xref: /titanic_41/usr/src/uts/common/fs/zfs/spa.c (revision 57c8f7a2c8d574d26d069069ece6f024828ee647)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26  */
27 
28 /*
29  * SPA: Storage Pool Allocator
30  *
31  * This file contains all the routines used when modifying on-disk SPA state.
32  * This includes opening, importing, destroying, exporting a pool, and syncing a
33  * pool.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69 
70 #ifdef	_KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif	/* _KERNEL */
78 
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81 
82 /*
83  * The interval, in seconds, at which failed configuration cache file writes
84  * should be retried.
85  */
86 static int zfs_ccw_retry_interval = 300;
87 
88 typedef enum zti_modes {
89 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
90 	ZTI_MODE_ONLINE_PERCENT,	/* value is % of online CPUs */
91 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
92 	ZTI_MODE_NULL,			/* don't create a taskq */
93 	ZTI_NMODES
94 } zti_modes_t;
95 
96 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
97 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
98 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
99 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
100 
101 #define	ZTI_N(n)	ZTI_P(n, 1)
102 #define	ZTI_ONE		ZTI_N(1)
103 
104 typedef struct zio_taskq_info {
105 	zti_modes_t zti_mode;
106 	uint_t zti_value;
107 	uint_t zti_count;
108 } zio_taskq_info_t;
109 
110 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
111 	"issue", "issue_high", "intr", "intr_high"
112 };
113 
114 /*
115  * This table defines the taskq settings for each ZFS I/O type. When
116  * initializing a pool, we use this table to create an appropriately sized
117  * taskq. Some operations are low volume and therefore have a small, static
118  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
119  * macros. Other operations process a large amount of data; the ZTI_BATCH
120  * macro causes us to create a taskq oriented for throughput. Some operations
121  * are so high frequency and short-lived that the taskq itself can become a a
122  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
123  * additional degree of parallelism specified by the number of threads per-
124  * taskq and the number of taskqs; when dispatching an event in this case, the
125  * particular taskq is chosen at random.
126  *
127  * The different taskq priorities are to handle the different contexts (issue
128  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
129  * need to be handled with minimum delay.
130  */
131 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
132 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
133 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
134 	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
135 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
136 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
137 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
138 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
139 };
140 
141 static void spa_sync_version(void *arg, dmu_tx_t *tx);
142 static void spa_sync_props(void *arg, dmu_tx_t *tx);
143 static boolean_t spa_has_active_shared_spare(spa_t *spa);
144 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
145     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
146     char **ereport);
147 static void spa_vdev_resilver_done(spa_t *spa);
148 
149 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
150 id_t		zio_taskq_psrset_bind = PS_NONE;
151 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
152 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
153 
154 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
155 extern int	zfs_sync_pass_deferred_free;
156 
157 /*
158  * This (illegal) pool name is used when temporarily importing a spa_t in order
159  * to get the vdev stats associated with the imported devices.
160  */
161 #define	TRYIMPORT_NAME	"$import"
162 
163 /*
164  * ==========================================================================
165  * SPA properties routines
166  * ==========================================================================
167  */
168 
169 /*
170  * Add a (source=src, propname=propval) list to an nvlist.
171  */
172 static void
173 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
174     uint64_t intval, zprop_source_t src)
175 {
176 	const char *propname = zpool_prop_to_name(prop);
177 	nvlist_t *propval;
178 
179 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
180 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
181 
182 	if (strval != NULL)
183 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
184 	else
185 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
186 
187 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
188 	nvlist_free(propval);
189 }
190 
191 /*
192  * Get property values from the spa configuration.
193  */
194 static void
195 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
196 {
197 	vdev_t *rvd = spa->spa_root_vdev;
198 	dsl_pool_t *pool = spa->spa_dsl_pool;
199 	uint64_t size;
200 	uint64_t alloc;
201 	uint64_t space;
202 	uint64_t cap, version;
203 	zprop_source_t src = ZPROP_SRC_NONE;
204 	spa_config_dirent_t *dp;
205 
206 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
207 
208 	if (rvd != NULL) {
209 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
210 		size = metaslab_class_get_space(spa_normal_class(spa));
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
213 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
214 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
215 		    size - alloc, src);
216 
217 		space = 0;
218 		for (int c = 0; c < rvd->vdev_children; c++) {
219 			vdev_t *tvd = rvd->vdev_child[c];
220 			space += tvd->vdev_max_asize - tvd->vdev_asize;
221 		}
222 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
223 		    src);
224 
225 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
226 		    (spa_mode(spa) == FREAD), src);
227 
228 		cap = (size == 0) ? 0 : (alloc * 100 / size);
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
230 
231 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
232 		    ddt_get_pool_dedup_ratio(spa), src);
233 
234 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
235 		    rvd->vdev_state, src);
236 
237 		version = spa_version(spa);
238 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
239 			src = ZPROP_SRC_DEFAULT;
240 		else
241 			src = ZPROP_SRC_LOCAL;
242 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
243 	}
244 
245 	if (pool != NULL) {
246 		dsl_dir_t *freedir = pool->dp_free_dir;
247 
248 		/*
249 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
250 		 * when opening pools before this version freedir will be NULL.
251 		 */
252 		if (freedir != NULL) {
253 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
254 			    freedir->dd_phys->dd_used_bytes, src);
255 		} else {
256 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
257 			    NULL, 0, src);
258 		}
259 	}
260 
261 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
262 
263 	if (spa->spa_comment != NULL) {
264 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
265 		    0, ZPROP_SRC_LOCAL);
266 	}
267 
268 	if (spa->spa_root != NULL)
269 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
270 		    0, ZPROP_SRC_LOCAL);
271 
272 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
273 		if (dp->scd_path == NULL) {
274 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
275 			    "none", 0, ZPROP_SRC_LOCAL);
276 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
277 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
278 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
279 		}
280 	}
281 }
282 
283 /*
284  * Get zpool property values.
285  */
286 int
287 spa_prop_get(spa_t *spa, nvlist_t **nvp)
288 {
289 	objset_t *mos = spa->spa_meta_objset;
290 	zap_cursor_t zc;
291 	zap_attribute_t za;
292 	int err;
293 
294 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
295 
296 	mutex_enter(&spa->spa_props_lock);
297 
298 	/*
299 	 * Get properties from the spa config.
300 	 */
301 	spa_prop_get_config(spa, nvp);
302 
303 	/* If no pool property object, no more prop to get. */
304 	if (mos == NULL || spa->spa_pool_props_object == 0) {
305 		mutex_exit(&spa->spa_props_lock);
306 		return (0);
307 	}
308 
309 	/*
310 	 * Get properties from the MOS pool property object.
311 	 */
312 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
313 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
314 	    zap_cursor_advance(&zc)) {
315 		uint64_t intval = 0;
316 		char *strval = NULL;
317 		zprop_source_t src = ZPROP_SRC_DEFAULT;
318 		zpool_prop_t prop;
319 
320 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
321 			continue;
322 
323 		switch (za.za_integer_length) {
324 		case 8:
325 			/* integer property */
326 			if (za.za_first_integer !=
327 			    zpool_prop_default_numeric(prop))
328 				src = ZPROP_SRC_LOCAL;
329 
330 			if (prop == ZPOOL_PROP_BOOTFS) {
331 				dsl_pool_t *dp;
332 				dsl_dataset_t *ds = NULL;
333 
334 				dp = spa_get_dsl(spa);
335 				dsl_pool_config_enter(dp, FTAG);
336 				if (err = dsl_dataset_hold_obj(dp,
337 				    za.za_first_integer, FTAG, &ds)) {
338 					dsl_pool_config_exit(dp, FTAG);
339 					break;
340 				}
341 
342 				strval = kmem_alloc(
343 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
344 				    KM_SLEEP);
345 				dsl_dataset_name(ds, strval);
346 				dsl_dataset_rele(ds, FTAG);
347 				dsl_pool_config_exit(dp, FTAG);
348 			} else {
349 				strval = NULL;
350 				intval = za.za_first_integer;
351 			}
352 
353 			spa_prop_add_list(*nvp, prop, strval, intval, src);
354 
355 			if (strval != NULL)
356 				kmem_free(strval,
357 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
358 
359 			break;
360 
361 		case 1:
362 			/* string property */
363 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
364 			err = zap_lookup(mos, spa->spa_pool_props_object,
365 			    za.za_name, 1, za.za_num_integers, strval);
366 			if (err) {
367 				kmem_free(strval, za.za_num_integers);
368 				break;
369 			}
370 			spa_prop_add_list(*nvp, prop, strval, 0, src);
371 			kmem_free(strval, za.za_num_integers);
372 			break;
373 
374 		default:
375 			break;
376 		}
377 	}
378 	zap_cursor_fini(&zc);
379 	mutex_exit(&spa->spa_props_lock);
380 out:
381 	if (err && err != ENOENT) {
382 		nvlist_free(*nvp);
383 		*nvp = NULL;
384 		return (err);
385 	}
386 
387 	return (0);
388 }
389 
390 /*
391  * Validate the given pool properties nvlist and modify the list
392  * for the property values to be set.
