1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * This file contains all the routines used when modifying on-disk SPA state. 28 * This includes opening, importing, destroying, exporting a pool, and syncing a 29 * pool. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa_impl.h> 35 #include <sys/zio.h> 36 #include <sys/zio_checksum.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/ddt.h> 42 #include <sys/vdev_impl.h> 43 #include <sys/metaslab.h> 44 #include <sys/metaslab_impl.h> 45 #include <sys/uberblock_impl.h> 46 #include <sys/txg.h> 47 #include <sys/avl.h> 48 #include <sys/dmu_traverse.h> 49 #include <sys/dmu_objset.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dataset.h> 53 #include <sys/dsl_dir.h> 54 #include <sys/dsl_prop.h> 55 #include <sys/dsl_synctask.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/arc.h> 58 #include <sys/callb.h> 59 #include <sys/systeminfo.h> 60 #include <sys/spa_boot.h> 61 #include <sys/zfs_ioctl.h> 62 #include <sys/dsl_scan.h> 63 64 #ifdef _KERNEL 65 #include <sys/bootprops.h> 66 #include <sys/callb.h> 67 #include <sys/cpupart.h> 68 #include <sys/pool.h> 69 #include <sys/sysdc.h> 70 #include <sys/zone.h> 71 #endif /* _KERNEL */ 72 73 #include "zfs_prop.h" 74 #include "zfs_comutil.h" 75 76 typedef enum zti_modes { 77 zti_mode_fixed, /* value is # of threads (min 1) */ 78 zti_mode_online_percent, /* value is % of online CPUs */ 79 zti_mode_batch, /* cpu-intensive; value is ignored */ 80 zti_mode_null, /* don't create a taskq */ 81 zti_nmodes 82 } zti_modes_t; 83 84 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 85 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 86 #define ZTI_BATCH { zti_mode_batch, 0 } 87 #define ZTI_NULL { zti_mode_null, 0 } 88 89 #define ZTI_ONE ZTI_FIX(1) 90 91 typedef struct zio_taskq_info { 92 enum zti_modes zti_mode; 93 uint_t zti_value; 94 } zio_taskq_info_t; 95 96 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 97 "issue", "issue_high", "intr", "intr_high" 98 }; 99 100 /* 101 * Define the taskq threads for the following I/O types: 102 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 103 */ 104 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 105 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 106 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 107 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 108 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 109 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL }, 110 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 111 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 112 }; 113 114 static dsl_syncfunc_t spa_sync_props; 115 static boolean_t spa_has_active_shared_spare(spa_t *spa); 116 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 117 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 118 char **ereport); 119 static void spa_vdev_resilver_done(spa_t *spa); 120 121 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 122 id_t zio_taskq_psrset_bind = PS_NONE; 123 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 124 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 125 126 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 127 128 /* 129 * This (illegal) pool name is used when temporarily importing a spa_t in order 130 * to get the vdev stats associated with the imported devices. 131 */ 132 #define TRYIMPORT_NAME "$import" 133 134 /* 135 * ========================================================================== 136 * SPA properties routines 137 * ========================================================================== 138 */ 139 140 /* 141 * Add a (source=src, propname=propval) list to an nvlist. 142 */ 143 static void 144 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 145 uint64_t intval, zprop_source_t src) 146 { 147 const char *propname = zpool_prop_to_name(prop); 148 nvlist_t *propval; 149 150 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 151 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 152 153 if (strval != NULL) 154 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 155 else 156 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 157 158 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 159 nvlist_free(propval); 160 } 161 162 /* 163 * Get property values from the spa configuration. 164 */ 165 static void 166 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 167 { 168 uint64_t size; 169 uint64_t alloc; 170 uint64_t cap, version; 171 zprop_source_t src = ZPROP_SRC_NONE; 172 spa_config_dirent_t *dp; 173 174 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 175 176 if (spa->spa_root_vdev != NULL) { 177 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 178 size = metaslab_class_get_space(spa_normal_class(spa)); 179 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 180 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 181 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 182 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 183 size - alloc, src); 184 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 185 (spa_mode(spa) == FREAD), src); 186 187 cap = (size == 0) ? 0 : (alloc * 100 / size); 188 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 189 190 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 191 ddt_get_pool_dedup_ratio(spa), src); 192 193 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 194 spa->spa_root_vdev->vdev_state, src); 195 196 version = spa_version(spa); 197 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 198 src = ZPROP_SRC_DEFAULT; 199 else 200 src = ZPROP_SRC_LOCAL; 201 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 202 } 203 204 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 205 206 if (spa->spa_root != NULL) 207 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 208 0, ZPROP_SRC_LOCAL); 209 210 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 211 if (dp->scd_path == NULL) { 212 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 213 "none", 0, ZPROP_SRC_LOCAL); 214 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 215 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 216 dp->scd_path, 0, ZPROP_SRC_LOCAL); 217 } 218 } 219 } 220 221 /* 222 * Get zpool property values. 223 */ 224 int 225 spa_prop_get(spa_t *spa, nvlist_t **nvp) 226 { 227 objset_t *mos = spa->spa_meta_objset; 228 zap_cursor_t zc; 229 zap_attribute_t za; 230 int err; 231 232 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 233 234 mutex_enter(&spa->spa_props_lock); 235 236 /* 237 * Get properties from the spa config. 238 */ 239 spa_prop_get_config(spa, nvp); 240 241 /* If no pool property object, no more prop to get. */ 242 if (mos == NULL || spa->spa_pool_props_object == 0) { 243 mutex_exit(&spa->spa_props_lock); 244 return (0); 245 } 246 247 /* 248 * Get properties from the MOS pool property object. 249 */ 250 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 251 (err = zap_cursor_retrieve(&zc, &za)) == 0; 252 zap_cursor_advance(&zc)) { 253 uint64_t intval = 0; 254 char *strval = NULL; 255 zprop_source_t src = ZPROP_SRC_DEFAULT; 256 zpool_prop_t prop; 257 258 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 259 continue; 260 261 switch (za.za_integer_length) { 262 case 8: 263 /* integer property */ 264 if (za.za_first_integer != 265 zpool_prop_default_numeric(prop)) 266 src = ZPROP_SRC_LOCAL; 267 268 if (prop == ZPOOL_PROP_BOOTFS) { 269 dsl_pool_t *dp; 270 dsl_dataset_t *ds = NULL; 271 272 dp = spa_get_dsl(spa); 273 rw_enter(&dp->dp_config_rwlock, RW_READER); 274 if (err = dsl_dataset_hold_obj(dp, 275 za.za_first_integer, FTAG, &ds)) { 276 rw_exit(&dp->dp_config_rwlock); 277 break; 278 } 279 280 strval = kmem_alloc( 281 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 282 KM_SLEEP); 283 dsl_dataset_name(ds, strval); 284 dsl_dataset_rele(ds, FTAG); 285 rw_exit(&dp->dp_config_rwlock); 286 } else { 287 strval = NULL; 288 intval = za.za_first_integer; 289 } 290 291 spa_prop_add_list(*nvp, prop, strval, intval, src); 292 293 if (strval != NULL) 294 kmem_free(strval, 295 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 296 297 break; 298 299 case 1: 300 /* string property */ 301 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 302 err = zap_lookup(mos, spa->spa_pool_props_object, 303 za.za_name, 1, za.za_num_integers, strval); 304 if (err) { 305 kmem_free(strval, za.za_num_integers); 306 break; 307 } 308 spa_prop_add_list(*nvp, prop, strval, 0, src); 309 kmem_free(strval, za.za_num_integers); 310 break; 311 312 default: 313 break; 314 } 315 } 316 zap_cursor_fini(&zc); 317 mutex_exit(&spa->spa_props_lock); 318 out: 319 if (err && err != ENOENT) { 320 nvlist_free(*nvp); 321 *nvp = NULL; 322 return (err); 323 } 324 325 return (0); 326 } 327 328 /* 329 * Validate the given pool properties nvlist and modify the list 330 * for the property values to be set. 331 */ 332 static int 333 spa_prop_validate(spa_t *spa, nvlist_t *props) 334 { 335 nvpair_t *elem; 336 int error = 0, reset_bootfs = 0; 337 uint64_t objnum; 338 339 elem = NULL; 340 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 341 zpool_prop_t prop; 342 char *propname, *strval; 343 uint64_t intval; 344 objset_t *os; 345 char *slash; 346 347 propname = nvpair_name(elem); 348 349 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 350 return (EINVAL); 351 352 switch (prop) { 353 case ZPOOL_PROP_VERSION: 354 error = nvpair_value_uint64(elem, &intval); 355 if (!error && 356 (intval < spa_version(spa) || intval > SPA_VERSION)) 357 error = EINVAL; 358 break; 359 360 case ZPOOL_PROP_DELEGATION: 361 case ZPOOL_PROP_AUTOREPLACE: 362 case ZPOOL_PROP_LISTSNAPS: 363 case ZPOOL_PROP_AUTOEXPAND: 364 error = nvpair_value_uint64(elem, &intval); 365 if (!error && intval > 1) 366 error = EINVAL; 367 break; 368 369 case ZPOOL_PROP_BOOTFS: 370 /* 371 * If the pool version is less than SPA_VERSION_BOOTFS, 372 * or the pool is still being created (version == 0), 373 * the bootfs property cannot be set. 374 */ 375 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 376 error = ENOTSUP; 377 break; 378 } 379 380 /* 381 * Make sure the vdev config is bootable 382 */ 383 if (!vdev_is_bootable(spa->spa_root_vdev)) { 384 error = ENOTSUP; 385 break; 386 } 387 388 reset_bootfs = 1; 389 390 error = nvpair_value_string(elem, &strval); 391 392 if (!error) { 393 uint64_t compress; 394 395 if (strval == NULL || strval[0] == '\0') { 396 objnum = zpool_prop_default_numeric( 397 ZPOOL_PROP_BOOTFS); 398 break; 399 } 400 401 if (error = dmu_objset_hold(strval, FTAG, &os)) 402 break; 403 404 /* Must be ZPL and not gzip compressed. */ 405 406 if (dmu_objset_type(os) != DMU_OST_ZFS) { 407 error = ENOTSUP; 408 } else if ((error = dsl_prop_get_integer(strval, 409 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 410 &compress, NULL)) == 0 && 411 !BOOTFS_COMPRESS_VALID(compress)) { 412 error = ENOTSUP; 413 } else { 414 objnum = dmu_objset_id(os); 415 } 416 dmu_objset_rele(os, FTAG); 417 } 418 break; 419 420 case ZPOOL_PROP_FAILUREMODE: 421 error = nvpair_value_uint64(elem, &intval); 422 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 423 intval > ZIO_FAILURE_MODE_PANIC)) 424 error = EINVAL; 425 426 /* 427 * This is a special case which only occurs when 428 * the pool has completely failed. This allows 429 * the user to change the in-core failmode property 430 * without syncing it out to disk (I/Os might 431 * currently be blocked). We do this by returning 432 * EIO to the caller (spa_prop_set) to trick it 433 * into thinking we encountered a property validation 434 * error. 435 */ 436 if (!error && spa_suspended(spa)) { 437 spa->spa_failmode = intval; 438 error = EIO; 439 } 440 break; 441 442 case ZPOOL_PROP_CACHEFILE: 443 if ((error = nvpair_value_string(elem, &strval)) != 0) 444 break; 445 446 if (strval[0] == '\0') 447 break; 448 449 if (strcmp(strval, "none") == 0) 450 break; 451 452 if (strval[0] != '/') { 453 error = EINVAL; 454 break; 455 } 456 457 slash = strrchr(strval, '/'); 458 ASSERT(slash != NULL); 459 460 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 461 strcmp(slash, "/..") == 0) 462 error = EINVAL; 463 break; 464 465 case ZPOOL_PROP_DEDUPDITTO: 466 if (spa_version(spa) < SPA_VERSION_DEDUP) 467 error = ENOTSUP; 468 else 469 error = nvpair_value_uint64(elem, &intval); 470 if (error == 0 && 471 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 472 error = EINVAL; 473 break; 474 } 475 476 if (error) 477 break; 478 } 479 480 if (!error && reset_bootfs) { 481 error = nvlist_remove(props, 482 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 483 484 if (!error) { 485 error = nvlist_add_uint64(props, 486 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 487 } 488 } 489 490 return (error); 491 } 492 493 void 494 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 495 { 496 char *cachefile; 497 spa_config_dirent_t *dp; 498 499 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 500 &cachefile) != 0) 501 return; 502 503 dp = kmem_alloc(sizeof (spa_config_dirent_t), 504 KM_SLEEP); 505 506 if (cachefile[0] == '\0') 507 dp->scd_path = spa_strdup(spa_config_path); 508 else if (strcmp(cachefile, "none") == 0) 509 dp->scd_path = NULL; 510 else 511 dp->scd_path = spa_strdup(cachefile); 512 513 list_insert_head(&spa->spa_config_list, dp); 514 if (need_sync) 515 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 516 } 517 518 int 519 spa_prop_set(spa_t *spa, nvlist_t *nvp) 520 { 521 int error; 522 nvpair_t *elem; 523 boolean_t need_sync = B_FALSE; 524 zpool_prop_t prop; 525 526 if ((error = spa_prop_validate(spa, nvp)) != 0) 527 return (error); 528 529 elem = NULL; 530 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 531 if ((prop = zpool_name_to_prop( 532 nvpair_name(elem))) == ZPROP_INVAL) 533 return (EINVAL); 534 535 if (prop == ZPOOL_PROP_CACHEFILE || 536 prop == ZPOOL_PROP_ALTROOT || 537 prop == ZPOOL_PROP_READONLY) 538 continue; 539 540 need_sync = B_TRUE; 541 break; 542 } 543 544 if (need_sync) 545 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 546 spa, nvp, 3)); 547 else 548 return (0); 549 } 550 551 /* 552 * If the bootfs property value is dsobj, clear it. 553 */ 554 void 555 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 556 { 557 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 558 VERIFY(zap_remove(spa->spa_meta_objset, 559 spa->spa_pool_props_object, 560 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 561 spa->spa_bootfs = 0; 562 } 563 } 564 565 /* 566 * ========================================================================== 567 * SPA state manipulation (open/create/destroy/import/export) 568 * ========================================================================== 569 */ 570 571 static int 572 spa_error_entry_compare(const void *a, const void *b) 573 { 574 spa_error_entry_t *sa = (spa_error_entry_t *)a; 575 spa_error_entry_t *sb = (spa_error_entry_t *)b; 576 int ret; 577 578 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 579 sizeof (zbookmark_t)); 580 581 if (ret < 0) 582 return (-1); 583 else if (ret > 0) 584 return (1); 585 else 586 return (0); 587 } 588 589 /* 590 * Utility function which retrieves copies of the current logs and 591 * re-initializes them in the process. 592 */ 593 void 594 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 595 { 596 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 597 598 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 599 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 600 601 avl_create(&spa->spa_errlist_scrub, 602 spa_error_entry_compare, sizeof (spa_error_entry_t), 603 offsetof(spa_error_entry_t, se_avl)); 604 avl_create(&spa->spa_errlist_last, 605 spa_error_entry_compare, sizeof (spa_error_entry_t), 606 offsetof(spa_error_entry_t, se_avl)); 607 } 608 609 static taskq_t * 610 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 611 uint_t value) 612 { 613 uint_t flags = TASKQ_PREPOPULATE; 614 boolean_t batch = B_FALSE; 615 616 switch (mode) { 617 case zti_mode_null: 618 return (NULL); /* no taskq needed */ 619 620 case zti_mode_fixed: 621 ASSERT3U(value, >=, 1); 622 value = MAX(value, 1); 623 break; 624 625 case zti_mode_batch: 626 batch = B_TRUE; 627 flags |= TASKQ_THREADS_CPU_PCT; 628 value = zio_taskq_batch_pct; 629 break; 630 631 case zti_mode_online_percent: 632 flags |= TASKQ_THREADS_CPU_PCT; 633 break; 634 635 default: 636 panic("unrecognized mode for %s taskq (%u:%u) in " 637 "spa_activate()", 638 name, mode, value); 639 break; 640 } 641 642 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 643 if (batch) 644 flags |= TASKQ_DC_BATCH; 645 646 return (taskq_create_sysdc(name, value, 50, INT_MAX, 647 spa->spa_proc, zio_taskq_basedc, flags)); 648 } 649 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 650 spa->spa_proc, flags)); 651 } 652 653 static void 654 spa_create_zio_taskqs(spa_t *spa) 655 { 656 for (int t = 0; t < ZIO_TYPES; t++) { 657 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 658 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 659 enum zti_modes mode = ztip->zti_mode; 660 uint_t value = ztip->zti_value; 661 char name[32]; 662 663 (void) snprintf(name, sizeof (name), 664 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 665 666 spa->spa_zio_taskq[t][q] = 667 spa_taskq_create(spa, name, mode, value); 668 } 669 } 670 } 671 672 #ifdef _KERNEL 673 static void 674 spa_thread(void *arg) 675 { 676 callb_cpr_t cprinfo; 677 678 spa_t *spa = arg; 679 user_t *pu = PTOU(curproc); 680 681 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 682 spa->spa_name); 683 684 ASSERT(curproc != &p0); 685 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 686 "zpool-%s", spa->spa_name); 687 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 688 689 /* bind this thread to the requested psrset */ 690 if (zio_taskq_psrset_bind != PS_NONE) { 691 pool_lock(); 692 mutex_enter(&cpu_lock); 693 mutex_enter(&pidlock); 694 mutex_enter(&curproc->p_lock); 695 696 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 697 0, NULL, NULL) == 0) { 698 curthread->t_bind_pset = zio_taskq_psrset_bind; 699 } else { 700 cmn_err(CE_WARN, 701 "Couldn't bind process for zfs pool \"%s\" to " 702 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 703 } 704 705 mutex_exit(&curproc->p_lock); 706 mutex_exit(&pidlock); 707 mutex_exit(&cpu_lock); 708 pool_unlock(); 709 } 710 711 if (zio_taskq_sysdc) { 712 sysdc_thread_enter(curthread, 100, 0); 713 } 714 715 spa->spa_proc = curproc; 716 spa->spa_did = curthread->t_did; 717 718 spa_create_zio_taskqs(spa); 719 720 mutex_enter(&spa->spa_proc_lock); 721 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 722 723 spa->spa_proc_state = SPA_PROC_ACTIVE; 724 cv_broadcast(&spa->spa_proc_cv); 725 726 CALLB_CPR_SAFE_BEGIN(&cprinfo); 727 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 728 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 729 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 730 731 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 732 spa->spa_proc_state = SPA_PROC_GONE; 733 spa->spa_proc = &p0; 734 cv_broadcast(&spa->spa_proc_cv); 735 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 736 737 mutex_enter(&curproc->p_lock); 738 lwp_exit(); 739 } 740 #endif 741 742 /* 743 * Activate an uninitialized pool. 744 */ 745 static void 746 spa_activate(spa_t *spa, int mode) 747 { 748 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 749 750 spa->spa_state = POOL_STATE_ACTIVE; 751 spa->spa_mode = mode; 752 753 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 754 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 755 756 /* Try to create a covering process */ 757 mutex_enter(&spa->spa_proc_lock); 758 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 759 ASSERT(spa->spa_proc == &p0); 760 spa->spa_did = 0; 761 762 /* Only create a process if we're going to be around a while. */ 763 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 764 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 765 NULL, 0) == 0) { 766 spa->spa_proc_state = SPA_PROC_CREATED; 767 while (spa->spa_proc_state == SPA_PROC_CREATED) { 768 cv_wait(&spa->spa_proc_cv, 769 &spa->spa_proc_lock); 770 } 771 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 772 ASSERT(spa->spa_proc != &p0); 773 ASSERT(spa->spa_did != 0); 774 } else { 775 #ifdef _KERNEL 776 cmn_err(CE_WARN, 777 "Couldn't create process for zfs pool \"%s\"\n", 778 spa->spa_name); 779 #endif 780 } 781 } 782 mutex_exit(&spa->spa_proc_lock); 783 784 /* If we didn't create a process, we need to create our taskqs. */ 785 if (spa->spa_proc == &p0) { 786 spa_create_zio_taskqs(spa); 787 } 788 789 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 790 offsetof(vdev_t, vdev_config_dirty_node)); 791 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 792 offsetof(vdev_t, vdev_state_dirty_node)); 793 794 txg_list_create(&spa->spa_vdev_txg_list, 795 offsetof(struct vdev, vdev_txg_node)); 796 797 avl_create(&spa->spa_errlist_scrub, 798 spa_error_entry_compare, sizeof (spa_error_entry_t), 799 offsetof(spa_error_entry_t, se_avl)); 800 avl_create(&spa->spa_errlist_last, 801 spa_error_entry_compare, sizeof (spa_error_entry_t), 802 offsetof(spa_error_entry_t, se_avl)); 803 } 804 805 /* 806 * Opposite of spa_activate(). 