xref: /titanic_41/usr/src/uts/common/fs/zfs/spa.c (revision 5eb92cf2b27ec0d138dc9e8eedd5b6ecf4cfec0c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/sunddi.h>
62 
63 #include "zfs_prop.h"
64 
65 int zio_taskq_threads = 8;
66 
67 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
68 
69 /*
70  * ==========================================================================
71  * SPA properties routines
72  * ==========================================================================
73  */
74 
75 /*
76  * Add a (source=src, propname=propval) list to an nvlist.
77  */
78 static int
79 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
80     uint64_t intval, zprop_source_t src)
81 {
82 	const char *propname = zpool_prop_to_name(prop);
83 	nvlist_t *propval;
84 	int err = 0;
85 
86 	if (err = nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP))
87 		return (err);
88 
89 	if (err = nvlist_add_uint64(propval, ZPROP_SOURCE, src))
90 		goto out;
91 
92 	if (strval != NULL) {
93 		if (err = nvlist_add_string(propval, ZPROP_VALUE, strval))
94 			goto out;
95 	} else {
96 		if (err = nvlist_add_uint64(propval, ZPROP_VALUE, intval))
97 			goto out;
98 	}
99 
100 	err = nvlist_add_nvlist(nvl, propname, propval);
101 out:
102 	nvlist_free(propval);
103 	return (err);
104 }
105 
106 /*
107  * Get property values from the spa configuration.
108  */
109 static int
110 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
111 {
112 	uint64_t size = spa_get_space(spa);
113 	uint64_t used = spa_get_alloc(spa);
114 	uint64_t cap, version;
115 	zprop_source_t src = ZPROP_SRC_NONE;
116 	int err;
117 
118 	/*
119 	 * readonly properties
120 	 */
121 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name,
122 	    0, src))
123 		return (err);
124 
125 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src))
126 		return (err);
127 
128 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src))
129 		return (err);
130 
131 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
132 	    size - used, src))
133 		return (err);
134 
135 	cap = (size == 0) ? 0 : (used * 100 / size);
136 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src))
137 		return (err);
138 
139 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL,
140 	    spa_guid(spa), src))
141 		return (err);
142 
143 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
144 	    spa->spa_root_vdev->vdev_state, src))
145 		return (err);
146 
147 	/*
148 	 * settable properties that are not stored in the pool property object.
149 	 */
150 	version = spa_version(spa);
151 	if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
152 		src = ZPROP_SRC_DEFAULT;
153 	else
154 		src = ZPROP_SRC_LOCAL;
155 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
156 	    version, src))
157 		return (err);
158 
159 	if (spa->spa_root != NULL) {
160 		src = ZPROP_SRC_LOCAL;
161 		if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT,
162 		    spa->spa_root, 0, src))
163 			return (err);
164 	}
165 
166 	if (spa->spa_temporary ==
167 	    zpool_prop_default_numeric(ZPOOL_PROP_TEMPORARY))
168 		src = ZPROP_SRC_DEFAULT;
169 	else
170 		src = ZPROP_SRC_LOCAL;
171 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_TEMPORARY, NULL,
172 	    spa->spa_temporary, src))
173 		return (err);
174 
175 	return (0);
176 }
177 
178 /*
179  * Get zpool property values.
180  */
181 int
182 spa_prop_get(spa_t *spa, nvlist_t **nvp)
183 {
184 	zap_cursor_t zc;
185 	zap_attribute_t za;
186 	objset_t *mos = spa->spa_meta_objset;
187 	int err;
188 
189 	if (err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP))
190 		return (err);
191 
192 	/*
193 	 * Get properties from the spa config.
194 	 */
195 	if (err = spa_prop_get_config(spa, nvp))
196 		goto out;
197 
198 	mutex_enter(&spa->spa_props_lock);
199 	/* If no pool property object, no more prop to get. */
200 	if (spa->spa_pool_props_object == 0) {
201 		mutex_exit(&spa->spa_props_lock);
202 		return (0);
203 	}
204 
205 	/*
206 	 * Get properties from the MOS pool property object.
207 	 */
208 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
209 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
210 	    zap_cursor_advance(&zc)) {
211 		uint64_t intval = 0;
212 		char *strval = NULL;
213 		zprop_source_t src = ZPROP_SRC_DEFAULT;
214 		zpool_prop_t prop;
215 
216 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
217 			continue;
218 
219 		switch (za.za_integer_length) {
220 		case 8:
221 			/* integer property */
222 			if (za.za_first_integer !=
223 			    zpool_prop_default_numeric(prop))
224 				src = ZPROP_SRC_LOCAL;
225 
226 			if (prop == ZPOOL_PROP_BOOTFS) {
227 				dsl_pool_t *dp;
228 				dsl_dataset_t *ds = NULL;
229 
230 				dp = spa_get_dsl(spa);
231 				rw_enter(&dp->dp_config_rwlock, RW_READER);
232 				if (err = dsl_dataset_open_obj(dp,
233 				    za.za_first_integer, NULL, DS_MODE_NONE,
234 				    FTAG, &ds)) {
235 					rw_exit(&dp->dp_config_rwlock);
236 					break;
237 				}
238 
239 				strval = kmem_alloc(
240 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
241 				    KM_SLEEP);
242 				dsl_dataset_name(ds, strval);
243 				dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
244 				rw_exit(&dp->dp_config_rwlock);
245 			} else {
246 				strval = NULL;
247 				intval = za.za_first_integer;
248 			}
249 
250 			err = spa_prop_add_list(*nvp, prop, strval,
251 			    intval, src);
252 
253 			if (strval != NULL)
254 				kmem_free(strval,
255 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
256 
257 			break;
258 
259 		case 1:
260 			/* string property */
261 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
262 			err = zap_lookup(mos, spa->spa_pool_props_object,
263 			    za.za_name, 1, za.za_num_integers, strval);
264 			if (err) {
265 				kmem_free(strval, za.za_num_integers);
266 				break;
267 			}
268 			err = spa_prop_add_list(*nvp, prop, strval, 0, src);
269 			kmem_free(strval, za.za_num_integers);
270 			break;
271 
272 		default:
273 			break;
274 		}
275 	}
276 	zap_cursor_fini(&zc);
277 	mutex_exit(&spa->spa_props_lock);
278 out:
279 	if (err && err != ENOENT) {
280 		nvlist_free(*nvp);
281 		return (err);
282 	}
283 
284 	return (0);
285 }
286 
287 /*
288  * Validate the given pool properties nvlist and modify the list
289  * for the property values to be set.
290  */
291 static int
292 spa_prop_validate(spa_t *spa, nvlist_t *props)
293 {
294 	nvpair_t *elem;
295 	int error = 0, reset_bootfs = 0;
296 	uint64_t objnum;
297 
298 	elem = NULL;
299 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
300 		zpool_prop_t prop;
301 		char *propname, *strval;
302 		uint64_t intval;
303 		vdev_t *rvdev;
304 		char *vdev_type;
305 		objset_t *os;
306 
307 		propname = nvpair_name(elem);
308 
309 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
310 			return (EINVAL);
311 
312 		switch (prop) {
313 		case ZPOOL_PROP_VERSION:
314 			error = nvpair_value_uint64(elem, &intval);
315 			if (!error &&
316 			    (intval < spa_version(spa) || intval > SPA_VERSION))
317 				error = EINVAL;
318 			break;
319 
320 		case ZPOOL_PROP_DELEGATION:
321 		case ZPOOL_PROP_AUTOREPLACE:
322 			error = nvpair_value_uint64(elem, &intval);
323 			if (!error && intval > 1)
324 				error = EINVAL;
325 			break;
326 
327 		case ZPOOL_PROP_BOOTFS:
328 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
329 				error = ENOTSUP;
330 				break;
331 			}
332 
333 			/*
334 			 * A bootable filesystem can not be on a RAIDZ pool
335 			 * nor a striped pool with more than 1 device.
336 			 */
337 			rvdev = spa->spa_root_vdev;
338 			vdev_type =
339 			    rvdev->vdev_child[0]->vdev_ops->vdev_op_type;
340 			if (rvdev->vdev_children > 1 ||
341 			    strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
342 			    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
343 				error = ENOTSUP;
344 				break;
345 			}
346 
347 			reset_bootfs = 1;
348 
349 			error = nvpair_value_string(elem, &strval);
350 
351 			if (!error) {
352 				if (strval == NULL || strval[0] == '\0') {
353 					objnum = zpool_prop_default_numeric(
354 					    ZPOOL_PROP_BOOTFS);
355 					break;
356 				}
357 
358 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
359 				    DS_MODE_STANDARD | DS_MODE_READONLY, &os))
360 					break;
361 				objnum = dmu_objset_id(os);
362 				dmu_objset_close(os);
363 			}
364 			break;
365 		}
366 
367 		if (error)
368 			break;
369 	}
370 
371 	if (!error && reset_bootfs) {
372 		error = nvlist_remove(props,
373 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
374 
375 		if (!error) {
376 			error = nvlist_add_uint64(props,
377 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
378 		}
379 	}
380 
381 	return (error);
382 }
383 
384 int
385 spa_prop_set(spa_t *spa, nvlist_t *nvp)
386 {
387 	int error;
388 
389 	if ((error = spa_prop_validate(spa, nvp)) != 0)
390 		return (error);
391 
392 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
393 	    spa, nvp, 3));
394 }
395 
396 /*
397  * If the bootfs property value is dsobj, clear it.
398  */
399 void
400 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
401 {
402 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
403 		VERIFY(zap_remove(spa->spa_meta_objset,
404 		    spa->spa_pool_props_object,
405 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
406 		spa->spa_bootfs = 0;
407 	}
408 }
409 
410 /*
411  * ==========================================================================
412  * SPA state manipulation (open/create/destroy/import/export)
413  * ==========================================================================
414  */
415 
416 static int
417 spa_error_entry_compare(const void *a, const void *b)
418 {
419 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
420 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
421 	int ret;
422 
423 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
424 	    sizeof (zbookmark_t));
425 
426 	if (ret < 0)
427 		return (-1);
428 	else if (ret > 0)
429 		return (1);
430 	else
431 		return (0);
432 }
433 
434 /*
435  * Utility function which retrieves copies of the current logs and
436  * re-initializes them in the process.
437  */
438 void
439 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
440 {
441 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
442 
443 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
444 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
445 
446 	avl_create(&spa->spa_errlist_scrub,
447 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
448 	    offsetof(spa_error_entry_t, se_avl));
449 	avl_create(&spa->spa_errlist_last,
450 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
451 	    offsetof(spa_error_entry_t, se_avl));
452 }
453 
454 /*
455  * Activate an uninitialized pool.
456  */
457 static void
458 spa_activate(spa_t *spa)
459 {
460 	int t;
461 
462 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
463 
464 	spa->spa_state = POOL_STATE_ACTIVE;
465 
466 	spa->spa_normal_class = metaslab_class_create();
467 	spa->spa_log_class = metaslab_class_create();
468 
469 	for (t = 0; t < ZIO_TYPES; t++) {
470 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
471 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
472 		    TASKQ_PREPOPULATE);
473 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
474 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
475 		    TASKQ_PREPOPULATE);
476 	}
477 
478 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
479 	    offsetof(vdev_t, vdev_dirty_node));
480 
481 	txg_list_create(&spa->spa_vdev_txg_list,
482 	    offsetof(struct vdev, vdev_txg_node));
483 
484 	avl_create(&spa->spa_errlist_scrub,
485 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
486 	    offsetof(spa_error_entry_t, se_avl));
487 	avl_create(&spa->spa_errlist_last,
488 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
489 	    offsetof(spa_error_entry_t, se_avl));
490 }
491 
492 /*
493  * Opposite of spa_activate().
494  */
495 static void
496 spa_deactivate(spa_t *spa)
497 {
498 	int t;
499 
500 	ASSERT(spa->spa_sync_on == B_FALSE);
501 	ASSERT(spa->spa_dsl_pool == NULL);
502 	ASSERT(spa->spa_root_vdev == NULL);
503 
504 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
505 
506 	txg_list_destroy(&spa->spa_vdev_txg_list);
507 
508 	list_destroy(&spa->spa_dirty_list);
509 
510 	for (t = 0; t < ZIO_TYPES; t++) {
511 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
512 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
513 		spa->spa_zio_issue_taskq[t] = NULL;
514 		spa->spa_zio_intr_taskq[t] = NULL;
515 	}
516 
517 	metaslab_class_destroy(spa->spa_normal_class);
518 	spa->spa_normal_class = NULL;
519 
520 	metaslab_class_destroy(spa->spa_log_class);
521 	spa->spa_log_class = NULL;
522 
523 	/*
524 	 * If this was part of an import or the open otherwise failed, we may
525 	 * still have errors left in the queues.  Empty them just in case.
526 	 */
527 	spa_errlog_drain(spa);
528 
529 	avl_destroy(&spa->spa_errlist_scrub);
530 	avl_destroy(&spa->spa_errlist_last);
531 
532 	spa->spa_state = POOL_STATE_UNINITIALIZED;
533 }
534 
535 /*
536  * Verify a pool configuration, and construct the vdev tree appropriately.  This
537  * will create all the necessary vdevs in the appropriate layout, with each vdev
538  * in the CLOSED state.  This will prep the pool before open/creation/import.
539  * All vdev validation is done by the vdev_alloc() routine.
540  */
541 static int
542 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
543     uint_t id, int atype)
544 {
545 	nvlist_t **child;
546 	uint_t c, children;
547 	int error;
548 
549 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
550 		return (error);
551 
552 	if ((*vdp)->vdev_ops->vdev_op_leaf)
553 		return (0);
554 
555 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
556 	    &child, &children) != 0) {
557 		vdev_free(*vdp);
558 		*vdp = NULL;
559 		return (EINVAL);
560 	}
561 
562 	for (c = 0; c < children; c++) {
563 		vdev_t *vd;
564 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
565 		    atype)) != 0) {
566 			vdev_free(*vdp);
567 			*vdp = NULL;
568 			return (error);
569 		}
570 	}
571 
572 	ASSERT(*vdp != NULL);
573 
574 	return (0);
575 }
576 
577 /*
578  * Opposite of spa_load().
579  */
580 static void
581 spa_unload(spa_t *spa)
582 {
583 	int i;
584 
585 	/*
586 	 * Stop async tasks.
587 	 */
588 	spa_async_suspend(spa);
589 
590 	/*
591 	 * Stop syncing.