393  */
394 static int
395 spa_prop_validate(spa_t *spa, nvlist_t *props)
396 {
397 	nvpair_t *elem;
398 	int error = 0, reset_bootfs = 0;
399 	uint64_t objnum = 0;
400 	boolean_t has_feature = B_FALSE;
401 
402 	elem = NULL;
403 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
404 		uint64_t intval;
405 		char *strval, *slash, *check, *fname;
406 		const char *propname = nvpair_name(elem);
407 		zpool_prop_t prop = zpool_name_to_prop(propname);
408 
409 		switch (prop) {
410 		case ZPROP_INVAL:
411 			if (!zpool_prop_feature(propname)) {
412 				error = SET_ERROR(EINVAL);
413 				break;
414 			}
415 
416 			/*
417 			 * Sanitize the input.
418 			 */
419 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
420 				error = SET_ERROR(EINVAL);
421 				break;
422 			}
423 
424 			if (nvpair_value_uint64(elem, &intval) != 0) {
425 				error = SET_ERROR(EINVAL);
426 				break;
427 			}
428 
429 			if (intval != 0) {
430 				error = SET_ERROR(EINVAL);
431 				break;
432 			}
433 
434 			fname = strchr(propname, '@') + 1;
435 			if (zfeature_lookup_name(fname, NULL) != 0) {
436 				error = SET_ERROR(EINVAL);
437 				break;
438 			}
439 
440 			has_feature = B_TRUE;
441 			break;
442 
443 		case ZPOOL_PROP_VERSION:
444 			error = nvpair_value_uint64(elem, &intval);
445 			if (!error &&
446 			    (intval < spa_version(spa) ||
447 			    intval > SPA_VERSION_BEFORE_FEATURES ||
448 			    has_feature))
449 				error = SET_ERROR(EINVAL);
450 			break;
451 
452 		case ZPOOL_PROP_DELEGATION:
453 		case ZPOOL_PROP_AUTOREPLACE:
454 		case ZPOOL_PROP_LISTSNAPS:
455 		case ZPOOL_PROP_AUTOEXPAND:
456 			error = nvpair_value_uint64(elem, &intval);
457 			if (!error && intval > 1)
458 				error = SET_ERROR(EINVAL);
459 			break;
460 
461 		case ZPOOL_PROP_BOOTFS:
462 			/*
463 			 * If the pool version is less than SPA_VERSION_BOOTFS,
464 			 * or the pool is still being created (version == 0),
465 			 * the bootfs property cannot be set.
466 			 */
467 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
468 				error = SET_ERROR(ENOTSUP);
469 				break;
470 			}
471 
472 			/*
473 			 * Make sure the vdev config is bootable
474 			 */
475 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
476 				error = SET_ERROR(ENOTSUP);
477 				break;
478 			}
479 
480 			reset_bootfs = 1;
481 
482 			error = nvpair_value_string(elem, &strval);
483 
484 			if (!error) {
485 				objset_t *os;
486 				uint64_t compress;
487 
488 				if (strval == NULL || strval[0] == '\0') {
489 					objnum = zpool_prop_default_numeric(
490 					    ZPOOL_PROP_BOOTFS);
491 					break;
492 				}
493 
494 				if (error = dmu_objset_hold(strval, FTAG, &os))
495 					break;
496 
497 				/* Must be ZPL and not gzip compressed. */
498 
499 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
500 					error = SET_ERROR(ENOTSUP);
501 				} else if ((error =
502 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
503 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
504 				    &compress)) == 0 &&
505 				    !BOOTFS_COMPRESS_VALID(compress)) {
506 					error = SET_ERROR(ENOTSUP);
507 				} else {
508 					objnum = dmu_objset_id(os);
509 				}
510 				dmu_objset_rele(os, FTAG);
511 			}
512 			break;
513 
514 		case ZPOOL_PROP_FAILUREMODE:
515 			error = nvpair_value_uint64(elem, &intval);
516 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
517 			    intval > ZIO_FAILURE_MODE_PANIC))
518 				error = SET_ERROR(EINVAL);
519 
520 			/*
521 			 * This is a special case which only occurs when
522 			 * the pool has completely failed. This allows
523 			 * the user to change the in-core failmode property
524 			 * without syncing it out to disk (I/Os might
525 			 * currently be blocked). We do this by returning
526 			 * EIO to the caller (spa_prop_set) to trick it
527 			 * into thinking we encountered a property validation
528 			 * error.
529 			 */
530 			if (!error && spa_suspended(spa)) {
531 				spa->spa_failmode = intval;
532 				error = SET_ERROR(EIO);
533 			}
534 			break;
535 
536 		case ZPOOL_PROP_CACHEFILE:
537 			if ((error = nvpair_value_string(elem, &strval)) != 0)
538 				break;
539 
540 			if (strval[0] == '\0')
541 				break;
542 
543 			if (strcmp(strval, "none") == 0)
544 				break;
545 
546 			if (strval[0] != '/') {
547 				error = SET_ERROR(EINVAL);
548 				break;
549 			}
550 
551 			slash = strrchr(strval, '/');
552 			ASSERT(slash != NULL);
553 
554 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
555 			    strcmp(slash, "/..") == 0)
556 				error = SET_ERROR(EINVAL);
557 			break;
558 
559 		case ZPOOL_PROP_COMMENT:
560 			if ((error = nvpair_value_string(elem, &strval)) != 0)
561 				break;
562 			for (check = strval; *check != '\0'; check++) {
563 				/*
564 				 * The kernel doesn't have an easy isprint()
565 				 * check.  For this kernel check, we merely
566 				 * check ASCII apart from DEL.  Fix this if
567 				 * there is an easy-to-use kernel isprint().
568 				 */
569 				if (*check >= 0x7f) {
570 					error = SET_ERROR(EINVAL);
571 					break;
572 				}
573 				check++;
574 			}
575 			if (strlen(strval) > ZPROP_MAX_COMMENT)
576 				error = E2BIG;
577 			break;
578 
579 		case ZPOOL_PROP_DEDUPDITTO:
580 			if (spa_version(spa) < SPA_VERSION_DEDUP)
581 				error = SET_ERROR(ENOTSUP);
582 			else
583 				error = nvpair_value_uint64(elem, &intval);
584 			if (error == 0 &&
585 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
586 				error = SET_ERROR(EINVAL);
587 			break;
588 		}
589 
590 		if (error)
591 			break;
592 	}
593 
594 	if (!error && reset_bootfs) {
595 		error = nvlist_remove(props,
596 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
597 
598 		if (!error) {
599 			error = nvlist_add_uint64(props,
600 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
601 		}
602 	}
603 
604 	return (error);
605 }
606 
607 void
608 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
609 {
610 	char *cachefile;
611 	spa_config_dirent_t *dp;
612 
613 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
614 	    &cachefile) != 0)
615 		return;
616 
617 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
618 	    KM_SLEEP);
619 
620 	if (cachefile[0] == '\0')
621 		dp->scd_path = spa_strdup(spa_config_path);
622 	else if (strcmp(cachefile, "none") == 0)
623 		dp->scd_path = NULL;
624 	else
625 		dp->scd_path = spa_strdup(cachefile);
626 
627 	list_insert_head(&spa->spa_config_list, dp);
628 	if (need_sync)
629 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
630 }
631 
632 int
633 spa_prop_set(spa_t *spa, nvlist_t *nvp)
634 {
635 	int error;
636 	nvpair_t *elem = NULL;
637 	boolean_t need_sync = B_FALSE;
638 
639 	if ((error = spa_prop_validate(spa, nvp)) != 0)
640 		return (error);
641 
642 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
643 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
644 
645 		if (prop == ZPOOL_PROP_CACHEFILE ||
646 		    prop == ZPOOL_PROP_ALTROOT ||
647 		    prop == ZPOOL_PROP_READONLY)
648 			continue;
649 
650 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
651 			uint64_t ver;
652 
653 			if (prop == ZPOOL_PROP_VERSION) {
654 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
655 			} else {
656 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
657 				ver = SPA_VERSION_FEATURES;
658 				need_sync = B_TRUE;
659 			}
660 
661 			/* Save time if the version is already set. */
662 			if (ver == spa_version(spa))
663 				continue;
664 
665 			/*
666 			 * In addition to the pool directory object, we might
667 			 * create the pool properties object, the features for
668 			 * read object, the features for write object, or the
669 			 * feature descriptions object.