807 */ 808 static void 809 spa_deactivate(spa_t *spa) 810 { 811 ASSERT(spa->spa_sync_on == B_FALSE); 812 ASSERT(spa->spa_dsl_pool == NULL); 813 ASSERT(spa->spa_root_vdev == NULL); 814 ASSERT(spa->spa_async_zio_root == NULL); 815 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 816 817 txg_list_destroy(&spa->spa_vdev_txg_list); 818 819 list_destroy(&spa->spa_config_dirty_list); 820 list_destroy(&spa->spa_state_dirty_list); 821 822 for (int t = 0; t < ZIO_TYPES; t++) { 823 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 824 if (spa->spa_zio_taskq[t][q] != NULL) 825 taskq_destroy(spa->spa_zio_taskq[t][q]); 826 spa->spa_zio_taskq[t][q] = NULL; 827 } 828 } 829 830 metaslab_class_destroy(spa->spa_normal_class); 831 spa->spa_normal_class = NULL; 832 833 metaslab_class_destroy(spa->spa_log_class); 834 spa->spa_log_class = NULL; 835 836 /* 837 * If this was part of an import or the open otherwise failed, we may 838 * still have errors left in the queues. Empty them just in case. 839 */ 840 spa_errlog_drain(spa); 841 842 avl_destroy(&spa->spa_errlist_scrub); 843 avl_destroy(&spa->spa_errlist_last); 844 845 spa->spa_state = POOL_STATE_UNINITIALIZED; 846 847 mutex_enter(&spa->spa_proc_lock); 848 if (spa->spa_proc_state != SPA_PROC_NONE) { 849 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 850 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 851 cv_broadcast(&spa->spa_proc_cv); 852 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 853 ASSERT(spa->spa_proc != &p0); 854 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 855 } 856 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 857 spa->spa_proc_state = SPA_PROC_NONE; 858 } 859 ASSERT(spa->spa_proc == &p0); 860 mutex_exit(&spa->spa_proc_lock); 861 862 /* 863 * We want to make sure spa_thread() has actually exited the ZFS 864 * module, so that the module can't be unloaded out from underneath 865 * it. 866 */ 867 if (spa->spa_did != 0) { 868 thread_join(spa->spa_did); 869 spa->spa_did = 0; 870 } 871 } 872 873 /* 874 * Verify a pool configuration, and construct the vdev tree appropriately. This 875 * will create all the necessary vdevs in the appropriate layout, with each vdev 876 * in the CLOSED state. This will prep the pool before open/creation/import. 877 * All vdev validation is done by the vdev_alloc() routine. 878 */ 879 static int 880 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 881 uint_t id, int atype) 882 { 883 nvlist_t **child; 884 uint_t children; 885 int error; 886 887 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 888 return (error); 889 890 if ((*vdp)->vdev_ops->vdev_op_leaf) 891 return (0); 892 893 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 894 &child, &children); 895 896 if (error == ENOENT) 897 return (0); 898 899 if (error) { 900 vdev_free(*vdp); 901 *vdp = NULL; 902 return (EINVAL); 903 } 904 905 for (int c = 0; c < children; c++) { 906 vdev_t *vd; 907 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 908 atype)) != 0) { 909 vdev_free(*vdp); 910 *vdp = NULL; 911 return (error); 912 } 913 } 914 915 ASSERT(*vdp != NULL); 916 917 return (0); 918 } 919 920 /* 921 * Opposite of spa_load(). 922 */ 923 static void 924 spa_unload(spa_t *spa) 925 { 926 int i; 927 928 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 929 930 /* 931 * Stop async tasks. 932 */ 933 spa_async_suspend(spa); 934 935 /* 936 * Stop syncing. 937 */ 938 if (spa->spa_sync_on) { 939 txg_sync_stop(spa->spa_dsl_pool); 940 spa->spa_sync_on = B_FALSE; 941 } 942 943 /* 944 * Wait for any outstanding async I/O to complete. 945 */ 946 if (spa->spa_async_zio_root != NULL) { 947 (void) zio_wait(spa->spa_async_zio_root); 948 spa->spa_async_zio_root = NULL; 949 } 950 951 bpobj_close(&spa->spa_deferred_bpobj); 952 953 /* 954 * Close the dsl pool. 955 */ 956 if (spa->spa_dsl_pool) { 957 dsl_pool_close(spa->spa_dsl_pool); 958 spa->spa_dsl_pool = NULL; 959 spa->spa_meta_objset = NULL; 960 } 961 962 ddt_unload(spa); 963 964 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 965 966 /* 967 * Drop and purge level 2 cache 968 */ 969 spa_l2cache_drop(spa); 970 971 /* 972 * Close all vdevs. 973 */ 974 if (spa->spa_root_vdev) 975 vdev_free(spa->spa_root_vdev); 976 ASSERT(spa->spa_root_vdev == NULL); 977 978 for (i = 0; i < spa->spa_spares.sav_count; i++) 979 vdev_free(spa->spa_spares.sav_vdevs[i]); 980 if (spa->spa_spares.sav_vdevs) { 981 kmem_free(spa->spa_spares.sav_vdevs, 982 spa->spa_spares.sav_count * sizeof (void *)); 983 spa->spa_spares.sav_vdevs = NULL; 984 } 985 if (spa->spa_spares.sav_config) { 986 nvlist_free(spa->spa_spares.sav_config); 987 spa->spa_spares.sav_config = NULL; 988 } 989 spa->spa_spares.sav_count = 0; 990 991 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 992 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 993 if (spa->spa_l2cache.sav_vdevs) { 994 kmem_free(spa->spa_l2cache.sav_vdevs, 995 spa->spa_l2cache.sav_count * sizeof (void *)); 996 spa->spa_l2cache.sav_vdevs = NULL; 997 } 998 if (spa->spa_l2cache.sav_config) { 999 nvlist_free(spa->spa_l2cache.sav_config); 1000 spa->spa_l2cache.sav_config = NULL; 1001 } 1002 spa->spa_l2cache.sav_count = 0; 1003 1004 spa->spa_async_suspended = 0; 1005 1006 spa_config_exit(spa, SCL_ALL, FTAG); 1007 } 1008 1009 /* 1010 * Load (or re-load) the current list of vdevs describing the active spares for 1011 * this pool. When this is called, we have some form of basic information in 1012 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1013 * then re-generate a more complete list including status information. 1014 */ 1015 static void 1016 spa_load_spares(spa_t *spa) 1017 { 1018 nvlist_t **spares; 1019 uint_t nspares; 1020 int i; 1021 vdev_t *vd, *tvd; 1022 1023 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1024 1025 /* 1026 * First, close and free any existing spare vdevs. 1027 */ 1028 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1029 vd = spa->spa_spares.sav_vdevs[i]; 1030 1031 /* Undo the call to spa_activate() below */ 1032 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1033 B_FALSE)) != NULL && tvd->vdev_isspare) 1034 spa_spare_remove(tvd); 1035 vdev_close(vd); 1036 vdev_free(vd); 1037 } 1038 1039 if (spa->spa_spares.sav_vdevs) 1040 kmem_free(spa->spa_spares.sav_vdevs, 1041 spa->spa_spares.sav_count * sizeof (void *)); 1042 1043 if (spa->spa_spares.sav_config == NULL) 1044 nspares = 0; 1045 else 1046 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1047 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1048 1049 spa->spa_spares.sav_count = (int)nspares; 1050 spa->spa_spares.sav_vdevs = NULL; 1051 1052 if (nspares == 0) 1053 return; 1054 1055 /* 1056 * Construct the array of vdevs, opening them to get status in the 1057 * process. For each spare, there is potentially two different vdev_t 1058 * structures associated with it: one in the list of spares (used only 1059 * for basic validation purposes) and one in the active vdev 1060 * configuration (if it's spared in). During this phase we open and 1061 * validate each vdev on the spare list. If the vdev also exists in the 1062 * active configuration, then we also mark this vdev as an active spare. 1063 */ 1064 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1065 KM_SLEEP); 1066 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1067 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1068 VDEV_ALLOC_SPARE) == 0); 1069 ASSERT(vd != NULL); 1070 1071 spa->spa_spares.sav_vdevs[i] = vd; 1072 1073 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1074 B_FALSE)) != NULL) { 1075 if (!tvd->vdev_isspare) 1076 spa_spare_add(tvd); 1077 1078 /* 1079 * We only mark the spare active if we were successfully 1080 * able to load the vdev. Otherwise, importing a pool 1081 * with a bad active spare would result in strange 1082 * behavior, because multiple pool would think the spare 1083 * is actively in use. 1084 * 1085 * There is a vulnerability here to an equally bizarre 1086 * circumstance, where a dead active spare is later 1087 * brought back to life (onlined or otherwise). Given 1088 * the rarity of this scenario, and the extra complexity 1089 * it adds, we ignore the possibility. 1090 */ 1091 if (!vdev_is_dead(tvd)) 1092 spa_spare_activate(tvd); 1093 } 1094 1095 vd->vdev_top = vd; 1096 vd->vdev_aux = &spa->spa_spares; 1097 1098 if (vdev_open(vd) != 0) 1099 continue; 1100 1101 if (vdev_validate_aux(vd) == 0) 1102 spa_spare_add(vd); 1103 } 1104 1105 /* 1106 * Recompute the stashed list of spares, with status information 1107 * this time. 1108 */ 1109 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1110 DATA_TYPE_NVLIST_ARRAY) == 0); 1111 1112 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1113 KM_SLEEP); 1114 for (i = 0; i < spa->spa_spares.sav_count; i++) 1115 spares[i] = vdev_config_generate(spa, 1116 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1117 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1118 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1119 for (i = 0; i < spa->spa_spares.sav_count; i++) 1120 nvlist_free(spares[i]); 1121 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1122 } 1123 1124 /* 1125 * Load (or re-load) the current list of vdevs describing the active l2cache for 1126 * this pool. When this is called, we have some form of basic information in 1127 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1128 * then re-generate a more complete list including status information. 1129 * Devices which are already active have their details maintained, and are 1130 * not re-opened. 1131 */ 1132 static void 1133 spa_load_l2cache(spa_t *spa) 1134 { 1135 nvlist_t **l2cache; 1136 uint_t nl2cache; 1137 int i, j, oldnvdevs; 1138 uint64_t guid; 1139 vdev_t *vd, **oldvdevs, **newvdevs; 1140 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1141 1142 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1143 1144 if (sav->sav_config != NULL) { 1145 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1146 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1147 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1148 } else { 1149 nl2cache = 0; 1150 } 1151 1152 oldvdevs = sav->sav_vdevs; 1153 oldnvdevs = sav->sav_count; 1154 sav->sav_vdevs = NULL; 1155 sav->sav_count = 0; 1156 1157 /* 1158 * Process new nvlist of vdevs. 1159 */ 1160 for (i = 0; i < nl2cache; i++) { 1161 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1162 &guid) == 0); 1163 1164 newvdevs[i] = NULL; 1165 for (j = 0; j < oldnvdevs; j++) { 1166 vd = oldvdevs[j]; 1167 if (vd != NULL && guid == vd->vdev_guid) { 1168 /* 1169 * Retain previous vdev for add/remove ops. 1170 */ 1171 newvdevs[i] = vd; 1172 oldvdevs[j] = NULL; 1173 break; 1174 } 1175 } 1176 1177 if (newvdevs[i] == NULL) { 1178 /* 1179 * Create new vdev 1180 */ 1181 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1182 VDEV_ALLOC_L2CACHE) == 0); 1183 ASSERT(vd != NULL); 1184 newvdevs[i] = vd; 1185 1186 /* 1187 * Commit this vdev as an l2cache device, 1188 * even if it fails to open. 1189 */ 1190 spa_l2cache_add(vd); 1191 1192 vd->vdev_top = vd; 1193 vd->vdev_aux = sav; 1194 1195 spa_l2cache_activate(vd); 1196 1197 if (vdev_open(vd) != 0) 1198 continue; 1199 1200 (void) vdev_validate_aux(vd); 1201 1202 if (!vdev_is_dead(vd)) 1203 l2arc_add_vdev(spa, vd); 1204 } 1205 } 1206 1207 /* 1208 * Purge vdevs that were dropped 1209 */ 1210 for (i = 0; i < oldnvdevs; i++) { 1211 uint64_t pool; 1212 1213 vd = oldvdevs[i]; 1214 if (vd != NULL) { 1215 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1216 pool != 0ULL && l2arc_vdev_present(vd)) 1217 l2arc_remove_vdev(vd); 1218 (void) vdev_close(vd); 1219 spa_l2cache_remove(vd); 1220 } 1221 } 1222 1223 if (oldvdevs) 1224 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1225 1226 if (sav->sav_config == NULL) 1227 goto out; 1228 1229 sav->sav_vdevs = newvdevs; 1230 sav->sav_count = (int)nl2cache; 1231 1232 /* 1233 * Recompute the stashed list of l2cache devices, with status 1234 * information this time. 1235 */ 1236 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1237 DATA_TYPE_NVLIST_ARRAY) == 0); 1238 1239 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1240 for (i = 0; i < sav->sav_count; i++) 1241 l2cache[i] = vdev_config_generate(spa, 1242 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1243 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1244 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1245 out: 1246 for (i = 0; i < sav->sav_count; i++) 1247 nvlist_free(l2cache[i]); 1248 if (sav->sav_count) 1249 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1250 } 1251 1252 static int 1253 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1254 { 1255 dmu_buf_t *db; 1256 char *packed = NULL; 1257 size_t nvsize = 0; 1258 int error; 1259 *value = NULL; 1260 1261 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1262 nvsize = *(uint64_t *)db->db_data; 1263 dmu_buf_rele(db, FTAG); 1264 1265 packed = kmem_alloc(nvsize, KM_SLEEP); 1266 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1267 DMU_READ_PREFETCH); 1268 if (error == 0) 1269 error = nvlist_unpack(packed, nvsize, value, 0); 1270 kmem_free(packed, nvsize); 1271 1272 return (error); 1273 } 1274 1275 /* 1276 * Checks to see if the given vdev could not be opened, in which case we post a 1277 * sysevent to notify the autoreplace code that the device has been removed. 1278 */ 1279 static void 1280 spa_check_removed(vdev_t *vd) 1281 { 1282 for (int c = 0; c < vd->vdev_children; c++) 1283 spa_check_removed(vd->vdev_child[c]); 1284 1285 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1286 zfs_post_autoreplace(vd->vdev_spa, vd); 1287 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1288 } 1289 } 1290 1291 /* 1292 * Validate the current config against the MOS config 1293 */ 1294 static boolean_t 1295 spa_config_valid(spa_t *spa, nvlist_t *config) 1296 { 1297 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1298 nvlist_t *nv; 1299 1300 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1301 1302 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1303 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1304 1305 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1306 1307 /* 1308 * If we're doing a normal import, then build up any additional 1309 * diagnostic information about missing devices in this config. 1310 * We'll pass this up to the user for further processing. 1311 */ 1312 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1313 nvlist_t **child, *nv; 1314 uint64_t idx = 0; 1315 1316 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1317 KM_SLEEP); 1318 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1319 1320 for (int c = 0; c < rvd->vdev_children; c++) { 1321 vdev_t *tvd = rvd->vdev_child[c]; 1322 vdev_t *mtvd = mrvd->vdev_child[c]; 1323 1324 if (tvd->vdev_ops == &vdev_missing_ops && 1325 mtvd->vdev_ops != &vdev_missing_ops && 1326 mtvd->vdev_islog) 1327 child[idx++] = vdev_config_generate(spa, mtvd, 1328 B_FALSE, 0); 1329 } 1330 1331 if (idx) { 1332 VERIFY(nvlist_add_nvlist_array(nv, 1333 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1334 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1335 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1336 1337 for (int i = 0; i < idx; i++) 1338 nvlist_free(child[i]); 1339 } 1340 nvlist_free(nv); 1341 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1342 } 1343 1344 /* 1345 * Compare the root vdev tree with the information we have 1346 * from the MOS config (mrvd). Check each top-level vdev 1347 * with the corresponding MOS config top-level (mtvd). 1348 */ 1349 for (int c = 0; c < rvd->vdev_children; c++) { 1350 vdev_t *tvd = rvd->vdev_child[c]; 1351 vdev_t *mtvd = mrvd->vdev_child[c]; 1352 1353 /* 1354 * Resolve any "missing" vdevs in the current configuration. 1355 * If we find that the MOS config has more accurate information 1356 * about the top-level vdev then use that vdev instead. 1357 */ 1358 if (tvd->vdev_ops == &vdev_missing_ops && 1359 mtvd->vdev_ops != &vdev_missing_ops) { 1360 1361 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1362 continue; 1363 1364 /* 1365 * Device specific actions. 1366 */ 1367 if (mtvd->vdev_islog) { 1368 spa_set_log_state(spa, SPA_LOG_CLEAR); 1369 } else { 1370 /* 1371 * XXX - once we have 'readonly' pool 1372 * support we should be able to handle 1373 * missing data devices by transitioning 1374 * the pool to readonly. 1375 */ 1376 continue; 1377 } 1378 1379 /* 1380 * Swap the missing vdev with the data we were 1381 * able to obtain from the MOS config. 1382 */ 1383 vdev_remove_child(rvd, tvd); 1384 vdev_remove_child(mrvd, mtvd); 1385 1386 vdev_add_child(rvd, mtvd); 1387 vdev_add_child(mrvd, tvd); 1388 1389 spa_config_exit(spa, SCL_ALL, FTAG); 1390 vdev_load(mtvd); 1391 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1392 1393 vdev_reopen(rvd); 1394 } else if (mtvd->vdev_islog) { 1395 /* 1396 * Load the slog device's state from the MOS config 1397 * since it's possible that the label does not 1398 * contain the most up-to-date information. 1399 */ 1400 vdev_load_log_state(tvd, mtvd); 1401 vdev_reopen(tvd); 1402 } 1403 } 1404 vdev_free(mrvd); 1405 spa_config_exit(spa, SCL_ALL, FTAG); 1406 1407 /* 1408 * Ensure we were able to validate the config. 1409 */ 1410 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1411 } 1412 1413 /* 1414 * Check for missing log devices 1415 */ 1416 static int 1417 spa_check_logs(spa_t *spa) 1418 { 1419 switch (spa->spa_log_state) { 1420 case SPA_LOG_MISSING: 1421 /* need to recheck in case slog has been restored */ 1422 case SPA_LOG_UNKNOWN: 1423 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1424 DS_FIND_CHILDREN)) { 1425 spa_set_log_state(spa, SPA_LOG_MISSING); 1426 return (1); 1427 } 1428 break; 1429 } 1430 return (0); 1431 } 1432 1433 static boolean_t 1434 spa_passivate_log(spa_t *spa) 1435 { 1436 vdev_t *rvd = spa->spa_root_vdev; 1437 boolean_t slog_found = B_FALSE; 1438 1439 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1440 1441 if (!spa_has_slogs(spa)) 1442 return (B_FALSE); 1443 1444 for (int c = 0; c < rvd->vdev_children; c++) { 1445 vdev_t *tvd = rvd->vdev_child[c]; 1446 metaslab_group_t *mg = tvd->vdev_mg; 1447 1448 if (tvd->vdev_islog) { 1449 metaslab_group_passivate(mg); 1450 slog_found = B_TRUE; 1451 } 1452 } 1453 1454 return (slog_found); 1455 } 1456 1457 static void 1458 spa_activate_log(spa_t *spa) 1459 { 1460 vdev_t *rvd = spa->spa_root_vdev; 1461 1462 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1463 1464 for (int c = 0; c < rvd->vdev_children; c++) { 1465 vdev_t *tvd = rvd->vdev_child[c]; 1466 metaslab_group_t *mg = tvd->vdev_mg; 1467 1468 if (tvd->vdev_islog) 1469 metaslab_group_activate(mg); 1470 } 1471 } 1472 1473 int 1474 spa_offline_log(spa_t *spa) 1475 { 1476 int error = 0; 1477 1478 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1479 NULL, DS_FIND_CHILDREN)) == 0) { 1480 1481 /* 1482 * We successfully offlined the log device, sync out the 1483 * current txg so that the "stubby" block can be removed 1484 * by zil_sync(). 1485 */ 1486 txg_wait_synced(spa->spa_dsl_pool, 0); 1487 } 1488 return (error); 1489 } 1490 1491 static void 1492 spa_aux_check_removed(spa_aux_vdev_t *sav) 1493 { 1494 for (int i = 0; i < sav->sav_count; i++) 1495 spa_check_removed(sav->sav_vdevs[i]); 1496 } 1497 1498 void 1499 spa_claim_notify(zio_t *zio) 1500 { 1501 spa_t *spa = zio->io_spa; 1502 1503 if (zio->io_error) 1504 return; 1505 1506 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1507 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1508 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1509 mutex_exit(&spa->spa_props_lock); 1510 } 1511 1512 typedef struct spa_load_error { 1513 uint64_t sle_meta_count; 1514 uint64_t sle_data_count; 1515 } spa_load_error_t; 1516 1517 static void 1518 spa_load_verify_done(zio_t *zio) 1519 { 1520 blkptr_t *bp = zio->io_bp; 1521 spa_load_error_t *sle = zio->io_private; 1522 dmu_object_type_t type = BP_GET_TYPE(bp); 1523 int error = zio->io_error; 1524 1525 if (error) { 1526 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) && 1527 type != DMU_OT_INTENT_LOG) 1528 atomic_add_64(&sle->sle_meta_count, 1); 1529 else 1530 atomic_add_64(&sle->sle_data_count, 1); 1531 } 1532 zio_data_buf_free(zio->io_data, zio->io_size); 1533 } 1534 1535 /*ARGSUSED*/ 1536 static int 1537 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1538 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1539 { 1540 if (bp != NULL) { 1541 zio_t *rio = arg; 1542 size_t size = BP_GET_PSIZE(bp); 1543 void *data = zio_data_buf_alloc(size); 1544 1545 zio_nowait(zio_read(rio, spa, bp, data, size, 1546 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1547 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1548 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1549 } 1550 return (0); 1551 } 1552 1553 static int 1554 spa_load_verify(spa_t *spa) 1555 { 1556 zio_t *rio; 1557 spa_load_error_t sle = { 0 }; 1558 zpool_rewind_policy_t policy; 1559 boolean_t verify_ok = B_FALSE; 1560 int error; 1561 1562 zpool_get_rewind_policy(spa->spa_config, &policy); 1563 1564 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1565 return (0); 1566 1567 rio = zio_root(spa, NULL, &sle, 1568 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1569 1570 error = traverse_pool(spa, spa->spa_verify_min_txg, 1571 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1572 1573 (void) zio_wait(rio); 1574 1575 spa->spa_load_meta_errors = sle.sle_meta_count; 1576 spa->spa_load_data_errors = sle.sle_data_count; 1577 1578 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1579 sle.sle_data_count <= policy.zrp_maxdata) { 1580 int64_t loss = 0; 1581 1582 verify_ok = B_TRUE; 1583 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1584 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1585 1586 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1587 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1588 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1589 VERIFY(nvlist_add_int64(spa->spa_load_info, 1590 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1591 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1592 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1593 } else { 1594 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1595 } 1596 1597 if (error) { 1598 if (error != ENXIO && error != EIO) 1599 error = EIO; 1600 return (error); 1601 } 1602 1603 return (verify_ok ? 