_exit(&spa_namespace_lock); 3086 3087 return (config); 3088 } 3089 3090 /* 3091 * Pool export/destroy 3092 * 3093 * The act of destroying or exporting a pool is very simple. We make sure there 3094 * is no more pending I/O and any references to the pool are gone. Then, we 3095 * update the pool state and sync all the labels to disk, removing the 3096 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3097 * we don't sync the labels or remove the configuration cache. 3098 */ 3099 static int 3100 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3101 boolean_t force, boolean_t hardforce) 3102 { 3103 spa_t *spa; 3104 3105 if (oldconfig) 3106 *oldconfig = NULL; 3107 3108 if (!(spa_mode_global & FWRITE)) 3109 return (EROFS); 3110 3111 mutex_enter(&spa_namespace_lock); 3112 if ((spa = spa_lookup(pool)) == NULL) { 3113 mutex_exit(&spa_namespace_lock); 3114 return (ENOENT); 3115 } 3116 3117 /* 3118 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3119 * reacquire the namespace lock, and see if we can export. 3120 */ 3121 spa_open_ref(spa, FTAG); 3122 mutex_exit(&spa_namespace_lock); 3123 spa_async_suspend(spa); 3124 mutex_enter(&spa_namespace_lock); 3125 spa_close(spa, FTAG); 3126 3127 /* 3128 * The pool will be in core if it's openable, 3129 * in which case we can modify its state. 3130 */ 3131 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3132 /* 3133 * Objsets may be open only because they're dirty, so we 3134 * have to force it to sync before checking spa_refcnt. 3135 */ 3136 txg_wait_synced(spa->spa_dsl_pool, 0); 3137 3138 /* 3139 * A pool cannot be exported or destroyed if there are active 3140 * references. If we are resetting a pool, allow references by 3141 * fault injection handlers. 3142 */ 3143 if (!spa_refcount_zero(spa) || 3144 (spa->spa_inject_ref != 0 && 3145 new_state != POOL_STATE_UNINITIALIZED)) { 3146 spa_async_resume(spa); 3147 mutex_exit(&spa_namespace_lock); 3148 return (EBUSY); 3149 } 3150 3151 /* 3152 * A pool cannot be exported if it has an active shared spare. 3153 * This is to prevent other pools stealing the active spare 3154 * from an exported pool. At user's own will, such pool can 3155 * be forcedly exported. 3156 */ 3157 if (!force && new_state == POOL_STATE_EXPORTED && 3158 spa_has_active_shared_spare(spa)) { 3159 spa_async_resume(spa); 3160 mutex_exit(&spa_namespace_lock); 3161 return (EXDEV); 3162 } 3163 3164 /* 3165 * We want this to be reflected on every label, 3166 * so mark them all dirty. spa_unload() will do the 3167 * final sync that pushes these changes out. 3168 */ 3169 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 3170 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3171 spa->spa_state = new_state; 3172 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 3173 vdev_config_dirty(spa->spa_root_vdev); 3174 spa_config_exit(spa, SCL_ALL, FTAG); 3175 } 3176 } 3177 3178 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 3179 3180 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3181 spa_unload(spa); 3182 spa_deactivate(spa); 3183 } 3184 3185 if (oldconfig && spa->spa_config) 3186 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 3187 3188 if (new_state != POOL_STATE_UNINITIALIZED) { 3189 if (!hardforce) 3190 spa_config_sync(spa, B_TRUE, B_TRUE); 3191 spa_remove(spa); 3192 } 3193 mutex_exit(&spa_namespace_lock); 3194 3195 return (0); 3196 } 3197 3198 /* 3199 * Destroy a storage pool. 3200 */ 3201 int 3202 spa_destroy(char *pool) 3203 { 3204 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 3205 B_FALSE, B_FALSE)); 3206 } 3207 3208 /* 3209 * Export a storage pool. 3210 */ 3211 int 3212 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 3213 boolean_t hardforce) 3214 { 3215 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 3216 force, hardforce)); 3217 } 3218 3219 /* 3220 * Similar to spa_export(), this unloads the spa_t without actually removing it 3221 * from the namespace in any way. 3222 */ 3223 int 3224 spa_reset(char *pool) 3225 { 3226 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 3227 B_FALSE, B_FALSE)); 3228 } 3229 3230 /* 3231 * ========================================================================== 3232 * Device manipulation 3233 * ========================================================================== 3234 */ 3235 3236 /* 3237 * Add a device to a storage pool. 3238 */ 3239 int 3240 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 3241 { 3242 uint64_t txg, id; 3243 int error; 3244 vdev_t *rvd = spa->spa_root_vdev; 3245 vdev_t *vd, *tvd; 3246 nvlist_t **spares, **l2cache; 3247 uint_t nspares, nl2cache; 3248 3249 txg = spa_vdev_enter(spa); 3250 3251 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 3252 VDEV_ALLOC_ADD)) != 0) 3253 return (spa_vdev_exit(spa, NULL, txg, error)); 3254 3255 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 3256 3257 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 3258 &nspares) != 0) 3259 nspares = 0; 3260 3261 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 3262 &nl2cache) != 0) 3263 nl2cache = 0; 3264 3265 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 3266 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 3267 3268 if (vd->vdev_children != 0 && 3269 (error = vdev_create(vd, txg, B_FALSE)) != 0) 3270 return (spa_vdev_exit(spa, vd, txg, error)); 3271 3272 /* 3273 * We must validate the spares and l2cache devices after checking the 3274 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 3275 */ 3276 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 3277 return (spa_vdev_exit(spa, vd, txg, error)); 3278 3279 /* 3280 * Transfer each new top-level vdev from vd to rvd. 3281 */ 3282 for (int c = 0; c < vd->vdev_children; c++) { 3283 3284 /* 3285 * Set the vdev id to the first hole, if one exists. 3286 */ 3287 for (id = 0; id < rvd->vdev_children; id++) { 3288 if (rvd->vdev_child[id]->vdev_ishole) { 3289 vdev_free(rvd->vdev_child[id]); 3290 break; 3291 } 3292 } 3293 tvd = vd->vdev_child[c]; 3294 vdev_remove_child(vd, tvd); 3295 tvd->vdev_id = id; 3296 vdev_add_child(rvd, tvd); 3297 vdev_config_dirty(tvd); 3298 } 3299 3300 if (nspares != 0) { 3301 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 3302 ZPOOL_CONFIG_SPARES); 3303 spa_load_spares(spa); 3304 spa->spa_spares.sav_sync = B_TRUE; 3305 } 3306 3307 if (nl2cache != 0) { 3308 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 3309 ZPOOL_CONFIG_L2CACHE); 3310 spa_load_l2cache(spa); 3311 spa->spa_l2cache.sav_sync = B_TRUE; 3312 } 3313 3314 /* 3315 * We have to be careful when adding new vdevs to an existing pool. 3316 * If other threads start allocating from these vdevs before we 3317 * sync the config cache, and we lose power, then upon reboot we may 3318 * fail to open the pool because there are DVAs that the config cache 3319 * can't translate. Therefore, we first add the vdevs without 3320 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 3321 * and then let spa_config_update() initialize the new metaslabs. 