670 			 */
671 			error = dsl_sync_task(spa->spa_name, NULL,
672 			    spa_sync_version, &ver, 6);
673 			if (error)
674 				return (error);
675 			continue;
676 		}
677 
678 		need_sync = B_TRUE;
679 		break;
680 	}
681 
682 	if (need_sync) {
683 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
684 		    nvp, 6));
685 	}
686 
687 	return (0);
688 }
689 
690 /*
691  * If the bootfs property value is dsobj, clear it.
692  */
693 void
694 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
695 {
696 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
697 		VERIFY(zap_remove(spa->spa_meta_objset,
698 		    spa->spa_pool_props_object,
699 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
700 		spa->spa_bootfs = 0;
701 	}
702 }
703 
704 /*ARGSUSED*/
705 static int
706 spa_change_guid_check(void *arg, dmu_tx_t *tx)
707 {
708 	uint64_t *newguid = arg;
709 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
710 	vdev_t *rvd = spa->spa_root_vdev;
711 	uint64_t vdev_state;
712 
713 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
714 	vdev_state = rvd->vdev_state;
715 	spa_config_exit(spa, SCL_STATE, FTAG);
716 
717 	if (vdev_state != VDEV_STATE_HEALTHY)
718 		return (SET_ERROR(ENXIO));
719 
720 	ASSERT3U(spa_guid(spa), !=, *newguid);
721 
722 	return (0);
723 }
724 
725 static void
726 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
727 {
728 	uint64_t *newguid = arg;
729 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
730 	uint64_t oldguid;
731 	vdev_t *rvd = spa->spa_root_vdev;
732 
733 	oldguid = spa_guid(spa);
734 
735 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
736 	rvd->vdev_guid = *newguid;
737 	rvd->vdev_guid_sum += (*newguid - oldguid);
738 	vdev_config_dirty(rvd);
739 	spa_config_exit(spa, SCL_STATE, FTAG);
740 
741 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
742 	    oldguid, *newguid);
743 }
744 
745 /*
746  * Change the GUID for the pool.  This is done so that we can later
747  * re-import a pool built from a clone of our own vdevs.  We will modify
748  * the root vdev's guid, our own pool guid, and then mark all of our
749  * vdevs dirty.  Note that we must make sure that all our vdevs are
750  * online when we do this, or else any vdevs that weren't present
751  * would be orphaned from our pool.  We are also going to issue a
752  * sysevent to update any watchers.
753  */
754 int
755 spa_change_guid(spa_t *spa)
756 {
757 	int error;
758 	uint64_t guid;
759 
760 	mutex_enter(&spa_namespace_lock);
761 	guid = spa_generate_guid(NULL);
762 
763 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
764 	    spa_change_guid_sync, &guid, 5);
765 
766 	if (error == 0) {
767 		spa_config_sync(spa, B_FALSE, B_TRUE);
768 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
769 	}
770 
771 	mutex_exit(&spa_namespace_lock);
772 
773 	return (error);
774 }
775 
776 /*
777  * ==========================================================================
778  * SPA state manipulation (open/create/destroy/import/export)
779  * ==========================================================================
780  */
781 
782 static int
783 spa_error_entry_compare(const void *a, const void *b)
784 {
785 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
786 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
787 	int ret;
788 
789 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
790 	    sizeof (zbookmark_t));
791 
792 	if (ret < 0)
793 		return (-1);
794 	else if (ret > 0)
795 		return (1);
796 	else
797 		return (0);
798 }
799 
800 /*
801  * Utility function which retrieves copies of the current logs and
802  * re-initializes them in the process.
803  */
804 void
805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
806 {
807 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
808 
809 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
810 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
811 
812 	avl_create(&spa->spa_errlist_scrub,
813 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
814 	    offsetof(spa_error_entry_t, se_avl));
815 	avl_create(&spa->spa_errlist_last,
816 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
817 	    offsetof(spa_error_entry_t, se_avl));
818 }
819 
820 static void
821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
822 {
823 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
824 	enum zti_modes mode = ztip->zti_mode;
825 	uint_t value = ztip->zti_value;
826 	uint_t count = ztip->zti_count;
827 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
828 	char name[32];
829 	uint_t flags = 0;
830 	boolean_t batch = B_FALSE;
831 
832 	if (mode == ZTI_MODE_NULL) {
833 		tqs->stqs_count = 0;
834 		tqs->stqs_taskq = NULL;
835 		return;
836 	}
837 
838 	ASSERT3U(count, >, 0);
839 
840 	tqs->stqs_count = count;
841 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
842 
843 	for (uint_t i = 0; i < count; i++) {
844 		taskq_t *tq;
845 
846 		switch (mode) {
847 		case ZTI_MODE_FIXED:
848 			ASSERT3U(value, >=, 1);
849 			value = MAX(value, 1);
850 			break;
851 
852 		case ZTI_MODE_BATCH:
853 			batch = B_TRUE;
854 			flags |= TASKQ_THREADS_CPU_PCT;
855 			value = zio_taskq_batch_pct;
856 			break;
857 
858 		case ZTI_MODE_ONLINE_PERCENT:
859 			flags |= TASKQ_THREADS_CPU_PCT;
860 			break;
861 
862 		default:
863 			panic("unrecognized mode for %s_%s taskq (%u:%u) in "
864 			    "spa_activate()",
865 			    zio_type_name[t], zio_taskq_types[q], mode, value);
866 			break;
867 		}
868 
869 		if (count > 1) {
870 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
871 			    zio_type_name[t], zio_taskq_types[q], i);
872 		} else {
873 			(void) snprintf(name, sizeof (name), "%s_%s",
874 			    zio_type_name[t], zio_taskq_types[q]);
875 		}
876 
877 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
878 			if (batch)
879 				flags |= TASKQ_DC_BATCH;
880 
881 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
882 			    spa->spa_proc, zio_taskq_basedc, flags);
883 		} else {
884 			tq = taskq_create_proc(name, value, maxclsyspri, 50,
885 			    INT_MAX, spa->spa_proc, flags);
886 		}
887 
888 		tqs->stqs_taskq[i] = tq;
889 	}
890 }
891 
892 static void
893 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
894 {
895 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
896 
897 	if (tqs->stqs_taskq == NULL) {
898 		ASSERT0(tqs->stqs_count);
899 		return;
900 	}
901 
902 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
903 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
904 		taskq_destroy(tqs->stqs_taskq[i]);
905 	}
906 
907 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
908 	tqs->stqs_taskq = NULL;
909 }
910 
911 /*
912  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
913  * Note that a type may have multiple discrete taskqs to avoid lock contention
914  * on the taskq itself. In that case we choose which taskq at random by using
915  * the low bits of gethrtime().