0 : EIO); 1604 } 1605 1606 /* 1607 * Find a value in the pool props object. 1608 */ 1609 static void 1610 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1611 { 1612 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1613 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1614 } 1615 1616 /* 1617 * Find a value in the pool directory object. 1618 */ 1619 static int 1620 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1621 { 1622 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1623 name, sizeof (uint64_t), 1, val)); 1624 } 1625 1626 static int 1627 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1628 { 1629 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1630 return (err); 1631 } 1632 1633 /* 1634 * Fix up config after a partly-completed split. This is done with the 1635 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1636 * pool have that entry in their config, but only the splitting one contains 1637 * a list of all the guids of the vdevs that are being split off. 1638 * 1639 * This function determines what to do with that list: either rejoin 1640 * all the disks to the pool, or complete the splitting process. To attempt 1641 * the rejoin, each disk that is offlined is marked online again, and 1642 * we do a reopen() call. If the vdev label for every disk that was 1643 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1644 * then we call vdev_split() on each disk, and complete the split. 1645 * 1646 * Otherwise we leave the config alone, with all the vdevs in place in 1647 * the original pool. 1648 */ 1649 static void 1650 spa_try_repair(spa_t *spa, nvlist_t *config) 1651 { 1652 uint_t extracted; 1653 uint64_t *glist; 1654 uint_t i, gcount; 1655 nvlist_t *nvl; 1656 vdev_t **vd; 1657 boolean_t attempt_reopen; 1658 1659 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1660 return; 1661 1662 /* check that the config is complete */ 1663 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1664 &glist, &gcount) != 0) 1665 return; 1666 1667 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1668 1669 /* attempt to online all the vdevs & validate */ 1670 attempt_reopen = B_TRUE; 1671 for (i = 0; i < gcount; i++) { 1672 if (glist[i] == 0) /* vdev is hole */ 1673 continue; 1674 1675 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1676 if (vd[i] == NULL) { 1677 /* 1678 * Don't bother attempting to reopen the disks; 1679 * just do the split. 1680 */ 1681 attempt_reopen = B_FALSE; 1682 } else { 1683 /* attempt to re-online it */ 1684 vd[i]->vdev_offline = B_FALSE; 1685 } 1686 } 1687 1688 if (attempt_reopen) { 1689 vdev_reopen(spa->spa_root_vdev); 1690 1691 /* check each device to see what state it's in */ 1692 for (extracted = 0, i = 0; i < gcount; i++) { 1693 if (vd[i] != NULL && 1694 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1695 break; 1696 ++extracted; 1697 } 1698 } 1699 1700 /* 1701 * If every disk has been moved to the new pool, or if we never 1702 * even attempted to look at them, then we split them off for 1703 * good. 1704 */ 1705 if (!attempt_reopen || gcount == extracted) { 1706 for (i = 0; i < gcount; i++) 1707 if (vd[i] != NULL) 1708 vdev_split(vd[i]); 1709 vdev_reopen(spa->spa_root_vdev); 1710 } 1711 1712 kmem_free(vd, gcount * sizeof (vdev_t *)); 1713 } 1714 1715 static int 1716 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1717 boolean_t mosconfig) 1718 { 1719 nvlist_t *config = spa->spa_config; 1720 char *ereport = FM_EREPORT_ZFS_POOL; 1721 int error; 1722 uint64_t pool_guid; 1723 nvlist_t *nvl; 1724 1725 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1726 return (EINVAL); 1727 1728 /* 1729 * Versioning wasn't explicitly added to the label until later, so if 1730 * it's not present treat it as the initial version. 1731 */ 1732 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1733 &spa->spa_ubsync.ub_version) != 0) 1734 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1735 1736 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1737 &spa->spa_config_txg); 1738 1739 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1740 spa_guid_exists(pool_guid, 0)) { 1741 error = EEXIST; 1742 } else { 1743 spa->spa_load_guid = pool_guid; 1744 1745 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1746 &nvl) == 0) { 1747 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1748 KM_SLEEP) == 0); 1749 } 1750 1751 gethrestime(&spa->spa_loaded_ts); 1752 error = spa_load_impl(spa, pool_guid, config, state, type, 1753 mosconfig, &ereport); 1754 } 1755 1756 spa->spa_minref = refcount_count(&spa->spa_refcount); 1757 if (error) { 1758 if (error != EEXIST) { 1759 spa->spa_loaded_ts.tv_sec = 0; 1760 spa->spa_loaded_ts.tv_nsec = 0; 1761 } 1762 if (error != EBADF) { 1763 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1764 } 1765 } 1766 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1767 spa->spa_ena = 0; 1768 1769 return (error); 1770 } 1771 1772 /* 1773 * Load an existing storage pool, using the pool's builtin spa_config as a 1774 * source of configuration information. 1775 */ 1776 static int 1777 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1778 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1779 char **ereport) 1780 { 1781 int error = 0; 1782 nvlist_t *nvroot = NULL; 1783 vdev_t *rvd; 1784 uberblock_t *ub = &spa->spa_uberblock; 1785 uint64_t children, config_cache_txg = spa->spa_config_txg; 1786 int orig_mode = spa->spa_mode; 1787 int parse; 1788 uint64_t obj; 1789 1790 /* 1791 * If this is an untrusted config, access the pool in read-only mode. 1792 * This prevents things like resilvering recently removed devices. 1793 */ 1794 if (!mosconfig) 1795 spa->spa_mode = FREAD; 1796 1797 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1798 1799 spa->spa_load_state = state; 1800 1801 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 1802 return (EINVAL); 1803 1804 parse = (type == SPA_IMPORT_EXISTING ? 1805 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 1806 1807 /* 1808 * Create "The Godfather" zio to hold all async IOs 1809 */ 1810 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1811 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1812 1813 /* 1814 * Parse the configuration into a vdev tree. We explicitly set the 1815 * value that will be returned by spa_version() since parsing the 1816 * configuration requires knowing the version number. 1817 */ 1818 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1819 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 1820 spa_config_exit(spa, SCL_ALL, FTAG); 1821 1822 if (error != 0) 1823 return (error); 1824 1825 ASSERT(spa->spa_root_vdev == rvd); 1826 1827 if (type != SPA_IMPORT_ASSEMBLE) { 1828 ASSERT(spa_guid(spa) == pool_guid); 1829 } 1830 1831 /* 1832 * Try to open all vdevs, loading each label in the process. 1833 */ 1834 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1835 error = vdev_open(rvd); 1836 spa_config_exit(spa, SCL_ALL, FTAG); 1837 if (error != 0) 1838 return (error); 1839 1840 /* 1841 * We need to validate the vdev labels against the configuration that 1842 * we have in hand, which is dependent on the setting of mosconfig. If 1843 * mosconfig is true then we're validating the vdev labels based on 1844 * that config. Otherwise, we're validating against the cached config 1845 * (zpool.cache) that was read when we loaded the zfs module, and then 1846 * later we will recursively call spa_load() and validate against 1847 * the vdev config. 1848 * 1849 * If we're assembling a new pool that's been split off from an 1850 * existing pool, the labels haven't yet been updated so we skip 1851 * validation for now. 1852 */ 1853 if (type != SPA_IMPORT_ASSEMBLE) { 1854 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1855 error = vdev_validate(rvd); 1856 spa_config_exit(spa, SCL_ALL, FTAG); 1857 1858 if (error != 0) 1859 return (error); 1860 1861 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1862 return (ENXIO); 1863 } 1864 1865 /* 1866 * Find the best uberblock. 1867 */ 1868 vdev_uberblock_load(NULL, rvd, ub); 1869 1870 /* 1871 * If we weren't able to find a single valid uberblock, return failure. 1872 */ 1873 if (ub->ub_txg == 0) 1874 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 1875 1876 /* 1877 * If the pool is newer than the code, we can't open it. 1878 */ 1879 if (ub->ub_version > SPA_VERSION) 1880 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 1881 1882 /* 1883 * If the vdev guid sum doesn't match the uberblock, we have an 1884 * incomplete configuration. We first check to see if the pool 1885 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 1886 * If it is, defer the vdev_guid_sum check till later so we 1887 * can handle missing vdevs. 1888 */ 1889 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 1890 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 1891 rvd->vdev_guid_sum != ub->ub_guid_sum) 1892 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 1893 1894 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 1895 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1896 spa_try_repair(spa, config); 1897 spa_config_exit(spa, SCL_ALL, FTAG); 1898 nvlist_free(spa->spa_config_splitting); 1899 spa->spa_config_splitting = NULL; 1900 } 1901 1902 /* 1903 * Initialize internal SPA structures. 1904 */ 1905 spa->spa_state = POOL_STATE_ACTIVE; 1906 spa->spa_ubsync = spa->spa_uberblock; 1907 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 1908 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 1909 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 1910 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 1911 spa->spa_claim_max_txg = spa->spa_first_txg; 1912 spa->spa_prev_software_version = ub->ub_software_version; 1913 1914 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1915 if (error) 1916 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1917 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1918 1919 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 1920 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1921 1922 if (!mosconfig) { 1923 uint64_t hostid; 1924 nvlist_t *policy = NULL, *nvconfig; 1925 1926 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 1927 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1928 1929 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 1930 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1931 char *hostname; 1932 unsigned long myhostid = 0; 1933 1934 VERIFY(nvlist_lookup_string(nvconfig, 1935 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1936 1937 #ifdef _KERNEL 1938 myhostid = zone_get_hostid(NULL); 1939 #else /* _KERNEL */ 1940 /* 1941 * We're emulating the system's hostid in userland, so 1942 * we can't use zone_get_hostid(). 1943 */ 1944 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1945 #endif /* _KERNEL */ 1946 if (hostid != 0 && myhostid != 0 && 1947 hostid != myhostid) { 1948 nvlist_free(nvconfig); 1949 cmn_err(CE_WARN, "pool '%s' could not be " 1950 "loaded as it was last accessed by " 1951 "another system (host: %s hostid: 0x%lx). " 1952 "See: http://www.sun.com/msg/ZFS-8000-EY", 1953 spa_name(spa), hostname, 1954 (unsigned long)hostid); 1955 return (EBADF); 1956 } 1957 } 1958 if (nvlist_lookup_nvlist(spa->spa_config, 1959 ZPOOL_REWIND_POLICY, &policy) == 0) 1960 VERIFY(nvlist_add_nvlist(nvconfig, 1961 ZPOOL_REWIND_POLICY, policy) == 0); 1962 1963 spa_config_set(spa, nvconfig); 1964 spa_unload(spa); 1965 spa_deactivate(spa); 1966 spa_activate(spa, orig_mode); 1967 1968 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 1969 } 1970 1971 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 1972 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1973 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 1974 if (error != 0) 1975 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1976 1977 /* 1978 * Load the bit that tells us to use the new accounting function 1979 * (raid-z deflation). If we have an older pool, this will not 1980 * be present. 1981 */ 1982 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 1983 if (error != 0 && error != ENOENT) 1984 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1985 1986 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 1987 &spa->spa_creation_version); 1988 if (error != 0 && error != ENOENT) 1989 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1990 1991 /* 1992 * Load the persistent error log. If we have an older pool, this will 1993 * not be present. 1994 */ 1995 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 1996 if (error != 0 && error != ENOENT) 1997 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1998 1999 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2000 &spa->spa_errlog_scrub); 2001 if (error != 0 && error != ENOENT) 2002 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2003 2004 /* 2005 * Load the history object. If we have an older pool, this 2006 * will not be present. 2007 */ 2008 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2009 if (error != 0 && error != ENOENT) 2010 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2011 2012 /* 2013 * If we're assembling the pool from the split-off vdevs of 2014 * an existing pool, we don't want to attach the spares & cache 2015 * devices. 2016 */ 2017 2018 /* 2019 * Load any hot spares for this pool. 2020 */ 2021 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2022 if (error != 0 && error != ENOENT) 2023 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2024 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2025 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2026 if (load_nvlist(spa, spa->spa_spares.sav_object, 2027 &spa->spa_spares.sav_config) != 0) 2028 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2029 2030 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2031 spa_load_spares(spa); 2032 spa_config_exit(spa, SCL_ALL, FTAG); 2033 } else if (error == 0) { 2034 spa->spa_spares.sav_sync = B_TRUE; 2035 } 2036 2037 /* 2038 * Load any level 2 ARC devices for this pool. 2039 */ 2040 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2041 &spa->spa_l2cache.sav_object); 2042 if (error != 0 && error != ENOENT) 2043 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2044 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2045 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2046 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2047 &spa->spa_l2cache.sav_config) != 0) 2048 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2049 2050 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2051 spa_load_l2cache(spa); 2052 spa_config_exit(spa, SCL_ALL, FTAG); 2053 } else if (error == 0) { 2054 spa->spa_l2cache.sav_sync = B_TRUE; 2055 } 2056 2057 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2058 2059 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2060 if (error && error != ENOENT) 2061 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2062 2063 if (error == 0) { 2064 uint64_t autoreplace; 2065 2066 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2067 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2068 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2069 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2070 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2071 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2072 &spa->spa_dedup_ditto); 2073 2074 spa->spa_autoreplace = (autoreplace != 0); 2075 } 2076 2077 /* 2078 * If the 'autoreplace' property is set, then post a resource notifying 2079 * the ZFS DE that it should not issue any faults for unopenable 2080 * devices. We also iterate over the vdevs, and post a sysevent for any 2081 * unopenable vdevs so that the normal autoreplace handler can take 2082 * over. 2083 */ 2084 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2085 spa_check_removed(spa->spa_root_vdev); 2086 /* 2087 * For the import case, this is done in spa_import(), because 2088 * at this point we're using the spare definitions from 2089 * the MOS config, not necessarily from the userland config. 2090 */ 2091 if (state != SPA_LOAD_IMPORT) { 2092 spa_aux_check_removed(&spa->spa_spares); 2093 spa_aux_check_removed(&spa->spa_l2cache); 2094 } 2095 } 2096 2097 /* 2098 * Load the vdev state for all toplevel vdevs. 2099 */ 2100 vdev_load(rvd); 2101 2102 /* 2103 * Propagate the leaf DTLs we just loaded all the way up the tree. 2104 */ 2105 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2106 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2107 spa_config_exit(spa, SCL_ALL, FTAG); 2108 2109 /* 2110 * Load the DDTs (dedup tables). 2111 */ 2112 error = ddt_load(spa); 2113 if (error != 0) 2114 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2115 2116 spa_update_dspace(spa); 2117 2118 /* 2119 * Validate the config, using the MOS config to fill in any 2120 * information which might be missing. If we fail to validate 2121 * the config then declare the pool unfit for use. If we're 2122 * assembling a pool from a split, the log is not transferred 2123 * over. 2124 */ 2125 if (type != SPA_IMPORT_ASSEMBLE) { 2126 nvlist_t *nvconfig; 2127 2128 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2129 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2130 2131 if (!spa_config_valid(spa, nvconfig)) { 2132 nvlist_free(nvconfig); 2133 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2134 ENXIO)); 2135 } 2136 nvlist_free(nvconfig); 2137 2138 /* 2139 * Now that we've validate the config, check the state of the 2140 * root vdev. If it can't be opened, it indicates one or 2141 * more toplevel vdevs are faulted. 2142 */ 2143 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2144 return (ENXIO); 2145 2146 if (spa_check_logs(spa)) { 2147 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2148 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2149 } 2150 } 2151 2152 /* 2153 * We've successfully opened the pool, verify that we're ready 2154 * to start pushing transactions. 2155 */ 2156 if (state != SPA_LOAD_TRYIMPORT) { 2157 if (error = spa_load_verify(spa)) 2158 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2159 error)); 2160 } 2161 2162 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2163 spa->spa_load_max_txg == UINT64_MAX)) { 2164 dmu_tx_t *tx; 2165 int need_update = B_FALSE; 2166 2167 ASSERT(state != SPA_LOAD_TRYIMPORT); 2168 2169 /* 2170 * Claim log blocks that haven't been committed yet. 2171 * This must all happen in a single txg. 2172 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2173 * invoked from zil_claim_log_block()'s i/o done callback. 2174 * Price of rollback is that we abandon the log. 2175 */ 2176 spa->spa_claiming = B_TRUE; 2177 2178 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2179 spa_first_txg(spa)); 2180 (void) dmu_objset_find(spa_name(spa), 2181 zil_claim, tx, DS_FIND_CHILDREN); 2182 dmu_tx_commit(tx); 2183 2184 spa->spa_claiming = B_FALSE; 2185 2186 spa_set_log_state(spa, SPA_LOG_GOOD); 2187 spa->spa_sync_on = B_TRUE; 2188 txg_sync_start(spa->spa_dsl_pool); 2189 2190 /* 2191 * Wait for all claims to sync. We sync up to the highest 2192 * claimed log block birth time so that claimed log blocks 2193 * don't appear to be from the future. spa_claim_max_txg 2194 * will have been set for us by either zil_check_log_chain() 2195 * (invoked from spa_check_logs()) or zil_claim() above. 2196 */ 2197 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2198 2199 /* 2200 * If the config cache is stale, or we have uninitialized 2201 * metaslabs (see spa_vdev_add()), then update the config. 2202 * 2203 * If this is a verbatim import, trust the current 2204 * in-core spa_config and update the disk labels. 2205 */ 2206 if (config_cache_txg != spa->spa_config_txg || 2207 state == SPA_LOAD_IMPORT || 2208 state == SPA_LOAD_RECOVER || 2209 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2210 need_update = B_TRUE; 2211 2212 for (int c = 0; c < rvd->vdev_children; c++) 2213 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2214 need_update = B_TRUE; 2215 2216 /* 2217 * Update the config cache asychronously in case we're the 2218 * root pool, in which case the config cache isn't writable yet. 2219 */ 2220 if (need_update) 2221 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2222 2223 /* 2224 * Check all DTLs to see if anything needs resilvering. 2225 */ 2226 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2227 vdev_resilver_needed(rvd, NULL, NULL)) 2228 spa_async_request(spa, SPA_ASYNC_RESILVER); 2229 2230 /* 2231 * Delete any inconsistent datasets. 2232 */ 2233 (void) dmu_objset_find(spa_name(spa), 2234 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2235 2236 /* 2237 * Clean up any stale temporary dataset userrefs. 