592 	 */
593 	if (spa->spa_sync_on) {
594 		txg_sync_stop(spa->spa_dsl_pool);
595 		spa->spa_sync_on = B_FALSE;
596 	}
597 
598 	/*
599 	 * Wait for any outstanding prefetch I/O to complete.
600 	 */
601 	spa_config_enter(spa, RW_WRITER, FTAG);
602 	spa_config_exit(spa, FTAG);
603 
604 	/*
605 	 * Close the dsl pool.
606 	 */
607 	if (spa->spa_dsl_pool) {
608 		dsl_pool_close(spa->spa_dsl_pool);
609 		spa->spa_dsl_pool = NULL;
610 	}
611 
612 	/*
613 	 * Close all vdevs.
614 	 */
615 	if (spa->spa_root_vdev)
616 		vdev_free(spa->spa_root_vdev);
617 	ASSERT(spa->spa_root_vdev == NULL);
618 
619 	for (i = 0; i < spa->spa_nspares; i++)
620 		vdev_free(spa->spa_spares[i]);
621 	if (spa->spa_spares) {
622 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
623 		spa->spa_spares = NULL;
624 	}
625 	if (spa->spa_sparelist) {
626 		nvlist_free(spa->spa_sparelist);
627 		spa->spa_sparelist = NULL;
628 	}
629 
630 	spa->spa_async_suspended = 0;
631 }
632 
633 /*
634  * Load (or re-load) the current list of vdevs describing the active spares for
635  * this pool.  When this is called, we have some form of basic information in
636  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
637  * re-generate a more complete list including status information.
638  */
639 static void
640 spa_load_spares(spa_t *spa)
641 {
642 	nvlist_t **spares;
643 	uint_t nspares;
644 	int i;
645 	vdev_t *vd, *tvd;
646 
647 	/*
648 	 * First, close and free any existing spare vdevs.
649 	 */
650 	for (i = 0; i < spa->spa_nspares; i++) {
651 		vd = spa->spa_spares[i];
652 
653 		/* Undo the call to spa_activate() below */
654 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL &&
655 		    tvd->vdev_isspare)
656 			spa_spare_remove(tvd);
657 		vdev_close(vd);
658 		vdev_free(vd);
659 	}
660 
661 	if (spa->spa_spares)
662 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
663 
664 	if (spa->spa_sparelist == NULL)
665 		nspares = 0;
666 	else
667 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
668 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
669 
670 	spa->spa_nspares = (int)nspares;
671 	spa->spa_spares = NULL;
672 
673 	if (nspares == 0)
674 		return;
675 
676 	/*
677 	 * Construct the array of vdevs, opening them to get status in the
678 	 * process.   For each spare, there is potentially two different vdev_t
679 	 * structures associated with it: one in the list of spares (used only
680 	 * for basic validation purposes) and one in the active vdev
681 	 * configuration (if it's spared in).  During this phase we open and
682 	 * validate each vdev on the spare list.  If the vdev also exists in the
683 	 * active configuration, then we also mark this vdev as an active spare.
684 	 */
685 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
686 	for (i = 0; i < spa->spa_nspares; i++) {
687 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
688 		    VDEV_ALLOC_SPARE) == 0);
689 		ASSERT(vd != NULL);
690 
691 		spa->spa_spares[i] = vd;
692 
693 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) {
694 			if (!tvd->vdev_isspare)
695 				spa_spare_add(tvd);
696 
697 			/*
698 			 * We only mark the spare active if we were successfully
699 			 * able to load the vdev.  Otherwise, importing a pool
700 			 * with a bad active spare would result in strange
701 			 * behavior, because multiple pool would think the spare
702 			 * is actively in use.
703 			 *
704 			 * There is a vulnerability here to an equally bizarre
705 			 * circumstance, where a dead active spare is later
706 			 * brought back to life (onlined or otherwise).  Given
707 			 * the rarity of this scenario, and the extra complexity
708 			 * it adds, we ignore the possibility.
709 			 */
710 			if (!vdev_is_dead(tvd))
711 				spa_spare_activate(tvd);
712 		}
713 
714 		if (vdev_open(vd) != 0)
715 			continue;
716 
717 		vd->vdev_top = vd;
718 		(void) vdev_validate_spare(vd);
719 	}
720 
721 	/*
722 	 * Recompute the stashed list of spares, with status information
723 	 * this time.
724 	 */
725 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
726 	    DATA_TYPE_NVLIST_ARRAY) == 0);
727 
728 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
729 	for (i = 0; i < spa->spa_nspares; i++)
730 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
731 		    B_TRUE, B_TRUE);
732 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
733 	    spares, spa->spa_nspares) == 0);
734 	for (i = 0; i < spa->spa_nspares; i++)
735 		nvlist_free(spares[i]);
736 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
737 }
738 
739 static int
740 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
741 {
742 	dmu_buf_t *db;
743 	char *packed = NULL;
744 	size_t nvsize = 0;
745 	int error;
746 	*value = NULL;
747 
748 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
749 	nvsize = *(uint64_t *)db->db_data;
750 	dmu_buf_rele(db, FTAG);
751 
752 	packed = kmem_alloc(nvsize, KM_SLEEP);
753 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
754 	if (error == 0)
755 		error = nvlist_unpack(packed, nvsize, value, 0);
756 	kmem_free(packed, nvsize);
757 
758 	return (error);
759 }
760 
761 /*
762  * Checks to see if the given vdev could not be opened, in which case we post a
763  * sysevent to notify the autoreplace code that the device has been removed.
764  */
765 static void
766 spa_check_removed(vdev_t *vd)
767 {
768 	int c;
769 
770 	for (c = 0; c < vd->vdev_children; c++)
771 		spa_check_removed(vd->vdev_child[c]);
772 
773 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
774 		zfs_post_autoreplace(vd->vdev_spa, vd);
775 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
776 	}
777 }
778 
779 /*
780  * Load an existing storage pool, using the pool's builtin spa_config as a
781  * source of configuration information.
782  */
783 static int
784 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
785 {
786 	int error = 0;
787 	nvlist_t *nvroot = NULL;
788 	vdev_t *rvd;
789 	uberblock_t *ub = &spa->spa_uberblock;
790 	uint64_t config_cache_txg = spa->spa_config_txg;
791 	uint64_t pool_guid;
792 	uint64_t version;
793 	zio_t *zio;
794 	uint64_t autoreplace = 0;
795 
796 	spa->spa_load_state = state;
797 
798 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
799 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
800 		error = EINVAL;
801 		goto out;
802 	}
803 
804 	/*
805 	 * Versioning wasn't explicitly added to the label until later, so if
806 	 * it's not present treat it as the initial version.
807 	 */
808 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
809 		version = SPA_VERSION_INITIAL;
810 
811 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
812 	    &spa->spa_config_txg);
813 
814 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
815 	    spa_guid_exists(pool_guid, 0)) {
816 		error = EEXIST;
817 		goto out;
818 	}
819 
820 	spa->spa_load_guid = pool_guid;
821 
822 	/*
823 	 * Parse the configuration into a vdev tree.  We explicitly set the
824 	 * value that will be returned by spa_version() since parsing the
825 	 * configuration requires knowing the version number.
826 	 */
827 	spa_config_enter(spa, RW_WRITER, FTAG);
828 	spa->spa_ubsync.ub_version = version;
829 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
830 	spa_config_exit(spa, FTAG);
831 
832 	if (error != 0)
833 		goto out;
834 
835 	ASSERT(spa->spa_root_vdev == rvd);
836 	ASSERT(spa_guid(spa) == pool_guid);
837 
838 	/*
839 	 * Try to open all vdevs, loading each label in the process.
840 	 */
841 	error = vdev_open(rvd);
842 	if (error != 0)
843 		goto out;
844 
845 	/*
846 	 * Validate the labels for all leaf vdevs.  We need to grab the config
847 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
848 	 * flag.
849 	 */
850 	spa_config_enter(spa, RW_READER, FTAG);
851 	error = vdev_validate(rvd);
852 	spa_config_exit(spa, FTAG);
853 
854 	if (error != 0)
855 		goto out;
856 
857 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
858 		error = ENXIO;
859 		goto out;
860 	}
861 
862 	/*
863 	 * Find the best uberblock.
864 	 */
865 	bzero(ub, sizeof (uberblock_t));
866 
867 	zio = zio_root(spa, NULL, NULL,
868 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
869 	vdev_uberblock_load(zio, rvd, ub);
870 	error = zio_wait(zio);
871 
872 	/*
873 	 * If we weren't able to find a single valid uberblock, return failure.
874 	 */
875 	if (ub->ub_txg == 0) {
876 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
877 		    VDEV_AUX_CORRUPT_DATA);
878 		error = ENXIO;
879 		goto out;
880 	}
881 
882 	/*
883 	 * If the pool is newer than the code, we can't open it.
884 	 */
885 	if (ub->ub_version > SPA_VERSION) {
886 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
887 		    VDEV_AUX_VERSION_NEWER);
888 		error = ENOTSUP;
889 		goto out;
890 	}
891 
892 	/*
893 	 * If the vdev guid sum doesn't match the uberblock, we have an
894 	 * incomplete configuration.
895 	 */
896 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
897 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
898 		    VDEV_AUX_BAD_GUID_SUM);
899 		error = ENXIO;
900 		goto out;
901 	}
902 
903 	/*
904 	 * Initialize internal SPA structures.
905 	 */
906 	spa->spa_state = POOL_STATE_ACTIVE;
907 	spa->spa_ubsync = spa->spa_uberblock;
908 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
909 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
910 	if (error) {
911 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
912 		    VDEV_AUX_CORRUPT_DATA);
913 		goto out;
914 	}
915 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
916 
917 	if (zap_lookup(spa->spa_meta_objset,
918 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
919 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
920 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
921 		    VDEV_AUX_CORRUPT_DATA);
922 		error = EIO;
923 		goto out;
924 	}
925 
926 	if (!mosconfig) {
927 		nvlist_t *newconfig;
928 		uint64_t hostid;
929 
930 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
931 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
932 			    VDEV_AUX_CORRUPT_DATA);
933 			error = EIO;
934 			goto out;
935 		}
936 
937 		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
938 		    &hostid) == 0) {
939 			char *hostname;
940 			unsigned long myhostid = 0;
941 
942 			VERIFY(nvlist_lookup_string(newconfig,
943 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
944 
945 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
946 			if (hostid != 0 && myhostid != 0 &&
947 			    (unsigned long)hostid != myhostid) {
948 				cmn_err(CE_WARN, "pool '%s' could not be "
949 				    "loaded as it was last accessed by "
950 				    "another system (host: %s hostid: 0x%lx).  "
951 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
952 				    spa->spa_name, hostname,
953 				    (unsigned long)hostid);
954 				error = EBADF;
955 				goto out;
956 			}
957 		}
958 
959 		spa_config_set(spa, newconfig);
960 		spa_unload(spa);
961 		spa_deactivate(spa);
962 		spa_activate(spa);
963 
964 		return (spa_load(spa, newconfig, state, B_TRUE));
965 	}
966 
967 	if (zap_lookup(spa->spa_meta_objset,
968 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
969 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
970 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
971 		    VDEV_AUX_CORRUPT_DATA);
972 		error = EIO;
973 		goto out;
974 	}
975 
976 	/*
977 	 * Load the bit that tells us to use the new accounting function
978 	 * (raid-z deflation).  If we have an older pool, this will not
979 	 * be present.
980 	 */
981 	error = zap_lookup(spa->spa_meta_objset,
982 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
983 	    sizeof (uint64_t), 1, &spa->spa_deflate);
984 	if (error != 0 && error != ENOENT) {
985 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
986 		    VDEV_AUX_CORRUPT_DATA);
987 		error = EIO;
988 		goto out;
989 	}
990 
991 	/*
992 	 * Load the persistent error log.  If we have an older pool, this will
993 	 * not be present.
994 	 */
995 	error = zap_lookup(spa->spa_meta_objset,
996 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
997 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
998 	if (error != 0 && error != ENOENT) {
999 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1000 		    VDEV_AUX_CORRUPT_DATA);
1001 		error = EIO;
1002 		goto out;
1003 	}
1004 
1005 	error = zap_lookup(spa->spa_meta_objset,
1006 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1007 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1008 	if (error != 0 && error != ENOENT) {
1009 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1010 		    VDEV_AUX_CORRUPT_DATA);
1011 		error = EIO;
1012 		goto out;
1013 	}
1014 
1015 	/*
1016 	 * Load the history object.  If we have an older pool, this
1017 	 * will not be present.
1018 	 */
1019 	error = zap_lookup(spa->spa_meta_objset,
1020 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1021 	    sizeof (uint64_t), 1, &spa->spa_history);
1022 	if (error != 0 && error != ENOENT) {
1023 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1024 		    VDEV_AUX_CORRUPT_DATA);
1025 		error = EIO;
1026 		goto out;
1027 	}
1028 
1029 	/*
1030 	 * Load any hot spares for this pool.
1031 	 */
1032 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1033 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
1034 	if (error != 0 && error != ENOENT) {
1035 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1036 		    VDEV_AUX_CORRUPT_DATA);
1037 		error = EIO;
1038 		goto out;
1039 	}
1040 	if (error == 0) {
1041 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1042 		if (load_nvlist(spa, spa->spa_spares_object,
1043 		    &spa->spa_sparelist) != 0) {
1044 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1045 			    VDEV_AUX_CORRUPT_DATA);
1046 			error = EIO;
1047 			goto out;
1048 		}
1049 
1050 		spa_config_enter(spa, RW_WRITER, FTAG);
1051 		spa_load_spares(spa);
1052 		spa_config_exit(spa, FTAG);
1053 	}
1054 
1055 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1056 
1057 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1058 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1059 
1060 	if (error && error != ENOENT) {
1061 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1062 		    VDEV_AUX_CORRUPT_DATA);
1063 		error = EIO;
1064 		goto out;
1065 	}
1066 
1067 	if (error == 0) {
1068 		(void) zap_lookup(spa->spa_meta_objset,
1069 		    spa->spa_pool_props_object,
1070 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1071 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1072 		(void) zap_lookup(spa->spa_meta_objset,
1073 		    spa->spa_pool_props_object,
1074 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1075 		    sizeof (uint64_t), 1, &autoreplace);
1076 		(void) zap_lookup(spa->spa_meta_objset,
1077 		    spa->spa_pool_props_object,
1078 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1079 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1080 	}
1081 
1082 	/*
1083 	 * If the 'autoreplace' property is set, then post a resource notifying
1084 	 * the ZFS DE that it should not issue any faults for unopenable
1085 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1086 	 * unopenable vdevs so that the normal autoreplace handler can take
1087 	 * over.