916  */
917 void
918 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
919     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
920 {
921 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
922 	taskq_t *tq;
923 
924 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
925 	ASSERT3U(tqs->stqs_count, !=, 0);
926 
927 	if (tqs->stqs_count == 1) {
928 		tq = tqs->stqs_taskq[0];
929 	} else {
930 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
931 	}
932 
933 	taskq_dispatch_ent(tq, func, arg, flags, ent);
934 }
935 
936 static void
937 spa_create_zio_taskqs(spa_t *spa)
938 {
939 	for (int t = 0; t < ZIO_TYPES; t++) {
940 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
941 			spa_taskqs_init(spa, t, q);
942 		}
943 	}
944 }
945 
946 #ifdef _KERNEL
947 static void
948 spa_thread(void *arg)
949 {
950 	callb_cpr_t cprinfo;
951 
952 	spa_t *spa = arg;
953 	user_t *pu = PTOU(curproc);
954 
955 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
956 	    spa->spa_name);
957 
958 	ASSERT(curproc != &p0);
959 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
960 	    "zpool-%s", spa->spa_name);
961 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
962 
963 	/* bind this thread to the requested psrset */
964 	if (zio_taskq_psrset_bind != PS_NONE) {
965 		pool_lock();
966 		mutex_enter(&cpu_lock);
967 		mutex_enter(&pidlock);
968 		mutex_enter(&curproc->p_lock);
969 
970 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
971 		    0, NULL, NULL) == 0)  {
972 			curthread->t_bind_pset = zio_taskq_psrset_bind;
973 		} else {
974 			cmn_err(CE_WARN,
975 			    "Couldn't bind process for zfs pool \"%s\" to "
976 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
977 		}
978 
979 		mutex_exit(&curproc->p_lock);
980 		mutex_exit(&pidlock);
981 		mutex_exit(&cpu_lock);
982 		pool_unlock();
983 	}
984 
985 	if (zio_taskq_sysdc) {
986 		sysdc_thread_enter(curthread, 100, 0);
987 	}
988 
989 	spa->spa_proc = curproc;
990 	spa->spa_did = curthread->t_did;
991 
992 	spa_create_zio_taskqs(spa);
993 
994 	mutex_enter(&spa->spa_proc_lock);
995 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
996 
997 	spa->spa_proc_state = SPA_PROC_ACTIVE;
998 	cv_broadcast(&spa->spa_proc_cv);
999 
1000 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1001 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1002 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1003 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1004 
1005 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1006 	spa->spa_proc_state = SPA_PROC_GONE;
1007 	spa->spa_proc = &p0;
1008 	cv_broadcast(&spa->spa_proc_cv);
1009 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1010 
1011 	mutex_enter(&curproc->p_lock);
1012 	lwp_exit();
1013 }
1014 #endif
1015 
1016 /*
1017  * Activate an uninitialized pool.
1018  */
1019 static void
1020 spa_activate(spa_t *spa, int mode)
1021 {
1022 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1023 
1024 	spa->spa_state = POOL_STATE_ACTIVE;
1025 	spa->spa_mode = mode;
1026 
1027 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1028 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1029 
1030 	/* Try to create a covering process */
1031 	mutex_enter(&spa->spa_proc_lock);
1032 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1033 	ASSERT(spa->spa_proc == &p0);
1034 	spa->spa_did = 0;
1035 
1036 	/* Only create a process if we're going to be around a while. */
1037 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1038 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1039 		    NULL, 0) == 0) {
1040 			spa->spa_proc_state = SPA_PROC_CREATED;
1041 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1042 				cv_wait(&spa->spa_proc_cv,
1043 				    &spa->spa_proc_lock);
1044 			}
1045 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1046 			ASSERT(spa->spa_proc != &p0);
1047 			ASSERT(spa->spa_did != 0);
1048 		} else {
1049 #ifdef _KERNEL
1050 			cmn_err(CE_WARN,
1051 			    "Couldn't create process for zfs pool \"%s\"\n",
1052 			    spa->spa_name);
1053 #endif
1054 		}
1055 	}
1056 	mutex_exit(&spa->spa_proc_lock);
1057 
1058 	/* If we didn't create a process, we need to create our taskqs. */
1059 	if (spa->spa_proc == &p0) {
1060 		spa_create_zio_taskqs(spa);
1061 	}
1062 
1063 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1064 	    offsetof(vdev_t, vdev_config_dirty_node));
1065 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1066 	    offsetof(vdev_t, vdev_state_dirty_node));
1067 
1068 	txg_list_create(&spa->spa_vdev_txg_list,
1069 	    offsetof(struct vdev, vdev_txg_node));
1070 
1071 	avl_create(&spa->spa_errlist_scrub,
1072 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1073 	    offsetof(spa_error_entry_t, se_avl));
1074 	avl_create(&spa->spa_errlist_last,
1075 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1076 	    offsetof(spa_error_entry_t, se_avl));
1077 }
1078 
1079 /*
1080  * Opposite of spa_activate().
1081  */
1082 static void
1083 spa_deactivate(spa_t *spa)
1084 {
1085 	ASSERT(spa->spa_sync_on == B_FALSE);
1086 	ASSERT(spa->spa_dsl_pool == NULL);
1087 	ASSERT(spa->spa_root_vdev == NULL);
1088 	ASSERT(spa->spa_async_zio_root == NULL);
1089 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1090 
1091 	txg_list_destroy(&spa->spa_vdev_txg_list);
1092 
1093 	list_destroy(&spa->spa_config_dirty_list);
1094 	list_destroy(&spa->spa_state_dirty_list);
1095 
1096 	for (int t = 0; t < ZIO_TYPES; t++) {
1097 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1098 			spa_taskqs_fini(spa, t, q);
1099 		}
1100 	}
1101 
1102 	metaslab_class_destroy(spa->spa_normal_class);
1103 	spa->spa_normal_class = NULL;
1104 
1105 	metaslab_class_destroy(spa->spa_log_class);
1106 	spa->spa_log_class = NULL;
1107 
1108 	/*
1109 	 * If this was part of an import or the open otherwise failed, we may
1110 	 * still have errors left in the queues.  Empty them just in case.
1111 	 */
1112 	spa_errlog_drain(spa);
1113 
1114 	avl_destroy(&spa->spa_errlist_scrub);
1115 	avl_destroy(&spa->spa_errlist_last);
1116 
1117 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1118 
1119 	mutex_enter(&spa->spa_proc_lock);
1120 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1121 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1122 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1123 		cv_broadcast(&spa->spa_proc_cv);
1124 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1125 			ASSERT(spa->spa_proc != &p0);
1126 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1127 		}
1128 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1129 		spa->spa_proc_state = SPA_PROC_NONE;
1130 	}
1131 	ASSERT(spa->spa_proc == &p0);
1132 	mutex_exit(&spa->spa_proc_lock);
1133 
1134 	/*
1135 	 * We want to make sure spa_thread() has actually exited the ZFS
1136 	 * module, so that the module can't be unloaded out from underneath
1137 	 * it.
1138 	 */
1139 	if (spa->spa_did != 0) {
1140 		thread_join(spa->spa_did);
1141 		spa->spa_did = 0;
1142 	}
1143 }
1144 
1145 /*
1146  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1147  * will create all the necessary vdevs in the appropriate layout, with each vdev
1148  * in the CLOSED state.  This will prep the pool before open/creation/import.
1149  * All vdev validation is done by the vdev_alloc() routine.
1150  */
1151 static int
1152 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1153     uint_t id, int atype)
1154 {
1155 	nvlist_t **child;
1156 	uint_t children;
1157 	int error;
1158 
1159 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1160 		return (error);
1161 
1162 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1163 		return (0);
1164 
1165 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1166 	    &child, &children);
1167 
1168 	if (error == ENOENT)
1169 		return (0);
1170 
1171 	if (error) {
1172 		vdev_free(*vdp);
1173 		*vdp = NULL;
1174 		return (SET_ERROR(EINVAL));
1175 	}
1176 
1177 	for (int c = 0; c < children; c++) {
1178 		vdev_t *vd;
1179 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1180 		    atype)) != 0) {
1181 			vdev_free(*vdp);
1182 			*vdp = NULL;
1183 			return (error);
1184 		}
1185 	}
1186 
1187 	ASSERT(*vdp != NULL);
1188 
1189 	return (0);
1190 }
1191 
1192 /*
1193  * Opposite of spa_load().
1194  */
1195 static void
1196 spa_unload(spa_t *spa)
1197 {
1198 	int i;
1199 
1200 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1201 
1202 	/*
1203 	 * Stop async tasks.
1204 	 */
1205 	spa_async_suspend(spa);
1206 
1207 	/*
1208 	 * Stop syncing.
1209 	 */
1210 	if (spa->spa_sync_on) {
1211 		txg_sync_stop(spa->spa_dsl_pool);
1212 		spa->spa_sync_on = B_FALSE;
1213 	}
1214 
1215 	/*
1216 	 * Wait for any outstanding async I/O to complete.
1217 	 */
1218 	if (spa->spa_async_zio_root != NULL) {
1219 		(void) zio_wait(spa->spa_async_zio_root);
1220 		spa->spa_async_zio_root = NULL;
1221 	}
1222 
1223 	bpobj_close(&spa->spa_deferred_bpobj);
1224 
1225 	/*
1226 	 * Close the dsl pool.