2238 */ 2239 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2240 } 2241 2242 return (0); 2243 } 2244 2245 static int 2246 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2247 { 2248 int mode = spa->spa_mode; 2249 2250 spa_unload(spa); 2251 spa_deactivate(spa); 2252 2253 spa->spa_load_max_txg--; 2254 2255 spa_activate(spa, mode); 2256 spa_async_suspend(spa); 2257 2258 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2259 } 2260 2261 static int 2262 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2263 uint64_t max_request, int rewind_flags) 2264 { 2265 nvlist_t *config = NULL; 2266 int load_error, rewind_error; 2267 uint64_t safe_rewind_txg; 2268 uint64_t min_txg; 2269 2270 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2271 spa->spa_load_max_txg = spa->spa_load_txg; 2272 spa_set_log_state(spa, SPA_LOG_CLEAR); 2273 } else { 2274 spa->spa_load_max_txg = max_request; 2275 } 2276 2277 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2278 mosconfig); 2279 if (load_error == 0) 2280 return (0); 2281 2282 if (spa->spa_root_vdev != NULL) 2283 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2284 2285 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2286 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2287 2288 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2289 nvlist_free(config); 2290 return (load_error); 2291 } 2292 2293 /* Price of rolling back is discarding txgs, including log */ 2294 if (state == SPA_LOAD_RECOVER) 2295 spa_set_log_state(spa, SPA_LOG_CLEAR); 2296 2297 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2298 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2299 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2300 TXG_INITIAL : safe_rewind_txg; 2301 2302 /* 2303 * Continue as long as we're finding errors, we're still within 2304 * the acceptable rewind range, and we're still finding uberblocks 2305 */ 2306 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2307 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2308 if (spa->spa_load_max_txg < safe_rewind_txg) 2309 spa->spa_extreme_rewind = B_TRUE; 2310 rewind_error = spa_load_retry(spa, state, mosconfig); 2311 } 2312 2313 spa->spa_extreme_rewind = B_FALSE; 2314 spa->spa_load_max_txg = UINT64_MAX; 2315 2316 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2317 spa_config_set(spa, config); 2318 2319 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error); 2320 } 2321 2322 /* 2323 * Pool Open/Import 2324 * 2325 * The import case is identical to an open except that the configuration is sent 2326 * down from userland, instead of grabbed from the configuration cache. For the 2327 * case of an open, the pool configuration will exist in the 2328 * POOL_STATE_UNINITIALIZED state. 2329 * 2330 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2331 * the same time open the pool, without having to keep around the spa_t in some 2332 * ambiguous state. 2333 */ 2334 static int 2335 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2336 nvlist_t **config) 2337 { 2338 spa_t *spa; 2339 spa_load_state_t state = SPA_LOAD_OPEN; 2340 int error; 2341 int locked = B_FALSE; 2342 2343 *spapp = NULL; 2344 2345 /* 2346 * As disgusting as this is, we need to support recursive calls to this 2347 * function because dsl_dir_open() is called during spa_load(), and ends 2348 * up calling spa_open() again. The real fix is to figure out how to 2349 * avoid dsl_dir_open() calling this in the first place. 2350 */ 2351 if (mutex_owner(&spa_namespace_lock) != curthread) { 2352 mutex_enter(&spa_namespace_lock); 2353 locked = B_TRUE; 2354 } 2355 2356 if ((spa = spa_lookup(pool)) == NULL) { 2357 if (locked) 2358 mutex_exit(&spa_namespace_lock); 2359 return (ENOENT); 2360 } 2361 2362 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2363 zpool_rewind_policy_t policy; 2364 2365 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2366 &policy); 2367 if (policy.zrp_request & ZPOOL_DO_REWIND) 2368 state = SPA_LOAD_RECOVER; 2369 2370 spa_activate(spa, spa_mode_global); 2371 2372 if (state != SPA_LOAD_RECOVER) 2373 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2374 2375 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2376 policy.zrp_request); 2377 2378 if (error == EBADF) { 2379 /* 2380 * If vdev_validate() returns failure (indicated by 2381 * EBADF), it indicates that one of the vdevs indicates 2382 * that the pool has been exported or destroyed. If 2383 * this is the case, the config cache is out of sync and 2384 * we should remove the pool from the namespace. 2385 */ 2386 spa_unload(spa); 2387 spa_deactivate(spa); 2388 spa_config_sync(spa, B_TRUE, B_TRUE); 2389 spa_remove(spa); 2390 if (locked) 2391 mutex_exit(&spa_namespace_lock); 2392 return (ENOENT); 2393 } 2394 2395 if (error) { 2396 /* 2397 * We can't open the pool, but we still have useful 2398 * information: the state of each vdev after the 2399 * attempted vdev_open(). Return this to the user. 2400 */ 2401 if (config != NULL && spa->spa_config) { 2402 VERIFY(nvlist_dup(spa->spa_config, config, 2403 KM_SLEEP) == 0); 2404 VERIFY(nvlist_add_nvlist(*config, 2405 ZPOOL_CONFIG_LOAD_INFO, 2406 spa->spa_load_info) == 0); 2407 } 2408 spa_unload(spa); 2409 spa_deactivate(spa); 2410 spa->spa_last_open_failed = error; 2411 if (locked) 2412 mutex_exit(&spa_namespace_lock); 2413 *spapp = NULL; 2414 return (error); 2415 } 2416 } 2417 2418 spa_open_ref(spa, tag); 2419 2420 if (config != NULL) 2421 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2422 2423 /* 2424 * If we've recovered the pool, pass back any information we 2425 * gathered while doing the load. 2426 */ 2427 if (state == SPA_LOAD_RECOVER) { 2428 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2429 spa->spa_load_info) == 0); 2430 } 2431 2432 if (locked) { 2433 spa->spa_last_open_failed = 0; 2434 spa->spa_last_ubsync_txg = 0; 2435 spa->spa_load_txg = 0; 2436 mutex_exit(&spa_namespace_lock); 2437 } 2438 2439 *spapp = spa; 2440 2441 return (0); 2442 } 2443 2444 int 2445 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2446 nvlist_t **config) 2447 { 2448 return (spa_open_common(name, spapp, tag, policy, config)); 2449 } 2450 2451 int 2452 spa_open(const char *name, spa_t **spapp, void *tag) 2453 { 2454 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2455 } 2456 2457 /* 2458 * Lookup the given spa_t, incrementing the inject count in the process, 2459 * preventing it from being exported or destroyed. 2460 */ 2461 spa_t * 2462 spa_inject_addref(char *name) 2463 { 2464 spa_t *spa; 2465 2466 mutex_enter(&spa_namespace_lock); 2467 if ((spa = spa_lookup(name)) == NULL) { 2468 mutex_exit(&spa_namespace_lock); 2469 return (NULL); 2470 } 2471 spa->spa_inject_ref++; 2472 mutex_exit(&spa_namespace_lock); 2473 2474 return (spa); 2475 } 2476 2477 void 2478 spa_inject_delref(spa_t *spa) 2479 { 2480 mutex_enter(&spa_namespace_lock); 2481 spa->spa_inject_ref--; 2482 mutex_exit(&spa_namespace_lock); 2483 } 2484 2485 /* 2486 * Add spares device information to the nvlist. 2487 */ 2488 static void 2489 spa_add_spares(spa_t *spa, nvlist_t *config) 2490 { 2491 nvlist_t **spares; 2492 uint_t i, nspares; 2493 nvlist_t *nvroot; 2494 uint64_t guid; 2495 vdev_stat_t *vs; 2496 uint_t vsc; 2497 uint64_t pool; 2498 2499 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2500 2501 if (spa->spa_spares.sav_count == 0) 2502 return; 2503 2504 VERIFY(nvlist_lookup_nvlist(config, 2505 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2506 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2507 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2508 if (nspares != 0) { 2509 VERIFY(nvlist_add_nvlist_array(nvroot, 2510 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2511 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2512 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2513 2514 /* 2515 * Go through and find any spares which have since been 2516 * repurposed as an active spare. If this is the case, update 2517 * their status appropriately. 2518 */ 2519 for (i = 0; i < nspares; i++) { 2520 VERIFY(nvlist_lookup_uint64(spares[i], 2521 ZPOOL_CONFIG_GUID, &guid) == 0); 2522 if (spa_spare_exists(guid, &pool, NULL) && 2523 pool != 0ULL) { 2524 VERIFY(nvlist_lookup_uint64_array( 2525 spares[i], ZPOOL_CONFIG_VDEV_STATS, 2526 (uint64_t **)&vs, &vsc) == 0); 2527 vs->vs_state = VDEV_STATE_CANT_OPEN; 2528 vs->vs_aux = VDEV_AUX_SPARED; 2529 } 2530 } 2531 } 2532 } 2533 2534 /* 2535 * Add l2cache device information to the nvlist, including vdev stats. 2536 */ 2537 static void 2538 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2539 { 2540 nvlist_t **l2cache; 2541 uint_t i, j, nl2cache; 2542 nvlist_t *nvroot; 2543 uint64_t guid; 2544 vdev_t *vd; 2545 vdev_stat_t *vs; 2546 uint_t vsc; 2547 2548 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2549 2550 if (spa->spa_l2cache.sav_count == 0) 2551 return; 2552 2553 VERIFY(nvlist_lookup_nvlist(config, 2554 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2555 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2556 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2557 if (nl2cache != 0) { 2558 VERIFY(nvlist_add_nvlist_array(nvroot, 2559 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2560 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2561 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2562 2563 /* 2564 * Update level 2 cache device stats. 2565 */ 2566 2567 for (i = 0; i < nl2cache; i++) { 2568 VERIFY(nvlist_lookup_uint64(l2cache[i], 2569 ZPOOL_CONFIG_GUID, &guid) == 0); 2570 2571 vd = NULL; 2572 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2573 if (guid == 2574 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2575 vd = spa->spa_l2cache.sav_vdevs[j]; 2576 break; 2577 } 2578 } 2579 ASSERT(vd != NULL); 2580 2581 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2582 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 2583 == 0); 2584 vdev_get_stats(vd, vs); 2585 } 2586 } 2587 } 2588 2589 int 2590 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 2591 { 2592 int error; 2593 spa_t *spa; 2594 2595 *config = NULL; 2596 error = spa_open_common(name, &spa, FTAG, NULL, config); 2597 2598 if (spa != NULL) { 2599 /* 2600 * This still leaves a window of inconsistency where the spares 2601 * or l2cache devices could change and the config would be 2602 * self-inconsistent. 2603 */ 2604 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2605 2606 if (*config != NULL) { 2607 uint64_t loadtimes[2]; 2608 2609 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 2610 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 2611 VERIFY(nvlist_add_uint64_array(*config, 2612 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 2613 2614 VERIFY(nvlist_add_uint64(*config, 2615 ZPOOL_CONFIG_ERRCOUNT, 2616 spa_get_errlog_size(spa)) == 0); 2617 2618 if (spa_suspended(spa)) 2619 VERIFY(nvlist_add_uint64(*config, 2620 ZPOOL_CONFIG_SUSPENDED, 2621 spa->spa_failmode) == 0); 2622 2623 spa_add_spares(spa, *config); 2624 spa_add_l2cache(spa, *config); 2625 } 2626 } 2627 2628 /* 2629 * We want to get the alternate root even for faulted pools, so we cheat 2630 * and call spa_lookup() directly. 2631 */ 2632 if (altroot) { 2633 if (spa == NULL) { 2634 mutex_enter(&spa_namespace_lock); 2635 spa = spa_lookup(name); 2636 if (spa) 2637 spa_altroot(spa, altroot, buflen); 2638 else 2639 altroot[0] = '\0'; 2640 spa = NULL; 2641 mutex_exit(&spa_namespace_lock); 2642 } else { 2643 spa_altroot(spa, altroot, buflen); 2644 } 2645 } 2646 2647 if (spa != NULL) { 2648 spa_config_exit(spa, SCL_CONFIG, FTAG); 2649 spa_close(spa, FTAG); 2650 } 2651 2652 return (error); 2653 } 2654 2655 /* 2656 * Validate that the auxiliary device array is well formed. We must have an 2657 * array of nvlists, each which describes a valid leaf vdev. If this is an 2658 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 2659 * specified, as long as they are well-formed. 2660 */ 2661 static int 2662 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 2663 spa_aux_vdev_t *sav, const char *config, uint64_t version, 2664 vdev_labeltype_t label) 2665 { 2666 nvlist_t **dev; 2667 uint_t i, ndev; 2668 vdev_t *vd; 2669 int error; 2670 2671 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2672 2673 /* 2674 * It's acceptable to have no devs specified. 2675 */ 2676 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 2677 return (0); 2678 2679 if (ndev == 0) 2680 return (EINVAL); 2681 2682 /* 2683 * Make sure the pool is formatted with a version that supports this 2684 * device type. 2685 */ 2686 if (spa_version(spa) < version) 2687 return (ENOTSUP); 2688 2689 /* 2690 * Set the pending device list so we correctly handle device in-use 2691 * checking. 2692 */ 2693 sav->sav_pending = dev; 2694 sav->sav_npending = ndev; 2695 2696 for (i = 0; i < ndev; i++) { 2697 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 2698 mode)) != 0) 2699 goto out; 2700 2701 if (!vd->vdev_ops->vdev_op_leaf) { 2702 vdev_free(vd); 2703 error = EINVAL; 2704 goto out; 2705 } 2706 2707 /* 2708 * The L2ARC currently only supports disk devices in 2709 * kernel context. For user-level testing, we allow it. 2710 */ 2711 #ifdef _KERNEL 2712 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 2713 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 2714 error = ENOTBLK; 2715 goto out; 2716 } 2717 #endif 2718 vd->vdev_top = vd; 2719 2720 if ((error = vdev_open(vd)) == 0 && 2721 (error = vdev_label_init(vd, crtxg, label)) == 0) { 2722 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 2723 vd->vdev_guid) == 0); 2724 } 2725 2726 vdev_free(vd); 2727 2728 if (error && 2729 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 2730 goto out; 2731 else 2732 error = 0; 2733 } 2734 2735 out: 2736 sav->sav_pending = NULL; 2737 sav->sav_npending = 0; 2738 return (error); 2739 } 2740 2741 static int 2742 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2743 { 2744 int error; 2745 2746 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2747 2748 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2749 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2750 VDEV_LABEL_SPARE)) != 0) { 2751 return (error); 2752 } 2753 2754 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2755 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2756 VDEV_LABEL_L2CACHE)); 2757 } 2758 2759 static void 2760 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2761 const char *config) 2762 { 2763 int i; 2764 2765 if (sav->sav_config != NULL) { 2766 nvlist_t **olddevs; 2767 uint_t oldndevs; 2768 nvlist_t **newdevs; 2769 2770 /* 2771 * Generate new dev list by concatentating with the 2772 * current dev list. 2773 */ 2774 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2775 &olddevs, &oldndevs) == 0); 2776 2777 newdevs = kmem_alloc(sizeof (void *) * 2778 (ndevs + oldndevs), KM_SLEEP); 2779 for (i = 0; i < oldndevs; i++) 2780 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2781 KM_SLEEP) == 0); 2782 for (i = 0; i < ndevs; i++) 2783 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2784 KM_SLEEP) == 0); 2785 2786 VERIFY(nvlist_remove(sav->sav_config, config, 2787 DATA_TYPE_NVLIST_ARRAY) == 0); 2788 2789 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2790 config, newdevs, ndevs + oldndevs) == 0); 2791 for (i = 0; i < oldndevs + ndevs; i++) 2792 nvlist_free(newdevs[i]); 2793 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2794 } else { 2795 /* 2796 * Generate a new dev list. 2797 */ 2798 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2799 KM_SLEEP) == 0); 2800 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2801 devs, ndevs) == 0); 2802 } 2803 } 2804 2805 /* 2806 * Stop and drop level 2 ARC devices 2807 */ 2808 void 2809 spa_l2cache_drop(spa_t *spa) 2810 { 2811 vdev_t *vd; 2812 int i; 2813 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2814 2815 for (i = 0; i < sav->sav_count; i++) { 2816 uint64_t pool; 2817 2818 vd = sav->sav_vdevs[i]; 2819 ASSERT(vd != NULL); 2820 2821 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2822 pool != 0ULL && l2arc_vdev_present(vd)) 2823 l2arc_remove_vdev(vd); 2824 if (vd->vdev_isl2cache) 2825 spa_l2cache_remove(vd); 2826 vdev_clear_stats(vd); 2827 (void) vdev_close(vd); 2828 } 2829 } 2830 2831 /* 2832 * Pool Creation 2833 */ 2834 int 2835 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2836 const char *history_str, nvlist_t *zplprops) 2837 { 2838 spa_t *spa; 2839 char *altroot = NULL; 2840 vdev_t *rvd; 2841 dsl_pool_t *dp; 2842 dmu_tx_t *tx; 2843 int error = 0; 2844 uint64_t txg = TXG_INITIAL; 2845 nvlist_t **spares, **l2cache; 2846 uint_t nspares, nl2cache; 2847 uint64_t version, obj; 2848 2849 /* 2850 * If this pool already exists, return failure. 2851 */ 2852 mutex_enter(&spa_namespace_lock); 2853 if (spa_lookup(pool) != NULL) { 2854 mutex_exit(&spa_namespace_lock); 2855 return (EEXIST); 2856 } 2857 2858 /* 2859 * Allocate a new spa_t structure. 2860 */ 2861 (void) nvlist_lookup_string(props, 2862 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2863 spa = spa_add(pool, NULL, altroot); 2864 spa_activate(spa, spa_mode_global); 2865 2866 if (props && (error = spa_prop_validate(spa, props))) { 2867 spa_deactivate(spa); 2868 spa_remove(spa); 2869 mutex_exit(&spa_namespace_lock); 2870 return (error); 2871 } 2872 2873 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2874 &version) != 0) 2875 version = SPA_VERSION; 2876 ASSERT(version <= SPA_VERSION); 2877 2878 spa->spa_first_txg = txg; 2879 spa->spa_uberblock.ub_txg = txg - 1; 2880 spa->spa_uberblock.ub_version = version; 2881 spa->spa_ubsync = spa->spa_uberblock; 2882 2883 /* 2884 * Create "The Godfather" zio to hold all async IOs 2885 */ 2886 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2887 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2888 2889 /* 2890 * Create the root vdev. 2891 */ 2892 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2893 2894 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2895 2896 ASSERT(error != 0 || rvd != NULL); 2897 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2898 2899 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2900 error = EINVAL; 2901 2902 if (error == 0 && 2903 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2904 (error = spa_validate_aux(spa, nvroot, txg, 2905 VDEV_ALLOC_ADD)) == 0) { 2906 for (int c = 0; c < rvd->vdev_children; c++) { 2907 vdev_metaslab_set_size(rvd->vdev_child[c]); 2908 vdev_expand(rvd->vdev_child[c], txg); 2909 } 2910 } 2911 2912 spa_config_exit(spa, SCL_ALL, FTAG); 2913 2914 if (error != 0) { 2915 spa_unload(spa); 2916 spa_deactivate(spa); 2917 spa_remove(spa); 2918 mutex_exit(&spa_namespace_lock); 2919 return (error); 2920 } 2921 2922 /* 2923 * Get the list of spares, if specified. 2924 */ 2925 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2926 &spares, &nspares) == 0) { 2927 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2928 KM_SLEEP) == 0); 2929 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2930 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2931 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2932 spa_load_spares(spa); 2933 spa_config_exit(spa, SCL_ALL, FTAG); 2934 spa->spa_spares.sav_sync = B_TRUE; 2935 } 2936 2937 /* 2938 * Get the list of level 2 cache devices, if specified. 2939 */ 2940 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2941 &l2cache, &nl2cache) == 0) { 2942 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2943 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2944 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2945 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2946 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2947 spa_load_l2cache(spa); 2948 spa_config_exit(spa, SCL_ALL, FTAG); 2949 spa->spa_l2cache.sav_sync = B_TRUE; 2950 } 2951 2952 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2953 spa->spa_meta_objset = dp->dp_meta_objset; 2954 2955 /* 2956 * Create DDTs (dedup tables). 2957 */ 2958 ddt_create(spa); 2959 2960 spa_update_dspace(spa); 2961 2962 tx = dmu_tx_create_assigned(dp, txg); 2963 2964 /* 2965 * Create the pool config object. 2966 */ 2967 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2968 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2969 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2970 2971 if (zap_add(spa->spa_meta_objset, 2972 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2973 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2974 cmn_err(CE_PANIC, "failed to add pool config"); 2975 } 2976 2977 if (zap_add(spa->spa_meta_objset, 2978 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 2979 sizeof (uint64_t), 1, &version, tx) != 0) { 2980 cmn_err(CE_PANIC, "failed to add pool version"); 2981 } 2982 2983 /* Newly created pools with the right version are always deflated. */ 2984 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2985 spa->spa_deflate = TRUE; 2986 if (zap_add(spa->spa_meta_objset, 2987 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2988 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2989 cmn_err(CE_PANIC, "failed to add deflate"); 2990 } 2991 } 2992 2993 /* 2994 * Create the deferred-free bpobj. Turn off compression 2995 * because sync-to-convergence takes longer if the blocksize 2996 * keeps changing. 2997 */ 2998 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 2999 dmu_object_set_compress(spa->spa_meta_objset, obj, 3000 ZIO_COMPRESS_OFF, tx); 3001 if (zap_add(spa->spa_meta_objset, 3002 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3003 sizeof (uint64_t), 1, &obj, tx) != 0) { 3004 cmn_err(CE_PANIC, "failed to add bpobj"); 3005 } 3006 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3007 spa->spa_meta_objset, obj)); 3008 3009 /* 3010 * Create the pool's history object. 