1088 	 */
1089 	if (autoreplace)
1090 		spa_check_removed(spa->spa_root_vdev);
1091 
1092 	/*
1093 	 * Load the vdev state for all toplevel vdevs.
1094 	 */
1095 	vdev_load(rvd);
1096 
1097 	/*
1098 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1099 	 */
1100 	spa_config_enter(spa, RW_WRITER, FTAG);
1101 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1102 	spa_config_exit(spa, FTAG);
1103 
1104 	/*
1105 	 * Check the state of the root vdev.  If it can't be opened, it
1106 	 * indicates one or more toplevel vdevs are faulted.
1107 	 */
1108 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1109 		error = ENXIO;
1110 		goto out;
1111 	}
1112 
1113 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
1114 		dmu_tx_t *tx;
1115 		int need_update = B_FALSE;
1116 		int c;
1117 
1118 		/*
1119 		 * Claim log blocks that haven't been committed yet.
1120 		 * This must all happen in a single txg.
1121 		 */
1122 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1123 		    spa_first_txg(spa));
1124 		(void) dmu_objset_find(spa->spa_name,
1125 		    zil_claim, tx, DS_FIND_CHILDREN);
1126 		dmu_tx_commit(tx);
1127 
1128 		spa->spa_sync_on = B_TRUE;
1129 		txg_sync_start(spa->spa_dsl_pool);
1130 
1131 		/*
1132 		 * Wait for all claims to sync.
1133 		 */
1134 		txg_wait_synced(spa->spa_dsl_pool, 0);
1135 
1136 		/*
1137 		 * If the config cache is stale, or we have uninitialized
1138 		 * metaslabs (see spa_vdev_add()), then update the config.
1139 		 */
1140 		if (config_cache_txg != spa->spa_config_txg ||
1141 		    state == SPA_LOAD_IMPORT)
1142 			need_update = B_TRUE;
1143 
1144 		for (c = 0; c < rvd->vdev_children; c++)
1145 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1146 				need_update = B_TRUE;
1147 
1148 		/*
1149 		 * Update the config cache asychronously in case we're the
1150 		 * root pool, in which case the config cache isn't writable yet.
1151 		 */
1152 		if (need_update)
1153 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1154 	}
1155 
1156 	error = 0;
1157 out:
1158 	if (error && error != EBADF)
1159 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
1160 	spa->spa_load_state = SPA_LOAD_NONE;
1161 	spa->spa_ena = 0;
1162 
1163 	return (error);
1164 }
1165 
1166 /*
1167  * Pool Open/Import
1168  *
1169  * The import case is identical to an open except that the configuration is sent
1170  * down from userland, instead of grabbed from the configuration cache.  For the
1171  * case of an open, the pool configuration will exist in the
1172  * POOL_STATE_UNINITIALIZED state.
1173  *
1174  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1175  * the same time open the pool, without having to keep around the spa_t in some
1176  * ambiguous state.
1177  */
1178 static int
1179 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1180 {
1181 	spa_t *spa;
1182 	int error;
1183 	int loaded = B_FALSE;
1184 	int locked = B_FALSE;
1185 
1186 	*spapp = NULL;
1187 
1188 	/*
1189 	 * As disgusting as this is, we need to support recursive calls to this
1190 	 * function because dsl_dir_open() is called during spa_load(), and ends
1191 	 * up calling spa_open() again.  The real fix is to figure out how to
1192 	 * avoid dsl_dir_open() calling this in the first place.
1193 	 */
1194 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1195 		mutex_enter(&spa_namespace_lock);
1196 		locked = B_TRUE;
1197 	}
1198 
1199 	if ((spa = spa_lookup(pool)) == NULL) {
1200 		if (locked)
1201 			mutex_exit(&spa_namespace_lock);
1202 		return (ENOENT);
1203 	}
1204 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1205 
1206 		spa_activate(spa);
1207 
1208 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1209 
1210 		if (error == EBADF) {
1211 			/*
1212 			 * If vdev_validate() returns failure (indicated by
1213 			 * EBADF), it indicates that one of the vdevs indicates
1214 			 * that the pool has been exported or destroyed.  If
1215 			 * this is the case, the config cache is out of sync and
1216 			 * we should remove the pool from the namespace.
1217 			 */
1218 			zfs_post_ok(spa, NULL);
1219 			spa_unload(spa);
1220 			spa_deactivate(spa);
1221 			spa_remove(spa);
1222 			spa_config_sync();
1223 			if (locked)
1224 				mutex_exit(&spa_namespace_lock);
1225 			return (ENOENT);
1226 		}
1227 
1228 		if (error) {
1229 			/*
1230 			 * We can't open the pool, but we still have useful
1231 			 * information: the state of each vdev after the
1232 			 * attempted vdev_open().  Return this to the user.
1233 			 */
1234 			if (config != NULL && spa->spa_root_vdev != NULL) {
1235 				spa_config_enter(spa, RW_READER, FTAG);
1236 				*config = spa_config_generate(spa, NULL, -1ULL,
1237 				    B_TRUE);
1238 				spa_config_exit(spa, FTAG);
1239 			}
1240 			spa_unload(spa);
1241 			spa_deactivate(spa);
1242 			spa->spa_last_open_failed = B_TRUE;
1243 			if (locked)
1244 				mutex_exit(&spa_namespace_lock);
1245 			*spapp = NULL;
1246 			return (error);
1247 		} else {
1248 			zfs_post_ok(spa, NULL);
1249 			spa->spa_last_open_failed = B_FALSE;
1250 		}
1251 
1252 		loaded = B_TRUE;
1253 	}
1254 
1255 	spa_open_ref(spa, tag);
1256 
1257 	/*
1258 	 * If we just loaded the pool, resilver anything that's out of date.
1259 	 */
1260 	if (loaded && (spa_mode & FWRITE))
1261 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1262 
1263 	if (locked)
1264 		mutex_exit(&spa_namespace_lock);
1265 
1266 	*spapp = spa;
1267 
1268 	if (config != NULL) {
1269 		spa_config_enter(spa, RW_READER, FTAG);
1270 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1271 		spa_config_exit(spa, FTAG);
1272 	}
1273 
1274 	return (0);
1275 }
1276 
1277 int
1278 spa_open(const char *name, spa_t **spapp, void *tag)
1279 {
1280 	return (spa_open_common(name, spapp, tag, NULL));
1281 }
1282 
1283 /*
1284  * Lookup the given spa_t, incrementing the inject count in the process,
1285  * preventing it from being exported or destroyed.
1286  */
1287 spa_t *
1288 spa_inject_addref(char *name)
1289 {
1290 	spa_t *spa;
1291 
1292 	mutex_enter(&spa_namespace_lock);
1293 	if ((spa = spa_lookup(name)) == NULL) {
1294 		mutex_exit(&spa_namespace_lock);
1295 		return (NULL);
1296 	}
1297 	spa->spa_inject_ref++;
1298 	mutex_exit(&spa_namespace_lock);
1299 
1300 	return (spa);
1301 }
1302 
1303 void
1304 spa_inject_delref(spa_t *spa)
1305 {
1306 	mutex_enter(&spa_namespace_lock);
1307 	spa->spa_inject_ref--;
1308 	mutex_exit(&spa_namespace_lock);
1309 }
1310 
1311 static void
1312 spa_add_spares(spa_t *spa, nvlist_t *config)
1313 {
1314 	nvlist_t **spares;
1315 	uint_t i, nspares;
1316 	nvlist_t *nvroot;
1317 	uint64_t guid;
1318 	vdev_stat_t *vs;
1319 	uint_t vsc;
1320 	uint64_t pool;
1321 
1322 	if (spa->spa_nspares == 0)
1323 		return;
1324 
1325 	VERIFY(nvlist_lookup_nvlist(config,
1326 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1327 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1328 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1329 	if (nspares != 0) {
1330 		VERIFY(nvlist_add_nvlist_array(nvroot,
1331 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1332 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1333 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1334 
1335 		/*
1336 		 * Go through and find any spares which have since been
1337 		 * repurposed as an active spare.  If this is the case, update
1338 		 * their status appropriately.
1339 		 */
1340 		for (i = 0; i < nspares; i++) {
1341 			VERIFY(nvlist_lookup_uint64(spares[i],
1342 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1343 			if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
1344 				VERIFY(nvlist_lookup_uint64_array(
1345 				    spares[i], ZPOOL_CONFIG_STATS,
1346 				    (uint64_t **)&vs, &vsc) == 0);
1347 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1348 				vs->vs_aux = VDEV_AUX_SPARED;
1349 			}
1350 		}
1351 	}
1352 }
1353 
1354 int
1355 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1356 {
1357 	int error;
1358 	spa_t *spa;
1359 
1360 	*config = NULL;
1361 	error = spa_open_common(name, &spa, FTAG, config);
1362 
1363 	if (spa && *config != NULL) {
1364 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1365 		    spa_get_errlog_size(spa)) == 0);
1366 
1367 		spa_add_spares(spa, *config);
1368 	}
1369 
1370 	/*
1371 	 * We want to get the alternate root even for faulted pools, so we cheat
1372 	 * and call spa_lookup() directly.
1373 	 */
1374 	if (altroot) {
1375 		if (spa == NULL) {
1376 			mutex_enter(&spa_namespace_lock);
1377 			spa = spa_lookup(name);
1378 			if (spa)
1379 				spa_altroot(spa, altroot, buflen);
1380 			else
1381 				altroot[0] = '\0';
1382 			spa = NULL;
1383 			mutex_exit(&spa_namespace_lock);
1384 		} else {
1385 			spa_altroot(spa, altroot, buflen);
1386 		}
1387 	}
1388 
1389 	if (spa != NULL)
1390 		spa_close(spa, FTAG);
1391 
1392 	return (error);
1393 }
1394 
1395 /*
1396  * Validate that the 'spares' array is well formed.  We must have an array of
1397  * nvlists, each which describes a valid leaf vdev.  If this is an import (mode
1398  * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long
1399  * as they are well-formed.
1400  */
1401 static int
1402 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1403 {
1404 	nvlist_t **spares;
1405 	uint_t i, nspares;
1406 	vdev_t *vd;
1407 	int error;
1408 
1409 	/*
1410 	 * It's acceptable to have no spares specified.
1411 	 */
1412 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1413 	    &spares, &nspares) != 0)
1414 		return (0);
1415 
1416 	if (nspares == 0)
1417 		return (EINVAL);
1418 
1419 	/*
1420 	 * Make sure the pool is formatted with a version that supports hot
1421 	 * spares.
1422 	 */
1423 	if (spa_version(spa) < SPA_VERSION_SPARES)
1424 		return (ENOTSUP);
1425 
1426 	/*
1427 	 * Set the pending spare list so we correctly handle device in-use
1428 	 * checking.
1429 	 */
1430 	spa->spa_pending_spares = spares;
1431 	spa->spa_pending_nspares = nspares;
1432 
1433 	for (i = 0; i < nspares; i++) {
1434 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
1435 		    mode)) != 0)
1436 			goto out;
1437 
1438 		if (!vd->vdev_ops->vdev_op_leaf) {
1439 			vdev_free(vd);
1440 			error = EINVAL;
1441 			goto out;
1442 		}
1443 
1444 		vd->vdev_top = vd;
1445 
1446 		if ((error = vdev_open(vd)) == 0 &&
1447 		    (error = vdev_label_init(vd, crtxg,
1448 		    VDEV_LABEL_SPARE)) == 0) {
1449 			VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
1450 			    vd->vdev_guid) == 0);
1451 		}
1452 
1453 		vdev_free(vd);
1454 
1455 		if (error && mode != VDEV_ALLOC_SPARE)
1456 			goto out;
1457 		else
1458 			error = 0;
1459 	}
1460 
1461 out:
1462 	spa->spa_pending_spares = NULL;
1463 	spa->spa_pending_nspares = 0;
1464 	return (error);
1465 }
1466 
1467 /*
1468  * Pool Creation
1469  */
1470 int
1471 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1472     const char *history_str)
1473 {
1474 	spa_t *spa;
1475 	char *altroot = NULL;
1476 	vdev_t *rvd;
1477 	dsl_pool_t *dp;
1478 	dmu_tx_t *tx;
1479 	int c, error = 0;
1480 	uint64_t txg = TXG_INITIAL;
1481 	nvlist_t **spares;
1482 	uint_t nspares;
1483 	uint64_t version;
1484 
1485 	/*
1486 	 * If this pool already exists, return failure.
1487 	 */
1488 	mutex_enter(&spa_namespace_lock);
1489 	if (spa_lookup(pool) != NULL) {
1490 		mutex_exit(&spa_namespace_lock);
1491 		return (EEXIST);
1492 	}
1493 
1494 	/*
1495 	 * Allocate a new spa_t structure.
1496 	 */
1497 	(void) nvlist_lookup_string(props,
1498 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1499 	spa = spa_add(pool, altroot);
1500 	spa_activate(spa);
1501 
1502 	spa->spa_uberblock.ub_txg = txg - 1;
1503 
1504 	if (props && (error = spa_prop_validate(spa, props))) {
1505 		spa_unload(spa);
1506 		spa_deactivate(spa);
1507 		spa_remove(spa);
1508 		return (error);
1509 	}
1510 
1511 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
1512 	    &version) != 0)
1513 		version = SPA_VERSION;
1514 	ASSERT(version <= SPA_VERSION);
1515 	spa->spa_uberblock.ub_version = version;
1516 	spa->spa_ubsync = spa->spa_uberblock;
1517 
1518 	/*
1519 	 * Create the root vdev.
1520 	 */
1521 	spa_config_enter(spa, RW_WRITER, FTAG);
1522 
1523 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1524 
1525 	ASSERT(error != 0 || rvd != NULL);
1526 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1527 
1528 	if (error == 0 && rvd->vdev_children == 0)
1529 		error = EINVAL;
1530 
1531 	if (error == 0 &&
1532 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1533 	    (error = spa_validate_spares(spa, nvroot, txg,
1534 	    VDEV_ALLOC_ADD)) == 0) {
1535 		for (c = 0; c < rvd->vdev_children; c++)
1536 			vdev_init(rvd->vdev_child[c], txg);
1537 		vdev_config_dirty(rvd);
1538 	}
1539 
1540 	spa_config_exit(spa, FTAG);
1541 
1542 	if (error != 0) {
1543 		spa_unload(spa);
1544 		spa_deactivate(spa);
1545 		spa_remove(spa);
1546 		mutex_exit(&spa_namespace_lock);
1547 		return (error);
1548 	}
1549 
1550 	/*
1551 	 * Get the list of spares, if specified.