1227 	 */
1228 	if (spa->spa_dsl_pool) {
1229 		dsl_pool_close(spa->spa_dsl_pool);
1230 		spa->spa_dsl_pool = NULL;
1231 		spa->spa_meta_objset = NULL;
1232 	}
1233 
1234 	ddt_unload(spa);
1235 
1236 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1237 
1238 	/*
1239 	 * Drop and purge level 2 cache
1240 	 */
1241 	spa_l2cache_drop(spa);
1242 
1243 	/*
1244 	 * Close all vdevs.
1245 	 */
1246 	if (spa->spa_root_vdev)
1247 		vdev_free(spa->spa_root_vdev);
1248 	ASSERT(spa->spa_root_vdev == NULL);
1249 
1250 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1251 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1252 	if (spa->spa_spares.sav_vdevs) {
1253 		kmem_free(spa->spa_spares.sav_vdevs,
1254 		    spa->spa_spares.sav_count * sizeof (void *));
1255 		spa->spa_spares.sav_vdevs = NULL;
1256 	}
1257 	if (spa->spa_spares.sav_config) {
1258 		nvlist_free(spa->spa_spares.sav_config);
1259 		spa->spa_spares.sav_config = NULL;
1260 	}
1261 	spa->spa_spares.sav_count = 0;
1262 
1263 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1264 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1265 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1266 	}
1267 	if (spa->spa_l2cache.sav_vdevs) {
1268 		kmem_free(spa->spa_l2cache.sav_vdevs,
1269 		    spa->spa_l2cache.sav_count * sizeof (void *));
1270 		spa->spa_l2cache.sav_vdevs = NULL;
1271 	}
1272 	if (spa->spa_l2cache.sav_config) {
1273 		nvlist_free(spa->spa_l2cache.sav_config);
1274 		spa->spa_l2cache.sav_config = NULL;
1275 	}
1276 	spa->spa_l2cache.sav_count = 0;
1277 
1278 	spa->spa_async_suspended = 0;
1279 
1280 	if (spa->spa_comment != NULL) {
1281 		spa_strfree(spa->spa_comment);
1282 		spa->spa_comment = NULL;
1283 	}
1284 
1285 	spa_config_exit(spa, SCL_ALL, FTAG);
1286 }
1287 
1288 /*
1289  * Load (or re-load) the current list of vdevs describing the active spares for
1290  * this pool.  When this is called, we have some form of basic information in
1291  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1292  * then re-generate a more complete list including status information.
1293  */
1294 static void
1295 spa_load_spares(spa_t *spa)
1296 {
1297 	nvlist_t **spares;
1298 	uint_t nspares;
1299 	int i;
1300 	vdev_t *vd, *tvd;
1301 
1302 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1303 
1304 	/*
1305 	 * First, close and free any existing spare vdevs.
1306 	 */
1307 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1308 		vd = spa->spa_spares.sav_vdevs[i];
1309 
1310 		/* Undo the call to spa_activate() below */
1311 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1312 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1313 			spa_spare_remove(tvd);
1314 		vdev_close(vd);
1315 		vdev_free(vd);
1316 	}
1317 
1318 	if (spa->spa_spares.sav_vdevs)
1319 		kmem_free(spa->spa_spares.sav_vdevs,
1320 		    spa->spa_spares.sav_count * sizeof (void *));
1321 
1322 	if (spa->spa_spares.sav_config == NULL)
1323 		nspares = 0;
1324 	else
1325 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1326 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1327 
1328 	spa->spa_spares.sav_count = (int)nspares;
1329 	spa->spa_spares.sav_vdevs = NULL;
1330 
1331 	if (nspares == 0)
1332 		return;
1333 
1334 	/*
1335 	 * Construct the array of vdevs, opening them to get status in the
1336 	 * process.   For each spare, there is potentially two different vdev_t
1337 	 * structures associated with it: one in the list of spares (used only
1338 	 * for basic validation purposes) and one in the active vdev
1339 	 * configuration (if it's spared in).  During this phase we open and
1340 	 * validate each vdev on the spare list.  If the vdev also exists in the
1341 	 * active configuration, then we also mark this vdev as an active spare.
1342 	 */
1343 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1344 	    KM_SLEEP);
1345 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1346 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1347 		    VDEV_ALLOC_SPARE) == 0);
1348 		ASSERT(vd != NULL);
1349 
1350 		spa->spa_spares.sav_vdevs[i] = vd;
1351 
1352 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1353 		    B_FALSE)) != NULL) {
1354 			if (!tvd->vdev_isspare)
1355 				spa_spare_add(tvd);
1356 
1357 			/*
1358 			 * We only mark the spare active if we were successfully
1359 			 * able to load the vdev.  Otherwise, importing a pool
1360 			 * with a bad active spare would result in strange
1361 			 * behavior, because multiple pool would think the spare
1362 			 * is actively in use.
1363 			 *
1364 			 * There is a vulnerability here to an equally bizarre
1365 			 * circumstance, where a dead active spare is later
1366 			 * brought back to life (onlined or otherwise).  Given
1367 			 * the rarity of this scenario, and the extra complexity
1368 			 * it adds, we ignore the possibility.
1369 			 */
1370 			if (!vdev_is_dead(tvd))
1371 				spa_spare_activate(tvd);
1372 		}
1373 
1374 		vd->vdev_top = vd;
1375 		vd->vdev_aux = &spa->spa_spares;
1376 
1377 		if (vdev_open(vd) != 0)
1378 			continue;
1379 
1380 		if (vdev_validate_aux(vd) == 0)
1381 			spa_spare_add(vd);
1382 	}
1383 
1384 	/*
1385 	 * Recompute the stashed list of spares, with status information
1386 	 * this time.
1387 	 */
1388 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1389 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1390 
1391 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1392 	    KM_SLEEP);
1393 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1394 		spares[i] = vdev_config_generate(spa,
1395 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1396 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1397 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1398 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1399 		nvlist_free(spares[i]);
1400 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1401 }
1402 
1403 /*
1404  * Load (or re-load) the current list of vdevs describing the active l2cache for
1405  * this pool.  When this is called, we have some form of basic information in
1406  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1407  * then re-generate a more complete list including status information.
1408  * Devices which are already active have their details maintained, and are
1409  * not re-opened.
1410  */
1411 static void
1412 spa_load_l2cache(spa_t *spa)
1413 {
1414 	nvlist_t **l2cache;
1415 	uint_t nl2cache;
1416 	int i, j, oldnvdevs;
1417 	uint64_t guid;
1418 	vdev_t *vd, **oldvdevs, **newvdevs;
1419 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1420 
1421 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1422 
1423 	if (sav->sav_config != NULL) {
1424 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1425 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1426 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1427 	} else {
1428 		nl2cache = 0;
1429 		newvdevs = NULL;
1430 	}
1431 
1432 	oldvdevs = sav->sav_vdevs;
1433 	oldnvdevs = sav->sav_count;
1434 	sav->sav_vdevs = NULL;
1435 	sav->sav_count = 0;
1436 
1437 	/*
1438 	 * Process new nvlist of vdevs.
1439 	 */
1440 	for (i = 0; i < nl2cache; i++) {
1441 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1442 		    &guid) == 0);
1443 
1444 		newvdevs[i] = NULL;
1445 		for (j = 0; j < oldnvdevs; j++) {
1446 			vd = oldvdevs[j];
1447 			if (vd != NULL && guid == vd->vdev_guid) {
1448 				/*
1449 				 * Retain previous vdev for add/remove ops.
1450 				 */
1451 				newvdevs[i] = vd;
1452 				oldvdevs[j] = NULL;
1453 				break;
1454 			}
1455 		}
1456 
1457 		if (newvdevs[i] == NULL) {
1458 			/*
1459 			 * Create new vdev
1460 			 */
1461 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1462 			    VDEV_ALLOC_L2CACHE) == 0);
1463 			ASSERT(vd != NULL);
1464 			newvdevs[i] = vd;
1465 
1466 			/*
1467 			 * Commit this vdev as an l2cache device,
1468 			 * even if it fails to open.