3011 */ 3012 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3013 spa_history_create_obj(spa, tx); 3014 3015 /* 3016 * Set pool properties. 3017 */ 3018 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3019 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3020 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3021 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3022 3023 if (props != NULL) { 3024 spa_configfile_set(spa, props, B_FALSE); 3025 spa_sync_props(spa, props, tx); 3026 } 3027 3028 dmu_tx_commit(tx); 3029 3030 spa->spa_sync_on = B_TRUE; 3031 txg_sync_start(spa->spa_dsl_pool); 3032 3033 /* 3034 * We explicitly wait for the first transaction to complete so that our 3035 * bean counters are appropriately updated. 3036 */ 3037 txg_wait_synced(spa->spa_dsl_pool, txg); 3038 3039 spa_config_sync(spa, B_FALSE, B_TRUE); 3040 3041 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 3042 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 3043 spa_history_log_version(spa, LOG_POOL_CREATE); 3044 3045 spa->spa_minref = refcount_count(&spa->spa_refcount); 3046 3047 mutex_exit(&spa_namespace_lock); 3048 3049 return (0); 3050 } 3051 3052 #ifdef _KERNEL 3053 /* 3054 * Get the root pool information from the root disk, then import the root pool 3055 * during the system boot up time. 3056 */ 3057 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3058 3059 static nvlist_t * 3060 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3061 { 3062 nvlist_t *config; 3063 nvlist_t *nvtop, *nvroot; 3064 uint64_t pgid; 3065 3066 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3067 return (NULL); 3068 3069 /* 3070 * Add this top-level vdev to the child array. 3071 */ 3072 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3073 &nvtop) == 0); 3074 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3075 &pgid) == 0); 3076 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3077 3078 /* 3079 * Put this pool's top-level vdevs into a root vdev. 3080 */ 3081 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3082 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3083 VDEV_TYPE_ROOT) == 0); 3084 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3085 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3086 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3087 &nvtop, 1) == 0); 3088 3089 /* 3090 * Replace the existing vdev_tree with the new root vdev in 3091 * this pool's configuration (remove the old, add the new). 3092 */ 3093 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3094 nvlist_free(nvroot); 3095 return (config); 3096 } 3097 3098 /* 3099 * Walk the vdev tree and see if we can find a device with "better" 3100 * configuration. A configuration is "better" if the label on that 3101 * device has a more recent txg. 3102 */ 3103 static void 3104 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3105 { 3106 for (int c = 0; c < vd->vdev_children; c++) 3107 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3108 3109 if (vd->vdev_ops->vdev_op_leaf) { 3110 nvlist_t *label; 3111 uint64_t label_txg; 3112 3113 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3114 &label) != 0) 3115 return; 3116 3117 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3118 &label_txg) == 0); 3119 3120 /* 3121 * Do we have a better boot device? 3122 */ 3123 if (label_txg > *txg) { 3124 *txg = label_txg; 3125 *avd = vd; 3126 } 3127 nvlist_free(label); 3128 } 3129 } 3130 3131 /* 3132 * Import a root pool. 3133 * 3134 * For x86. devpath_list will consist of devid and/or physpath name of 3135 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3136 * The GRUB "findroot" command will return the vdev we should boot. 3137 * 3138 * For Sparc, devpath_list consists the physpath name of the booting device 3139 * no matter the rootpool is a single device pool or a mirrored pool. 3140 * e.g. 3141 * "/pci@1f,0/ide@d/disk@0,0:a" 3142 */ 3143 int 3144 spa_import_rootpool(char *devpath, char *devid) 3145 { 3146 spa_t *spa; 3147 vdev_t *rvd, *bvd, *avd = NULL; 3148 nvlist_t *config, *nvtop; 3149 uint64_t guid, txg; 3150 char *pname; 3151 int error; 3152 3153 /* 3154 * Read the label from the boot device and generate a configuration. 3155 */ 3156 config = spa_generate_rootconf(devpath, devid, &guid); 3157 #if defined(_OBP) && defined(_KERNEL) 3158 if (config == NULL) { 3159 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3160 /* iscsi boot */ 3161 get_iscsi_bootpath_phy(devpath); 3162 config = spa_generate_rootconf(devpath, devid, &guid); 3163 } 3164 } 3165 #endif 3166 if (config == NULL) { 3167 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 3168 devpath); 3169 return (EIO); 3170 } 3171 3172 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3173 &pname) == 0); 3174 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3175 3176 mutex_enter(&spa_namespace_lock); 3177 if ((spa = spa_lookup(pname)) != NULL) { 3178 /* 3179 * Remove the existing root pool from the namespace so that we 3180 * can replace it with the correct config we just read in. 3181 */ 3182 spa_remove(spa); 3183 } 3184 3185 spa = spa_add(pname, config, NULL); 3186 spa->spa_is_root = B_TRUE; 3187 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3188 3189 /* 3190 * Build up a vdev tree based on the boot device's label config. 3191 */ 3192 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3193 &nvtop) == 0); 3194 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3195 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3196 VDEV_ALLOC_ROOTPOOL); 3197 spa_config_exit(spa, SCL_ALL, FTAG); 3198 if (error) { 3199 mutex_exit(&spa_namespace_lock); 3200 nvlist_free(config); 3201 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3202 pname); 3203 return (error); 3204 } 3205 3206 /* 3207 * Get the boot vdev. 3208 */ 3209 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3210 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3211 (u_longlong_t)guid); 3212 error = ENOENT; 3213 goto out; 3214 } 3215 3216 /* 3217 * Determine if there is a better boot device. 3218 */ 3219 avd = bvd; 3220 spa_alt_rootvdev(rvd, &avd, &txg); 3221 if (avd != bvd) { 3222 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3223 "try booting from '%s'", avd->vdev_path); 3224 error = EINVAL; 3225 goto out; 3226 } 3227 3228 /* 3229 * If the boot device is part of a spare vdev then ensure that 3230 * we're booting off the active spare. 3231 */ 3232 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3233 !bvd->vdev_isspare) { 3234 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3235 "try booting from '%s'", 3236 bvd->vdev_parent-> 3237 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3238 error = EINVAL; 3239 goto out; 3240 } 3241 3242 error = 0; 3243 spa_history_log_version(spa, LOG_POOL_IMPORT); 3244 out: 3245 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3246 vdev_free(rvd); 3247 spa_config_exit(spa, SCL_ALL, FTAG); 3248 mutex_exit(&spa_namespace_lock); 3249 3250 nvlist_free(config); 3251 return (error); 3252 } 3253 3254 #endif 3255 3256 /* 3257 * Import a non-root pool into the system. 3258 */ 3259 int 3260 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3261 { 3262 spa_t *spa; 3263 char *altroot = NULL; 3264 spa_load_state_t state = SPA_LOAD_IMPORT; 3265 zpool_rewind_policy_t policy; 3266 uint64_t mode = spa_mode_global; 3267 uint64_t readonly = B_FALSE; 3268 int error; 3269 nvlist_t *nvroot; 3270 nvlist_t **spares, **l2cache; 3271 uint_t nspares, nl2cache; 3272 3273 /* 3274 * If a pool with this name exists, return failure. 3275 */ 3276 mutex_enter(&spa_namespace_lock); 3277 if (spa_lookup(pool) != NULL) { 3278 mutex_exit(&spa_namespace_lock); 3279 return (EEXIST); 3280 } 3281 3282 /* 3283 * Create and initialize the spa structure. 3284 */ 3285 (void) nvlist_lookup_string(props, 3286 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3287 (void) nvlist_lookup_uint64(props, 3288 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3289 if (readonly) 3290 mode = FREAD; 3291 spa = spa_add(pool, config, altroot); 3292 spa->spa_import_flags = flags; 3293 3294 /* 3295 * Verbatim import - Take a pool and insert it into the namespace 3296 * as if it had been loaded at boot. 3297 */ 3298 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3299 if (props != NULL) 3300 spa_configfile_set(spa, props, B_FALSE); 3301 3302 spa_config_sync(spa, B_FALSE, B_TRUE); 3303 3304 mutex_exit(&spa_namespace_lock); 3305 spa_history_log_version(spa, LOG_POOL_IMPORT); 3306 3307 return (0); 3308 } 3309 3310 spa_activate(spa, mode); 3311 3312 /* 3313 * Don't start async tasks until we know everything is healthy. 3314 */ 3315 spa_async_suspend(spa); 3316 3317 zpool_get_rewind_policy(config, &policy); 3318 if (policy.zrp_request & ZPOOL_DO_REWIND) 3319 state = SPA_LOAD_RECOVER; 3320 3321 /* 3322 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3323 * because the user-supplied config is actually the one to trust when 3324 * doing an import. 3325 */ 3326 if (state != SPA_LOAD_RECOVER) 3327 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3328 3329 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3330 policy.zrp_request); 3331 3332 /* 3333 * Propagate anything learned while loading the pool and pass it 3334 * back to caller (i.e. rewind info, missing devices, etc). 3335 */ 3336 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3337 spa->spa_load_info) == 0); 3338 3339 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3340 /* 3341 * Toss any existing sparelist, as it doesn't have any validity 3342 * anymore, and conflicts with spa_has_spare(). 3343 */ 3344 if (spa->spa_spares.sav_config) { 3345 nvlist_free(spa->spa_spares.sav_config); 3346 spa->spa_spares.sav_config = NULL; 3347 spa_load_spares(spa); 3348 } 3349 if (spa->spa_l2cache.sav_config) { 3350 nvlist_free(spa->spa_l2cache.sav_config); 3351 spa->spa_l2cache.sav_config = NULL; 3352 spa_load_l2cache(spa); 3353 } 3354 3355 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3356 &nvroot) == 0); 3357 if (error == 0) 3358 error = spa_validate_aux(spa, nvroot, -1ULL, 3359 VDEV_ALLOC_SPARE); 3360 if (error == 0) 3361 error = spa_validate_aux(spa, nvroot, -1ULL, 3362 VDEV_ALLOC_L2CACHE); 3363 spa_config_exit(spa, SCL_ALL, FTAG); 3364 3365 if (props != NULL) 3366 spa_configfile_set(spa, props, B_FALSE); 3367 3368 if (error != 0 || (props && spa_writeable(spa) && 3369 (error = spa_prop_set(spa, props)))) { 3370 spa_unload(spa); 3371 spa_deactivate(spa); 3372 spa_remove(spa); 3373 mutex_exit(&spa_namespace_lock); 3374 return (error); 3375 } 3376 3377 spa_async_resume(spa); 3378 3379 /* 3380 * Override any spares and level 2 cache devices as specified by 3381 * the user, as these may have correct device names/devids, etc. 3382 */ 3383 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3384 &spares, &nspares) == 0) { 3385 if (spa->spa_spares.sav_config) 3386 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3387 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3388 else 3389 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3390 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3391 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3392 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3393 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3394 spa_load_spares(spa); 3395 spa_config_exit(spa, SCL_ALL, FTAG); 3396 spa->spa_spares.sav_sync = B_TRUE; 3397 } 3398 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3399 &l2cache, &nl2cache) == 0) { 3400 if (spa->spa_l2cache.sav_config) 3401 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3402 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3403 else 3404 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3405 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3406 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3407 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3408 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3409 spa_load_l2cache(spa); 3410 spa_config_exit(spa, SCL_ALL, FTAG); 3411 spa->spa_l2cache.sav_sync = B_TRUE; 3412 } 3413 3414 /* 3415 * Check for any removed devices. 3416 */ 3417 if (spa->spa_autoreplace) { 3418 spa_aux_check_removed(&spa->spa_spares); 3419 spa_aux_check_removed(&spa->spa_l2cache); 3420 } 3421 3422 if (spa_writeable(spa)) { 3423 /* 3424 * Update the config cache to include the newly-imported pool. 3425 */ 3426 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3427 } 3428 3429 /* 3430 * It's possible that the pool was expanded while it was exported. 3431 * We kick off an async task to handle this for us. 3432 */ 3433 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3434 3435 mutex_exit(&spa_namespace_lock); 3436 spa_history_log_version(spa, LOG_POOL_IMPORT); 3437 3438 return (0); 3439 } 3440 3441 nvlist_t * 3442 spa_tryimport(nvlist_t *tryconfig) 3443 { 3444 nvlist_t *config = NULL; 3445 char *poolname; 3446 spa_t *spa; 3447 uint64_t state; 3448 int error; 3449 3450 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3451 return (NULL); 3452 3453 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3454 return (NULL); 3455 3456 /* 3457 * Create and initialize the spa structure. 3458 */ 3459 mutex_enter(&spa_namespace_lock); 3460 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3461 spa_activate(spa, FREAD); 3462 3463 /* 3464 * Pass off the heavy lifting to spa_load(). 3465 * Pass TRUE for mosconfig because the user-supplied config 3466 * is actually the one to trust when doing an import. 3467 */ 3468 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3469 3470 /* 3471 * If 'tryconfig' was at least parsable, return the current config. 3472 */ 3473 if (spa->spa_root_vdev != NULL) { 3474 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3475 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3476 poolname) == 0); 3477 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3478 state) == 0); 3479 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3480 spa->spa_uberblock.ub_timestamp) == 0); 3481 3482 /* 3483 * If the bootfs property exists on this pool then we 3484 * copy it out so that external consumers can tell which 3485 * pools are bootable. 3486 */ 3487 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3488 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3489 3490 /* 3491 * We have to play games with the name since the 3492 * pool was opened as TRYIMPORT_NAME. 3493 */ 3494 if (dsl_dsobj_to_dsname(spa_name(spa), 3495 spa->spa_bootfs, tmpname) == 0) { 3496 char *cp; 3497 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3498 3499 cp = strchr(tmpname, '/'); 3500 if (cp == NULL) { 3501 (void) strlcpy(dsname, tmpname, 3502 MAXPATHLEN); 3503 } else { 3504 (void) snprintf(dsname, MAXPATHLEN, 3505 "%s/%s", poolname, ++cp); 3506 } 3507 VERIFY(nvlist_add_string(config, 3508 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3509 kmem_free(dsname, MAXPATHLEN); 3510 } 3511 kmem_free(tmpname, MAXPATHLEN); 3512 } 3513 3514 /* 3515 * Add the list of hot spares and level 2 cache devices. 3516 */ 3517 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3518 spa_add_spares(spa, config); 3519 spa_add_l2cache(spa, config); 3520 spa_config_exit(spa, SCL_CONFIG, FTAG); 3521 } 3522 3523 spa_unload(spa); 3524 spa_deactivate(spa); 3525 spa_remove(spa); 3526 mutex_exit(&spa_namespace_lock); 3527 3528 return (config); 3529 } 3530 3531 /* 3532 * Pool export/destroy 3533 * 3534 * The act of destroying or exporting a pool is very simple. We make sure there 3535 * is no more pending I/O and any references to the pool are gone. Then, we 3536 * update the pool state and sync all the labels to disk, removing the 3537 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3538 * we don't sync the labels or remove the configuration cache. 3539 */ 3540 static int 3541 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3542 boolean_t force, boolean_t hardforce) 3543 { 3544 spa_t *spa; 3545 3546 if (oldconfig) 3547 *oldconfig = NULL; 3548 3549 if (!(spa_mode_global & FWRITE)) 3550 return (EROFS); 3551 3552 mutex_enter(&spa_namespace_lock); 3553 if ((spa = spa_lookup(pool)) == NULL) { 3554 mutex_exit(&spa_namespace_lock); 3555 return (ENOENT); 3556 } 3557 3558 /* 3559 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3560 * reacquire the namespace lock, and see if we can export. 3561 */ 3562 spa_open_ref(spa, FTAG); 3563 mutex_exit(&spa_namespace_lock); 3564 spa_async_suspend(spa); 3565 mutex_enter(&spa_namespace_lock); 3566 spa_close(spa, FTAG); 3567 3568 /* 3569 * The pool will be in core if it's openable, 3570 * in which case we can modify its state. 3571 */ 3572 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3573 /* 3574 * Objsets may be open only because they're dirty, so we 3575 * have to force it to sync before checking spa_refcnt. 3576 */ 3577 txg_wait_synced(spa->spa_dsl_pool, 0); 3578 3579 /* 3580 * A pool cannot be exported or destroyed if there are active 3581 * references. If we are resetting a pool, allow references by 3582 * fault injection handlers. 3583 */ 3584 if (!spa_refcount_zero(spa) || 3585 (spa->spa_inject_ref != 0 && 3586 new_state != POOL_STATE_UNINITIALIZED)) { 3587 spa_async_resume(spa); 3588 mutex_exit(&spa_namespace_lock); 3589 return (EBUSY); 3590 } 3591 3592 /* 3593 * A pool cannot be exported if it has an active shared spare. 3594 * This is to prevent other pools stealing the active spare 3595 * from an exported pool. At user's own will, such pool can 3596 * be forcedly exported. 3597 */ 3598 if (!force && new_state == POOL_STATE_EXPORTED && 3599 spa_has_active_shared_spare(spa)) { 3600 spa_async_resume(spa); 3601 mutex_exit(&spa_namespace_lock); 3602 return (EXDEV); 3603 } 3604 3605 /* 3606 * We want this to be reflected on every label, 3607 * so mark them all dirty. spa_unload() will do the 3608 * final sync that pushes these changes out. 3609 */ 3610 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 3611 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3612 spa->spa_state = new_state; 3613 spa->spa_final_txg = spa_last_synced_txg(spa) + 3614 TXG_DEFER_SIZE + 1; 3615 vdev_config_dirty(spa->spa_root_vdev); 3616 spa_config_exit(spa, SCL_ALL, FTAG); 3617 } 3618 } 3619 3620 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 3621 3622 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3623 spa_unload(spa); 3624 spa_deactivate(spa); 3625 } 3626 3627 if (oldconfig && spa->spa_config) 3628 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 3629 3630 if (new_state != POOL_STATE_UNINITIALIZED) { 3631 if (!hardforce) 3632 spa_config_sync(spa, B_TRUE, B_TRUE); 3633 spa_remove(spa); 3634 } 3635 mutex_exit(&spa_namespace_lock); 3636 3637 return (0); 3638 } 3639 3640 /* 3641 * Destroy a storage pool. 3642 */ 3643 int 3644 spa_destroy(char *pool) 3645 { 3646 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 3647 B_FALSE, B_FALSE)); 3648 } 3649 3650 /* 3651 * Export a storage pool. 3652 */ 3653 int 3654 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 3655 boolean_t hardforce) 3656 { 3657 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 3658 force, hardforce)); 3659 } 3660 3661 /* 3662 * Similar to spa_export(), this unloads the spa_t without actually removing it 3663 * from the namespace in any way. 3664 */ 3665 int 3666 spa_reset(char *pool) 3667 { 3668 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 3669 B_FALSE, B_FALSE)); 3670 } 3671 3672 /* 3673 * ========================================================================== 3674 * Device manipulation 3675 * ========================================================================== 3676 */ 3677 3678 /* 3679 * Add a device to a storage pool. 3680 */ 3681 int 3682 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 3683 { 3684 uint64_t txg, id; 3685 int error; 3686 vdev_t *rvd = spa->spa_root_vdev; 3687 vdev_t *vd, *tvd; 3688 nvlist_t **spares, **l2cache; 3689 uint_t nspares, nl2cache; 3690 3691 ASSERT(spa_writeable(spa)); 3692 3693 txg = spa_vdev_enter(spa); 3694 3695 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 3696 VDEV_ALLOC_ADD)) != 0) 3697 return (spa_vdev_exit(spa, NULL, txg, error)); 3698 3699 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 3700 3701 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 3702 &nspares) != 0) 3703 nspares = 0; 3704 3705 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 3706 &nl2cache) != 0) 3707 nl2cache = 0; 3708 3709 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 3710 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 3711 3712 if (vd->vdev_children != 0 && 3713 (error = vdev_create(vd, txg, B_FALSE)) != 0) 3714 return (spa_vdev_exit(spa, vd, txg, error)); 3715 3716 /* 3717 * We must validate the spares and l2cache devices after checking the 3718 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 3719 */ 3720 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 3721 return (spa_vdev_exit(spa, vd, txg, error)); 3722 3723 /* 3724 * Transfer each new top-level vdev from vd to rvd. 3725 */ 3726 for (int c = 0; c < vd->vdev_children; c++) { 3727 3728 /* 3729 * Set the vdev id to the first hole, if one exists. 