3322 * 3323 * spa_load() checks for added-but-not-initialized vdevs, so that 3324 * if we lose power at any point in this sequence, the remaining 3325 * steps will be completed the next time we load the pool. 3326 */ 3327 (void) spa_vdev_exit(spa, vd, txg, 0); 3328 3329 mutex_enter(&spa_namespace_lock); 3330 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3331 mutex_exit(&spa_namespace_lock); 3332 3333 return (0); 3334 } 3335 3336 /* 3337 * Attach a device to a mirror. The arguments are the path to any device 3338 * in the mirror, and the nvroot for the new device. If the path specifies 3339 * a device that is not mirrored, we automatically insert the mirror vdev. 3340 * 3341 * If 'replacing' is specified, the new device is intended to replace the 3342 * existing device; in this case the two devices are made into their own 3343 * mirror using the 'replacing' vdev, which is functionally identical to 3344 * the mirror vdev (it actually reuses all the same ops) but has a few 3345 * extra rules: you can't attach to it after it's been created, and upon 3346 * completion of resilvering, the first disk (the one being replaced) 3347 * is automatically detached. 3348 */ 3349 int 3350 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3351 { 3352 uint64_t txg, open_txg; 3353 vdev_t *rvd = spa->spa_root_vdev; 3354 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3355 vdev_ops_t *pvops; 3356 char *oldvdpath, *newvdpath; 3357 int newvd_isspare; 3358 int error; 3359 3360 txg = spa_vdev_enter(spa); 3361 3362 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3363 3364 if (oldvd == NULL) 3365 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3366 3367 if (!oldvd->vdev_ops->vdev_op_leaf) 3368 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3369 3370 pvd = oldvd->vdev_parent; 3371 3372 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3373 VDEV_ALLOC_ADD)) != 0) 3374 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3375 3376 if (newrootvd->vdev_children != 1) 3377 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3378 3379 newvd = newrootvd->vdev_child[0]; 3380 3381 if (!newvd->vdev_ops->vdev_op_leaf) 3382 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3383 3384 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3385 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3386 3387 /* 3388 * Spares can't replace logs 3389 */ 3390 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3391 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3392 3393 if (!replacing) { 3394 /* 3395 * For attach, the only allowable parent is a mirror or the root 3396 * vdev. 3397 */ 3398 if (pvd->vdev_ops != &vdev_mirror_ops && 3399 pvd->vdev_ops != &vdev_root_ops) 3400 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3401 3402 pvops = &vdev_mirror_ops; 3403 } else { 3404 /* 3405 * Active hot spares can only be replaced by inactive hot 3406 * spares. 3407 */ 3408 if (pvd->vdev_ops == &vdev_spare_ops && 3409 pvd->vdev_child[1] == oldvd && 3410 !spa_has_spare(spa, newvd->vdev_guid)) 3411 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3412 3413 /* 3414 * If the source is a hot spare, and the parent isn't already a 3415 * spare, then we want to create a new hot spare. Otherwise, we 3416 * want to create a replacing vdev. The user is not allowed to 3417 * attach to a spared vdev child unless the 'isspare' state is 3418 * the same (spare replaces spare, non-spare replaces 3419 * non-spare). 3420 */ 3421 if (pvd->vdev_ops == &vdev_replacing_ops) 3422 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3423 else if (pvd->vdev_ops == &vdev_spare_ops && 3424 newvd->vdev_isspare != oldvd->vdev_isspare) 3425 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3426 else if (pvd->vdev_ops != &vdev_spare_ops && 3427 newvd->vdev_isspare) 3428 pvops = &vdev_spare_ops; 3429 else 3430 pvops = &vdev_replacing_ops; 3431 } 3432 3433 /* 3434 * Make sure the new device is big enough. 3435 */ 3436 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3437 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3438 3439 /* 3440 * The new device cannot have a higher alignment requirement 3441 * than the top-level vdev. 3442 */ 3443 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3444 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3445 3446 /* 3447 * If this is an in-place replacement, update oldvd's path and devid 3448 * to make it distinguishable from newvd, and unopenable from now on. 3449 */ 3450 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3451 spa_strfree(oldvd->vdev_path); 3452 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3453 KM_SLEEP); 3454 (void) sprintf(oldvd->vdev_path, "%s/%s", 3455 newvd->vdev_path, "old"); 3456 if (oldvd->vdev_devid != NULL) { 3457 spa_strfree(oldvd->vdev_devid); 3458 oldvd->vdev_devid = NULL; 3459 } 3460 } 3461 3462 /* 3463 * If the parent is not a mirror, or if we're replacing, insert the new 3464 * mirror/replacing/spare vdev above oldvd. 3465 */ 3466 if (pvd->vdev_ops != pvops) 3467 pvd = vdev_add_parent(oldvd, pvops); 3468 3469 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3470 ASSERT(pvd->vdev_ops == pvops); 3471 ASSERT(oldvd->vdev_parent == pvd); 3472 3473 /* 3474 * Extract the new device from its root and add it to pvd. 3475 */ 3476 vdev_remove_child(newrootvd, newvd); 3477 newvd->vdev_id = pvd->vdev_children; 3478 newvd->vdev_crtxg = oldvd->vdev_crtxg; 3479 vdev_add_child(pvd, newvd); 3480 3481 tvd = newvd->vdev_top; 3482 ASSERT(pvd->vdev_top == tvd); 3483 ASSERT(tvd->vdev_parent == rvd); 3484 3485 vdev_config_dirty(tvd); 3486 3487 /* 3488 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 3489 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 3490 */ 3491 open_txg = txg + TXG_CONCURRENT_STATES - 1; 3492 3493 vdev_dtl_dirty(newvd, DTL_MISSING, 3494 TXG_INITIAL, open_txg - TXG_INITIAL + 1); 3495 3496 if (newvd->vdev_isspare) { 3497 spa_spare_activate(newvd); 3498 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3499 } 3500 3501 oldvdpath = spa_strdup(oldvd->vdev_path); 3502 newvdpath = spa_strdup(newvd->vdev_path); 3503 newvd_isspare = newvd->vdev_isspare; 3504 3505 /* 3506 * Mark newvd's DTL dirty in this txg. 3507 */ 3508 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3509 3510 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 3511 3512 spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL, 3513 CRED(), "%s vdev=%s %s vdev=%s", 3514 replacing && newvd_isspare ? "spare in" : 3515 replacing ? "replace" : "attach", newvdpath, 3516 replacing ? "for" : "to", oldvdpath); 3517 3518 spa_strfree(oldvdpath); 3519 spa_strfree(newvdpath); 3520 3521 /* 3522 * Kick off a resilver to update newvd. 