1552 	 */
1553 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1554 	    &spares, &nspares) == 0) {
1555 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1556 		    KM_SLEEP) == 0);
1557 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1558 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1559 		spa_config_enter(spa, RW_WRITER, FTAG);
1560 		spa_load_spares(spa);
1561 		spa_config_exit(spa, FTAG);
1562 		spa->spa_sync_spares = B_TRUE;
1563 	}
1564 
1565 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1566 	spa->spa_meta_objset = dp->dp_meta_objset;
1567 
1568 	tx = dmu_tx_create_assigned(dp, txg);
1569 
1570 	/*
1571 	 * Create the pool config object.
1572 	 */
1573 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1574 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1575 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1576 
1577 	if (zap_add(spa->spa_meta_objset,
1578 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1579 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1580 		cmn_err(CE_PANIC, "failed to add pool config");
1581 	}
1582 
1583 	/* Newly created pools with the right version are always deflated. */
1584 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
1585 		spa->spa_deflate = TRUE;
1586 		if (zap_add(spa->spa_meta_objset,
1587 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1588 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1589 			cmn_err(CE_PANIC, "failed to add deflate");
1590 		}
1591 	}
1592 
1593 	/*
1594 	 * Create the deferred-free bplist object.  Turn off compression
1595 	 * because sync-to-convergence takes longer if the blocksize
1596 	 * keeps changing.
1597 	 */
1598 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1599 	    1 << 14, tx);
1600 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1601 	    ZIO_COMPRESS_OFF, tx);
1602 
1603 	if (zap_add(spa->spa_meta_objset,
1604 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1605 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1606 		cmn_err(CE_PANIC, "failed to add bplist");
1607 	}
1608 
1609 	/*
1610 	 * Create the pool's history object.
1611 	 */
1612 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
1613 		spa_history_create_obj(spa, tx);
1614 
1615 	/*
1616 	 * Set pool properties.
1617 	 */
1618 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
1619 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1620 	spa->spa_temporary = zpool_prop_default_numeric(ZPOOL_PROP_TEMPORARY);
1621 	if (props)
1622 		spa_sync_props(spa, props, CRED(), tx);
1623 
1624 	dmu_tx_commit(tx);
1625 
1626 	spa->spa_sync_on = B_TRUE;
1627 	txg_sync_start(spa->spa_dsl_pool);
1628 
1629 	/*
1630 	 * We explicitly wait for the first transaction to complete so that our
1631 	 * bean counters are appropriately updated.
1632 	 */
1633 	txg_wait_synced(spa->spa_dsl_pool, txg);
1634 
1635 	spa_config_sync();
1636 
1637 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
1638 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
1639 
1640 	mutex_exit(&spa_namespace_lock);
1641 
1642 	return (0);
1643 }
1644 
1645 /*
1646  * Import the given pool into the system.  We set up the necessary spa_t and
1647  * then call spa_load() to do the dirty work.
1648  */
1649 int
1650 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
1651 {
1652 	spa_t *spa;
1653 	char *altroot = NULL;
1654 	int error;
1655 	nvlist_t *nvroot;
1656 	nvlist_t **spares;
1657 	uint_t nspares;
1658 
1659 	/*
1660 	 * If a pool with this name exists, return failure.
1661 	 */
1662 	mutex_enter(&spa_namespace_lock);
1663 	if (spa_lookup(pool) != NULL) {
1664 		mutex_exit(&spa_namespace_lock);
1665 		return (EEXIST);
1666 	}
1667 
1668 	/*
1669 	 * Create and initialize the spa structure.
1670 	 */
1671 	(void) nvlist_lookup_string(props,
1672 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1673 	spa = spa_add(pool, altroot);
1674 	spa_activate(spa);
1675 
1676 	/*
1677 	 * Pass off the heavy lifting to spa_load().
1678 	 * Pass TRUE for mosconfig because the user-supplied config
1679 	 * is actually the one to trust when doing an import.
1680 	 */
1681 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1682 
1683 	spa_config_enter(spa, RW_WRITER, FTAG);
1684 	/*
1685 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1686 	 * and conflicts with spa_has_spare().
1687 	 */
1688 	if (spa->spa_sparelist) {
1689 		nvlist_free(spa->spa_sparelist);
1690 		spa->spa_sparelist = NULL;
1691 		spa_load_spares(spa);
1692 	}
1693 
1694 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1695 	    &nvroot) == 0);
1696 	if (error == 0) {
1697 		error = spa_validate_spares(spa, nvroot, -1ULL,
1698 		    VDEV_ALLOC_SPARE);
1699 	}
1700 	spa_config_exit(spa, FTAG);
1701 
1702 	if (error != 0 || (props && (error = spa_prop_set(spa, props)))) {
1703 		spa_unload(spa);
1704 		spa_deactivate(spa);
1705 		spa_remove(spa);
1706 		mutex_exit(&spa_namespace_lock);
1707 		return (error);
1708 	}
1709 
1710 	/*
1711 	 * Override any spares as specified by the user, as these may have
1712 	 * correct device names/devids, etc.
1713 	 */
1714 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1715 	    &spares, &nspares) == 0) {
1716 		if (spa->spa_sparelist)
1717 			VERIFY(nvlist_remove(spa->spa_sparelist,
1718 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1719 		else
1720 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1721 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1722 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1723 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1724 		spa_config_enter(spa, RW_WRITER, FTAG);
1725 		spa_load_spares(spa);
1726 		spa_config_exit(spa, FTAG);
1727 		spa->spa_sync_spares = B_TRUE;
1728 	}
1729 
1730 	/*
1731 	 * Update the config cache to include the newly-imported pool.
1732 	 */
1733 	if (spa_mode & FWRITE)
1734 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1735 
1736 	/*
1737 	 * Resilver anything that's out of date.
1738 	 */
1739 	if (spa_mode & FWRITE)
1740 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1741 
1742 	mutex_exit(&spa_namespace_lock);
1743 
1744 	return (0);
1745 }
1746 
1747 /*
1748  * This (illegal) pool name is used when temporarily importing a spa_t in order
1749  * to get the vdev stats associated with the imported devices.
1750  */
1751 #define	TRYIMPORT_NAME	"$import"
1752 
1753 nvlist_t *
1754 spa_tryimport(nvlist_t *tryconfig)
1755 {
1756 	nvlist_t *config = NULL;
1757 	char *poolname;
1758 	spa_t *spa;
1759 	uint64_t state;
1760 
1761 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1762 		return (NULL);
1763 
1764 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1765 		return (NULL);
1766 
1767 	/*
1768 	 * Create and initialize the spa structure.
1769 	 */
1770 	mutex_enter(&spa_namespace_lock);
1771 	spa = spa_add(TRYIMPORT_NAME, NULL);
1772 	spa_activate(spa);
1773 
1774 	/*
1775 	 * Pass off the heavy lifting to spa_load().
1776 	 * Pass TRUE for mosconfig because the user-supplied config
1777 	 * is actually the one to trust when doing an import.
1778 	 */
1779 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1780 
1781 	/*
1782 	 * If 'tryconfig' was at least parsable, return the current config.
1783 	 */
1784 	if (spa->spa_root_vdev != NULL) {
1785 		spa_config_enter(spa, RW_READER, FTAG);
1786 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1787 		spa_config_exit(spa, FTAG);
1788 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1789 		    poolname) == 0);
1790 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1791 		    state) == 0);
1792 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
1793 		    spa->spa_uberblock.ub_timestamp) == 0);
1794 
1795 		/*
1796 		 * Add the list of hot spares.
1797 		 */
1798 		spa_add_spares(spa, config);
1799 	}
1800 
1801 	spa_unload(spa);
1802 	spa_deactivate(spa);
1803 	spa_remove(spa);
1804 	mutex_exit(&spa_namespace_lock);
1805 
1806 	return (config);
1807 }
1808 
1809 /*
1810  * Pool export/destroy
1811  *
1812  * The act of destroying or exporting a pool is very simple.  We make sure there
1813  * is no more pending I/O and any references to the pool are gone.  Then, we
1814  * update the pool state and sync all the labels to disk, removing the
1815  * configuration from the cache afterwards.
1816  */
1817 static int
1818 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1819 {
1820 	spa_t *spa;
1821 
1822 	if (oldconfig)
1823 		*oldconfig = NULL;
1824 
1825 	if (!(spa_mode & FWRITE))
1826 		return (EROFS);
1827 
1828 	mutex_enter(&spa_namespace_lock);
1829 	if ((spa = spa_lookup(pool)) == NULL) {
1830 		mutex_exit(&spa_namespace_lock);
1831 		return (ENOENT);
1832 	}
1833 
1834 	/*
1835 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1836 	 * reacquire the namespace lock, and see if we can export.
1837 	 */
1838 	spa_open_ref(spa, FTAG);
1839 	mutex_exit(&spa_namespace_lock);
1840 	spa_async_suspend(spa);
1841 	mutex_enter(&spa_namespace_lock);
1842 	spa_close(spa, FTAG);
1843 
1844 	/*
1845 	 * The pool will be in core if it's openable,
1846 	 * in which case we can modify its state.
1847 	 */
1848 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1849 		/*
1850 		 * Objsets may be open only because they're dirty, so we
1851 		 * have to force it to sync before checking spa_refcnt.
1852 		 */
1853 		spa_scrub_suspend(spa);
1854 		txg_wait_synced(spa->spa_dsl_pool, 0);
1855 
1856 		/*
1857 		 * A pool cannot be exported or destroyed if there are active
1858 		 * references.  If we are resetting a pool, allow references by
1859 		 * fault injection handlers.
1860 		 */
1861 		if (!spa_refcount_zero(spa) ||
1862 		    (spa->spa_inject_ref != 0 &&
1863 		    new_state != POOL_STATE_UNINITIALIZED)) {
1864 			spa_scrub_resume(spa);
1865 			spa_async_resume(spa);
1866 			mutex_exit(&spa_namespace_lock);
1867 			return (EBUSY);
1868 		}
1869 
1870 		spa_scrub_resume(spa);
1871 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1872 
1873 		/*
1874 		 * We want this to be reflected on every label,
1875 		 * so mark them all dirty.  spa_unload() will do the
1876 		 * final sync that pushes these changes out.
1877 		 */
1878 		if (new_state != POOL_STATE_UNINITIALIZED) {
1879 			spa_config_enter(spa, RW_WRITER, FTAG);
1880 			spa->spa_state = new_state;
1881 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1882 			vdev_config_dirty(spa->spa_root_vdev);
1883 			spa_config_exit(spa, FTAG);
1884 		}
1885 	}
1886 
1887 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
1888 
1889 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1890 		spa_unload(spa);
1891 		spa_deactivate(spa);
1892 	}
1893 
1894 	if (oldconfig && spa->spa_config)
1895 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1896 
1897 	if (new_state != POOL_STATE_UNINITIALIZED) {
1898 		spa_remove(spa);
1899 		spa_config_sync();
1900 	}
1901 	mutex_exit(&spa_namespace_lock);
1902 
1903 	return (0);
1904 }
1905 
1906 /*
1907  * Destroy a storage pool.
1908  */
1909 int
1910 spa_destroy(char *pool)
1911 {
1912 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1913 }
1914 
1915 /*
1916  * Export a storage pool.
1917  */
1918 int
1919 spa_export(char *pool, nvlist_t **oldconfig)
1920 {
1921 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1922 }
1923 
1924 /*
1925  * Similar to spa_export(), this unloads the spa_t without actually removing it
1926  * from the namespace in any way.
1927  */
1928 int
1929 spa_reset(char *pool)
1930 {
1931 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1932 }
1933 
1934 
1935 /*
1936  * ==========================================================================
1937  * Device manipulation
1938  * ==========================================================================
1939  */
1940 
1941 /*
1942  * Add a device to a storage pool.
1943  */
1944 int
1945 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1946 {
1947 	uint64_t txg;
1948 	int c, error;
1949 	vdev_t *rvd = spa->spa_root_vdev;
1950 	vdev_t *vd, *tvd;
1951 	nvlist_t **spares;
1952 	uint_t i, nspares;
1953 
1954 	txg = spa_vdev_enter(spa);
1955 
1956 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1957 	    VDEV_ALLOC_ADD)) != 0)
1958 		return (spa_vdev_exit(spa, NULL, txg, error));
1959 
1960 	spa->spa_pending_vdev = vd;
1961 
1962 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1963 	    &spares, &nspares) != 0)
1964 		nspares = 0;
1965 
1966 	if (vd->vdev_children == 0 && nspares == 0) {
1967 		spa->spa_pending_vdev = NULL;
1968 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1969 	}
1970 
1971 	if (vd->vdev_children != 0) {
1972 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
1973 			spa->spa_pending_vdev = NULL;
1974 			return (spa_vdev_exit(spa, vd, txg, error));
1975 		}
1976 	}
1977 
1978 	/*
1979 	 * We must validate the spares after checking the children.  Otherwise,
1980 	 * vdev_inuse() will blindly overwrite the spare.
1981 	 */
1982 	if ((error = spa_validate_spares(spa, nvroot, txg,
1983 	    VDEV_ALLOC_ADD)) != 0) {
1984 		spa->spa_pending_vdev = NULL;
1985 		return (spa_vdev_exit(spa, vd, txg, error));
1986 	}
1987 
1988 	spa->spa_pending_vdev = NULL;
1989 
1990 	/*
1991 	 * Transfer each new top-level vdev from vd to rvd.