3730 */ 3731 for (id = 0; id < rvd->vdev_children; id++) { 3732 if (rvd->vdev_child[id]->vdev_ishole) { 3733 vdev_free(rvd->vdev_child[id]); 3734 break; 3735 } 3736 } 3737 tvd = vd->vdev_child[c]; 3738 vdev_remove_child(vd, tvd); 3739 tvd->vdev_id = id; 3740 vdev_add_child(rvd, tvd); 3741 vdev_config_dirty(tvd); 3742 } 3743 3744 if (nspares != 0) { 3745 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 3746 ZPOOL_CONFIG_SPARES); 3747 spa_load_spares(spa); 3748 spa->spa_spares.sav_sync = B_TRUE; 3749 } 3750 3751 if (nl2cache != 0) { 3752 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 3753 ZPOOL_CONFIG_L2CACHE); 3754 spa_load_l2cache(spa); 3755 spa->spa_l2cache.sav_sync = B_TRUE; 3756 } 3757 3758 /* 3759 * We have to be careful when adding new vdevs to an existing pool. 3760 * If other threads start allocating from these vdevs before we 3761 * sync the config cache, and we lose power, then upon reboot we may 3762 * fail to open the pool because there are DVAs that the config cache 3763 * can't translate. Therefore, we first add the vdevs without 3764 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 3765 * and then let spa_config_update() initialize the new metaslabs. 3766 * 3767 * spa_load() checks for added-but-not-initialized vdevs, so that 3768 * if we lose power at any point in this sequence, the remaining 3769 * steps will be completed the next time we load the pool. 3770 */ 3771 (void) spa_vdev_exit(spa, vd, txg, 0); 3772 3773 mutex_enter(&spa_namespace_lock); 3774 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3775 mutex_exit(&spa_namespace_lock); 3776 3777 return (0); 3778 } 3779 3780 /* 3781 * Attach a device to a mirror. The arguments are the path to any device 3782 * in the mirror, and the nvroot for the new device. If the path specifies 3783 * a device that is not mirrored, we automatically insert the mirror vdev. 3784 * 3785 * If 'replacing' is specified, the new device is intended to replace the 3786 * existing device; in this case the two devices are made into their own 3787 * mirror using the 'replacing' vdev, which is functionally identical to 3788 * the mirror vdev (it actually reuses all the same ops) but has a few 3789 * extra rules: you can't attach to it after it's been created, and upon 3790 * completion of resilvering, the first disk (the one being replaced) 3791 * is automatically detached. 3792 */ 3793 int 3794 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3795 { 3796 uint64_t txg, dtl_max_txg; 3797 vdev_t *rvd = spa->spa_root_vdev; 3798 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3799 vdev_ops_t *pvops; 3800 char *oldvdpath, *newvdpath; 3801 int newvd_isspare; 3802 int error; 3803 3804 ASSERT(spa_writeable(spa)); 3805 3806 txg = spa_vdev_enter(spa); 3807 3808 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3809 3810 if (oldvd == NULL) 3811 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3812 3813 if (!oldvd->vdev_ops->vdev_op_leaf) 3814 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3815 3816 pvd = oldvd->vdev_parent; 3817 3818 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3819 VDEV_ALLOC_ADD)) != 0) 3820 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3821 3822 if (newrootvd->vdev_children != 1) 3823 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3824 3825 newvd = newrootvd->vdev_child[0]; 3826 3827 if (!newvd->vdev_ops->vdev_op_leaf) 3828 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3829 3830 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3831 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3832 3833 /* 3834 * Spares can't replace logs 3835 */ 3836 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3837 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3838 3839 if (!replacing) { 3840 /* 3841 * For attach, the only allowable parent is a mirror or the root 3842 * vdev. 3843 */ 3844 if (pvd->vdev_ops != &vdev_mirror_ops && 3845 pvd->vdev_ops != &vdev_root_ops) 3846 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3847 3848 pvops = &vdev_mirror_ops; 3849 } else { 3850 /* 3851 * Active hot spares can only be replaced by inactive hot 3852 * spares. 3853 */ 3854 if (pvd->vdev_ops == &vdev_spare_ops && 3855 oldvd->vdev_isspare && 3856 !spa_has_spare(spa, newvd->vdev_guid)) 3857 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3858 3859 /* 3860 * If the source is a hot spare, and the parent isn't already a 3861 * spare, then we want to create a new hot spare. Otherwise, we 3862 * want to create a replacing vdev. The user is not allowed to 3863 * attach to a spared vdev child unless the 'isspare' state is 3864 * the same (spare replaces spare, non-spare replaces 3865 * non-spare). 3866 */ 3867 if (pvd->vdev_ops == &vdev_replacing_ops && 3868 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 3869 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3870 } else if (pvd->vdev_ops == &vdev_spare_ops && 3871 newvd->vdev_isspare != oldvd->vdev_isspare) { 3872 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3873 } 3874 3875 if (newvd->vdev_isspare) 3876 pvops = &vdev_spare_ops; 3877 else 3878 pvops = &vdev_replacing_ops; 3879 } 3880 3881 /* 3882 * Make sure the new device is big enough. 3883 */ 3884 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3885 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3886 3887 /* 3888 * The new device cannot have a higher alignment requirement 3889 * than the top-level vdev. 3890 */ 3891 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3892 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3893 3894 /* 3895 * If this is an in-place replacement, update oldvd's path and devid 3896 * to make it distinguishable from newvd, and unopenable from now on. 3897 */ 3898 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3899 spa_strfree(oldvd->vdev_path); 3900 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3901 KM_SLEEP); 3902 (void) sprintf(oldvd->vdev_path, "%s/%s", 3903 newvd->vdev_path, "old"); 3904 if (oldvd->vdev_devid != NULL) { 3905 spa_strfree(oldvd->vdev_devid); 3906 oldvd->vdev_devid = NULL; 3907 } 3908 } 3909 3910 /* mark the device being resilvered */ 3911 newvd->vdev_resilvering = B_TRUE; 3912 3913 /* 3914 * If the parent is not a mirror, or if we're replacing, insert the new 3915 * mirror/replacing/spare vdev above oldvd. 3916 */ 3917 if (pvd->vdev_ops != pvops) 3918 pvd = vdev_add_parent(oldvd, pvops); 3919 3920 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3921 ASSERT(pvd->vdev_ops == pvops); 3922 ASSERT(oldvd->vdev_parent == pvd); 3923 3924 /* 3925 * Extract the new device from its root and add it to pvd. 3926 */ 3927 vdev_remove_child(newrootvd, newvd); 3928 newvd->vdev_id = pvd->vdev_children; 3929 newvd->vdev_crtxg = oldvd->vdev_crtxg; 3930 vdev_add_child(pvd, newvd); 3931 3932 tvd = newvd->vdev_top; 3933 ASSERT(pvd->vdev_top == tvd); 3934 ASSERT(tvd->vdev_parent == rvd); 3935 3936 vdev_config_dirty(tvd); 3937 3938 /* 3939 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 3940 * for any dmu_sync-ed blocks. It will propagate upward when 3941 * spa_vdev_exit() calls vdev_dtl_reassess(). 3942 */ 3943 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 3944 3945 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 3946 dtl_max_txg - TXG_INITIAL); 3947 3948 if (newvd->vdev_isspare) { 3949 spa_spare_activate(newvd); 3950 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3951 } 3952 3953 oldvdpath = spa_strdup(oldvd->vdev_path); 3954 newvdpath = spa_strdup(newvd->vdev_path); 3955 newvd_isspare = newvd->vdev_isspare; 3956 3957 /* 3958 * Mark newvd's DTL dirty in this txg. 3959 */ 3960 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3961 3962 /* 3963 * Restart the resilver 3964 */ 3965 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 3966 3967 /* 3968 * Commit the config 3969 */ 3970 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 3971 3972 spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL, 3973 "%s vdev=%s %s vdev=%s", 3974 replacing && newvd_isspare ? "spare in" : 3975 replacing ? "replace" : "attach", newvdpath, 3976 replacing ? "for" : "to", oldvdpath); 3977 3978 spa_strfree(oldvdpath); 3979 spa_strfree(newvdpath); 3980 3981 if (spa->spa_bootfs) 3982 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 3983 3984 return (0); 3985 } 3986 3987 /* 3988 * Detach a device from a mirror or replacing vdev. 3989 * If 'replace_done' is specified, only detach if the parent 3990 * is a replacing vdev. 3991 */ 3992 int 3993 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3994 { 3995 uint64_t txg; 3996 int error; 3997 vdev_t *rvd = spa->spa_root_vdev; 3998 vdev_t *vd, *pvd, *cvd, *tvd; 3999 boolean_t unspare = B_FALSE; 4000 uint64_t unspare_guid; 4001 char *vdpath; 4002 4003 ASSERT(spa_writeable(spa)); 4004 4005 txg = spa_vdev_enter(spa); 4006 4007 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4008 4009 if (vd == NULL) 4010 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4011 4012 if (!vd->vdev_ops->vdev_op_leaf) 4013 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4014 4015 pvd = vd->vdev_parent; 4016 4017 /* 4018 * If the parent/child relationship is not as expected, don't do it. 4019 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4020 * vdev that's replacing B with C. The user's intent in replacing 4021 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4022 * the replace by detaching C, the expected behavior is to end up 4023 * M(A,B). But suppose that right after deciding to detach C, 4024 * the replacement of B completes. We would have M(A,C), and then 4025 * ask to detach C, which would leave us with just A -- not what 4026 * the user wanted. To prevent this, we make sure that the 4027 * parent/child relationship hasn't changed -- in this example, 4028 * that C's parent is still the replacing vdev R. 4029 */ 4030 if (pvd->vdev_guid != pguid && pguid != 0) 4031 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4032 4033 /* 4034 * Only 'replacing' or 'spare' vdevs can be replaced. 4035 */ 4036 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4037 pvd->vdev_ops != &vdev_spare_ops) 4038 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4039 4040 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4041 spa_version(spa) >= SPA_VERSION_SPARES); 4042 4043 /* 4044 * Only mirror, replacing, and spare vdevs support detach. 4045 */ 4046 if (pvd->vdev_ops != &vdev_replacing_ops && 4047 pvd->vdev_ops != &vdev_mirror_ops && 4048 pvd->vdev_ops != &vdev_spare_ops) 4049 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4050 4051 /* 4052 * If this device has the only valid copy of some data, 4053 * we cannot safely detach it. 4054 */ 4055 if (vdev_dtl_required(vd)) 4056 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4057 4058 ASSERT(pvd->vdev_children >= 2); 4059 4060 /* 4061 * If we are detaching the second disk from a replacing vdev, then 4062 * check to see if we changed the original vdev's path to have "/old" 4063 * at the end in spa_vdev_attach(). If so, undo that change now. 4064 */ 4065 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4066 vd->vdev_path != NULL) { 4067 size_t len = strlen(vd->vdev_path); 4068 4069 for (int c = 0; c < pvd->vdev_children; c++) { 4070 cvd = pvd->vdev_child[c]; 4071 4072 if (cvd == vd || cvd->vdev_path == NULL) 4073 continue; 4074 4075 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4076 strcmp(cvd->vdev_path + len, "/old") == 0) { 4077 spa_strfree(cvd->vdev_path); 4078 cvd->vdev_path = spa_strdup(vd->vdev_path); 4079 break; 4080 } 4081 } 4082 } 4083 4084 /* 4085 * If we are detaching the original disk from a spare, then it implies 4086 * that the spare should become a real disk, and be removed from the 4087 * active spare list for the pool. 4088 */ 4089 if (pvd->vdev_ops == &vdev_spare_ops && 4090 vd->vdev_id == 0 && 4091 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4092 unspare = B_TRUE; 4093 4094 /* 4095 * Erase the disk labels so the disk can be used for other things. 4096 * This must be done after all other error cases are handled, 4097 * but before we disembowel vd (so we can still do I/O to it). 4098 * But if we can't do it, don't treat the error as fatal -- 4099 * it may be that the unwritability of the disk is the reason 4100 * it's being detached! 4101 */ 4102 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4103 4104 /* 4105 * Remove vd from its parent and compact the parent's children. 4106 */ 4107 vdev_remove_child(pvd, vd); 4108 vdev_compact_children(pvd); 4109 4110 /* 4111 * Remember one of the remaining children so we can get tvd below. 4112 */ 4113 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4114 4115 /* 4116 * If we need to remove the remaining child from the list of hot spares, 4117 * do it now, marking the vdev as no longer a spare in the process. 4118 * We must do this before vdev_remove_parent(), because that can 4119 * change the GUID if it creates a new toplevel GUID. For a similar 4120 * reason, we must remove the spare now, in the same txg as the detach; 4121 * otherwise someone could attach a new sibling, change the GUID, and 4122 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4123 */ 4124 if (unspare) { 4125 ASSERT(cvd->vdev_isspare); 4126 spa_spare_remove(cvd); 4127 unspare_guid = cvd->vdev_guid; 4128 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4129 cvd->vdev_unspare = B_TRUE; 4130 } 4131 4132 /* 4133 * If the parent mirror/replacing vdev only has one child, 4134 * the parent is no longer needed. Remove it from the tree. 4135 */ 4136 if (pvd->vdev_children == 1) { 4137 if (pvd->vdev_ops == &vdev_spare_ops) 4138 cvd->vdev_unspare = B_FALSE; 4139 vdev_remove_parent(cvd); 4140 cvd->vdev_resilvering = B_FALSE; 4141 } 4142 4143 4144 /* 4145 * We don't set tvd until now because the parent we just removed 4146 * may have been the previous top-level vdev. 4147 */ 4148 tvd = cvd->vdev_top; 4149 ASSERT(tvd->vdev_parent == rvd); 4150 4151 /* 4152 * Reevaluate the parent vdev state. 4153 */ 4154 vdev_propagate_state(cvd); 4155 4156 /* 4157 * If the 'autoexpand' property is set on the pool then automatically 4158 * try to expand the size of the pool. For example if the device we 4159 * just detached was smaller than the others, it may be possible to 4160 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4161 * first so that we can obtain the updated sizes of the leaf vdevs. 4162 */ 4163 if (spa->spa_autoexpand) { 4164 vdev_reopen(tvd); 4165 vdev_expand(tvd, txg); 4166 } 4167 4168 vdev_config_dirty(tvd); 4169 4170 /* 4171 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4172 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4173 * But first make sure we're not on any *other* txg's DTL list, to 4174 * prevent vd from being accessed after it's freed. 4175 */ 4176 vdpath = spa_strdup(vd->vdev_path); 4177 for (int t = 0; t < TXG_SIZE; t++) 4178 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4179 vd->vdev_detached = B_TRUE; 4180 vdev_dirty(tvd, VDD_DTL, vd, txg); 4181 4182 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4183 4184 /* hang on to the spa before we release the lock */ 4185 spa_open_ref(spa, FTAG); 4186 4187 error = spa_vdev_exit(spa, vd, txg, 0); 4188 4189 spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL, 4190 "vdev=%s", vdpath); 4191 spa_strfree(vdpath); 4192 4193 /* 4194 * If this was the removal of the original device in a hot spare vdev, 4195 * then we want to go through and remove the device from the hot spare 4196 * list of every other pool. 4197 */ 4198 if (unspare) { 4199 spa_t *altspa = NULL; 4200 4201 mutex_enter(&spa_namespace_lock); 4202 while ((altspa = spa_next(altspa)) != NULL) { 4203 if (altspa->spa_state != POOL_STATE_ACTIVE || 4204 altspa == spa) 4205 continue; 4206 4207 spa_open_ref(altspa, FTAG); 4208 mutex_exit(&spa_namespace_lock); 4209 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4210 mutex_enter(&spa_namespace_lock); 4211 spa_close(altspa, FTAG); 4212 } 4213 mutex_exit(&spa_namespace_lock); 4214 4215 /* search the rest of the vdevs for spares to remove */ 4216 spa_vdev_resilver_done(spa); 4217 } 4218 4219 /* all done with the spa; OK to release */ 4220 mutex_enter(&spa_namespace_lock); 4221 spa_close(spa, FTAG); 4222 mutex_exit(&spa_namespace_lock); 4223 4224 return (error); 4225 } 4226 4227 /* 4228 * Split a set of devices from their mirrors, and create a new pool from them. 4229 */ 4230 int 4231 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4232 nvlist_t *props, boolean_t exp) 4233 { 4234 int error = 0; 4235 uint64_t txg, *glist; 4236 spa_t *newspa; 4237 uint_t c, children, lastlog; 4238 nvlist_t **child, *nvl, *tmp; 4239 dmu_tx_t *tx; 4240 char *altroot = NULL; 4241 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4242 boolean_t activate_slog; 4243 4244 ASSERT(spa_writeable(spa)); 4245 4246 txg = spa_vdev_enter(spa); 4247 4248 /* clear the log and flush everything up to now */ 4249 activate_slog = spa_passivate_log(spa); 4250 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4251 error = spa_offline_log(spa); 4252 txg = spa_vdev_config_enter(spa); 4253 4254 if (activate_slog) 4255 spa_activate_log(spa); 4256 4257 if (error != 0) 4258 return (spa_vdev_exit(spa, NULL, txg, error)); 4259 4260 /* check new spa name before going any further */ 4261 if (spa_lookup(newname) != NULL) 4262 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4263 4264 /* 4265 * scan through all the children to ensure they're all mirrors 4266 */ 4267 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4268 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4269 &children) != 0) 4270 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4271 4272 /* first, check to ensure we've got the right child count */ 4273 rvd = spa->spa_root_vdev; 4274 lastlog = 0; 4275 for (c = 0; c < rvd->vdev_children; c++) { 4276 vdev_t *vd = rvd->vdev_child[c]; 4277 4278 /* don't count the holes & logs as children */ 4279 if (vd->vdev_islog || vd->vdev_ishole) { 4280 if (lastlog == 0) 4281 lastlog = c; 4282 continue; 4283 } 4284 4285 lastlog = 0; 4286 } 4287 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4288 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4289 4290 /* next, ensure no spare or cache devices are part of the split */ 4291 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4292 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4293 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4294 4295 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4296 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4297 4298 /* then, loop over each vdev and validate it */ 4299 for (c = 0; c < children; c++) { 4300 uint64_t is_hole = 0; 4301 4302 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4303 &is_hole); 4304 4305 if (is_hole != 0) { 4306 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4307 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4308 continue; 4309 } else { 4310 error = EINVAL; 4311 break; 4312 } 4313 } 4314 4315 /* which disk is going to be split? */ 4316 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4317 &glist[c]) != 0) { 4318 error = EINVAL; 4319 break; 4320 } 4321 4322 /* look it up in the spa */ 4323 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4324 if (vml[c] == NULL) { 4325 error = ENODEV; 4326 break; 4327 } 4328 4329 /* make sure there's nothing stopping the split */ 4330 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4331 vml[c]->vdev_islog || 4332 vml[c]->vdev_ishole || 4333 vml[c]->vdev_isspare || 4334 vml[c]->vdev_isl2cache || 4335 !vdev_writeable(vml[c]) || 4336 vml[c]->vdev_children != 0 || 4337 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4338 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4339 error = EINVAL; 4340 break; 4341 } 4342 4343 if (vdev_dtl_required(vml[c])) { 4344 error = EBUSY; 4345 break; 4346 } 4347 4348 /* we need certain info from the top level */ 4349 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4350 vml[c]->vdev_top->vdev_ms_array) == 0); 4351 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4352 vml[c]->vdev_top->vdev_ms_shift) == 0); 4353 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4354 vml[c]->vdev_top->vdev_asize) == 0); 4355 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4356 vml[c]->vdev_top->vdev_ashift) == 0); 4357 } 4358 4359 if (error != 0) { 4360 kmem_free(vml, children * sizeof (vdev_t *)); 4361 kmem_free(glist, children * sizeof (uint64_t)); 4362 return (spa_vdev_exit(spa, NULL, txg, error)); 4363 } 4364 4365 /* stop writers from using the disks */ 4366 for (c = 0; c < children; c++) { 4367 if (vml[c] != NULL) 4368 vml[c]->vdev_offline = B_TRUE; 4369 } 4370 vdev_reopen(spa->spa_root_vdev); 4371 4372 /* 4373 * Temporarily record the splitting vdevs in the spa config. This 4374 * will disappear once the config is regenerated. 