3523 */ 3524 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 3525 3526 return (0); 3527 } 3528 3529 /* 3530 * Detach a device from a mirror or replacing vdev. 3531 * If 'replace_done' is specified, only detach if the parent 3532 * is a replacing vdev. 3533 */ 3534 int 3535 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3536 { 3537 uint64_t txg; 3538 int error; 3539 vdev_t *rvd = spa->spa_root_vdev; 3540 vdev_t *vd, *pvd, *cvd, *tvd; 3541 boolean_t unspare = B_FALSE; 3542 uint64_t unspare_guid; 3543 size_t len; 3544 3545 txg = spa_vdev_enter(spa); 3546 3547 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3548 3549 if (vd == NULL) 3550 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3551 3552 if (!vd->vdev_ops->vdev_op_leaf) 3553 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3554 3555 pvd = vd->vdev_parent; 3556 3557 /* 3558 * If the parent/child relationship is not as expected, don't do it. 3559 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3560 * vdev that's replacing B with C. The user's intent in replacing 3561 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3562 * the replace by detaching C, the expected behavior is to end up 3563 * M(A,B). But suppose that right after deciding to detach C, 3564 * the replacement of B completes. We would have M(A,C), and then 3565 * ask to detach C, which would leave us with just A -- not what 3566 * the user wanted. To prevent this, we make sure that the 3567 * parent/child relationship hasn't changed -- in this example, 3568 * that C's parent is still the replacing vdev R. 3569 */ 3570 if (pvd->vdev_guid != pguid && pguid != 0) 3571 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3572 3573 /* 3574 * If replace_done is specified, only remove this device if it's 3575 * the first child of a replacing vdev. For the 'spare' vdev, either 3576 * disk can be removed. 3577 */ 3578 if (replace_done) { 3579 if (pvd->vdev_ops == &vdev_replacing_ops) { 3580 if (vd->vdev_id != 0) 3581 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3582 } else if (pvd->vdev_ops != &vdev_spare_ops) { 3583 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3584 } 3585 } 3586 3587 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 3588 spa_version(spa) >= SPA_VERSION_SPARES); 3589 3590 /* 3591 * Only mirror, replacing, and spare vdevs support detach. 3592 */ 3593 if (pvd->vdev_ops != &vdev_replacing_ops && 3594 pvd->vdev_ops != &vdev_mirror_ops && 3595 pvd->vdev_ops != &vdev_spare_ops) 3596 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3597 3598 /* 3599 * If this device has the only valid copy of some data, 3600 * we cannot safely detach it. 3601 */ 3602 if (vdev_dtl_required(vd)) 3603 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3604 3605 ASSERT(pvd->vdev_children >= 2); 3606 3607 /* 3608 * If we are detaching the second disk from a replacing vdev, then 3609 * check to see if we changed the original vdev's path to have "/old" 3610 * at the end in spa_vdev_attach(). If so, undo that change now. 3611 */ 3612 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3613 pvd->vdev_child[0]->vdev_path != NULL && 3614 pvd->vdev_child[1]->vdev_path != NULL) { 3615 ASSERT(pvd->vdev_child[1] == vd); 3616 cvd = pvd->vdev_child[0]; 3617 len = strlen(vd->vdev_path); 3618 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3619 strcmp(cvd->vdev_path + len, "/old") == 0) { 3620 spa_strfree(cvd->vdev_path); 3621 cvd->vdev_path = spa_strdup(vd->vdev_path); 3622 } 3623 } 3624 3625 /* 3626 * If we are detaching the original disk from a spare, then it implies 3627 * that the spare should become a real disk, and be removed from the 3628 * active spare list for the pool. 3629 */ 3630 if (pvd->vdev_ops == &vdev_spare_ops && 3631 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 3632 unspare = B_TRUE; 3633 3634 /* 3635 * Erase the disk labels so the disk can be used for other things. 3636 * This must be done after all other error cases are handled, 3637 * but before we disembowel vd (so we can still do I/O to it). 3638 * But if we can't do it, don't treat the error as fatal -- 3639 * it may be that the unwritability of the disk is the reason 3640 * it's being detached! 3641 */ 3642 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3643 3644 /* 3645 * Remove vd from its parent and compact the parent's children. 3646 */ 3647 vdev_remove_child(pvd, vd); 3648 vdev_compact_children(pvd); 3649 3650 /* 3651 * Remember one of the remaining children so we can get tvd below. 3652 */ 3653 cvd = pvd->vdev_child[0]; 3654 3655 /* 3656 * If we need to remove the remaining child from the list of hot spares, 3657 * do it now, marking the vdev as no longer a spare in the process. 3658 * We must do this before vdev_remove_parent(), because that can 3659 * change the GUID if it creates a new toplevel GUID. For a similar 3660 * reason, we must remove the spare now, in the same txg as the detach; 3661 * otherwise someone could attach a new sibling, change the GUID, and 3662 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 3663 */ 3664 if (unspare) { 3665 ASSERT(cvd->vdev_isspare); 3666 spa_spare_remove(cvd); 3667 unspare_guid = cvd->vdev_guid; 3668 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3669 } 3670 3671 /* 3672 * If the parent mirror/replacing vdev only has one child, 3673 * the parent is no longer needed. Remove it from the tree. 3674 */ 3675 if (pvd->vdev_children == 1) 3676 vdev_remove_parent(cvd); 3677 3678 /* 3679 * We don't set tvd until now because the parent we just removed 3680 * may have been the previous top-level vdev. 3681 */ 3682 tvd = cvd->vdev_top; 3683 ASSERT(tvd->vdev_parent == rvd); 3684 3685 /* 3686 * Reevaluate the parent vdev state. 3687 */ 3688 vdev_propagate_state(cvd); 3689 3690 /* 3691 * If the 'autoexpand' property is set on the pool then automatically 3692 * try to expand the size of the pool. For example if the device we 3693 * just detached was smaller than the others, it may be possible to 3694 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 3695 * first so that we can obtain the updated sizes of the leaf vdevs. 3696 */ 3697 if (spa->spa_autoexpand) { 3698 vdev_reopen(tvd); 3699 vdev_expand(tvd, txg); 3700 } 3701 3702 vdev_config_dirty(tvd); 3703 3704 /* 3705 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 3706 * vd->vdev_detached is set and free vd's DTL object in syncing context. 3707 * But first make sure we're not on any *other* txg's DTL list, to 3708 * prevent vd from being accessed after it's freed. 3709 */ 3710 for (int t = 0; t < TXG_SIZE; t++) 3711 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 3712 vd->vdev_detached = B_TRUE; 3713 vdev_dirty(tvd, VDD_DTL, vd, txg); 3714 3715 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 3716 3717 error = spa_vdev_exit(spa, vd, txg, 0); 3718 3719 /* 3720 * If this was the removal of the original device in a hot spare vdev, 3721 * then we want to go through and remove the device from the hot spare 3722 * list of every other pool. 3723 */ 3724 if (unspare) { 3725 spa_t *myspa = spa; 3726 spa = NULL; 3727 mutex_enter(&spa_namespace_lock); 3728 while ((spa = spa_next(spa)) != NULL) { 3729 if (spa->spa_state != POOL_STATE_ACTIVE) 3730 continue; 3731 if (spa == myspa) 3732 continue; 3733 spa_open_ref(spa, FTAG); 3734 mutex_exit(&spa_namespace_lock); 3735 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3736 mutex_enter(&spa_namespace_lock); 3737 spa_close(spa, FTAG); 3738 } 3739 mutex_exit(&spa_namespace_lock); 3740 } 3741 3742 return (error); 3743 } 3744 3745 static nvlist_t * 3746 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 3747 { 3748 for (int i = 0; i < count; i++) { 3749 uint64_t guid; 3750 3751 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 3752 &guid) == 0); 3753 3754 if (guid == target_guid) 3755 return (nvpp[i]); 3756 } 3757 3758 return (NULL); 3759 } 3760 3761 static void 3762 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 3763 nvlist_t *dev_to_remove) 3764 { 3765 nvlist_t **newdev = NULL; 3766 3767 if (count > 1) 3768 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 3769 3770 for (int i = 0, j = 0; i < count; i++) { 3771 if (dev[i] == dev_to_remove) 3772 continue; 3773 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 3774 } 3775 3776 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 3777 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 3778 3779 for (int i = 0; i < count - 1; i++) 3780 nvlist_free(newdev[i]); 3781 3782 if (count > 1) 3783 kmem_free(newdev, (count - 1) * sizeof (void *)); 3784 } 3785 3786 /* 3787 * Removing a device from the vdev namespace requires several steps 3788 * and can take a significant amount of time. As a result we use 3789 * the spa_vdev_config_[enter/exit] functions which allow us to 3790 * grab and release the spa_config_lock while still holding the namespace 3791 * lock. During each step the configuration is synced out. 3792 */ 3793 3794 /* 3795 * Evacuate the device. 