1992 	 */
1993 	for (c = 0; c < vd->vdev_children; c++) {
1994 		tvd = vd->vdev_child[c];
1995 		vdev_remove_child(vd, tvd);
1996 		tvd->vdev_id = rvd->vdev_children;
1997 		vdev_add_child(rvd, tvd);
1998 		vdev_config_dirty(tvd);
1999 	}
2000 
2001 	if (nspares != 0) {
2002 		if (spa->spa_sparelist != NULL) {
2003 			nvlist_t **oldspares;
2004 			uint_t oldnspares;
2005 			nvlist_t **newspares;
2006 
2007 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2008 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
2009 
2010 			newspares = kmem_alloc(sizeof (void *) *
2011 			    (nspares + oldnspares), KM_SLEEP);
2012 			for (i = 0; i < oldnspares; i++)
2013 				VERIFY(nvlist_dup(oldspares[i],
2014 				    &newspares[i], KM_SLEEP) == 0);
2015 			for (i = 0; i < nspares; i++)
2016 				VERIFY(nvlist_dup(spares[i],
2017 				    &newspares[i + oldnspares],
2018 				    KM_SLEEP) == 0);
2019 
2020 			VERIFY(nvlist_remove(spa->spa_sparelist,
2021 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2022 
2023 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
2024 			    ZPOOL_CONFIG_SPARES, newspares,
2025 			    nspares + oldnspares) == 0);
2026 			for (i = 0; i < oldnspares + nspares; i++)
2027 				nvlist_free(newspares[i]);
2028 			kmem_free(newspares, (oldnspares + nspares) *
2029 			    sizeof (void *));
2030 		} else {
2031 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
2032 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2033 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
2034 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2035 		}
2036 
2037 		spa_load_spares(spa);
2038 		spa->spa_sync_spares = B_TRUE;
2039 	}
2040 
2041 	/*
2042 	 * We have to be careful when adding new vdevs to an existing pool.
2043 	 * If other threads start allocating from these vdevs before we
2044 	 * sync the config cache, and we lose power, then upon reboot we may
2045 	 * fail to open the pool because there are DVAs that the config cache
2046 	 * can't translate.  Therefore, we first add the vdevs without
2047 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2048 	 * and then let spa_config_update() initialize the new metaslabs.
2049 	 *
2050 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2051 	 * if we lose power at any point in this sequence, the remaining
2052 	 * steps will be completed the next time we load the pool.
2053 	 */
2054 	(void) spa_vdev_exit(spa, vd, txg, 0);
2055 
2056 	mutex_enter(&spa_namespace_lock);
2057 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2058 	mutex_exit(&spa_namespace_lock);
2059 
2060 	return (0);
2061 }
2062 
2063 /*
2064  * Attach a device to a mirror.  The arguments are the path to any device
2065  * in the mirror, and the nvroot for the new device.  If the path specifies
2066  * a device that is not mirrored, we automatically insert the mirror vdev.
2067  *
2068  * If 'replacing' is specified, the new device is intended to replace the
2069  * existing device; in this case the two devices are made into their own
2070  * mirror using the 'replacing' vdev, which is functionally identical to
2071  * the mirror vdev (it actually reuses all the same ops) but has a few
2072  * extra rules: you can't attach to it after it's been created, and upon
2073  * completion of resilvering, the first disk (the one being replaced)
2074  * is automatically detached.
2075  */
2076 int
2077 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2078 {
2079 	uint64_t txg, open_txg;
2080 	int error;
2081 	vdev_t *rvd = spa->spa_root_vdev;
2082 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2083 	vdev_ops_t *pvops;
2084 	int is_log;
2085 
2086 	txg = spa_vdev_enter(spa);
2087 
2088 	oldvd = vdev_lookup_by_guid(rvd, guid);
2089 
2090 	if (oldvd == NULL)
2091 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2092 
2093 	if (!oldvd->vdev_ops->vdev_op_leaf)
2094 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2095 
2096 	pvd = oldvd->vdev_parent;
2097 
2098 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2099 	    VDEV_ALLOC_ADD)) != 0)
2100 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2101 
2102 	if (newrootvd->vdev_children != 1)
2103 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2104 
2105 	newvd = newrootvd->vdev_child[0];
2106 
2107 	if (!newvd->vdev_ops->vdev_op_leaf)
2108 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2109 
2110 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2111 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2112 
2113 	/*
2114 	 * Spares can't replace logs
2115 	 */
2116 	is_log = oldvd->vdev_islog;
2117 	if (is_log && newvd->vdev_isspare)
2118 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2119 
2120 	if (!replacing) {
2121 		/*
2122 		 * For attach, the only allowable parent is a mirror or the root
2123 		 * vdev.
2124 		 */
2125 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2126 		    pvd->vdev_ops != &vdev_root_ops)
2127 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2128 
2129 		pvops = &vdev_mirror_ops;
2130 	} else {
2131 		/*
2132 		 * Active hot spares can only be replaced by inactive hot
2133 		 * spares.
2134 		 */
2135 		if (pvd->vdev_ops == &vdev_spare_ops &&
2136 		    pvd->vdev_child[1] == oldvd &&
2137 		    !spa_has_spare(spa, newvd->vdev_guid))
2138 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2139 
2140 		/*
2141 		 * If the source is a hot spare, and the parent isn't already a
2142 		 * spare, then we want to create a new hot spare.  Otherwise, we
2143 		 * want to create a replacing vdev.  The user is not allowed to
2144 		 * attach to a spared vdev child unless the 'isspare' state is
2145 		 * the same (spare replaces spare, non-spare replaces
2146 		 * non-spare).
2147 		 */
2148 		if (pvd->vdev_ops == &vdev_replacing_ops)
2149 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2150 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2151 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2152 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2153 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2154 		    newvd->vdev_isspare)
2155 			pvops = &vdev_spare_ops;
2156 		else
2157 			pvops = &vdev_replacing_ops;
2158 	}
2159 
2160 	/*
2161 	 * Compare the new device size with the replaceable/attachable
2162 	 * device size.
2163 	 */
2164 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2165 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2166 
2167 	/*
2168 	 * The new device cannot have a higher alignment requirement
2169 	 * than the top-level vdev.
2170 	 */
2171 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2172 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2173 
2174 	/*
2175 	 * If this is an in-place replacement, update oldvd's path and devid
2176 	 * to make it distinguishable from newvd, and unopenable from now on.
2177 	 */
2178 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2179 		spa_strfree(oldvd->vdev_path);
2180 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2181 		    KM_SLEEP);
2182 		(void) sprintf(oldvd->vdev_path, "%s/%s",
2183 		    newvd->vdev_path, "old");
2184 		if (oldvd->vdev_devid != NULL) {
2185 			spa_strfree(oldvd->vdev_devid);
2186 			oldvd->vdev_devid = NULL;
2187 		}
2188 	}
2189 
2190 	/*
2191 	 * If the parent is not a mirror, or if we're replacing, insert the new
2192 	 * mirror/replacing/spare vdev above oldvd.
2193 	 */
2194 	if (pvd->vdev_ops != pvops)
2195 		pvd = vdev_add_parent(oldvd, pvops);
2196 
2197 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
2198 	ASSERT(pvd->vdev_ops == pvops);
2199 	ASSERT(oldvd->vdev_parent == pvd);
2200 
2201 	/*
2202 	 * Extract the new device from its root and add it to pvd.
2203 	 */
2204 	vdev_remove_child(newrootvd, newvd);
2205 	newvd->vdev_id = pvd->vdev_children;
2206 	vdev_add_child(pvd, newvd);
2207 
2208 	/*
2209 	 * If newvd is smaller than oldvd, but larger than its rsize,
2210 	 * the addition of newvd may have decreased our parent's asize.
2211 	 */
2212 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
2213 
2214 	tvd = newvd->vdev_top;
2215 	ASSERT(pvd->vdev_top == tvd);
2216 	ASSERT(tvd->vdev_parent == rvd);
2217 
2218 	vdev_config_dirty(tvd);
2219 
2220 	/*
2221 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
2222 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
2223 	 */
2224 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
2225 
2226 	mutex_enter(&newvd->vdev_dtl_lock);
2227 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
2228 	    open_txg - TXG_INITIAL + 1);
2229 	mutex_exit(&newvd->vdev_dtl_lock);
2230 
2231 	if (newvd->vdev_isspare)
2232 		spa_spare_activate(newvd);
2233 
2234 	/*
2235 	 * Mark newvd's DTL dirty in this txg.
2236 	 */
2237 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
2238 
2239 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
2240 
2241 	/*
2242 	 * Kick off a resilver to update newvd.  We need to grab the namespace
2243 	 * lock because spa_scrub() needs to post a sysevent with the pool name.
2244 	 */
2245 	mutex_enter(&spa_namespace_lock);
2246 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2247 	mutex_exit(&spa_namespace_lock);
2248 
2249 	return (0);
2250 }
2251 
2252 /*
2253  * Detach a device from a mirror or replacing vdev.
2254  * If 'replace_done' is specified, only detach if the parent
2255  * is a replacing vdev.
2256  */
2257 int
2258 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
2259 {
2260 	uint64_t txg;
2261 	int c, t, error;
2262 	vdev_t *rvd = spa->spa_root_vdev;
2263 	vdev_t *vd, *pvd, *cvd, *tvd;
2264 	boolean_t unspare = B_FALSE;
2265 	uint64_t unspare_guid;
2266 
2267 	txg = spa_vdev_enter(spa);
2268 
2269 	vd = vdev_lookup_by_guid(rvd, guid);
2270 
2271 	if (vd == NULL)
2272 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2273 
2274 	if (!vd->vdev_ops->vdev_op_leaf)
2275 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2276 
2277 	pvd = vd->vdev_parent;
2278 
2279 	/*
2280 	 * If replace_done is specified, only remove this device if it's
2281 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
2282 	 * disk can be removed.
2283 	 */
2284 	if (replace_done) {
2285 		if (pvd->vdev_ops == &vdev_replacing_ops) {
2286 			if (vd->vdev_id != 0)
2287 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2288 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
2289 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2290 		}
2291 	}
2292 
2293 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
2294 	    spa_version(spa) >= SPA_VERSION_SPARES);
2295 
2296 	/*
2297 	 * Only mirror, replacing, and spare vdevs support detach.
2298 	 */
2299 	if (pvd->vdev_ops != &vdev_replacing_ops &&
2300 	    pvd->vdev_ops != &vdev_mirror_ops &&
2301 	    pvd->vdev_ops != &vdev_spare_ops)
2302 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2303 
2304 	/*
2305 	 * If there's only one replica, you can't detach it.
2306 	 */
2307 	if (pvd->vdev_children <= 1)
2308 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
2309 
2310 	/*
2311 	 * If all siblings have non-empty DTLs, this device may have the only
2312 	 * valid copy of the data, which means we cannot safely detach it.
2313 	 *
2314 	 * XXX -- as in the vdev_offline() case, we really want a more
2315 	 * precise DTL check.
2316 	 */
2317 	for (c = 0; c < pvd->vdev_children; c++) {
2318 		uint64_t dirty;
2319 
2320 		cvd = pvd->vdev_child[c];
2321 		if (cvd == vd)
2322 			continue;
2323 		if (vdev_is_dead(cvd))
2324 			continue;
2325 		mutex_enter(&cvd->vdev_dtl_lock);
2326 		dirty = cvd->vdev_dtl_map.sm_space |
2327 		    cvd->vdev_dtl_scrub.sm_space;
2328 		mutex_exit(&cvd->vdev_dtl_lock);
2329 		if (!dirty)
2330 			break;
2331 	}
2332 
2333 	/*
2334 	 * If we are a replacing or spare vdev, then we can always detach the
2335 	 * latter child, as that is how one cancels the operation.
2336 	 */
2337 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
2338 	    c == pvd->vdev_children)
2339 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
2340 
2341 	/*
2342 	 * If we are detaching the original disk from a spare, then it implies
2343 	 * that the spare should become a real disk, and be removed from the
2344 	 * active spare list for the pool.
2345 	 */
2346 	if (pvd->vdev_ops == &vdev_spare_ops &&
2347 	    vd->vdev_id == 0)
2348 		unspare = B_TRUE;
2349 
2350 	/*
2351 	 * Erase the disk labels so the disk can be used for other things.
2352 	 * This must be done after all other error cases are handled,
2353 	 * but before we disembowel vd (so we can still do I/O to it).
2354 	 * But if we can't do it, don't treat the error as fatal --
2355 	 * it may be that the unwritability of the disk is the reason
2356 	 * it's being detached!
2357 	 */
2358 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2359 
2360 	/*
2361 	 * Remove vd from its parent and compact the parent's children.
2362 	 */
2363 	vdev_remove_child(pvd, vd);
2364 	vdev_compact_children(pvd);
2365 
2366 	/*
2367 	 * Remember one of the remaining children so we can get tvd below.
2368 	 */
2369 	cvd = pvd->vdev_child[0];
2370 
2371 	/*
2372 	 * If we need to remove the remaining child from the list of hot spares,
2373 	 * do it now, marking the vdev as no longer a spare in the process.  We
2374 	 * must do this before vdev_remove_parent(), because that can change the
2375 	 * GUID if it creates a new toplevel GUID.
2376 	 */
2377 	if (unspare) {
2378 		ASSERT(cvd->vdev_isspare);
2379 		spa_spare_remove(cvd);
2380 		unspare_guid = cvd->vdev_guid;
2381 	}
2382 
2383 	/*
2384 	 * If the parent mirror/replacing vdev only has one child,
2385 	 * the parent is no longer needed.  Remove it from the tree.
2386 	 */
2387 	if (pvd->vdev_children == 1)
2388 		vdev_remove_parent(cvd);
2389 
2390 	/*
2391 	 * We don't set tvd until now because the parent we just removed
2392 	 * may have been the previous top-level vdev.
2393 	 */
2394 	tvd = cvd->vdev_top;
2395 	ASSERT(tvd->vdev_parent == rvd);
2396 
2397 	/*
2398 	 * Reevaluate the parent vdev state.
2399 	 */
2400 	vdev_propagate_state(cvd);
2401 
2402 	/*
2403 	 * If the device we just detached was smaller than the others, it may be
2404 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
2405 	 * can't fail because the existing metaslabs are already in core, so
2406 	 * there's nothing to read from disk.
2407 	 */
2408 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
2409 
2410 	vdev_config_dirty(tvd);
2411 
2412 	/*
2413 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
2414 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
2415 	 * But first make sure we're not on any *other* txg's DTL list, to
2416 	 * prevent vd from being accessed after it's freed.
2417 	 */
2418 	for (t = 0; t < TXG_SIZE; t++)
2419 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
2420 	vd->vdev_detached = B_TRUE;
2421 	vdev_dirty(tvd, VDD_DTL, vd, txg);
2422 
2423 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
2424 
2425 	error = spa_vdev_exit(spa, vd, txg, 0);
2426 
2427 	/*
2428 	 * If this was the removal of the original device in a hot spare vdev,
2429 	 * then we want to go through and remove the device from the hot spare
2430 	 * list of every other pool.