4375 */ 4376 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4377 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4378 glist, children) == 0); 4379 kmem_free(glist, children * sizeof (uint64_t)); 4380 4381 mutex_enter(&spa->spa_props_lock); 4382 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4383 nvl) == 0); 4384 mutex_exit(&spa->spa_props_lock); 4385 spa->spa_config_splitting = nvl; 4386 vdev_config_dirty(spa->spa_root_vdev); 4387 4388 /* configure and create the new pool */ 4389 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4390 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4391 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4392 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4393 spa_version(spa)) == 0); 4394 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4395 spa->spa_config_txg) == 0); 4396 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4397 spa_generate_guid(NULL)) == 0); 4398 (void) nvlist_lookup_string(props, 4399 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4400 4401 /* add the new pool to the namespace */ 4402 newspa = spa_add(newname, config, altroot); 4403 newspa->spa_config_txg = spa->spa_config_txg; 4404 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4405 4406 /* release the spa config lock, retaining the namespace lock */ 4407 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4408 4409 if (zio_injection_enabled) 4410 zio_handle_panic_injection(spa, FTAG, 1); 4411 4412 spa_activate(newspa, spa_mode_global); 4413 spa_async_suspend(newspa); 4414 4415 /* create the new pool from the disks of the original pool */ 4416 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4417 if (error) 4418 goto out; 4419 4420 /* if that worked, generate a real config for the new pool */ 4421 if (newspa->spa_root_vdev != NULL) { 4422 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4423 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4424 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4425 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4426 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4427 B_TRUE)); 4428 } 4429 4430 /* set the props */ 4431 if (props != NULL) { 4432 spa_configfile_set(newspa, props, B_FALSE); 4433 error = spa_prop_set(newspa, props); 4434 if (error) 4435 goto out; 4436 } 4437 4438 /* flush everything */ 4439 txg = spa_vdev_config_enter(newspa); 4440 vdev_config_dirty(newspa->spa_root_vdev); 4441 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4442 4443 if (zio_injection_enabled) 4444 zio_handle_panic_injection(spa, FTAG, 2); 4445 4446 spa_async_resume(newspa); 4447 4448 /* finally, update the original pool's config */ 4449 txg = spa_vdev_config_enter(spa); 4450 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4451 error = dmu_tx_assign(tx, TXG_WAIT); 4452 if (error != 0) 4453 dmu_tx_abort(tx); 4454 for (c = 0; c < children; c++) { 4455 if (vml[c] != NULL) { 4456 vdev_split(vml[c]); 4457 if (error == 0) 4458 spa_history_log_internal(LOG_POOL_VDEV_DETACH, 4459 spa, tx, "vdev=%s", 4460 vml[c]->vdev_path); 4461 vdev_free(vml[c]); 4462 } 4463 } 4464 vdev_config_dirty(spa->spa_root_vdev); 4465 spa->spa_config_splitting = NULL; 4466 nvlist_free(nvl); 4467 if (error == 0) 4468 dmu_tx_commit(tx); 4469 (void) spa_vdev_exit(spa, NULL, txg, 0); 4470 4471 if (zio_injection_enabled) 4472 zio_handle_panic_injection(spa, FTAG, 3); 4473 4474 /* split is complete; log a history record */ 4475 spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL, 4476 "split new pool %s from pool %s", newname, spa_name(spa)); 4477 4478 kmem_free(vml, children * sizeof (vdev_t *)); 4479 4480 /* if we're not going to mount the filesystems in userland, export */ 4481 if (exp) 4482 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4483 B_FALSE, B_FALSE); 4484 4485 return (error); 4486 4487 out: 4488 spa_unload(newspa); 4489 spa_deactivate(newspa); 4490 spa_remove(newspa); 4491 4492 txg = spa_vdev_config_enter(spa); 4493 4494 /* re-online all offlined disks */ 4495 for (c = 0; c < children; c++) { 4496 if (vml[c] != NULL) 4497 vml[c]->vdev_offline = B_FALSE; 4498 } 4499 vdev_reopen(spa->spa_root_vdev); 4500 4501 nvlist_free(spa->spa_config_splitting); 4502 spa->spa_config_splitting = NULL; 4503 (void) spa_vdev_exit(spa, NULL, txg, error); 4504 4505 kmem_free(vml, children * sizeof (vdev_t *)); 4506 return (error); 4507 } 4508 4509 static nvlist_t * 4510 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4511 { 4512 for (int i = 0; i < count; i++) { 4513 uint64_t guid; 4514 4515 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4516 &guid) == 0); 4517 4518 if (guid == target_guid) 4519 return (nvpp[i]); 4520 } 4521 4522 return (NULL); 4523 } 4524 4525 static void 4526 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4527 nvlist_t *dev_to_remove) 4528 { 4529 nvlist_t **newdev = NULL; 4530 4531 if (count > 1) 4532 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4533 4534 for (int i = 0, j = 0; i < count; i++) { 4535 if (dev[i] == dev_to_remove) 4536 continue; 4537 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4538 } 4539 4540 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4541 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4542 4543 for (int i = 0; i < count - 1; i++) 4544 nvlist_free(newdev[i]); 4545 4546 if (count > 1) 4547 kmem_free(newdev, (count - 1) * sizeof (void *)); 4548 } 4549 4550 /* 4551 * Evacuate the device. 4552 */ 4553 static int 4554 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 4555 { 4556 uint64_t txg; 4557 int error = 0; 4558 4559 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4560 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4561 ASSERT(vd == vd->vdev_top); 4562 4563 /* 4564 * Evacuate the device. We don't hold the config lock as writer 4565 * since we need to do I/O but we do keep the 4566 * spa_namespace_lock held. Once this completes the device 4567 * should no longer have any blocks allocated on it. 4568 */ 4569 if (vd->vdev_islog) { 4570 if (vd->vdev_stat.vs_alloc != 0) 4571 error = spa_offline_log(spa); 4572 } else { 4573 error = ENOTSUP; 4574 } 4575 4576 if (error) 4577 return (error); 4578 4579 /* 4580 * The evacuation succeeded. Remove any remaining MOS metadata 4581 * associated with this vdev, and wait for these changes to sync. 4582 */ 4583 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 4584 txg = spa_vdev_config_enter(spa); 4585 vd->vdev_removing = B_TRUE; 4586 vdev_dirty(vd, 0, NULL, txg); 4587 vdev_config_dirty(vd); 4588 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4589 4590 return (0); 4591 } 4592 4593 /* 4594 * Complete the removal by cleaning up the namespace. 4595 */ 4596 static void 4597 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 4598 { 4599 vdev_t *rvd = spa->spa_root_vdev; 4600 uint64_t id = vd->vdev_id; 4601 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 4602 4603 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4604 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4605 ASSERT(vd == vd->vdev_top); 4606 4607 /* 4608 * Only remove any devices which are empty. 4609 */ 4610 if (vd->vdev_stat.vs_alloc != 0) 4611 return; 4612 4613 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4614 4615 if (list_link_active(&vd->vdev_state_dirty_node)) 4616 vdev_state_clean(vd); 4617 if (list_link_active(&vd->vdev_config_dirty_node)) 4618 vdev_config_clean(vd); 4619 4620 vdev_free(vd); 4621 4622 if (last_vdev) { 4623 vdev_compact_children(rvd); 4624 } else { 4625 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 4626 vdev_add_child(rvd, vd); 4627 } 4628 vdev_config_dirty(rvd); 4629 4630 /* 4631 * Reassess the health of our root vdev. 4632 */ 4633 vdev_reopen(rvd); 4634 } 4635 4636 /* 4637 * Remove a device from the pool - 4638 * 4639 * Removing a device from the vdev namespace requires several steps 4640 * and can take a significant amount of time. As a result we use 4641 * the spa_vdev_config_[enter/exit] functions which allow us to 4642 * grab and release the spa_config_lock while still holding the namespace 4643 * lock. During each step the configuration is synced out. 4644 */ 4645 4646 /* 4647 * Remove a device from the pool. Currently, this supports removing only hot 4648 * spares, slogs, and level 2 ARC devices. 4649 */ 4650 int 4651 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 4652 { 4653 vdev_t *vd; 4654 metaslab_group_t *mg; 4655 nvlist_t **spares, **l2cache, *nv; 4656 uint64_t txg = 0; 4657 uint_t nspares, nl2cache; 4658 int error = 0; 4659 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 4660 4661 ASSERT(spa_writeable(spa)); 4662 4663 if (!locked) 4664 txg = spa_vdev_enter(spa); 4665 4666 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4667 4668 if (spa->spa_spares.sav_vdevs != NULL && 4669 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4670 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 4671 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 4672 /* 4673 * Only remove the hot spare if it's not currently in use 4674 * in this pool. 4675 */ 4676 if (vd == NULL || unspare) { 4677 spa_vdev_remove_aux(spa->spa_spares.sav_config, 4678 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 4679 spa_load_spares(spa); 4680 spa->spa_spares.sav_sync = B_TRUE; 4681 } else { 4682 error = EBUSY; 4683 } 4684 } else if (spa->spa_l2cache.sav_vdevs != NULL && 4685 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4686 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 4687 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 4688 /* 4689 * Cache devices can always be removed. 4690 */ 4691 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 4692 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 4693 spa_load_l2cache(spa); 4694 spa->spa_l2cache.sav_sync = B_TRUE; 4695 } else if (vd != NULL && vd->vdev_islog) { 4696 ASSERT(!locked); 4697 ASSERT(vd == vd->vdev_top); 4698 4699 /* 4700 * XXX - Once we have bp-rewrite this should 4701 * become the common case. 4702 */ 4703 4704 mg = vd->vdev_mg; 4705 4706 /* 4707 * Stop allocating from this vdev. 4708 */ 4709 metaslab_group_passivate(mg); 4710 4711 /* 4712 * Wait for the youngest allocations and frees to sync, 4713 * and then wait for the deferral of those frees to finish. 4714 */ 4715 spa_vdev_config_exit(spa, NULL, 4716 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 4717 4718 /* 4719 * Attempt to evacuate the vdev. 4720 */ 4721 error = spa_vdev_remove_evacuate(spa, vd); 4722 4723 txg = spa_vdev_config_enter(spa); 4724 4725 /* 4726 * If we couldn't evacuate the vdev, unwind. 4727 */ 4728 if (error) { 4729 metaslab_group_activate(mg); 4730 return (spa_vdev_exit(spa, NULL, txg, error)); 4731 } 4732 4733 /* 4734 * Clean up the vdev namespace. 4735 */ 4736 spa_vdev_remove_from_namespace(spa, vd); 4737 4738 } else if (vd != NULL) { 4739 /* 4740 * Normal vdevs cannot be removed (yet). 4741 */ 4742 error = ENOTSUP; 4743 } else { 4744 /* 4745 * There is no vdev of any kind with the specified guid. 4746 */ 4747 error = ENOENT; 4748 } 4749 4750 if (!locked) 4751 return (spa_vdev_exit(spa, NULL, txg, error)); 4752 4753 return (error); 4754 } 4755 4756 /* 4757 * Find any device that's done replacing, or a vdev marked 'unspare' that's 4758 * current spared, so we can detach it. 4759 */ 4760 static vdev_t * 4761 spa_vdev_resilver_done_hunt(vdev_t *vd) 4762 { 4763 vdev_t *newvd, *oldvd; 4764 4765 for (int c = 0; c < vd->vdev_children; c++) { 4766 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 4767 if (oldvd != NULL) 4768 return (oldvd); 4769 } 4770 4771 /* 4772 * Check for a completed replacement. We always consider the first 4773 * vdev in the list to be the oldest vdev, and the last one to be 4774 * the newest (see spa_vdev_attach() for how that works). In 4775 * the case where the newest vdev is faulted, we will not automatically 4776 * remove it after a resilver completes. This is OK as it will require 4777 * user intervention to determine which disk the admin wishes to keep. 4778 */ 4779 if (vd->vdev_ops == &vdev_replacing_ops) { 4780 ASSERT(vd->vdev_children > 1); 4781 4782 newvd = vd->vdev_child[vd->vdev_children - 1]; 4783 oldvd = vd->vdev_child[0]; 4784 4785 if (vdev_dtl_empty(newvd, DTL_MISSING) && 4786 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4787 !vdev_dtl_required(oldvd)) 4788 return (oldvd); 4789 } 4790 4791 /* 4792 * Check for a completed resilver with the 'unspare' flag set. 4793 */ 4794 if (vd->vdev_ops == &vdev_spare_ops) { 4795 vdev_t *first = vd->vdev_child[0]; 4796 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 4797 4798 if (last->vdev_unspare) { 4799 oldvd = first; 4800 newvd = last; 4801 } else if (first->vdev_unspare) { 4802 oldvd = last; 4803 newvd = first; 4804 } else { 4805 oldvd = NULL; 4806 } 4807 4808 if (oldvd != NULL && 4809 vdev_dtl_empty(newvd, DTL_MISSING) && 4810 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4811 !vdev_dtl_required(oldvd)) 4812 return (oldvd); 4813 4814 /* 4815 * If there are more than two spares attached to a disk, 4816 * and those spares are not required, then we want to 4817 * attempt to free them up now so that they can be used 4818 * by other pools. Once we're back down to a single 4819 * disk+spare, we stop removing them. 4820 */ 4821 if (vd->vdev_children > 2) { 4822 newvd = vd->vdev_child[1]; 4823 4824 if (newvd->vdev_isspare && last->vdev_isspare && 4825 vdev_dtl_empty(last, DTL_MISSING) && 4826 vdev_dtl_empty(last, DTL_OUTAGE) && 4827 !vdev_dtl_required(newvd)) 4828 return (newvd); 4829 } 4830 } 4831 4832 return (NULL); 4833 } 4834 4835 static void 4836 spa_vdev_resilver_done(spa_t *spa) 4837 { 4838 vdev_t *vd, *pvd, *ppvd; 4839 uint64_t guid, sguid, pguid, ppguid; 4840 4841 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4842 4843 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 4844 pvd = vd->vdev_parent; 4845 ppvd = pvd->vdev_parent; 4846 guid = vd->vdev_guid; 4847 pguid = pvd->vdev_guid; 4848 ppguid = ppvd->vdev_guid; 4849 sguid = 0; 4850 /* 4851 * If we have just finished replacing a hot spared device, then 4852 * we need to detach the parent's first child (the original hot 4853 * spare) as well. 4854 */ 4855 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 4856 ppvd->vdev_children == 2) { 4857 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 4858 sguid = ppvd->vdev_child[1]->vdev_guid; 4859 } 4860 spa_config_exit(spa, SCL_ALL, FTAG); 4861 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 4862 return; 4863 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 4864 return; 4865 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4866 } 4867 4868 spa_config_exit(spa, SCL_ALL, FTAG); 4869 } 4870 4871 /* 4872 * Update the stored path or FRU for this vdev. 4873 */ 4874 int 4875 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 4876 boolean_t ispath) 4877 { 4878 vdev_t *vd; 4879 boolean_t sync = B_FALSE; 4880 4881 ASSERT(spa_writeable(spa)); 4882 4883 spa_vdev_state_enter(spa, SCL_ALL); 4884 4885 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4886 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 4887 4888 if (!vd->vdev_ops->vdev_op_leaf) 4889 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4890 4891 if (ispath) { 4892 if (strcmp(value, vd->vdev_path) != 0) { 4893 spa_strfree(vd->vdev_path); 4894 vd->vdev_path = spa_strdup(value); 4895 sync = B_TRUE; 4896 } 4897 } else { 4898 if (vd->vdev_fru == NULL) { 4899 vd->vdev_fru = spa_strdup(value); 4900 sync = B_TRUE; 4901 } else if (strcmp(value, vd->vdev_fru) != 0) { 4902 spa_strfree(vd->vdev_fru); 4903 vd->vdev_fru = spa_strdup(value); 4904 sync = B_TRUE; 4905 } 4906 } 4907 4908 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 4909 } 4910 4911 int 4912 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 4913 { 4914 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 4915 } 4916 4917 int 4918 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 4919 { 4920 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 4921 } 4922 4923 /* 4924 * ========================================================================== 4925 * SPA Scanning 4926 * ========================================================================== 4927 */ 4928 4929 int 4930 spa_scan_stop(spa_t *spa) 4931 { 4932 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4933 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 4934 return (EBUSY); 4935 return (dsl_scan_cancel(spa->spa_dsl_pool)); 4936 } 4937 4938 int 4939 spa_scan(spa_t *spa, pool_scan_func_t func) 4940 { 4941 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4942 4943 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 4944 return (ENOTSUP); 4945 4946 /* 4947 * If a resilver was requested, but there is no DTL on a 4948 * writeable leaf device, we have nothing to do. 4949 */ 4950 if (func == POOL_SCAN_RESILVER && 4951 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4952 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4953 return (0); 4954 } 4955 4956 return (dsl_scan(spa->spa_dsl_pool, func)); 4957 } 4958 4959 /* 4960 * ========================================================================== 4961 * SPA async task processing 4962 * ========================================================================== 4963 */ 4964 4965 static void 4966 spa_async_remove(spa_t *spa, vdev_t *vd) 4967 { 4968 if (vd->vdev_remove_wanted) { 4969 vd->vdev_remove_wanted = B_FALSE; 4970 vd->vdev_delayed_close = B_FALSE; 4971 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 4972 4973 /* 4974 * We want to clear the stats, but we don't want to do a full 4975 * vdev_clear() as that will cause us to throw away 4976 * degraded/faulted state as well as attempt to reopen the 4977 * device, all of which is a waste. 4978 */ 4979 vd->vdev_stat.vs_read_errors = 0; 4980 vd->vdev_stat.vs_write_errors = 0; 4981 vd->vdev_stat.vs_checksum_errors = 0; 4982 4983 vdev_state_dirty(vd->vdev_top); 4984 } 4985 4986 for (int c = 0; c < vd->vdev_children; c++) 4987 spa_async_remove(spa, vd->vdev_child[c]); 4988 } 4989 4990 static void 4991 spa_async_probe(spa_t *spa, vdev_t *vd) 4992 { 4993 if (vd->vdev_probe_wanted) { 4994 vd->vdev_probe_wanted = B_FALSE; 4995 vdev_reopen(vd); /* vdev_open() does the actual probe */ 4996 } 4997 4998 for (int c = 0; c < vd->vdev_children; c++) 4999 spa_async_probe(spa, vd->vdev_child[c]); 5000 } 5001 5002 static void 5003 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5004 { 5005 sysevent_id_t eid; 5006 nvlist_t *attr; 5007 char *physpath; 5008 5009 if (!spa->spa_autoexpand) 5010 return; 5011 5012 for (int c = 0; c < vd->vdev_children; c++) { 5013 vdev_t *cvd = vd->vdev_child[c]; 5014 spa_async_autoexpand(spa, cvd); 5015 } 5016 5017 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5018 return; 5019 5020 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5021 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5022 5023 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5024 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5025 5026 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5027 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5028 5029 nvlist_free(attr); 5030 kmem_free(physpath, MAXPATHLEN); 5031 } 5032 5033 static void 5034 spa_async_thread(spa_t *spa) 5035 { 5036 int tasks; 5037 5038 ASSERT(spa->spa_sync_on); 5039 5040 mutex_enter(&spa->spa_async_lock); 5041 tasks = spa->spa_async_tasks; 5042 spa->spa_async_tasks = 0; 5043 mutex_exit(&spa->spa_async_lock); 5044 5045 /* 5046 * See if the config needs to be updated. 5047 */ 5048 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5049 uint64_t old_space, new_space; 5050 5051 mutex_enter(&spa_namespace_lock); 5052 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5053 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5054 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5055 mutex_exit(&spa_namespace_lock); 5056 5057 /* 5058 * If the pool grew as a result of the config update, 5059 * then log an internal history event. 5060 */ 5061 if (new_space != old_space) { 5062 spa_history_log_internal(LOG_POOL_VDEV_ONLINE, 5063 spa, NULL, 5064 "pool '%s' size: %llu(+%llu)", 5065 spa_name(spa), new_space, new_space - old_space); 5066 } 5067 } 5068 5069 /* 5070 * See if any devices need to be marked REMOVED. 5071 */ 5072 if (tasks & SPA_ASYNC_REMOVE) { 5073 spa_vdev_state_enter(spa, SCL_NONE); 5074 spa_async_remove(spa, spa->spa_root_vdev); 5075 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5076 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5077 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5078 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5079 (void) spa_vdev_state_exit(spa, NULL, 0); 5080 } 5081 5082 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5083 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5084 spa_async_autoexpand(spa, spa->spa_root_vdev); 5085 spa_config_exit(spa, SCL_CONFIG, FTAG); 5086 } 5087 5088 /* 5089 * See if any devices need to be probed. 5090 */ 5091 if (tasks & SPA_ASYNC_PROBE) { 5092 spa_vdev_state_enter(spa, SCL_NONE); 5093 spa_async_probe(spa, spa->spa_root_vdev); 5094 (void) spa_vdev_state_exit(spa, NULL, 0); 5095 } 5096 5097 /* 5098 * If any devices are done replacing, detach them. 5099 */ 5100 if (tasks & SPA_ASYNC_RESILVER_DONE) 5101 spa_vdev_resilver_done(spa); 5102 5103 /* 5104 * Kick off a resilver. 