1469 			 */
1470 			spa_l2cache_add(vd);
1471 
1472 			vd->vdev_top = vd;
1473 			vd->vdev_aux = sav;
1474 
1475 			spa_l2cache_activate(vd);
1476 
1477 			if (vdev_open(vd) != 0)
1478 				continue;
1479 
1480 			(void) vdev_validate_aux(vd);
1481 
1482 			if (!vdev_is_dead(vd))
1483 				l2arc_add_vdev(spa, vd);
1484 		}
1485 	}
1486 
1487 	/*
1488 	 * Purge vdevs that were dropped
1489 	 */
1490 	for (i = 0; i < oldnvdevs; i++) {
1491 		uint64_t pool;
1492 
1493 		vd = oldvdevs[i];
1494 		if (vd != NULL) {
1495 			ASSERT(vd->vdev_isl2cache);
1496 
1497 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1498 			    pool != 0ULL && l2arc_vdev_present(vd))
1499 				l2arc_remove_vdev(vd);
1500 			vdev_clear_stats(vd);
1501 			vdev_free(vd);
1502 		}
1503 	}
1504 
1505 	if (oldvdevs)
1506 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1507 
1508 	if (sav->sav_config == NULL)
1509 		goto out;
1510 
1511 	sav->sav_vdevs = newvdevs;
1512 	sav->sav_count = (int)nl2cache;
1513 
1514 	/*
1515 	 * Recompute the stashed list of l2cache devices, with status
1516 	 * information this time.
1517 	 */
1518 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1519 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1520 
1521 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1522 	for (i = 0; i < sav->sav_count; i++)
1523 		l2cache[i] = vdev_config_generate(spa,
1524 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1525 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1526 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1527 out:
1528 	for (i = 0; i < sav->sav_count; i++)
1529 		nvlist_free(l2cache[i]);
1530 	if (sav->sav_count)
1531 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1532 }
1533 
1534 static int
1535 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1536 {
1537 	dmu_buf_t *db;
1538 	char *packed = NULL;
1539 	size_t nvsize = 0;
1540 	int error;
1541 	*value = NULL;
1542 
1543 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1544 	nvsize = *(uint64_t *)db->db_data;
1545 	dmu_buf_rele(db, FTAG);
1546 
1547 	packed = kmem_alloc(nvsize, KM_SLEEP);
1548 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1549 	    DMU_READ_PREFETCH);
1550 	if (error == 0)
1551 		error = nvlist_unpack(packed, nvsize, value, 0);
1552 	kmem_free(packed, nvsize);
1553 
1554 	return (error);
1555 }
1556 
1557 /*
1558  * Checks to see if the given vdev could not be opened, in which case we post a
1559  * sysevent to notify the autoreplace code that the device has been removed.
1560  */
1561 static void
1562 spa_check_removed(vdev_t *vd)
1563 {
1564 	for (int c = 0; c < vd->vdev_children; c++)
1565 		spa_check_removed(vd->vdev_child[c]);
1566 
1567 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1568 	    !vd->vdev_ishole) {
1569 		zfs_post_autoreplace(vd->vdev_spa, vd);
1570 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1571 	}
1572 }
1573 
1574 /*
1575  * Validate the current config against the MOS config
1576  */
1577 static boolean_t
1578 spa_config_valid(spa_t *spa, nvlist_t *config)
1579 {
1580 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1581 	nvlist_t *nv;
1582 
1583 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1584 
1585 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1586 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1587 
1588 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1589 
1590 	/*
1591 	 * If we're doing a normal import, then build up any additional
1592 	 * diagnostic information about missing devices in this config.
1593 	 * We'll pass this up to the user for further processing.
1594 	 */
1595 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1596 		nvlist_t **child, *nv;
1597 		uint64_t idx = 0;
1598 
1599 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1600 		    KM_SLEEP);
1601 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1602 
1603 		for (int c = 0; c < rvd->vdev_children; c++) {
1604 			vdev_t *tvd = rvd->vdev_child[c];
1605 			vdev_t *mtvd  = mrvd->vdev_child[c];
1606 
1607 			if (tvd->vdev_ops == &vdev_missing_ops &&
1608 			    mtvd->vdev_ops != &vdev_missing_ops &&
1609 			    mtvd->vdev_islog)
1610 				child[idx++] = vdev_config_generate(spa, mtvd,
1611 				    B_FALSE, 0);
1612 		}
1613 
1614 		if (idx) {
1615 			VERIFY(nvlist_add_nvlist_array(nv,
1616 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1617 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1618 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1619 
1620 			for (int i = 0; i < idx; i++)
1621 				nvlist_free(child[i]);
1622 		}
1623 		nvlist_free(nv);
1624 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1625 	}
1626 
1627 	/*
1628 	 * Compare the root vdev tree with the information we have
1629 	 * from the MOS config (mrvd). Check each top-level vdev
1630 	 * with the corresponding MOS config top-level (mtvd).
1631 	 */
1632 	for (int c = 0; c < rvd->vdev_children; c++) {
1633 		vdev_t *tvd = rvd->vdev_child[c];
1634 		vdev_t *mtvd  = mrvd->vdev_child[c];
1635 
1636 		/*
1637 		 * Resolve any "missing" vdevs in the current configuration.
1638 		 * If we find that the MOS config has more accurate information
1639 		 * about the top-level vdev then use that vdev instead.
1640 		 */
1641 		if (tvd->vdev_ops == &vdev_missing_ops &&
1642 		    mtvd->vdev_ops != &vdev_missing_ops) {
1643 
1644 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1645 				continue;
1646 
1647 			/*
1648 			 * Device specific actions.
1649 			 */
1650 			if (mtvd->vdev_islog) {
1651 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1652 			} else {
1653 				/*
1654 				 * XXX - once we have 'readonly' pool
1655 				 * support we should be able to handle
1656 				 * missing data devices by transitioning
1657 				 * the pool to readonly.
1658 				 */
1659 				continue;
1660 			}
1661 
1662 			/*
1663 			 * Swap the missing vdev with the data we were
1664 			 * able to obtain from the MOS config.
1665 			 */
1666 			vdev_remove_child(rvd, tvd);
1667 			vdev_remove_child(mrvd, mtvd);
1668 
1669 			vdev_add_child(rvd, mtvd);
1670 			vdev_add_child(mrvd, tvd);
1671 
1672 			spa_config_exit(spa, SCL_ALL, FTAG);
1673 			vdev_load(mtvd);
1674 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1675 
1676 			vdev_reopen(rvd);
1677 		} else if (mtvd->vdev_islog) {
1678 			/*
1679 			 * Load the slog device's state from the MOS config
1680 			 * since it's possible that the label does not
1681 			 * contain the most up-to-date information.
1682 			 */
1683 			vdev_load_log_state(tvd, mtvd);
1684 			vdev_reopen(tvd);
1685 		}
1686 	}
1687 	vdev_free(mrvd);
1688 	spa_config_exit(spa, SCL_ALL, FTAG);
1689 
1690 	/*
1691 	 * Ensure we were able to validate the config.
1692 	 */
1693 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1694 }
1695 
1696 /*
1697  * Check for missing log devices
1698  */
1699 static boolean_t
1700 spa_check_logs(spa_t *spa)
1701 {
1702 	boolean_t rv = B_FALSE;
1703 
1704 	switch (spa->spa_log_state) {
1705 	case SPA_LOG_MISSING:
1706 		/* need to recheck in case slog has been restored */
1707 	case SPA_LOG_UNKNOWN:
1708 		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1709 		    NULL, DS_FIND_CHILDREN) != 0);
1710 		if (rv)
1711 			spa_set_log_state(spa, SPA_LOG_MISSING);
1712 		break;
1713 	}
1714 	return (rv);
1715 }
1716 
1717 static boolean_t
1718 spa_passivate_log(spa_t *spa)
1719 {
1720 	vdev_t *rvd = spa->spa_root_vdev;
1721 	boolean_t slog_found = B_FALSE;
1722 
1723 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1724 
1725 	if (!spa_has_slogs(spa))
1726 		return (B_FALSE);
1727 
1728 	for (int c = 0; c < rvd->vdev_children; c++) {
1729 		vdev_t *tvd = rvd->vdev_child[c];
1730 		metaslab_group_t *mg = tvd->vdev_mg;
1731 
1732 		if (tvd->vdev_islog) {
1733 			metaslab_group_passivate(mg);
1734 			slog_found = B_TRUE;
1735 		}
1736 	}
1737 
1738 	return (slog_found);
1739 }
1740 
1741 static void
1742 spa_activate_log(spa_t *spa)
1743 {
1744 	vdev_t *rvd = spa->spa_root_vdev;
1745 
1746 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1747 
1748 	for (int c = 0; c < rvd->vdev_children; c++) {
1749 		vdev_t *tvd = rvd->vdev_child[c];
1750 		metaslab_group_t *mg = tvd->vdev_mg;
1751 
1752 		if (tvd->vdev_islog)
1753 			metaslab_group_activate(mg);
1754 	}
1755 }
1756 
1757 int
1758 spa_offline_log(spa_t *spa)
1759 {
1760 	int error;
1761 
1762 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1763 	    NULL, DS_FIND_CHILDREN);
1764 	if (error == 0) {
1765 		/*
1766 		 * We successfully offlined the log device, sync out the
1767 		 * current txg so that the "stubby" block can be removed
1768 		 * by zil_sync().