3796 */ 3797 int 3798 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 3799 { 3800 int error = 0; 3801 uint64_t txg; 3802 3803 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3804 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 3805 ASSERT(vd == vd->vdev_top); 3806 3807 /* 3808 * Evacuate the device. We don't hold the config lock as writer 3809 * since we need to do I/O but we do keep the 3810 * spa_namespace_lock held. Once this completes the device 3811 * should no longer have any blocks allocated on it. 3812 */ 3813 if (vd->vdev_islog) { 3814 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 3815 NULL, DS_FIND_CHILDREN); 3816 } else { 3817 error = ENOTSUP; /* until we have bp rewrite */ 3818 } 3819 3820 txg_wait_synced(spa_get_dsl(spa), 0); 3821 3822 if (error) 3823 return (error); 3824 3825 /* 3826 * The evacuation succeeded. Remove any remaining MOS metadata 3827 * associated with this vdev, and wait for these changes to sync. 3828 */ 3829 txg = spa_vdev_config_enter(spa); 3830 vd->vdev_removing = B_TRUE; 3831 vdev_dirty(vd, 0, NULL, txg); 3832 vdev_config_dirty(vd); 3833 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 3834 3835 return (0); 3836 } 3837 3838 /* 3839 * Complete the removal by cleaning up the namespace. 3840 */ 3841 void 3842 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 3843 { 3844 vdev_t *rvd = spa->spa_root_vdev; 3845 uint64_t id = vd->vdev_id; 3846 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 3847 3848 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3849 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3850 ASSERT(vd == vd->vdev_top); 3851 3852 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3853 3854 if (list_link_active(&vd->vdev_state_dirty_node)) 3855 vdev_state_clean(vd); 3856 if (list_link_active(&vd->vdev_config_dirty_node)) 3857 vdev_config_clean(vd); 3858 3859 vdev_free(vd); 3860 3861 if (last_vdev) { 3862 vdev_compact_children(rvd); 3863 } else { 3864 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 3865 vdev_add_child(rvd, vd); 3866 } 3867 vdev_config_dirty(rvd); 3868 3869 /* 3870 * Reassess the health of our root vdev. 3871 */ 3872 vdev_reopen(rvd); 3873 } 3874 3875 /* 3876 * Remove a device from the pool. Currently, this supports removing only hot 3877 * spares, slogs, and level 2 ARC devices. 3878 */ 3879 int 3880 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 3881 { 3882 vdev_t *vd; 3883 metaslab_group_t *mg; 3884 nvlist_t **spares, **l2cache, *nv; 3885 uint64_t txg = 0; 3886 uint_t nspares, nl2cache; 3887 int error = 0; 3888 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 3889 3890 if (!locked) 3891 txg = spa_vdev_enter(spa); 3892 3893 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3894 3895 if (spa->spa_spares.sav_vdevs != NULL && 3896 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3897 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 3898 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 3899 /* 3900 * Only remove the hot spare if it's not currently in use 3901 * in this pool. 3902 */ 3903 if (vd == NULL || unspare) { 3904 spa_vdev_remove_aux(spa->spa_spares.sav_config, 3905 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 3906 spa_load_spares(spa); 3907 spa->spa_spares.sav_sync = B_TRUE; 3908 } else { 3909 error = EBUSY; 3910 } 3911 } else if (spa->spa_l2cache.sav_vdevs != NULL && 3912 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3913 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 3914 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 3915 /* 3916 * Cache devices can always be removed. 3917 */ 3918 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 3919 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 3920 spa_load_l2cache(spa); 3921 spa->spa_l2cache.sav_sync = B_TRUE; 3922 } else if (vd != NULL && vd->vdev_islog) { 3923 ASSERT(!locked); 3924 ASSERT(vd == vd->vdev_top); 3925 3926 /* 3927 * XXX - Once we have bp-rewrite this should 3928 * become the common case. 3929 */ 3930 3931 mg = vd->vdev_mg; 3932 3933 /* 3934 * Stop allocating from this vdev. 3935 */ 3936 metaslab_group_passivate(mg); 3937 3938 /* 3939 * Wait for the youngest allocations and frees to sync, 3940 * and then wait for the deferral of those frees to finish. 3941 */ 3942 spa_vdev_config_exit(spa, NULL, 3943 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 3944 3945 /* 3946 * Attempt to evacuate the vdev. 3947 */ 3948 error = spa_vdev_remove_evacuate(spa, vd); 3949 3950 txg = spa_vdev_config_enter(spa); 3951 3952 /* 3953 * If we couldn't evacuate the vdev, unwind. 3954 */ 3955 if (error) { 3956 metaslab_group_activate(mg); 3957 return (spa_vdev_exit(spa, NULL, txg, error)); 3958 } 3959 3960 /* 3961 * Clean up the vdev namespace. 3962 */ 3963 spa_vdev_remove_from_namespace(spa, vd); 3964 3965 } else if (vd != NULL) { 3966 /* 3967 * Normal vdevs cannot be removed (yet). 3968 */ 3969 error = ENOTSUP; 3970 } else { 3971 /* 3972 * There is no vdev of any kind with the specified guid. 3973 */ 3974 error = ENOENT; 3975 } 3976 3977 if (!locked) 3978 return (spa_vdev_exit(spa, NULL, txg, error)); 3979 3980 return (error); 3981 } 3982 3983 /* 3984 * Find any device that's done replacing, or a vdev marked 'unspare' that's 3985 * current spared, so we can detach it. 3986 */ 3987 static vdev_t * 3988 spa_vdev_resilver_done_hunt(vdev_t *vd) 3989 { 3990 vdev_t *newvd, *oldvd; 3991 3992 for (int c = 0; c < vd->vdev_children; c++) { 3993 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 3994 if (oldvd != NULL) 3995 return (oldvd); 3996 } 3997 3998 /* 3999 * Check for a completed replacement. 