5105 */ 5106 if (tasks & SPA_ASYNC_RESILVER) 5107 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5108 5109 /* 5110 * Let the world know that we're done. 5111 */ 5112 mutex_enter(&spa->spa_async_lock); 5113 spa->spa_async_thread = NULL; 5114 cv_broadcast(&spa->spa_async_cv); 5115 mutex_exit(&spa->spa_async_lock); 5116 thread_exit(); 5117 } 5118 5119 void 5120 spa_async_suspend(spa_t *spa) 5121 { 5122 mutex_enter(&spa->spa_async_lock); 5123 spa->spa_async_suspended++; 5124 while (spa->spa_async_thread != NULL) 5125 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5126 mutex_exit(&spa->spa_async_lock); 5127 } 5128 5129 void 5130 spa_async_resume(spa_t *spa) 5131 { 5132 mutex_enter(&spa->spa_async_lock); 5133 ASSERT(spa->spa_async_suspended != 0); 5134 spa->spa_async_suspended--; 5135 mutex_exit(&spa->spa_async_lock); 5136 } 5137 5138 static void 5139 spa_async_dispatch(spa_t *spa) 5140 { 5141 mutex_enter(&spa->spa_async_lock); 5142 if (spa->spa_async_tasks && !spa->spa_async_suspended && 5143 spa->spa_async_thread == NULL && 5144 rootdir != NULL && !vn_is_readonly(rootdir)) 5145 spa->spa_async_thread = thread_create(NULL, 0, 5146 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5147 mutex_exit(&spa->spa_async_lock); 5148 } 5149 5150 void 5151 spa_async_request(spa_t *spa, int task) 5152 { 5153 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5154 mutex_enter(&spa->spa_async_lock); 5155 spa->spa_async_tasks |= task; 5156 mutex_exit(&spa->spa_async_lock); 5157 } 5158 5159 /* 5160 * ========================================================================== 5161 * SPA syncing routines 5162 * ========================================================================== 5163 */ 5164 5165 static int 5166 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5167 { 5168 bpobj_t *bpo = arg; 5169 bpobj_enqueue(bpo, bp, tx); 5170 return (0); 5171 } 5172 5173 static int 5174 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5175 { 5176 zio_t *zio = arg; 5177 5178 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5179 zio->io_flags)); 5180 return (0); 5181 } 5182 5183 static void 5184 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5185 { 5186 char *packed = NULL; 5187 size_t bufsize; 5188 size_t nvsize = 0; 5189 dmu_buf_t *db; 5190 5191 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5192 5193 /* 5194 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5195 * information. This avoids the dbuf_will_dirty() path and 5196 * saves us a pre-read to get data we don't actually care about. 5197 */ 5198 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 5199 packed = kmem_alloc(bufsize, KM_SLEEP); 5200 5201 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5202 KM_SLEEP) == 0); 5203 bzero(packed + nvsize, bufsize - nvsize); 5204 5205 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5206 5207 kmem_free(packed, bufsize); 5208 5209 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5210 dmu_buf_will_dirty(db, tx); 5211 *(uint64_t *)db->db_data = nvsize; 5212 dmu_buf_rele(db, FTAG); 5213 } 5214 5215 static void 5216 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5217 const char *config, const char *entry) 5218 { 5219 nvlist_t *nvroot; 5220 nvlist_t **list; 5221 int i; 5222 5223 if (!sav->sav_sync) 5224 return; 5225 5226 /* 5227 * Update the MOS nvlist describing the list of available devices. 5228 * spa_validate_aux() will have already made sure this nvlist is 5229 * valid and the vdevs are labeled appropriately. 5230 */ 5231 if (sav->sav_object == 0) { 5232 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5233 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5234 sizeof (uint64_t), tx); 5235 VERIFY(zap_update(spa->spa_meta_objset, 5236 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5237 &sav->sav_object, tx) == 0); 5238 } 5239 5240 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5241 if (sav->sav_count == 0) { 5242 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5243 } else { 5244 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5245 for (i = 0; i < sav->sav_count; i++) 5246 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5247 B_FALSE, VDEV_CONFIG_L2CACHE); 5248 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5249 sav->sav_count) == 0); 5250 for (i = 0; i < sav->sav_count; i++) 5251 nvlist_free(list[i]); 5252 kmem_free(list, sav->sav_count * sizeof (void *)); 5253 } 5254 5255 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5256 nvlist_free(nvroot); 5257 5258 sav->sav_sync = B_FALSE; 5259 } 5260 5261 static void 5262 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5263 { 5264 nvlist_t *config; 5265 5266 if (list_is_empty(&spa->spa_config_dirty_list)) 5267 return; 5268 5269 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5270 5271 config = spa_config_generate(spa, spa->spa_root_vdev, 5272 dmu_tx_get_txg(tx), B_FALSE); 5273 5274 spa_config_exit(spa, SCL_STATE, FTAG); 5275 5276 if (spa->spa_config_syncing) 5277 nvlist_free(spa->spa_config_syncing); 5278 spa->spa_config_syncing = config; 5279 5280 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5281 } 5282 5283 /* 5284 * Set zpool properties. 5285 */ 5286 static void 5287 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx) 5288 { 5289 spa_t *spa = arg1; 5290 objset_t *mos = spa->spa_meta_objset; 5291 nvlist_t *nvp = arg2; 5292 nvpair_t *elem; 5293 uint64_t intval; 5294 char *strval; 5295 zpool_prop_t prop; 5296 const char *propname; 5297 zprop_type_t proptype; 5298 5299 mutex_enter(&spa->spa_props_lock); 5300 5301 elem = NULL; 5302 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5303 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5304 case ZPOOL_PROP_VERSION: 5305 /* 5306 * Only set version for non-zpool-creation cases 5307 * (set/import). spa_create() needs special care 5308 * for version setting. 5309 */ 5310 if (tx->tx_txg != TXG_INITIAL) { 5311 VERIFY(nvpair_value_uint64(elem, 5312 &intval) == 0); 5313 ASSERT(intval <= SPA_VERSION); 5314 ASSERT(intval >= spa_version(spa)); 5315 spa->spa_uberblock.ub_version = intval; 5316 vdev_config_dirty(spa->spa_root_vdev); 5317 } 5318 break; 5319 5320 case ZPOOL_PROP_ALTROOT: 5321 /* 5322 * 'altroot' is a non-persistent property. It should 5323 * have been set temporarily at creation or import time. 5324 */ 5325 ASSERT(spa->spa_root != NULL); 5326 break; 5327 5328 case ZPOOL_PROP_READONLY: 5329 case ZPOOL_PROP_CACHEFILE: 5330 /* 5331 * 'readonly' and 'cachefile' are also non-persisitent 5332 * properties. 5333 */ 5334 break; 5335 default: 5336 /* 5337 * Set pool property values in the poolprops mos object. 5338 */ 5339 if (spa->spa_pool_props_object == 0) { 5340 VERIFY((spa->spa_pool_props_object = 5341 zap_create(mos, DMU_OT_POOL_PROPS, 5342 DMU_OT_NONE, 0, tx)) > 0); 5343 5344 VERIFY(zap_update(mos, 5345 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5346 8, 1, &spa->spa_pool_props_object, tx) 5347 == 0); 5348 } 5349 5350 /* normalize the property name */ 5351 propname = zpool_prop_to_name(prop); 5352 proptype = zpool_prop_get_type(prop); 5353 5354 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5355 ASSERT(proptype == PROP_TYPE_STRING); 5356 VERIFY(nvpair_value_string(elem, &strval) == 0); 5357 VERIFY(zap_update(mos, 5358 spa->spa_pool_props_object, propname, 5359 1, strlen(strval) + 1, strval, tx) == 0); 5360 5361 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5362 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5363 5364 if (proptype == PROP_TYPE_INDEX) { 5365 const char *unused; 5366 VERIFY(zpool_prop_index_to_string( 5367 prop, intval, &unused) == 0); 5368 } 5369 VERIFY(zap_update(mos, 5370 spa->spa_pool_props_object, propname, 5371 8, 1, &intval, tx) == 0); 5372 } else { 5373 ASSERT(0); /* not allowed */ 5374 } 5375 5376 switch (prop) { 5377 case ZPOOL_PROP_DELEGATION: 5378 spa->spa_delegation = intval; 5379 break; 5380 case ZPOOL_PROP_BOOTFS: 5381 spa->spa_bootfs = intval; 5382 break; 5383 case ZPOOL_PROP_FAILUREMODE: 5384 spa->spa_failmode = intval; 5385 break; 5386 case ZPOOL_PROP_AUTOEXPAND: 5387 spa->spa_autoexpand = intval; 5388 if (tx->tx_txg != TXG_INITIAL) 5389 spa_async_request(spa, 5390 SPA_ASYNC_AUTOEXPAND); 5391 break; 5392 case ZPOOL_PROP_DEDUPDITTO: 5393 spa->spa_dedup_ditto = intval; 5394 break; 5395 default: 5396 break; 5397 } 5398 } 5399 5400 /* log internal history if this is not a zpool create */ 5401 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 5402 tx->tx_txg != TXG_INITIAL) { 5403 spa_history_log_internal(LOG_POOL_PROPSET, 5404 spa, tx, "%s %lld %s", 5405 nvpair_name(elem), intval, spa_name(spa)); 5406 } 5407 } 5408 5409 mutex_exit(&spa->spa_props_lock); 5410 } 5411 5412 /* 5413 * Perform one-time upgrade on-disk changes. spa_version() does not 5414 * reflect the new version this txg, so there must be no changes this 5415 * txg to anything that the upgrade code depends on after it executes. 5416 * Therefore this must be called after dsl_pool_sync() does the sync 5417 * tasks. 5418 */ 5419 static void 5420 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 5421 { 5422 dsl_pool_t *dp = spa->spa_dsl_pool; 5423 5424 ASSERT(spa->spa_sync_pass == 1); 5425 5426 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5427 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5428 dsl_pool_create_origin(dp, tx); 5429 5430 /* Keeping the origin open increases spa_minref */ 5431 spa->spa_minref += 3; 5432 } 5433 5434 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5435 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5436 dsl_pool_upgrade_clones(dp, tx); 5437 } 5438 5439 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 5440 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 5441 dsl_pool_upgrade_dir_clones(dp, tx); 5442 5443 /* Keeping the freedir open increases spa_minref */ 5444 spa->spa_minref += 3; 5445 } 5446 } 5447 5448 /* 5449 * Sync the specified transaction group. New blocks may be dirtied as 5450 * part of the process, so we iterate until it converges. 5451 */ 5452 void 5453 spa_sync(spa_t *spa, uint64_t txg) 5454 { 5455 dsl_pool_t *dp = spa->spa_dsl_pool; 5456 objset_t *mos = spa->spa_meta_objset; 5457 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 5458 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5459 vdev_t *rvd = spa->spa_root_vdev; 5460 vdev_t *vd; 5461 dmu_tx_t *tx; 5462 int error; 5463 5464 VERIFY(spa_writeable(spa)); 5465 5466 /* 5467 * Lock out configuration changes. 5468 */ 5469 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5470 5471 spa->spa_syncing_txg = txg; 5472 spa->spa_sync_pass = 0; 5473 5474 /* 5475 * If there are any pending vdev state changes, convert them 5476 * into config changes that go out with this transaction group. 5477 */ 5478 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5479 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5480 /* 5481 * We need the write lock here because, for aux vdevs, 5482 * calling vdev_config_dirty() modifies sav_config. 5483 * This is ugly and will become unnecessary when we 5484 * eliminate the aux vdev wart by integrating all vdevs 5485 * into the root vdev tree. 5486 */ 5487 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5488 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5489 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5490 vdev_state_clean(vd); 5491 vdev_config_dirty(vd); 5492 } 5493 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5494 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5495 } 5496 spa_config_exit(spa, SCL_STATE, FTAG); 5497 5498 tx = dmu_tx_create_assigned(dp, txg); 5499 5500 /* 5501 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5502 * set spa_deflate if we have no raid-z vdevs. 5503 */ 5504 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5505 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5506 int i; 5507 5508 for (i = 0; i < rvd->vdev_children; i++) { 5509 vd = rvd->vdev_child[i]; 5510 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 5511 break; 5512 } 5513 if (i == rvd->vdev_children) { 5514 spa->spa_deflate = TRUE; 5515 VERIFY(0 == zap_add(spa->spa_meta_objset, 5516 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5517 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 5518 } 5519 } 5520 5521 /* 5522 * If anything has changed in this txg, or if someone is waiting 5523 * for this txg to sync (eg, spa_vdev_remove()), push the 5524 * deferred frees from the previous txg. If not, leave them 5525 * alone so that we don't generate work on an otherwise idle 5526 * system. 5527 */ 5528 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 5529 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 5530 !txg_list_empty(&dp->dp_sync_tasks, txg) || 5531 ((dsl_scan_active(dp->dp_scan) || 5532 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 5533 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5534 VERIFY3U(bpobj_iterate(defer_bpo, 5535 spa_free_sync_cb, zio, tx), ==, 0); 5536 VERIFY3U(zio_wait(zio), ==, 0); 5537 } 5538 5539 /* 5540 * Iterate to convergence. 5541 */ 5542 do { 5543 int pass = ++spa->spa_sync_pass; 5544 5545 spa_sync_config_object(spa, tx); 5546 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 5547 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 5548 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 5549 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 5550 spa_errlog_sync(spa, txg); 5551 dsl_pool_sync(dp, txg); 5552 5553 if (pass <= SYNC_PASS_DEFERRED_FREE) { 5554 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5555 bplist_iterate(free_bpl, spa_free_sync_cb, 5556 zio, tx); 5557 VERIFY(zio_wait(zio) == 0); 5558 } else { 5559 bplist_iterate(free_bpl, bpobj_enqueue_cb, 5560 defer_bpo, tx); 5561 } 5562 5563 ddt_sync(spa, txg); 5564 dsl_scan_sync(dp, tx); 5565 5566 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 5567 vdev_sync(vd, txg); 5568 5569 if (pass == 1) 5570 spa_sync_upgrades(spa, tx); 5571 5572 } while (dmu_objset_is_dirty(mos, txg)); 5573 5574 /* 5575 * Rewrite the vdev configuration (which includes the uberblock) 5576 * to commit the transaction group. 5577 * 5578 * If there are no dirty vdevs, we sync the uberblock to a few 5579 * random top-level vdevs that are known to be visible in the 5580 * config cache (see spa_vdev_add() for a complete description). 5581 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 5582 */ 5583 for (;;) { 5584 /* 5585 * We hold SCL_STATE to prevent vdev open/close/etc. 5586 * while we're attempting to write the vdev labels. 5587 */ 5588 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5589 5590 if (list_is_empty(&spa->spa_config_dirty_list)) { 5591 vdev_t *svd[SPA_DVAS_PER_BP]; 5592 int svdcount = 0; 5593 int children = rvd->vdev_children; 5594 int c0 = spa_get_random(children); 5595 5596 for (int c = 0; c < children; c++) { 5597 vd = rvd->vdev_child[(c0 + c) % children]; 5598 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 5599 continue; 5600 svd[svdcount++] = vd; 5601 if (svdcount == SPA_DVAS_PER_BP) 5602 break; 5603 } 5604 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 5605 if (error != 0) 5606 error = vdev_config_sync(svd, svdcount, txg, 5607 B_TRUE); 5608 } else { 5609 error = vdev_config_sync(rvd->vdev_child, 5610 rvd->vdev_children, txg, B_FALSE); 5611 if (error != 0) 5612 error = vdev_config_sync(rvd->vdev_child, 5613 rvd->vdev_children, txg, B_TRUE); 5614 } 5615 5616 spa_config_exit(spa, SCL_STATE, FTAG); 5617 5618 if (error == 0) 5619 break; 5620 zio_suspend(spa, NULL); 5621 zio_resume_wait(spa); 5622 } 5623 dmu_tx_commit(tx); 5624 5625 /* 5626 * Clear the dirty config list. 5627 */ 5628 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 5629 vdev_config_clean(vd); 5630 5631 /* 5632 * Now that the new config has synced transactionally, 5633 * let it become visible to the config cache. 5634 */ 5635 if (spa->spa_config_syncing != NULL) { 5636 spa_config_set(spa, spa->spa_config_syncing); 5637 spa->spa_config_txg = txg; 5638 spa->spa_config_syncing = NULL; 5639 } 5640 5641 spa->spa_ubsync = spa->spa_uberblock; 5642 5643 dsl_pool_sync_done(dp, txg); 5644 5645 /* 5646 * Update usable space statistics. 5647 */ 5648 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 5649 vdev_sync_done(vd, txg); 5650 5651 spa_update_dspace(spa); 5652 5653 /* 5654 * It had better be the case that we didn't dirty anything 5655 * since vdev_config_sync(). 5656 */ 5657 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 5658 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 5659 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 5660 5661 spa->spa_sync_pass = 0; 5662 5663 spa_config_exit(spa, SCL_CONFIG, FTAG); 5664 5665 spa_handle_ignored_writes(spa); 5666 5667 /* 5668 * If any async tasks have been requested, kick them off. 5669 */ 5670 spa_async_dispatch(spa); 5671 } 5672 5673 /* 5674 * Sync all pools. We don't want to hold the namespace lock across these 5675 * operations, so we take a reference on the spa_t and drop the lock during the 5676 * sync. 5677 */ 5678 void 5679 spa_sync_allpools(void) 5680 { 5681 spa_t *spa = NULL; 5682 mutex_enter(&spa_namespace_lock); 5683 while ((spa = spa_next(spa)) != NULL) { 5684 if (spa_state(spa) != POOL_STATE_ACTIVE || 5685 !spa_writeable(spa) || spa_suspended(spa)) 5686 continue; 5687 spa_open_ref(spa, FTAG); 5688 mutex_exit(&spa_namespace_lock); 5689 txg_wait_synced(spa_get_dsl(spa), 0); 5690 mutex_enter(&spa_namespace_lock); 5691 spa_close(spa, FTAG); 5692 } 5693 mutex_exit(&spa_namespace_lock); 5694 } 5695 5696 /* 5697 * ========================================================================== 5698 * Miscellaneous routines 5699 * ========================================================================== 5700 */ 5701 5702 /* 5703 * Remove all pools in the system. 5704 */ 5705 void 5706 spa_evict_all(void) 5707 { 5708 spa_t *spa; 5709 5710 /* 5711 * Remove all cached state. All pools should be closed now, 5712 * so every spa in the AVL tree should be unreferenced. 5713 */ 5714 mutex_enter(&spa_namespace_lock); 5715 while ((spa = spa_next(NULL)) != NULL) { 5716 /* 5717 * Stop async tasks. The async thread may need to detach 5718 * a device that's been replaced, which requires grabbing 5719 * spa_namespace_lock, so we must drop it here. 5720 */ 5721 spa_open_ref(spa, FTAG); 5722 mutex_exit(&spa_namespace_lock); 5723 spa_async_suspend(spa); 5724 mutex_enter(&spa_namespace_lock); 5725 spa_close(spa, FTAG); 5726 5727 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5728 spa_unload(spa); 5729 spa_deactivate(spa); 5730 } 5731 spa_remove(spa); 5732 } 5733 mutex_exit(&spa_namespace_lock); 5734 } 5735 5736 vdev_t * 5737 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 5738 { 5739 vdev_t *vd; 5740 int i; 5741 5742 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 5743 return (vd); 5744 5745 if (aux) { 5746 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 5747 vd = spa->spa_l2cache.sav_vdevs[i]; 5748 if (vd->vdev_guid == guid) 5749 return (vd); 5750 } 5751 5752 for (i = 0; i < spa->spa_spares.sav_count; i++) { 5753 vd = spa->spa_spares.sav_vdevs[i]; 5754 if (vd->vdev_guid == guid) 5755 return (vd); 5756 } 5757 } 5758 5759 return (NULL); 5760 } 5761 5762 void 5763 spa_upgrade(spa_t *spa, uint64_t version) 5764 { 5765 ASSERT(spa_writeable(spa)); 5766 5767 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5768 5769 /* 5770 * This should only be called for a non-faulted pool, and since a 5771 * future version would result in an unopenable pool, this shouldn't be 5772 * possible. 5773 */ 5774 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 5775 ASSERT(version >= spa->spa_uberblock.ub_version); 5776 5777 spa->spa_uberblock.ub_version = version; 5778 vdev_config_dirty(spa->spa_root_vdev); 5779 5780 spa_config_exit(spa, SCL_ALL, FTAG); 5781 5782 txg_wait_synced(spa_get_dsl(spa), 0); 5783 } 5784 5785 boolean_t 5786 spa_has_spare(spa_t *spa, uint64_t guid) 5787 { 5788 int i; 5789 uint64_t spareguid; 5790 spa_aux_vdev_t *sav = &spa->spa_spares; 5791 5792 for (i = 0; i < sav->sav_count; i++) 5793 if (sav->sav_vdevs[i]->vdev_guid == guid) 5794 return (B_TRUE); 5795 5796 for (i = 0; i < sav->sav_npending; i++) { 5797 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 5798 &spareguid) == 0 && spareguid == guid) 5799 return (B_TRUE); 5800 } 5801 5802 return (B_FALSE); 5803 } 5804 5805 /* 5806 * Check if a pool has an active shared spare device. 5807 * Note: reference count of an active spare is 2, as a spare and as a replace 5808 */ 5809 static boolean_t 5810 spa_has_active_shared_spare(spa_t *spa) 5811 { 5812 int i, refcnt; 5813 uint64_t pool; 5814 spa_aux_vdev_t *sav = &spa->spa_spares; 5815 5816 for (i = 0; i < sav->sav_count; i++) { 5817 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 5818 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 5819 refcnt > 2) 5820 return (B_TRUE); 5821 } 5822 5823 return (B_FALSE); 5824 } 5825 5826 /* 5827 * Post a sysevent corresponding to the given event. The 'name' must be one of 5828 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 5829 * filled in from the spa and (optionally) the vdev. This doesn't do anything 5830 * in the userland libzpool, as we don't want consumers to misinterpret ztest 5831 * or zdb as real changes. 5832 */ 5833 void 5834 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 5835 { 5836 #ifdef _KERNEL 5837 sysevent_t *ev; 5838 sysevent_attr_list_t *attr = NULL; 5839 sysevent_value_t value; 5840 sysevent_id_t eid; 5841 5842 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 5843 SE_SLEEP); 5844 5845 value.value_type = SE_DATA_TYPE_STRING; 5846 value.value.sv_string = spa_name(spa); 5847 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 5848 goto done; 5849 5850 value.value_type = SE_DATA_TYPE_UINT64; 5851 value.value.sv_uint64 = spa_guid(spa); 5852 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 5853 goto done; 5854 5855 if (vd) { 5856 value.value_type = SE_DATA_TYPE_UINT64; 5857 value.value.sv_uint64 = vd->vdev_guid; 5858 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 5859 SE_SLEEP) != 0) 5860 goto done; 5861 5862 if (vd->vdev_path) { 5863 value.value_type = SE_DATA_TYPE_STRING; 5864 value.value.sv_string = vd->vdev_path; 5865 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 5866 &value, SE_SLEEP) != 0) 5867 goto done; 5868 } 5869 } 5870 5871 if (sysevent_attach_attributes(ev, attr) != 0) 5872 goto done; 5873 attr = NULL; 5874 5875 (void) log_sysevent(ev, SE_SLEEP, &eid); 5876 5877 done: 5878 if (attr) 5879 sysevent_free_attr(attr); 5880 sysevent_free(ev); 5881 #endif 5882 } 5883