1769 		 */
1770 		txg_wait_synced(spa->spa_dsl_pool, 0);
1771 	}
1772 	return (error);
1773 }
1774 
1775 static void
1776 spa_aux_check_removed(spa_aux_vdev_t *sav)
1777 {
1778 	for (int i = 0; i < sav->sav_count; i++)
1779 		spa_check_removed(sav->sav_vdevs[i]);
1780 }
1781 
1782 void
1783 spa_claim_notify(zio_t *zio)
1784 {
1785 	spa_t *spa = zio->io_spa;
1786 
1787 	if (zio->io_error)
1788 		return;
1789 
1790 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1791 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1792 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1793 	mutex_exit(&spa->spa_props_lock);
1794 }
1795 
1796 typedef struct spa_load_error {
1797 	uint64_t	sle_meta_count;
1798 	uint64_t	sle_data_count;
1799 } spa_load_error_t;
1800 
1801 static void
1802 spa_load_verify_done(zio_t *zio)
1803 {
1804 	blkptr_t *bp = zio->io_bp;
1805 	spa_load_error_t *sle = zio->io_private;
1806 	dmu_object_type_t type = BP_GET_TYPE(bp);
1807 	int error = zio->io_error;
1808 
1809 	if (error) {
1810 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1811 		    type != DMU_OT_INTENT_LOG)
1812 			atomic_add_64(&sle->sle_meta_count, 1);
1813 		else
1814 			atomic_add_64(&sle->sle_data_count, 1);
1815 	}
1816 	zio_data_buf_free(zio->io_data, zio->io_size);
1817 }
1818 
1819 /*ARGSUSED*/
1820 static int
1821 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1822     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1823 {
1824 	if (bp != NULL) {
1825 		zio_t *rio = arg;
1826 		size_t size = BP_GET_PSIZE(bp);
1827 		void *data = zio_data_buf_alloc(size);
1828 
1829 		zio_nowait(zio_read(rio, spa, bp, data, size,
1830 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1831 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1832 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1833 	}
1834 	return (0);
1835 }
1836 
1837 static int
1838 spa_load_verify(spa_t *spa)
1839 {
1840 	zio_t *rio;
1841 	spa_load_error_t sle = { 0 };
1842 	zpool_rewind_policy_t policy;
1843 	boolean_t verify_ok = B_FALSE;
1844 	int error;
1845 
1846 	zpool_get_rewind_policy(spa->spa_config, &policy);
1847 
1848 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1849 		return (0);
1850 
1851 	rio = zio_root(spa, NULL, &sle,
1852 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1853 
1854 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1855 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1856 
1857 	(void) zio_wait(rio);
1858 
1859 	spa->spa_load_meta_errors = sle.sle_meta_count;
1860 	spa->spa_load_data_errors = sle.sle_data_count;
1861 
1862 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1863 	    sle.sle_data_count <= policy.zrp_maxdata) {
1864 		int64_t loss = 0;
1865 
1866 		verify_ok = B_TRUE;
1867 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1868 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1869 
1870 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1871 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1872 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1873 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1874 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1875 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1876 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1877 	} else {
1878 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1879 	}
1880 
1881 	if (error) {
1882 		if (error != ENXIO && error != EIO)
1883 			error = SET_ERROR(EIO);
1884 		return (error);
1885 	}
1886 
1887 	return (verify_ok ? 0 : EIO);
1888 }
1889 
1890 /*
1891  * Find a value in the pool props object.
1892  */
1893 static void
1894 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1895 {
1896 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1897 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1898 }
1899 
1900 /*
1901  * Find a value in the pool directory object.
1902  */
1903 static int
1904 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1905 {
1906 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1907 	    name, sizeof (uint64_t), 1, val));
1908 }
1909 
1910 static int
1911 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1912 {
1913 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1914 	return (err);
1915 }
1916 
1917 /*
1918  * Fix up config after a partly-completed split.  This is done with the
1919  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1920  * pool have that entry in their config, but only the splitting one contains
1921  * a list of all the guids of the vdevs that are being split off.
1922  *
1923  * This function determines what to do with that list: either rejoin
1924  * all the disks to the pool, or complete the splitting process.  To attempt
1925  * the rejoin, each disk that is offlined is marked online again, and
1926  * we do a reopen() call.  If the vdev label for every disk that was
1927  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1928  * then we call vdev_split() on each disk, and complete the split.
1929  *
1930  * Otherwise we leave the config alone, with all the vdevs in place in
1931  * the original pool.
1932  */
1933 static void
1934 spa_try_repair(spa_t *spa, nvlist_t *config)
1935 {
1936 	uint_t extracted;
1937 	uint64_t *glist;
1938 	uint_t i, gcount;
1939 	nvlist_t *nvl;
1940 	vdev_t **vd;
1941 	boolean_t attempt_reopen;
1942 
1943 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1944 		return;
1945 
1946 	/* check that the config is complete */
1947 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1948 	    &glist, &gcount) != 0)
1949 		return;
1950 
1951 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1952 
1953 	/* attempt to online all the vdevs & validate */
1954 	attempt_reopen = B_TRUE;
1955 	for (i = 0; i < gcount; i++) {
1956 		if (glist[i] == 0)	/* vdev is hole */
1957 			continue;
1958 
1959 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1960 		if (vd[i] == NULL) {
1961 			/*
1962 			 * Don't bother attempting to reopen the disks;
1963 			 * just do the split.
1964 			 */
1965 			attempt_reopen = B_FALSE;
1966 		} else {
1967 			/* attempt to re-online it */
1968 			vd[i]->vdev_offline = B_FALSE;
1969 		}
1970 	}
1971 
1972 	if (attempt_reopen) {
1973 		vdev_reopen(spa->spa_root_vdev);
1974 
1975 		/* check each device to see what state it's in */
1976 		for (extracted = 0, i = 0; i < gcount; i++) {
1977 			if (vd[i] != NULL &&
1978 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1979 				break;
1980 			++extracted;
1981 		}
1982 	}
1983 
1984 	/*
1985 	 * If every disk has been moved to the new pool, or if we never
1986 	 * even attempted to look at them, then we split them off for
1987 	 * good.
1988 	 */
1989 	if (!attempt_reopen || gcount == extracted) {
1990 		for (i = 0; i < gcount; i++)
1991 			if (vd[i] != NULL)
1992 				vdev_split(vd[i]);
1993 		vdev_reopen(spa->spa_root_vdev);
1994 	}
1995 
1996 	kmem_free(vd, gcount * sizeof (vdev_t *));
1997 }
1998 
1999 static int
2000 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2001     boolean_t mosconfig)
2002 {
2003 	nvlist_t *config = spa->spa_config;
2004 	char *ereport = FM_EREPORT_ZFS_POOL;
2005 	char *comment;
2006 	int error;
2007 	uint64_t pool_guid;
2008 	nvlist_t *nvl;
2009 
2010 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2011 		return (SET_ERROR(EINVAL));
2012 
2013 	ASSERT(spa->spa_comment == NULL);
2014 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2015 		spa->spa_comment = spa_strdup(comment);
2016 
2017 	/*
2018 	 * Versioning wasn't explicitly added to the label until later, so if
2019 	 * it's not present treat it as the initial version.