4000 */ 4001 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 4002 oldvd = vd->vdev_child[0]; 4003 newvd = vd->vdev_child[1]; 4004 4005 if (vdev_dtl_empty(newvd, DTL_MISSING) && 4006 !vdev_dtl_required(oldvd)) 4007 return (oldvd); 4008 } 4009 4010 /* 4011 * Check for a completed resilver with the 'unspare' flag set. 4012 */ 4013 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 4014 newvd = vd->vdev_child[0]; 4015 oldvd = vd->vdev_child[1]; 4016 4017 if (newvd->vdev_unspare && 4018 vdev_dtl_empty(newvd, DTL_MISSING) && 4019 !vdev_dtl_required(oldvd)) { 4020 newvd->vdev_unspare = 0; 4021 return (oldvd); 4022 } 4023 } 4024 4025 return (NULL); 4026 } 4027 4028 static void 4029 spa_vdev_resilver_done(spa_t *spa) 4030 { 4031 vdev_t *vd, *pvd, *ppvd; 4032 uint64_t guid, sguid, pguid, ppguid; 4033 4034 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4035 4036 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 4037 pvd = vd->vdev_parent; 4038 ppvd = pvd->vdev_parent; 4039 guid = vd->vdev_guid; 4040 pguid = pvd->vdev_guid; 4041 ppguid = ppvd->vdev_guid; 4042 sguid = 0; 4043 /* 4044 * If we have just finished replacing a hot spared device, then 4045 * we need to detach the parent's first child (the original hot 4046 * spare) as well. 4047 */ 4048 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 4049 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 4050 ASSERT(ppvd->vdev_children == 2); 4051 sguid = ppvd->vdev_child[1]->vdev_guid; 4052 } 4053 spa_config_exit(spa, SCL_ALL, FTAG); 4054 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 4055 return; 4056 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 4057 return; 4058 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4059 } 4060 4061 spa_config_exit(spa, SCL_ALL, FTAG); 4062 } 4063 4064 /* 4065 * Update the stored path or FRU for this vdev. 4066 */ 4067 int 4068 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 4069 boolean_t ispath) 4070 { 4071 vdev_t *vd; 4072 4073 spa_vdev_state_enter(spa, SCL_ALL); 4074 4075 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4076 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 4077 4078 if (!vd->vdev_ops->vdev_op_leaf) 4079 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4080 4081 if (ispath) { 4082 spa_strfree(vd->vdev_path); 4083 vd->vdev_path = spa_strdup(value); 4084 } else { 4085 if (vd->vdev_fru != NULL) 4086 spa_strfree(vd->vdev_fru); 4087 vd->vdev_fru = spa_strdup(value); 4088 } 4089 4090 return (spa_vdev_state_exit(spa, vd, 0)); 4091 } 4092 4093 int 4094 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 4095 { 4096 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 4097 } 4098 4099 int 4100 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 4101 { 4102 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 4103 } 4104 4105 /* 4106 * ========================================================================== 4107 * SPA Scrubbing 4108 * ========================================================================== 4109 */ 4110 4111 int 4112 spa_scrub(spa_t *spa, pool_scrub_type_t type) 4113 { 4114 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4115 4116 if ((uint_t)type >= POOL_SCRUB_TYPES) 4117 return (ENOTSUP); 4118 4119 /* 4120 * If a resilver was requested, but there is no DTL on a 4121 * writeable leaf device, we have nothing to do. 4122 */ 4123 if (type == POOL_SCRUB_RESILVER && 4124 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4125 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4126 return (0); 4127 } 4128 4129 if (type == POOL_SCRUB_EVERYTHING && 4130 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE && 4131 spa->spa_dsl_pool->dp_scrub_isresilver) 4132 return (EBUSY); 4133 4134 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) { 4135 return (dsl_pool_scrub_clean(spa->spa_dsl_pool)); 4136 } else if (type == POOL_SCRUB_NONE) { 4137 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool)); 4138 } else { 4139 return (EINVAL); 4140 } 4141 } 4142 4143 /* 4144 * ========================================================================== 4145 * SPA async task processing 4146 * ========================================================================== 4147 */ 4148 4149 static void 4150 spa_async_remove(spa_t *spa, vdev_t *vd) 4151 { 4152 if (vd->vdev_remove_wanted) { 4153 vd->vdev_remove_wanted = 0; 4154 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 4155 4156 /* 4157 * We want to clear the stats, but we don't want to do a full 4158 * vdev_clear() as that will cause us to throw away 4159 * degraded/faulted state as well as attempt to reopen the 4160 * device, all of which is a waste. 4161 */ 4162 vd->vdev_stat.vs_read_errors = 0; 4163 vd->vdev_stat.vs_write_errors = 0; 4164 vd->vdev_stat.vs_checksum_errors = 0; 4165 4166 vdev_state_dirty(vd->vdev_top); 4167 } 4168 4169 for (int c = 0; c < vd->vdev_children; c++) 4170 spa_async_remove(spa, vd->vdev_child[c]); 4171 } 4172 4173 static void 4174 spa_async_probe(spa_t *spa, vdev_t *vd) 4175 { 4176 if (vd->vdev_probe_wanted) { 4177 vd->vdev_probe_wanted = 0; 4178 vdev_reopen(vd); /* vdev_open() does the actual probe */ 4179 } 4180 4181 for (int c = 0; c < vd->vdev_children; c++) 4182 spa_async_probe(spa, vd->vdev_child[c]); 4183 } 4184 4185 static void 4186 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 4187 { 4188 sysevent_id_t eid; 4189 nvlist_t *attr; 4190 char *physpath; 4191 4192 if (!spa->spa_autoexpand) 4193 return; 4194 4195 for (int c = 0; c < vd->vdev_children; c++) { 4196 vdev_t *cvd = vd->vdev_child[c]; 4197 spa_async_autoexpand(spa, cvd); 4198 } 4199 4200 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 4201 return; 4202 4203 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4204 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 4205 4206 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4207 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 4208 4209 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 4210 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 4211 4212 nvlist_free(attr); 4213 kmem_free(physpath, MAXPATHLEN); 4214 } 4215 4216 static void 4217 spa_async_thread(spa_t *spa) 4218 { 4219 int tasks; 4220 4221 ASSERT(spa->spa_sync_on); 4222 4223 mutex_enter(&spa->spa_async_lock); 4224 tasks = spa->spa_async_tasks; 4225 spa->spa_async_tasks = 0; 4226 mutex_exit(&spa->spa_async_lock); 4227 4228 /* 4229 * See if the config needs to be updated. 4230 */ 4231 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 4232 uint64_t old_space, new_space; 4233 4234 mutex_enter(&spa_namespace_lock); 4235 old_space = metaslab_class_get_space(spa_normal_class(spa)); 4236 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4237 new_space = metaslab_class_get_space(spa_normal_class(spa)); 4238 mutex_exit(&spa_namespace_lock); 4239 4240 /* 4241 * If the pool grew as a result of the config update, 4242 * then log an internal history event. 4243 */ 4244 if (new_space != old_space) { 4245 spa_history_internal_log(LOG_POOL_VDEV_ONLINE, 4246 spa, NULL, CRED(), 4247 "pool '%s' size: %llu(+%llu)", 4248 spa_name(spa), new_space, new_space - old_space); 4249 } 4250 } 4251 4252 /* 4253 * See if any devices need to be marked REMOVED. 4254 */ 4255 if (tasks & SPA_ASYNC_REMOVE) { 4256 spa_vdev_state_enter(spa, SCL_NONE); 4257 spa_async_remove(spa, spa->spa_root_vdev); 4258 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 4259 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 4260 for (int i = 0; i < spa->spa_spares.sav_count; i++) 4261 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 4262 (void) spa_vdev_state_exit(spa, NULL, 0); 4263 } 4264 4265 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 4266 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4267 spa_async_autoexpand(spa, spa->spa_root_vdev); 4268 spa_config_exit(spa, SCL_CONFIG, FTAG); 4269 } 4270 4271 /* 4272 * See if any devices need to be probed. 4273 */ 4274 if (tasks & SPA_ASYNC_PROBE) { 4275 spa_vdev_state_enter(spa, SCL_NONE); 4276 spa_async_probe(spa, spa->spa_root_vdev); 4277 (void) spa_vdev_state_exit(spa, NULL, 0); 4278 } 4279 4280 /* 4281 * If any devices are done replacing, detach them. 4282 */ 4283 if (tasks & SPA_ASYNC_RESILVER_DONE) 4284 spa_vdev_resilver_done(spa); 4285 4286 /* 4287 * Kick off a resilver. 