2431 	 */
2432 	if (unspare) {
2433 		spa = NULL;
2434 		mutex_enter(&spa_namespace_lock);
2435 		while ((spa = spa_next(spa)) != NULL) {
2436 			if (spa->spa_state != POOL_STATE_ACTIVE)
2437 				continue;
2438 
2439 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
2440 		}
2441 		mutex_exit(&spa_namespace_lock);
2442 	}
2443 
2444 	return (error);
2445 }
2446 
2447 /*
2448  * Remove a device from the pool.  Currently, this supports removing only hot
2449  * spares.
2450  */
2451 int
2452 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2453 {
2454 	vdev_t *vd;
2455 	nvlist_t **spares, *nv, **newspares;
2456 	uint_t i, j, nspares;
2457 	int ret = 0;
2458 
2459 	spa_config_enter(spa, RW_WRITER, FTAG);
2460 
2461 	vd = spa_lookup_by_guid(spa, guid);
2462 
2463 	nv = NULL;
2464 	if (spa->spa_spares != NULL &&
2465 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2466 	    &spares, &nspares) == 0) {
2467 		for (i = 0; i < nspares; i++) {
2468 			uint64_t theguid;
2469 
2470 			VERIFY(nvlist_lookup_uint64(spares[i],
2471 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
2472 			if (theguid == guid) {
2473 				nv = spares[i];
2474 				break;
2475 			}
2476 		}
2477 	}
2478 
2479 	/*
2480 	 * We only support removing a hot spare, and only if it's not currently
2481 	 * in use in this pool.
2482 	 */
2483 	if (nv == NULL && vd == NULL) {
2484 		ret = ENOENT;
2485 		goto out;
2486 	}
2487 
2488 	if (nv == NULL && vd != NULL) {
2489 		ret = ENOTSUP;
2490 		goto out;
2491 	}
2492 
2493 	if (!unspare && nv != NULL && vd != NULL) {
2494 		ret = EBUSY;
2495 		goto out;
2496 	}
2497 
2498 	if (nspares == 1) {
2499 		newspares = NULL;
2500 	} else {
2501 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
2502 		    KM_SLEEP);
2503 		for (i = 0, j = 0; i < nspares; i++) {
2504 			if (spares[i] != nv)
2505 				VERIFY(nvlist_dup(spares[i],
2506 				    &newspares[j++], KM_SLEEP) == 0);
2507 		}
2508 	}
2509 
2510 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2511 	    DATA_TYPE_NVLIST_ARRAY) == 0);
2512 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2513 	    newspares, nspares - 1) == 0);
2514 	for (i = 0; i < nspares - 1; i++)
2515 		nvlist_free(newspares[i]);
2516 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
2517 	spa_load_spares(spa);
2518 	spa->spa_sync_spares = B_TRUE;
2519 
2520 out:
2521 	spa_config_exit(spa, FTAG);
2522 
2523 	return (ret);
2524 }
2525 
2526 /*
2527  * Find any device that's done replacing, or a vdev marked 'unspare' that's
2528  * current spared, so we can detach it.
2529  */
2530 static vdev_t *
2531 spa_vdev_resilver_done_hunt(vdev_t *vd)
2532 {
2533 	vdev_t *newvd, *oldvd;
2534 	int c;
2535 
2536 	for (c = 0; c < vd->vdev_children; c++) {
2537 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
2538 		if (oldvd != NULL)
2539 			return (oldvd);
2540 	}
2541 
2542 	/*
2543 	 * Check for a completed replacement.
2544 	 */
2545 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
2546 		oldvd = vd->vdev_child[0];
2547 		newvd = vd->vdev_child[1];
2548 
2549 		mutex_enter(&newvd->vdev_dtl_lock);
2550 		if (newvd->vdev_dtl_map.sm_space == 0 &&
2551 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2552 			mutex_exit(&newvd->vdev_dtl_lock);
2553 			return (oldvd);
2554 		}
2555 		mutex_exit(&newvd->vdev_dtl_lock);
2556 	}
2557 
2558 	/*
2559 	 * Check for a completed resilver with the 'unspare' flag set.
2560 	 */
2561 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
2562 		newvd = vd->vdev_child[0];
2563 		oldvd = vd->vdev_child[1];
2564 
2565 		mutex_enter(&newvd->vdev_dtl_lock);
2566 		if (newvd->vdev_unspare &&
2567 		    newvd->vdev_dtl_map.sm_space == 0 &&
2568 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2569 			newvd->vdev_unspare = 0;
2570 			mutex_exit(&newvd->vdev_dtl_lock);
2571 			return (oldvd);
2572 		}
2573 		mutex_exit(&newvd->vdev_dtl_lock);
2574 	}
2575 
2576 	return (NULL);
2577 }
2578 
2579 static void
2580 spa_vdev_resilver_done(spa_t *spa)
2581 {
2582 	vdev_t *vd;
2583 	vdev_t *pvd;
2584 	uint64_t guid;
2585 	uint64_t pguid = 0;
2586 
2587 	spa_config_enter(spa, RW_READER, FTAG);
2588 
2589 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
2590 		guid = vd->vdev_guid;
2591 		/*
2592 		 * If we have just finished replacing a hot spared device, then
2593 		 * we need to detach the parent's first child (the original hot
2594 		 * spare) as well.
2595 		 */
2596 		pvd = vd->vdev_parent;
2597 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2598 		    pvd->vdev_id == 0) {
2599 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2600 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2601 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2602 		}
2603 		spa_config_exit(spa, FTAG);
2604 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2605 			return;
2606 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2607 			return;
2608 		spa_config_enter(spa, RW_READER, FTAG);
2609 	}
2610 
2611 	spa_config_exit(spa, FTAG);
2612 }
2613 
2614 /*
2615  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2616  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2617  */
2618 int
2619 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2620 {
2621 	vdev_t *rvd, *vd;
2622 	uint64_t txg;
2623 
2624 	rvd = spa->spa_root_vdev;
2625 
2626 	txg = spa_vdev_enter(spa);
2627 
2628 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2629 		/*
2630 		 * Determine if this is a reference to a hot spare.  In that
2631 		 * case, update the path as stored in the spare list.
2632 		 */
2633 		nvlist_t **spares;
2634 		uint_t i, nspares;
2635 		if (spa->spa_sparelist != NULL) {
2636 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2637 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2638 			for (i = 0; i < nspares; i++) {
2639 				uint64_t theguid;
2640 				VERIFY(nvlist_lookup_uint64(spares[i],
2641 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2642 				if (theguid == guid)
2643 					break;
2644 			}
2645 
2646 			if (i == nspares)
2647 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2648 
2649 			VERIFY(nvlist_add_string(spares[i],
2650 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2651 			spa_load_spares(spa);
2652 			spa->spa_sync_spares = B_TRUE;
2653 			return (spa_vdev_exit(spa, NULL, txg, 0));
2654 		} else {
2655 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2656 		}
2657 	}
2658 
2659 	if (!vd->vdev_ops->vdev_op_leaf)
2660 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2661 
2662 	spa_strfree(vd->vdev_path);
2663 	vd->vdev_path = spa_strdup(newpath);
2664 
2665 	vdev_config_dirty(vd->vdev_top);
2666 
2667 	return (spa_vdev_exit(spa, NULL, txg, 0));
2668 }
2669 
2670 /*
2671  * ==========================================================================
2672  * SPA Scrubbing
2673  * ==========================================================================
2674  */
2675 
2676 static void
2677 spa_scrub_io_done(zio_t *zio)
2678 {
2679 	spa_t *spa = zio->io_spa;
2680 
2681 	arc_data_buf_free(zio->io_data, zio->io_size);
2682 
2683 	mutex_enter(&spa->spa_scrub_lock);
2684 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2685 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2686 		spa->spa_scrub_errors++;
2687 		mutex_enter(&vd->vdev_stat_lock);
2688 		vd->vdev_stat.vs_scrub_errors++;
2689 		mutex_exit(&vd->vdev_stat_lock);
2690 	}
2691 
2692 	if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
2693 		cv_broadcast(&spa->spa_scrub_io_cv);
2694 
2695 	ASSERT(spa->spa_scrub_inflight >= 0);
2696 
2697 	mutex_exit(&spa->spa_scrub_lock);
2698 }
2699 
2700 static void
2701 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2702     zbookmark_t *zb)
2703 {
2704 	size_t size = BP_GET_LSIZE(bp);
2705 	void *data;
2706 
2707 	mutex_enter(&spa->spa_scrub_lock);
2708 	/*
2709 	 * Do not give too much work to vdev(s).
2710 	 */
2711 	while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
2712 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2713 	}
2714 	spa->spa_scrub_inflight++;
2715 	mutex_exit(&spa->spa_scrub_lock);
2716 
2717 	data = arc_data_buf_alloc(size);
2718 
2719 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2720 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2721 
2722 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2723 
2724 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2725 	    spa_scrub_io_done, NULL, priority, flags, zb));
2726 }
2727 
2728 /* ARGSUSED */
2729 static int
2730 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2731 {
2732 	blkptr_t *bp = &bc->bc_blkptr;
2733 	vdev_t *vd = spa->spa_root_vdev;
2734 	dva_t *dva = bp->blk_dva;
2735 	int needs_resilver = B_FALSE;
2736 	int d;
2737 
2738 	if (bc->bc_errno) {
2739 		/*
2740 		 * We can't scrub this block, but we can continue to scrub
2741 		 * the rest of the pool.  Note the error and move along.
2742 		 */
2743 		mutex_enter(&spa->spa_scrub_lock);
2744 		spa->spa_scrub_errors++;
2745 		mutex_exit(&spa->spa_scrub_lock);
2746 
2747 		mutex_enter(&vd->vdev_stat_lock);
2748 		vd->vdev_stat.vs_scrub_errors++;
2749 		mutex_exit(&vd->vdev_stat_lock);
2750 
2751 		return (ERESTART);
2752 	}
2753 
2754 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2755 
2756 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2757 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2758 
2759 		ASSERT(vd != NULL);
2760 
2761 		/*
2762 		 * Keep track of how much data we've examined so that
2763 		 * zpool(1M) status can make useful progress reports.
2764 		 */
2765 		mutex_enter(&vd->vdev_stat_lock);
2766 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2767 		mutex_exit(&vd->vdev_stat_lock);
2768 
2769 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2770 			if (DVA_GET_GANG(&dva[d])) {
2771 				/*
2772 				 * Gang members may be spread across multiple
2773 				 * vdevs, so the best we can do is look at the
2774 				 * pool-wide DTL.
2775 				 * XXX -- it would be better to change our
2776 				 * allocation policy to ensure that this can't
2777 				 * happen.
2778 				 */
2779 				vd = spa->spa_root_vdev;
2780 			}
2781 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2782 			    bp->blk_birth, 1))
2783 				needs_resilver = B_TRUE;
2784 		}
2785 	}
2786 
2787 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2788 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2789 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2790 	else if (needs_resilver)
2791 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2792 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2793 
2794 	return (0);
2795 }
2796 
2797 static void
2798 spa_scrub_thread(spa_t *spa)
2799 {
2800 	callb_cpr_t cprinfo;
2801 	traverse_handle_t *th = spa->spa_scrub_th;
2802 	vdev_t *rvd = spa->spa_root_vdev;
2803 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2804 	int error = 0;
2805 	boolean_t complete;
2806 
2807 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2808 
2809 	/*
2810 	 * If we're restarting due to a snapshot create/delete,
2811 	 * wait for that to complete.
2812 	 */
2813 	txg_wait_synced(spa_get_dsl(spa), 0);
2814 
2815 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2816 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2817 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2818 
2819 	spa_config_enter(spa, RW_WRITER, FTAG);
2820 	vdev_reopen(rvd);		/* purge all vdev caches */
2821 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2822 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2823 	spa_config_exit(spa, FTAG);
2824 
2825 	mutex_enter(&spa->spa_scrub_lock);
2826 	spa->spa_scrub_errors = 0;
2827 	spa->spa_scrub_active = 1;
2828 	ASSERT(spa->spa_scrub_inflight == 0);
2829 
2830 	while (!spa->spa_scrub_stop) {
2831 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2832 		while (spa->spa_scrub_suspended) {
2833 			spa->spa_scrub_active = 0;
2834 			cv_broadcast(&spa->spa_scrub_cv);
2835 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2836 			spa->spa_scrub_active = 1;
2837 		}
2838 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2839 
2840 		if (spa->spa_scrub_restart_txg != 0)
2841 			break;
2842 
2843 		mutex_exit(&spa->spa_scrub_lock);
2844 		error = traverse_more(th);
2845 		mutex_enter(&spa->spa_scrub_lock);
2846 		if (error != EAGAIN)
2847 			break;
2848 	}
2849 
2850 	while (spa->spa_scrub_inflight)
2851 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2852 
2853 	spa->spa_scrub_active = 0;
2854 	cv_broadcast(&spa->spa_scrub_cv);
2855 
2856 	mutex_exit(&spa->spa_scrub_lock);
2857 
2858 	spa_config_enter(spa, RW_WRITER, FTAG);
2859 
2860 	mutex_enter(&spa->spa_scrub_lock);
2861 
2862 	/*
2863 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2864 	 * AND the spa config lock to synchronize with any config changes
2865 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2866 	 */
2867 	if (spa->spa_scrub_restart_txg != 0)
2868 		error = ERESTART;
2869 
2870 	if (spa->spa_scrub_stop)
2871 		error = EINTR;
2872 
2873 	/*
2874 	 * Even if there were uncorrectable errors, we consider the scrub
2875 	 * completed.  The downside is that if there is a transient error during
2876 	 * a resilver, we won't resilver the data properly to the target.  But
2877 	 * if the damage is permanent (more likely) we will resilver forever,
2878 	 * which isn't really acceptable.  Since there is enough information for
2879 	 * the user to know what has failed and why, this seems like a more
2880 	 * tractable approach.
2881 	 */
2882 	complete = (error == 0);
2883 
2884 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2885 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2886 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2887 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2888 
2889 	mutex_exit(&spa->spa_scrub_lock);
2890 
2891 	/*
2892 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2893 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2894 	 */
2895 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2896 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2897 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2898 	spa_errlog_rotate(spa);
2899 
2900 	if (scrub_type == POOL_SCRUB_RESILVER && complete)
2901 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH);
2902 
2903 	spa_config_exit(spa, FTAG);
2904 
2905 	mutex_enter(&spa->spa_scrub_lock);
2906 
2907 	/*
2908 	 * We may have finished replacing a device.