4288 */ 4289 if (tasks & SPA_ASYNC_RESILVER) 4290 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0); 4291 4292 /* 4293 * Let the world know that we're done. 4294 */ 4295 mutex_enter(&spa->spa_async_lock); 4296 spa->spa_async_thread = NULL; 4297 cv_broadcast(&spa->spa_async_cv); 4298 mutex_exit(&spa->spa_async_lock); 4299 thread_exit(); 4300 } 4301 4302 void 4303 spa_async_suspend(spa_t *spa) 4304 { 4305 mutex_enter(&spa->spa_async_lock); 4306 spa->spa_async_suspended++; 4307 while (spa->spa_async_thread != NULL) 4308 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 4309 mutex_exit(&spa->spa_async_lock); 4310 } 4311 4312 void 4313 spa_async_resume(spa_t *spa) 4314 { 4315 mutex_enter(&spa->spa_async_lock); 4316 ASSERT(spa->spa_async_suspended != 0); 4317 spa->spa_async_suspended--; 4318 mutex_exit(&spa->spa_async_lock); 4319 } 4320 4321 static void 4322 spa_async_dispatch(spa_t *spa) 4323 { 4324 mutex_enter(&spa->spa_async_lock); 4325 if (spa->spa_async_tasks && !spa->spa_async_suspended && 4326 spa->spa_async_thread == NULL && 4327 rootdir != NULL && !vn_is_readonly(rootdir)) 4328 spa->spa_async_thread = thread_create(NULL, 0, 4329 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 4330 mutex_exit(&spa->spa_async_lock); 4331 } 4332 4333 void 4334 spa_async_request(spa_t *spa, int task) 4335 { 4336 mutex_enter(&spa->spa_async_lock); 4337 spa->spa_async_tasks |= task; 4338 mutex_exit(&spa->spa_async_lock); 4339 } 4340 4341 /* 4342 * ========================================================================== 4343 * SPA syncing routines 4344 * ========================================================================== 4345 */ 4346 static void 4347 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg) 4348 { 4349 blkptr_t blk; 4350 uint64_t itor = 0; 4351 uint8_t c = 1; 4352 4353 while (bplist_iterate(bpl, &itor, &blk) == 0) { 4354 ASSERT(blk.blk_birth < txg); 4355 zio_free(spa, txg, &blk); 4356 } 4357 4358 bplist_vacate(bpl, tx); 4359 4360 /* 4361 * Pre-dirty the first block so we sync to convergence faster. 4362 * (Usually only the first block is needed.) 4363 */ 4364 dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx); 4365 } 4366 4367 static void 4368 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 4369 { 4370 zio_t *zio = arg; 4371 4372 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 4373 zio->io_flags)); 4374 } 4375 4376 static void 4377 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 4378 { 4379 char *packed = NULL; 4380 size_t bufsize; 4381 size_t nvsize = 0; 4382 dmu_buf_t *db; 4383 4384 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 4385 4386 /* 4387 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 4388 * information. This avoids the dbuf_will_dirty() path and 4389 * saves us a pre-read to get data we don't actually care about. 4390 */ 4391 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 4392 packed = kmem_alloc(bufsize, KM_SLEEP); 4393 4394 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 4395 KM_SLEEP) == 0); 4396 bzero(packed + nvsize, bufsize - nvsize); 4397 4398 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 4399 4400 kmem_free(packed, bufsize); 4401 4402 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 4403 dmu_buf_will_dirty(db, tx); 4404 *(uint64_t *)db->db_data = nvsize; 4405 dmu_buf_rele(db, FTAG); 4406 } 4407 4408 static void 4409 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 4410 const char *config, const char *entry) 4411 { 4412 nvlist_t *nvroot; 4413 nvlist_t **list; 4414 int i; 4415 4416 if (!sav->sav_sync) 4417 return; 4418 4419 /* 4420 * Update the MOS nvlist describing the list of available devices. 4421 * spa_validate_aux() will have already made sure this nvlist is 4422 * valid and the vdevs are labeled appropriately. 4423 */ 4424 if (sav->sav_object == 0) { 4425 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 4426 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 4427 sizeof (uint64_t), tx); 4428 VERIFY(zap_update(spa->spa_meta_objset, 4429 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 4430 &sav->sav_object, tx) == 0); 4431 } 4432 4433 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4434 if (sav->sav_count == 0) { 4435 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 4436 } else { 4437 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 4438 for (i = 0; i < sav->sav_count; i++) 4439 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 4440 B_FALSE, B_FALSE, B_TRUE); 4441 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 4442 sav->sav_count) == 0); 4443 for (i = 0; i < sav->sav_count; i++) 4444 nvlist_free(list[i]); 4445 kmem_free(list, sav->sav_count * sizeof (void *)); 4446 } 4447 4448 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 4449 nvlist_free(nvroot); 4450 4451 sav->sav_sync = B_FALSE; 4452 } 4453 4454 static void 4455 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 4456 { 4457 nvlist_t *config; 4458 4459 if (list_is_empty(&spa->spa_config_dirty_list)) 4460 return; 4461 4462 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4463 4464 config = spa_config_generate(spa, spa->spa_root_vdev, 4465 dmu_tx_get_txg(tx), B_FALSE); 4466 4467 spa_config_exit(spa, SCL_STATE, FTAG); 4468 4469 if (spa->spa_config_syncing) 4470 nvlist_free(spa->spa_config_syncing); 4471 spa->spa_config_syncing = config; 4472 4473 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 4474 } 4475 4476 /* 4477 * Set zpool properties. 4478 */ 4479 static void 4480 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 4481 { 4482 spa_t *spa = arg1; 4483 objset_t *mos = spa->spa_meta_objset; 4484 nvlist_t *nvp = arg2; 4485 nvpair_t *elem; 4486 uint64_t intval; 4487 char *strval; 4488 zpool_prop_t prop; 4489 const char *propname; 4490 zprop_type_t proptype; 4491 4492 mutex_enter(&spa->spa_props_lock); 4493 4494 elem = NULL; 4495 while ((elem = nvlist_next_nvpair(nvp, elem))) { 4496 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 4497 case ZPOOL_PROP_VERSION: 4498 /* 4499 * Only set version for non-zpool-creation cases 4500 * (set/import). spa_create() needs special care 4501 * for version setting. 4502 */ 4503 if (tx->tx_txg != TXG_INITIAL) { 4504 VERIFY(nvpair_value_uint64(elem, 4505 &intval) == 0); 4506 ASSERT(intval <= SPA_VERSION); 4507 ASSERT(intval >= spa_version(spa)); 4508 spa->spa_uberblock.ub_version = intval; 4509 vdev_config_dirty(spa->spa_root_vdev); 4510 } 4511 break; 4512 4513 case ZPOOL_PROP_ALTROOT: 4514 /* 4515 * 'altroot' is a non-persistent property. It should 4516 * have been set temporarily at creation or import time. 4517 */ 4518 ASSERT(spa->spa_root != NULL); 4519 break; 4520 4521 case ZPOOL_PROP_CACHEFILE: 4522 /* 4523 * 'cachefile' is also a non-persisitent property. 4524 */ 4525 break; 4526 default: 4527 /* 4528 * Set pool property values in the poolprops mos object. 4529 */ 4530 if (spa->spa_pool_props_object == 0) { 4531 VERIFY((spa->spa_pool_props_object = 4532 zap_create(mos, DMU_OT_POOL_PROPS, 4533 DMU_OT_NONE, 0, tx)) > 0); 4534 4535 VERIFY(zap_update(mos, 4536 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 4537 8, 1, &spa->spa_pool_props_object, tx) 4538 == 0); 4539 } 4540 4541 /* normalize the property name */ 4542 propname = zpool_prop_to_name(prop); 4543 proptype = zpool_prop_get_type(prop); 4544 4545 if (nvpair_type(elem) == DATA_TYPE_STRING) { 4546 ASSERT(proptype == PROP_TYPE_STRING); 4547 VERIFY(nvpair_value_string(elem, &strval) == 0); 4548 VERIFY(zap_update(mos, 4549 spa->spa_pool_props_object, propname, 4550 1, strlen(strval) + 1, strval, tx) == 0); 4551 4552 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 4553 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 4554 4555 if (proptype == PROP_TYPE_INDEX) { 4556 const char *unused; 4557 VERIFY(zpool_prop_index_to_string( 4558 prop, intval, &unused) == 0); 4559 } 4560 VERIFY(zap_update(mos, 4561 spa->spa_pool_props_object, propname, 4562 8, 1, &intval, tx) == 0); 4563 } else { 4564 ASSERT(0); /* not allowed */ 4565 } 4566 4567 switch (prop) { 4568 case ZPOOL_PROP_DELEGATION: 4569 spa->spa_delegation = intval; 4570 break; 4571 case ZPOOL_PROP_BOOTFS: 4572 spa->spa_bootfs = intval; 4573 break; 4574 case ZPOOL_PROP_FAILUREMODE: 4575 spa->spa_failmode = intval; 4576 break; 4577 case ZPOOL_PROP_AUTOEXPAND: 4578 spa->spa_autoexpand = intval; 4579 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4580 break; 4581 case ZPOOL_PROP_DEDUPDITTO: 4582 spa->spa_dedup_ditto = intval; 4583 break; 4584 default: 4585 break; 4586 } 4587 } 4588 4589 /* log internal history if this is not a zpool create */ 4590 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 4591 tx->tx_txg != TXG_INITIAL) { 4592 spa_history_internal_log(LOG_POOL_PROPSET, 4593 spa, tx, cr, "%s %lld %s", 4594 nvpair_name(elem), intval, spa_name(spa)); 4595 } 4596 } 4597 4598 mutex_exit(&spa->spa_props_lock); 4599 } 4600 4601 /* 4602 * Sync the specified transaction group. New blocks may be dirtied as 4603 * part of the process, so we iterate until it converges. 4604 */ 4605 void 4606 spa_sync(spa_t *spa, uint64_t txg) 4607 { 4608 dsl_pool_t *dp = spa->spa_dsl_pool; 4609 objset_t *mos = spa->spa_meta_objset; 4610 bplist_t *defer_bpl = &spa->spa_deferred_bplist; 4611 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 4612 vdev_t *rvd = spa->spa_root_vdev; 4613 vdev_t *vd; 4614 dmu_tx_t *tx; 4615 int error; 4616 4617 /* 4618 * Lock out configuration changes. 4619 */ 4620 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4621 4622 spa->spa_syncing_txg = txg; 4623 spa->spa_sync_pass = 0; 4624 4625 /* 4626 * If there are any pending vdev state changes, convert them 4627 * into config changes that go out with this transaction group. 4628 */ 4629 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4630 while (list_head(&spa->spa_state_dirty_list) != NULL) { 4631 /* 4632 * We need the write lock here because, for aux vdevs, 4633 * calling vdev_config_dirty() modifies sav_config. 4634 * This is ugly and will become unnecessary when we 4635 * eliminate the aux vdev wart by integrating all vdevs 4636 * into the root vdev tree. 4637 */ 4638 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 4639 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 4640 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 4641 vdev_state_clean(vd); 4642 vdev_config_dirty(vd); 4643 } 4644 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 4645 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 4646 } 4647 spa_config_exit(spa, SCL_STATE, FTAG); 4648 4649 VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj)); 4650 4651 tx = dmu_tx_create_assigned(dp, txg); 4652 4653 /* 4654 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 4655 * set spa_deflate if we have no raid-z vdevs. 4656 */ 4657 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 4658 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 4659 int i; 4660 4661 for (i = 0; i < rvd->vdev_children; i++) { 4662 vd = rvd->vdev_child[i]; 4663 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 4664 break; 4665 } 4666 if (i == rvd->vdev_children) { 4667 spa->spa_deflate = TRUE; 4668 VERIFY(0 == zap_add(spa->spa_meta_objset, 4669 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 4670 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 4671 } 4672 } 4673 4674 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 4675 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 4676 dsl_pool_create_origin(dp, tx); 4677 4678 /* Keeping the origin open increases spa_minref */ 4679 spa->spa_minref += 3; 4680 } 4681 4682 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 4683 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 4684 dsl_pool_upgrade_clones(dp, tx); 4685 } 4686 4687 /* 4688 * If anything has changed in this txg, push the deferred frees 4689 * from the previous txg. If not, leave them alone so that we 4690 * don't generate work on an otherwise idle system. 4691 */ 4692 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 4693 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 4694 !txg_list_empty(&dp->dp_sync_tasks, txg)) 4695 spa_sync_deferred_bplist(spa, defer_bpl, tx, txg); 4696 4697 /* 4698 * Iterate to convergence. 4699 */ 4700 do { 4701 int pass = ++spa->spa_sync_pass; 4702 4703 spa_sync_config_object(spa, tx); 4704 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 4705 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 4706 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 4707 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 4708 spa_errlog_sync(spa, txg); 4709 dsl_pool_sync(dp, txg); 4710 4711 if (pass <= SYNC_PASS_DEFERRED_FREE) { 4712 zio_t *zio = zio_root(spa, NULL, NULL, 0); 4713 bplist_sync(free_bpl, spa_sync_free, zio, tx); 4714 VERIFY(zio_wait(zio) == 0); 4715 } else { 4716 bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx); 4717 } 4718 4719 ddt_sync(spa, txg); 4720 4721 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 4722 vdev_sync(vd, txg); 4723 4724 } while (dmu_objset_is_dirty(mos, txg)); 4725 4726 ASSERT(free_bpl->bpl_queue == NULL); 4727 4728 bplist_close(defer_bpl); 4729 4730 /* 4731 * Rewrite the vdev configuration (which includes the uberblock) 4732 * to commit the transaction group. 4733 * 4734 * If there are no dirty vdevs, we sync the uberblock to a few 4735 * random top-level vdevs that are known to be visible in the 4736 * config cache (see spa_vdev_add() for a complete description). 4737 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 4738 */ 4739 for (;;) { 4740 /* 4741 * We hold SCL_STATE to prevent vdev open/close/etc. 4742 * while we're attempting to write the vdev labels. 4743 */ 4744 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4745 4746 if (list_is_empty(&spa->spa_config_dirty_list)) { 4747 vdev_t *svd[SPA_DVAS_PER_BP]; 4748 int svdcount = 0; 4749 int children = rvd->vdev_children; 4750 int c0 = spa_get_random(children); 4751 4752 for (int c = 0; c < children; c++) { 4753 vd = rvd->vdev_child[(c0 + c) % children]; 4754 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 4755 continue; 4756 svd[svdcount++] = vd; 4757 if (svdcount == SPA_DVAS_PER_BP) 4758 break; 4759 } 4760 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 4761 if (error != 0) 4762 error = vdev_config_sync(svd, svdcount, txg, 4763 B_TRUE); 4764 } else { 4765 error = vdev_config_sync(rvd->vdev_child, 4766 rvd->vdev_children, txg, B_FALSE); 4767 if (error != 0) 4768 error = vdev_config_sync(rvd->vdev_child, 4769 rvd->vdev_children, txg, B_TRUE); 4770 } 4771 4772 spa_config_exit(spa, SCL_STATE, FTAG); 4773 4774 if (error == 0) 4775 break; 4776 zio_suspend(spa, NULL); 4777 zio_resume_wait(spa); 4778 } 4779 dmu_tx_commit(tx); 4780 4781 /* 4782 * Clear the dirty config list. 4783 */ 4784 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 4785 vdev_config_clean(vd); 4786 4787 /* 4788 * Now that the new config has synced transactionally, 4789 * let it become visible to the config cache. 