2909 	 * Let the async thread assess this and handle the detach.
2910 	 */
2911 	spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
2912 
2913 	/*
2914 	 * If we were told to restart, our final act is to start a new scrub.
2915 	 */
2916 	if (error == ERESTART)
2917 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2918 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2919 
2920 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2921 	spa->spa_scrub_active = 0;
2922 	spa->spa_scrub_thread = NULL;
2923 	cv_broadcast(&spa->spa_scrub_cv);
2924 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2925 	thread_exit();
2926 }
2927 
2928 void
2929 spa_scrub_suspend(spa_t *spa)
2930 {
2931 	mutex_enter(&spa->spa_scrub_lock);
2932 	spa->spa_scrub_suspended++;
2933 	while (spa->spa_scrub_active) {
2934 		cv_broadcast(&spa->spa_scrub_cv);
2935 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2936 	}
2937 	while (spa->spa_scrub_inflight)
2938 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2939 	mutex_exit(&spa->spa_scrub_lock);
2940 }
2941 
2942 void
2943 spa_scrub_resume(spa_t *spa)
2944 {
2945 	mutex_enter(&spa->spa_scrub_lock);
2946 	ASSERT(spa->spa_scrub_suspended != 0);
2947 	if (--spa->spa_scrub_suspended == 0)
2948 		cv_broadcast(&spa->spa_scrub_cv);
2949 	mutex_exit(&spa->spa_scrub_lock);
2950 }
2951 
2952 void
2953 spa_scrub_restart(spa_t *spa, uint64_t txg)
2954 {
2955 	/*
2956 	 * Something happened (e.g. snapshot create/delete) that means
2957 	 * we must restart any in-progress scrubs.  The itinerary will
2958 	 * fix this properly.
2959 	 */
2960 	mutex_enter(&spa->spa_scrub_lock);
2961 	spa->spa_scrub_restart_txg = txg;
2962 	mutex_exit(&spa->spa_scrub_lock);
2963 }
2964 
2965 int
2966 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2967 {
2968 	space_seg_t *ss;
2969 	uint64_t mintxg, maxtxg;
2970 	vdev_t *rvd = spa->spa_root_vdev;
2971 
2972 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2973 	ASSERT(!spa_config_held(spa, RW_WRITER));
2974 
2975 	if ((uint_t)type >= POOL_SCRUB_TYPES)
2976 		return (ENOTSUP);
2977 
2978 	mutex_enter(&spa->spa_scrub_lock);
2979 
2980 	/*
2981 	 * If there's a scrub or resilver already in progress, stop it.
2982 	 */
2983 	while (spa->spa_scrub_thread != NULL) {
2984 		/*
2985 		 * Don't stop a resilver unless forced.
2986 		 */
2987 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2988 			mutex_exit(&spa->spa_scrub_lock);
2989 			return (EBUSY);
2990 		}
2991 		spa->spa_scrub_stop = 1;
2992 		cv_broadcast(&spa->spa_scrub_cv);
2993 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2994 	}
2995 
2996 	/*
2997 	 * Terminate the previous traverse.
2998 	 */
2999 	if (spa->spa_scrub_th != NULL) {
3000 		traverse_fini(spa->spa_scrub_th);
3001 		spa->spa_scrub_th = NULL;
3002 	}
3003 
3004 	if (rvd == NULL) {
3005 		ASSERT(spa->spa_scrub_stop == 0);
3006 		ASSERT(spa->spa_scrub_type == type);
3007 		ASSERT(spa->spa_scrub_restart_txg == 0);
3008 		mutex_exit(&spa->spa_scrub_lock);
3009 		return (0);
3010 	}
3011 
3012 	mintxg = TXG_INITIAL - 1;
3013 	maxtxg = spa_last_synced_txg(spa) + 1;
3014 
3015 	mutex_enter(&rvd->vdev_dtl_lock);
3016 
3017 	if (rvd->vdev_dtl_map.sm_space == 0) {
3018 		/*
3019 		 * The pool-wide DTL is empty.
3020 		 * If this is a resilver, there's nothing to do except
3021 		 * check whether any in-progress replacements have completed.
3022 		 */
3023 		if (type == POOL_SCRUB_RESILVER) {
3024 			type = POOL_SCRUB_NONE;
3025 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3026 		}
3027 	} else {
3028 		/*
3029 		 * The pool-wide DTL is non-empty.
3030 		 * If this is a normal scrub, upgrade to a resilver instead.
3031 		 */
3032 		if (type == POOL_SCRUB_EVERYTHING)
3033 			type = POOL_SCRUB_RESILVER;
3034 	}
3035 
3036 	if (type == POOL_SCRUB_RESILVER) {
3037 		/*
3038 		 * Determine the resilvering boundaries.
3039 		 *
3040 		 * Note: (mintxg, maxtxg) is an open interval,
3041 		 * i.e. mintxg and maxtxg themselves are not included.
3042 		 *
3043 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
3044 		 * so we don't claim to resilver a txg that's still changing.
3045 		 */
3046 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
3047 		mintxg = ss->ss_start - 1;
3048 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
3049 		maxtxg = MIN(ss->ss_end, maxtxg);
3050 
3051 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START);
3052 	}
3053 
3054 	mutex_exit(&rvd->vdev_dtl_lock);
3055 
3056 	spa->spa_scrub_stop = 0;
3057 	spa->spa_scrub_type = type;
3058 	spa->spa_scrub_restart_txg = 0;
3059 
3060 	if (type != POOL_SCRUB_NONE) {
3061 		spa->spa_scrub_mintxg = mintxg;
3062 		spa->spa_scrub_maxtxg = maxtxg;
3063 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
3064 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
3065 		    ZIO_FLAG_CANFAIL);
3066 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
3067 		spa->spa_scrub_thread = thread_create(NULL, 0,
3068 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
3069 	}
3070 
3071 	mutex_exit(&spa->spa_scrub_lock);
3072 
3073 	return (0);
3074 }
3075 
3076 /*
3077  * ==========================================================================
3078  * SPA async task processing
3079  * ==========================================================================
3080  */
3081 
3082 static void
3083 spa_async_remove(spa_t *spa, vdev_t *vd)
3084 {
3085 	vdev_t *tvd;
3086 	int c;
3087 
3088 	for (c = 0; c < vd->vdev_children; c++) {
3089 		tvd = vd->vdev_child[c];
3090 		if (tvd->vdev_remove_wanted) {
3091 			tvd->vdev_remove_wanted = 0;
3092 			vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED,
3093 			    VDEV_AUX_NONE);
3094 			vdev_clear(spa, tvd);
3095 			vdev_config_dirty(tvd->vdev_top);
3096 		}
3097 		spa_async_remove(spa, tvd);
3098 	}
3099 }
3100 
3101 static void
3102 spa_async_thread(spa_t *spa)
3103 {
3104 	int tasks;
3105 	uint64_t txg;
3106 
3107 	ASSERT(spa->spa_sync_on);
3108 
3109 	mutex_enter(&spa->spa_async_lock);
3110 	tasks = spa->spa_async_tasks;
3111 	spa->spa_async_tasks = 0;
3112 	mutex_exit(&spa->spa_async_lock);
3113 
3114 	/*
3115 	 * See if the config needs to be updated.
3116 	 */
3117 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3118 		mutex_enter(&spa_namespace_lock);
3119 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3120 		mutex_exit(&spa_namespace_lock);
3121 	}
3122 
3123 	/*
3124 	 * See if any devices need to be marked REMOVED.
3125 	 */
3126 	if (tasks & SPA_ASYNC_REMOVE) {
3127 		txg = spa_vdev_enter(spa);
3128 		spa_async_remove(spa, spa->spa_root_vdev);
3129 		(void) spa_vdev_exit(spa, NULL, txg, 0);
3130 	}
3131 
3132 	/*
3133 	 * If any devices are done replacing, detach them.
3134 	 */
3135 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3136 		spa_vdev_resilver_done(spa);
3137 
3138 	/*
3139 	 * Kick off a scrub.  When starting a RESILVER scrub (or an EVERYTHING
3140 	 * scrub which can become a resilver), we need to hold
3141 	 * spa_namespace_lock() because the sysevent we post via
3142 	 * spa_event_notify() needs to get the name of the pool.
3143 	 */
3144 	if (tasks & SPA_ASYNC_SCRUB) {
3145 		mutex_enter(&spa_namespace_lock);
3146 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
3147 		mutex_exit(&spa_namespace_lock);
3148 	}
3149 
3150 	/*
3151 	 * Kick off a resilver.
3152 	 */
3153 	if (tasks & SPA_ASYNC_RESILVER) {
3154 		mutex_enter(&spa_namespace_lock);
3155 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
3156 		mutex_exit(&spa_namespace_lock);
3157 	}
3158 
3159 	/*
3160 	 * Let the world know that we're done.
3161 	 */
3162 	mutex_enter(&spa->spa_async_lock);
3163 	spa->spa_async_thread = NULL;
3164 	cv_broadcast(&spa->spa_async_cv);
3165 	mutex_exit(&spa->spa_async_lock);
3166 	thread_exit();
3167 }
3168 
3169 void
3170 spa_async_suspend(spa_t *spa)
3171 {
3172 	mutex_enter(&spa->spa_async_lock);
3173 	spa->spa_async_suspended++;
3174 	while (spa->spa_async_thread != NULL)
3175 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3176 	mutex_exit(&spa->spa_async_lock);
3177 }
3178 
3179 void
3180 spa_async_resume(spa_t *spa)
3181 {
3182 	mutex_enter(&spa->spa_async_lock);
3183 	ASSERT(spa->spa_async_suspended != 0);
3184 	spa->spa_async_suspended--;
3185 	mutex_exit(&spa->spa_async_lock);
3186 }
3187 
3188 static void
3189 spa_async_dispatch(spa_t *spa)
3190 {
3191 	mutex_enter(&spa->spa_async_lock);
3192 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3193 	    spa->spa_async_thread == NULL &&
3194 	    rootdir != NULL && !vn_is_readonly(rootdir))
3195 		spa->spa_async_thread = thread_create(NULL, 0,
3196 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3197 	mutex_exit(&spa->spa_async_lock);
3198 }
3199 
3200 void
3201 spa_async_request(spa_t *spa, int task)
3202 {
3203 	mutex_enter(&spa->spa_async_lock);
3204 	spa->spa_async_tasks |= task;
3205 	mutex_exit(&spa->spa_async_lock);
3206 }
3207 
3208 /*
3209  * ==========================================================================
3210  * SPA syncing routines
3211  * ==========================================================================
3212  */
3213 
3214 static void
3215 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3216 {
3217 	bplist_t *bpl = &spa->spa_sync_bplist;
3218 	dmu_tx_t *tx;
3219 	blkptr_t blk;
3220 	uint64_t itor = 0;
3221 	zio_t *zio;
3222 	int error;
3223 	uint8_t c = 1;
3224 
3225 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
3226 
3227 	while (bplist_iterate(bpl, &itor, &blk) == 0)
3228 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
3229 
3230 	error = zio_wait(zio);
3231 	ASSERT3U(error, ==, 0);
3232 
3233 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3234 	bplist_vacate(bpl, tx);
3235 
3236 	/*
3237 	 * Pre-dirty the first block so we sync to convergence faster.
3238 	 * (Usually only the first block is needed.)
3239 	 */
3240 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3241 	dmu_tx_commit(tx);
3242 }
3243 
3244 static void
3245 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3246 {
3247 	char *packed = NULL;
3248 	size_t nvsize = 0;
3249 	dmu_buf_t *db;
3250 
3251 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3252 
3253 	packed = kmem_alloc(nvsize, KM_SLEEP);
3254 
3255 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3256 	    KM_SLEEP) == 0);
3257 
3258 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
3259 
3260 	kmem_free(packed, nvsize);
3261 
3262 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3263 	dmu_buf_will_dirty(db, tx);
3264 	*(uint64_t *)db->db_data = nvsize;
3265 	dmu_buf_rele(db, FTAG);
3266 }
3267 
3268 static void
3269 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
3270 {
3271 	nvlist_t *nvroot;
3272 	nvlist_t **spares;
3273 	int i;
3274 
3275 	if (!spa->spa_sync_spares)
3276 		return;
3277 
3278 	/*
3279 	 * Update the MOS nvlist describing the list of available spares.
3280 	 * spa_validate_spares() will have already made sure this nvlist is
3281 	 * valid and the vdevs are labeled appropriately.
3282 	 */
3283 	if (spa->spa_spares_object == 0) {
3284 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
3285 		    DMU_OT_PACKED_NVLIST, 1 << 14,
3286 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3287 		VERIFY(zap_update(spa->spa_meta_objset,
3288 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
3289 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
3290 	}
3291 
3292 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3293 	if (spa->spa_nspares == 0) {
3294 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3295 		    NULL, 0) == 0);
3296 	} else {
3297 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
3298 		    KM_SLEEP);
3299 		for (i = 0; i < spa->spa_nspares; i++)
3300 			spares[i] = vdev_config_generate(spa,
3301 			    spa->spa_spares[i], B_FALSE, B_TRUE);
3302 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3303 		    spares, spa->spa_nspares) == 0);
3304 		for (i = 0; i < spa->spa_nspares; i++)
3305 			nvlist_free(spares[i]);
3306 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
3307 	}
3308 
3309 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
3310 	nvlist_free(nvroot);
3311 
3312 	spa->spa_sync_spares = B_FALSE;
3313 }
3314 
3315 static void
3316 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3317 {
3318 	nvlist_t *config;
3319 
3320 	if (list_is_empty(&spa->spa_dirty_list))
3321 		return;
3322 
3323 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
3324 
3325 	if (spa->spa_config_syncing)
3326 		nvlist_free(spa->spa_config_syncing);
3327 	spa->spa_config_syncing = config;
3328 
3329 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3330 }
3331 
3332 /*
3333  * Set zpool properties.
3334  */
3335 static void
3336 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3337 {
3338 	spa_t *spa = arg1;
3339 	objset_t *mos = spa->spa_meta_objset;
3340 	nvlist_t *nvp = arg2;
3341 	nvpair_t *elem;
3342 	uint64_t intval;
3343 	char *strval;
3344 	zpool_prop_t prop;
3345 	const char *propname;
3346 	zprop_type_t proptype;
3347 
3348 	elem = NULL;
3349 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3350 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3351 		case ZPOOL_PROP_VERSION:
3352 			/*
3353 			 * Only set version for non-zpool-creation cases
3354 			 * (set/import). spa_create() needs special care
3355 			 * for version setting.