4790 */ 4791 if (spa->spa_config_syncing != NULL) { 4792 spa_config_set(spa, spa->spa_config_syncing); 4793 spa->spa_config_txg = txg; 4794 spa->spa_config_syncing = NULL; 4795 } 4796 4797 spa->spa_ubsync = spa->spa_uberblock; 4798 4799 dsl_pool_sync_done(dp, txg); 4800 4801 /* 4802 * Update usable space statistics. 4803 */ 4804 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 4805 vdev_sync_done(vd, txg); 4806 4807 spa_update_dspace(spa); 4808 4809 /* 4810 * It had better be the case that we didn't dirty anything 4811 * since vdev_config_sync(). 4812 */ 4813 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 4814 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 4815 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 4816 ASSERT(defer_bpl->bpl_queue == NULL); 4817 ASSERT(free_bpl->bpl_queue == NULL); 4818 4819 spa->spa_sync_pass = 0; 4820 4821 spa_config_exit(spa, SCL_CONFIG, FTAG); 4822 4823 spa_handle_ignored_writes(spa); 4824 4825 /* 4826 * If any async tasks have been requested, kick them off. 4827 */ 4828 spa_async_dispatch(spa); 4829 } 4830 4831 /* 4832 * Sync all pools. We don't want to hold the namespace lock across these 4833 * operations, so we take a reference on the spa_t and drop the lock during the 4834 * sync. 4835 */ 4836 void 4837 spa_sync_allpools(void) 4838 { 4839 spa_t *spa = NULL; 4840 mutex_enter(&spa_namespace_lock); 4841 while ((spa = spa_next(spa)) != NULL) { 4842 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 4843 continue; 4844 spa_open_ref(spa, FTAG); 4845 mutex_exit(&spa_namespace_lock); 4846 txg_wait_synced(spa_get_dsl(spa), 0); 4847 mutex_enter(&spa_namespace_lock); 4848 spa_close(spa, FTAG); 4849 } 4850 mutex_exit(&spa_namespace_lock); 4851 } 4852 4853 /* 4854 * ========================================================================== 4855 * Miscellaneous routines 4856 * ========================================================================== 4857 */ 4858 4859 /* 4860 * Remove all pools in the system. 4861 */ 4862 void 4863 spa_evict_all(void) 4864 { 4865 spa_t *spa; 4866 4867 /* 4868 * Remove all cached state. All pools should be closed now, 4869 * so every spa in the AVL tree should be unreferenced. 4870 */ 4871 mutex_enter(&spa_namespace_lock); 4872 while ((spa = spa_next(NULL)) != NULL) { 4873 /* 4874 * Stop async tasks. The async thread may need to detach 4875 * a device that's been replaced, which requires grabbing 4876 * spa_namespace_lock, so we must drop it here. 4877 */ 4878 spa_open_ref(spa, FTAG); 4879 mutex_exit(&spa_namespace_lock); 4880 spa_async_suspend(spa); 4881 mutex_enter(&spa_namespace_lock); 4882 spa_close(spa, FTAG); 4883 4884 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4885 spa_unload(spa); 4886 spa_deactivate(spa); 4887 } 4888 spa_remove(spa); 4889 } 4890 mutex_exit(&spa_namespace_lock); 4891 } 4892 4893 vdev_t * 4894 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 4895 { 4896 vdev_t *vd; 4897 int i; 4898 4899 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 4900 return (vd); 4901 4902 if (aux) { 4903 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 4904 vd = spa->spa_l2cache.sav_vdevs[i]; 4905 if (vd->vdev_guid == guid) 4906 return (vd); 4907 } 4908 4909 for (i = 0; i < spa->spa_spares.sav_count; i++) { 4910 vd = spa->spa_spares.sav_vdevs[i]; 4911 if (vd->vdev_guid == guid) 4912 return (vd); 4913 } 4914 } 4915 4916 return (NULL); 4917 } 4918 4919 void 4920 spa_upgrade(spa_t *spa, uint64_t version) 4921 { 4922 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4923 4924 /* 4925 * This should only be called for a non-faulted pool, and since a 4926 * future version would result in an unopenable pool, this shouldn't be 4927 * possible. 4928 */ 4929 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 4930 ASSERT(version >= spa->spa_uberblock.ub_version); 4931 4932 spa->spa_uberblock.ub_version = version; 4933 vdev_config_dirty(spa->spa_root_vdev); 4934 4935 spa_config_exit(spa, SCL_ALL, FTAG); 4936 4937 txg_wait_synced(spa_get_dsl(spa), 0); 4938 } 4939 4940 boolean_t 4941 spa_has_spare(spa_t *spa, uint64_t guid) 4942 { 4943 int i; 4944 uint64_t spareguid; 4945 spa_aux_vdev_t *sav = &spa->spa_spares; 4946 4947 for (i = 0; i < sav->sav_count; i++) 4948 if (sav->sav_vdevs[i]->vdev_guid == guid) 4949 return (B_TRUE); 4950 4951 for (i = 0; i < sav->sav_npending; i++) { 4952 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 4953 &spareguid) == 0 && spareguid == guid) 4954 return (B_TRUE); 4955 } 4956 4957 return (B_FALSE); 4958 } 4959 4960 /* 4961 * Check if a pool has an active shared spare device. 4962 * Note: reference count of an active spare is 2, as a spare and as a replace 4963 */ 4964 static boolean_t 4965 spa_has_active_shared_spare(spa_t *spa) 4966 { 4967 int i, refcnt; 4968 uint64_t pool; 4969 spa_aux_vdev_t *sav = &spa->spa_spares; 4970 4971 for (i = 0; i < sav->sav_count; i++) { 4972 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 4973 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 4974 refcnt > 2) 4975 return (B_TRUE); 4976 } 4977 4978 return (B_FALSE); 4979 } 4980 4981 /* 4982 * Post a sysevent corresponding to the given event. The 'name' must be one of 4983 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 4984 * filled in from the spa and (optionally) the vdev. This doesn't do anything 4985 * in the userland libzpool, as we don't want consumers to misinterpret ztest 4986 * or zdb as real changes. 4987 */ 4988 void 4989 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 4990 { 4991 #ifdef _KERNEL 4992 sysevent_t *ev; 4993 sysevent_attr_list_t *attr = NULL; 4994 sysevent_value_t value; 4995 sysevent_id_t eid; 4996 4997 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 4998 SE_SLEEP); 4999 5000 value.value_type = SE_DATA_TYPE_STRING; 5001 value.value.sv_string = spa_name(spa); 5002 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 5003 goto done; 5004 5005 value.value_type = SE_DATA_TYPE_UINT64; 5006 value.value.sv_uint64 = spa_guid(spa); 5007 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 5008 goto done; 5009 5010 if (vd) { 5011 value.value_type = SE_DATA_TYPE_UINT64; 5012 value.value.sv_uint64 = vd->vdev_guid; 5013 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 5014 SE_SLEEP) != 0) 5015 goto done; 5016 5017 if (vd->vdev_path) { 5018 value.value_type = SE_DATA_TYPE_STRING; 5019 value.value.sv_string = vd->vdev_path; 5020 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 5021 &value, SE_SLEEP) != 0) 5022 goto done; 5023 } 5024 } 5025 5026 if (sysevent_attach_attributes(ev, attr) != 0) 5027 goto done; 5028 attr = NULL; 5029 5030 (void) log_sysevent(ev, SE_SLEEP, &eid); 5031 5032 done: 5033 if (attr) 5034 sysevent_free_attr(attr); 5035 sysevent_free(ev); 5036 #endif 5037 } 5038