3356 			 */
3357 			if (tx->tx_txg != TXG_INITIAL) {
3358 				VERIFY(nvpair_value_uint64(elem,
3359 				    &intval) == 0);
3360 				ASSERT(intval <= SPA_VERSION);
3361 				ASSERT(intval >= spa_version(spa));
3362 				spa->spa_uberblock.ub_version = intval;
3363 				vdev_config_dirty(spa->spa_root_vdev);
3364 			}
3365 			break;
3366 
3367 		case ZPOOL_PROP_ALTROOT:
3368 			/*
3369 			 * 'altroot' is a non-persistent property. It should
3370 			 * have been set temporarily at creation or import time.
3371 			 */
3372 			ASSERT(spa->spa_root != NULL);
3373 			break;
3374 
3375 		case ZPOOL_PROP_TEMPORARY:
3376 			/*
3377 			 * 'temporary' is a non-persistant property.
3378 			 */
3379 			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3380 			spa->spa_temporary = intval;
3381 			break;
3382 
3383 		default:
3384 			/*
3385 			 * Set pool property values in the poolprops mos object.
3386 			 */
3387 			mutex_enter(&spa->spa_props_lock);
3388 			if (spa->spa_pool_props_object == 0) {
3389 				objset_t *mos = spa->spa_meta_objset;
3390 
3391 				VERIFY((spa->spa_pool_props_object =
3392 				    zap_create(mos, DMU_OT_POOL_PROPS,
3393 				    DMU_OT_NONE, 0, tx)) > 0);
3394 
3395 				VERIFY(zap_update(mos,
3396 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3397 				    8, 1, &spa->spa_pool_props_object, tx)
3398 				    == 0);
3399 			}
3400 			mutex_exit(&spa->spa_props_lock);
3401 
3402 			/* normalize the property name */
3403 			propname = zpool_prop_to_name(prop);
3404 			proptype = zpool_prop_get_type(prop);
3405 
3406 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
3407 				ASSERT(proptype == PROP_TYPE_STRING);
3408 				VERIFY(nvpair_value_string(elem, &strval) == 0);
3409 				VERIFY(zap_update(mos,
3410 				    spa->spa_pool_props_object, propname,
3411 				    1, strlen(strval) + 1, strval, tx) == 0);
3412 
3413 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3414 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3415 
3416 				if (proptype == PROP_TYPE_INDEX) {
3417 					const char *unused;
3418 					VERIFY(zpool_prop_index_to_string(
3419 					    prop, intval, &unused) == 0);
3420 				}
3421 				VERIFY(zap_update(mos,
3422 				    spa->spa_pool_props_object, propname,
3423 				    8, 1, &intval, tx) == 0);
3424 			} else {
3425 				ASSERT(0); /* not allowed */
3426 			}
3427 
3428 			if (prop ==  ZPOOL_PROP_DELEGATION)
3429 				spa->spa_delegation = intval;
3430 
3431 			if (prop == ZPOOL_PROP_BOOTFS)
3432 				spa->spa_bootfs = intval;
3433 		}
3434 
3435 		/* log internal history if this is not a zpool create */
3436 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3437 		    tx->tx_txg != TXG_INITIAL) {
3438 			spa_history_internal_log(LOG_POOL_PROPSET,
3439 			    spa, tx, cr, "%s %lld %s",
3440 			    nvpair_name(elem), intval, spa->spa_name);
3441 		}
3442 	}
3443 }
3444 
3445 /*
3446  * Sync the specified transaction group.  New blocks may be dirtied as
3447  * part of the process, so we iterate until it converges.
3448  */
3449 void
3450 spa_sync(spa_t *spa, uint64_t txg)
3451 {
3452 	dsl_pool_t *dp = spa->spa_dsl_pool;
3453 	objset_t *mos = spa->spa_meta_objset;
3454 	bplist_t *bpl = &spa->spa_sync_bplist;
3455 	vdev_t *rvd = spa->spa_root_vdev;
3456 	vdev_t *vd;
3457 	dmu_tx_t *tx;
3458 	int dirty_vdevs;
3459 
3460 	/*
3461 	 * Lock out configuration changes.
3462 	 */
3463 	spa_config_enter(spa, RW_READER, FTAG);
3464 
3465 	spa->spa_syncing_txg = txg;
3466 	spa->spa_sync_pass = 0;
3467 
3468 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3469 
3470 	tx = dmu_tx_create_assigned(dp, txg);
3471 
3472 	/*
3473 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
3474 	 * set spa_deflate if we have no raid-z vdevs.
3475 	 */
3476 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
3477 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
3478 		int i;
3479 
3480 		for (i = 0; i < rvd->vdev_children; i++) {
3481 			vd = rvd->vdev_child[i];
3482 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3483 				break;
3484 		}
3485 		if (i == rvd->vdev_children) {
3486 			spa->spa_deflate = TRUE;
3487 			VERIFY(0 == zap_add(spa->spa_meta_objset,
3488 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3489 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3490 		}
3491 	}
3492 
3493 	/*
3494 	 * If anything has changed in this txg, push the deferred frees
3495 	 * from the previous txg.  If not, leave them alone so that we
3496 	 * don't generate work on an otherwise idle system.
3497 	 */
3498 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3499 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3500 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
3501 		spa_sync_deferred_frees(spa, txg);
3502 
3503 	/*
3504 	 * Iterate to convergence.
3505 	 */
3506 	do {
3507 		spa->spa_sync_pass++;
3508 
3509 		spa_sync_config_object(spa, tx);
3510 		spa_sync_spares(spa, tx);
3511 		spa_errlog_sync(spa, txg);
3512 		dsl_pool_sync(dp, txg);
3513 
3514 		dirty_vdevs = 0;
3515 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
3516 			vdev_sync(vd, txg);
3517 			dirty_vdevs++;
3518 		}
3519 
3520 		bplist_sync(bpl, tx);
3521 	} while (dirty_vdevs);
3522 
3523 	bplist_close(bpl);
3524 
3525 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
3526 
3527 	/*
3528 	 * Rewrite the vdev configuration (which includes the uberblock)
3529 	 * to commit the transaction group.
3530 	 *
3531 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
3532 	 * Otherwise, pick a random top-level vdev that's known to be
3533 	 * visible in the config cache (see spa_vdev_add() for details).
3534 	 * If the write fails, try the next vdev until we're tried them all.
3535 	 */
3536 	if (!list_is_empty(&spa->spa_dirty_list)) {
3537 		VERIFY(vdev_config_sync(rvd, txg) == 0);
3538 	} else {
3539 		int children = rvd->vdev_children;
3540 		int c0 = spa_get_random(children);
3541 		int c;
3542 
3543 		for (c = 0; c < children; c++) {
3544 			vd = rvd->vdev_child[(c0 + c) % children];
3545 			if (vd->vdev_ms_array == 0)
3546 				continue;
3547 			if (vdev_config_sync(vd, txg) == 0)
3548 				break;
3549 		}
3550 		if (c == children)
3551 			VERIFY(vdev_config_sync(rvd, txg) == 0);
3552 	}
3553 
3554 	dmu_tx_commit(tx);
3555 
3556 	/*
3557 	 * Clear the dirty config list.
3558 	 */
3559 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
3560 		vdev_config_clean(vd);
3561 
3562 	/*
3563 	 * Now that the new config has synced transactionally,
3564 	 * let it become visible to the config cache.
3565 	 */
3566 	if (spa->spa_config_syncing != NULL) {
3567 		spa_config_set(spa, spa->spa_config_syncing);
3568 		spa->spa_config_txg = txg;
3569 		spa->spa_config_syncing = NULL;
3570 	}
3571 
3572 	/*
3573 	 * Make a stable copy of the fully synced uberblock.
3574 	 * We use this as the root for pool traversals.
3575 	 */
3576 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
3577 
3578 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
3579 
3580 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
3581 	spa->spa_traverse_wanted = 0;
3582 	spa->spa_ubsync = spa->spa_uberblock;
3583 	rw_exit(&spa->spa_traverse_lock);
3584 
3585 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
3586 
3587 	/*
3588 	 * Clean up the ZIL records for the synced txg.
3589 	 */
3590 	dsl_pool_zil_clean(dp);
3591 
3592 	/*
3593 	 * Update usable space statistics.
3594 	 */
3595 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
3596 		vdev_sync_done(vd, txg);
3597 
3598 	/*
3599 	 * It had better be the case that we didn't dirty anything
3600 	 * since vdev_config_sync().
3601 	 */
3602 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
3603 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
3604 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
3605 	ASSERT(bpl->bpl_queue == NULL);
3606 
3607 	spa_config_exit(spa, FTAG);
3608 
3609 	/*
3610 	 * If any async tasks have been requested, kick them off.
3611 	 */
3612 	spa_async_dispatch(spa);
3613 }
3614 
3615 /*
3616  * Sync all pools.  We don't want to hold the namespace lock across these
3617  * operations, so we take a reference on the spa_t and drop the lock during the
3618  * sync.
3619  */
3620 void
3621 spa_sync_allpools(void)
3622 {
3623 	spa_t *spa = NULL;
3624 	mutex_enter(&spa_namespace_lock);
3625 	while ((spa = spa_next(spa)) != NULL) {
3626 		if (spa_state(spa) != POOL_STATE_ACTIVE)
3627 			continue;
3628 		spa_open_ref(spa, FTAG);
3629 		mutex_exit(&spa_namespace_lock);
3630 		txg_wait_synced(spa_get_dsl(spa), 0);
3631 		mutex_enter(&spa_namespace_lock);
3632 		spa_close(spa, FTAG);
3633 	}
3634 	mutex_exit(&spa_namespace_lock);
3635 }
3636 
3637 /*
3638  * ==========================================================================
3639  * Miscellaneous routines
3640  * ==========================================================================
3641  */
3642 
3643 /*
3644  * Remove all pools in the system.
3645  */
3646 void
3647 spa_evict_all(void)
3648 {
3649 	spa_t *spa;
3650 
3651 	/*
3652 	 * Remove all cached state.  All pools should be closed now,
3653 	 * so every spa in the AVL tree should be unreferenced.
3654 	 */
3655 	mutex_enter(&spa_namespace_lock);
3656 	while ((spa = spa_next(NULL)) != NULL) {
3657 		/*
3658 		 * Stop async tasks.  The async thread may need to detach
3659 		 * a device that's been replaced, which requires grabbing
3660 		 * spa_namespace_lock, so we must drop it here.
3661 		 */
3662 		spa_open_ref(spa, FTAG);
3663 		mutex_exit(&spa_namespace_lock);
3664 		spa_async_suspend(spa);
3665 		mutex_enter(&spa_namespace_lock);
3666 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
3667 		spa_close(spa, FTAG);
3668 
3669 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3670 			spa_unload(spa);
3671 			spa_deactivate(spa);
3672 		}
3673 		spa_remove(spa);
3674 	}
3675 	mutex_exit(&spa_namespace_lock);
3676 }
3677 
3678 vdev_t *
3679 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
3680 {
3681 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
3682 }
3683 
3684 void
3685 spa_upgrade(spa_t *spa, uint64_t version)
3686 {
3687 	spa_config_enter(spa, RW_WRITER, FTAG);
3688 
3689 	/*
3690 	 * This should only be called for a non-faulted pool, and since a
3691 	 * future version would result in an unopenable pool, this shouldn't be
3692 	 * possible.
3693 	 */
3694 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
3695 	ASSERT(version >= spa->spa_uberblock.ub_version);
3696 
3697 	spa->spa_uberblock.ub_version = version;
3698 	vdev_config_dirty(spa->spa_root_vdev);
3699 
3700 	spa_config_exit(spa, FTAG);
3701 
3702 	txg_wait_synced(spa_get_dsl(spa), 0);
3703 }
3704 
3705 boolean_t
3706 spa_has_spare(spa_t *spa, uint64_t guid)
3707 {
3708 	int i;
3709 	uint64_t spareguid;
3710 
3711 	for (i = 0; i < spa->spa_nspares; i++)
3712 		if (spa->spa_spares[i]->vdev_guid == guid)
3713 			return (B_TRUE);
3714 
3715 	for (i = 0; i < spa->spa_pending_nspares; i++) {
3716 		if (nvlist_lookup_uint64(spa->spa_pending_spares[i],
3717 		    ZPOOL_CONFIG_GUID, &spareguid) == 0 &&
3718 		    spareguid == guid)
3719 			return (B_TRUE);
3720 	}
3721 
3722 	return (B_FALSE);
3723 }
3724 
3725 /*
3726  * Post a sysevent corresponding to the given event.  The 'name' must be one of
3727  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
3728  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
3729  * in the userland libzpool, as we don't want consumers to misinterpret ztest
3730  * or zdb as real changes.
3731  */
3732 void
3733 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
3734 {
3735 #ifdef _KERNEL
3736 	sysevent_t		*ev;
3737 	sysevent_attr_list_t	*attr = NULL;
3738 	sysevent_value_t	value;
3739 	sysevent_id_t		eid;
3740 
3741 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
3742 	    SE_SLEEP);
3743 
3744 	value.value_type = SE_DATA_TYPE_STRING;
3745 	value.value.sv_string = spa_name(spa);
3746 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
3747 		goto done;
3748 
3749 	value.value_type = SE_DATA_TYPE_UINT64;
3750 	value.value.sv_uint64 = spa_guid(spa);
3751 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
3752 		goto done;
3753 
3754 	if (vd) {
3755 		value.value_type = SE_DATA_TYPE_UINT64;
3756 		value.value.sv_uint64 = vd->vdev_guid;
3757 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
3758 		    SE_SLEEP) != 0)
3759 			goto done;
3760 
3761 		if (vd->vdev_path) {
3762 			value.value_type = SE_DATA_TYPE_STRING;
3763 			value.value.sv_string = vd->vdev_path;
3764 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
3765 			    &value, SE_SLEEP) != 0)
3766 				goto done;
3767 		}
3768 	}
3769 
3770 	(void) log_sysevent(ev, SE_SLEEP, &eid);
3771 
3772 done:
3773 	if (attr)
3774 		sysevent_free_attr(attr);
3775 	sysevent_free(ev);
3776 #endif
3777 }
3778