2020 	 */
2021 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2022 	    &spa->spa_ubsync.ub_version) != 0)
2023 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2024 
2025 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2026 	    &spa->spa_config_txg);
2027 
2028 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2029 	    spa_guid_exists(pool_guid, 0)) {
2030 		error = SET_ERROR(EEXIST);
2031 	} else {
2032 		spa->spa_config_guid = pool_guid;
2033 
2034 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2035 		    &nvl) == 0) {
2036 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2037 			    KM_SLEEP) == 0);
2038 		}
2039 
2040 		nvlist_free(spa->spa_load_info);
2041 		spa->spa_load_info = fnvlist_alloc();
2042 
2043 		gethrestime(&spa->spa_loaded_ts);
2044 		error = spa_load_impl(spa, pool_guid, config, state, type,
2045 		    mosconfig, &ereport);
2046 	}
2047 
2048 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2049 	if (error) {
2050 		if (error != EEXIST) {
2051 			spa->spa_loaded_ts.tv_sec = 0;
2052 			spa->spa_loaded_ts.tv_nsec = 0;
2053 		}
2054 		if (error != EBADF) {
2055 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2056 		}
2057 	}
2058 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2059 	spa->spa_ena = 0;
2060 
2061 	return (error);
2062 }
2063 
2064 /*
2065  * Load an existing storage pool, using the pool's builtin spa_config as a
2066  * source of configuration information.
2067  */
2068 static int
2069 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2070     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2071     char **ereport)
2072 {
2073 	int error = 0;
2074 	nvlist_t *nvroot = NULL;
2075 	nvlist_t *label;
2076 	vdev_t *rvd;
2077 	uberblock_t *ub = &spa->spa_uberblock;
2078 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2079 	int orig_mode = spa->spa_mode;
2080 	int parse;
2081 	uint64_t obj;
2082 	boolean_t missing_feat_write = B_FALSE;
2083 
2084 	/*
2085 	 * If this is an untrusted config, access the pool in read-only mode.
2086 	 * This prevents things like resilvering recently removed devices.
2087 	 */
2088 	if (!mosconfig)
2089 		spa->spa_mode = FREAD;
2090 
2091 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2092 
2093 	spa->spa_load_state = state;
2094 
2095 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2096 		return (SET_ERROR(EINVAL));
2097 
2098 	parse = (type == SPA_IMPORT_EXISTING ?
2099 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2100 
2101 	/*
2102 	 * Create "The Godfather" zio to hold all async IOs
2103 	 */
2104 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2105 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2106 
2107 	/*
2108 	 * Parse the configuration into a vdev tree.  We explicitly set the
2109 	 * value that will be returned by spa_version() since parsing the
2110 	 * configuration requires knowing the version number.
2111 	 */
2112 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2113 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2114 	spa_config_exit(spa, SCL_ALL, FTAG);
2115 
2116 	if (error != 0)
2117 		return (error);
2118 
2119 	ASSERT(spa->spa_root_vdev == rvd);
2120 
2121 	if (type != SPA_IMPORT_ASSEMBLE) {
2122 		ASSERT(spa_guid(spa) == pool_guid);
2123 	}
2124 
2125 	/*
2126 	 * Try to open all vdevs, loading each label in the process.
2127 	 */
2128 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2129 	error = vdev_open(rvd);
2130 	spa_config_exit(spa, SCL_ALL, FTAG);
2131 	if (error != 0)
2132 		return (error);
2133 
2134 	/*
2135 	 * We need to validate the vdev labels against the configuration that
2136 	 * we have in hand, which is dependent on the setting of mosconfig. If
2137 	 * mosconfig is true then we're validating the vdev labels based on
2138 	 * that config.  Otherwise, we're validating against the cached config
2139 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2140 	 * later we will recursively call spa_load() and validate against
2141 	 * the vdev config.
2142 	 *
2143 	 * If we're assembling a new pool that's been split off from an
2144 	 * existing pool, the labels haven't yet been updated so we skip
2145 	 * validation for now.
2146 	 */
2147 	if (type != SPA_IMPORT_ASSEMBLE) {
2148 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2149 		error = vdev_validate(rvd, mosconfig);
2150 		spa_config_exit(spa, SCL_ALL, FTAG);
2151 
2152 		if (error != 0)
2153 			return (error);
2154 
2155 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2156 			return (SET_ERROR(ENXIO));
2157 	}
2158 
2159 	/*
2160 	 * Find the best uberblock.
2161 	 */
2162 	vdev_uberblock_load(rvd, ub, &label);
2163 
2164 	/*
2165 	 * If we weren't able to find a single valid uberblock, return failure.
2166 	 */
2167 	if (ub->ub_txg == 0) {
2168 		nvlist_free(label);
2169 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2170 	}
2171 
2172 	/*
2173 	 * If the pool has an unsupported version we can't open it.
2174 	 */
2175 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2176 		nvlist_free(label);
2177 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2178 	}
2179 
2180 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2181 		nvlist_t *features;
2182 
2183 		/*
2184 		 * If we weren't able to find what's necessary for reading the
2185 		 * MOS in the label, return failure.
2186 		 */
2187 		if (label == NULL || nvlist_lookup_nvlist(label,
2188 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2189 			nvlist_free(label);
2190 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2191 			    ENXIO));
2192 		}
2193 
2194 		/*
2195 		 * Update our in-core representation with the definitive values
2196 		 * from the label.
2197 		 */
2198 		nvlist_free(spa->spa_label_features);
2199 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2200 	}
2201 
2202 	nvlist_free(label);
2203 
2204 	/*
2205 	 * Look through entries in the label nvlist's features_for_read. If
2206 	 * there is a feature listed there which we don't understand then we
2207 	 * cannot open a pool.
2208 	 */
2209 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2210 		nvlist_t *unsup_feat;
2211 
2212 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2213 		    0);
2214 
2215 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2216 		    NULL); nvp != NULL;
2217 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2218 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2219 				VERIFY(nvlist_add_string(unsup_feat,
2220 				    nvpair_name(nvp), "") == 0);
2221 			}
2222 		}
2223 
2224 		if (!nvlist_empty(unsup_feat)) {
2225 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2226 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2227 			nvlist_free(unsup_feat);
2228 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2229 			    ENOTSUP));
2230 		}
2231 
2232 		nvlist_free(unsup_feat);
2233 	}
2234 
2235 	/*
2236 	 * If the vdev guid sum doesn't match the uberblock, we have an
2237 	 * incomplete configuration.  We first check to see if the pool
2238 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2239 	 * If it is, defer the vdev_guid_sum check till later so we
2240 	 * can handle missing vdevs.
2241 	 */
2242 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2243 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2244 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2245 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2246 
2247 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2248 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2249 		spa_try_repair(spa, config);
2250 		spa_config_exit(spa, SCL_ALL, FTAG);
2251 		nvlist_free(spa->spa_config_splitting);
2252 		spa->spa_config_splitting = NULL;
2253 	}
2254 
2255 	/*
2256 	 * Initialize internal SPA structures.
2257 	 */
2258 	spa->spa_state = POOL_STATE_ACTIVE;
2259 	spa->spa_ubsync = spa->spa_uberblock;
2260 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2261 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2262 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2263 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2264 	spa->spa_claim_max_txg = spa->spa_first_txg;
2265 	spa->spa_prev_software_version = ub->ub_software_version;
2266 
2267 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2268 	if (error)
2269 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2270 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2271 
2272 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2273 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2274 
2275 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2276 		boolean_t missing_feat_read = B_FALSE;
2277 		nvlist_t *unsup_feat, *enabled_feat;
2278 
2279 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2280 		    &spa->spa_feat_for_read_obj) != 0) {
2281 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2282 		}
2283 
2284 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2285 		    &spa->spa_feat_for_write_obj) != 0) {
2286 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2287 		}
2288 
2289 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2290 		    &spa->spa_feat_desc_obj) != 0) {
2291 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2292 		}
2293 
2294 		enabled_feat = fnvlist_alloc();
2295 		unsup_feat = fnvlist_alloc();
2296 
2297 		if (!feature_is_supported(spa->spa_meta_objset,
2298 		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2299 		    unsup_feat, enabled_feat))
2300 			missing_feat_read = B_TRUE;
2301 
2302 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2303 			if (!feature_is_supported(spa->spa_meta_objset,
2304 			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2305 			    unsup_feat, enabled_feat)) {
2306 				missing_feat_write = B_TRUE;
2307 			}
2308 		}
2309 
2310 		fnvlist_add_nvlist(spa->spa_load_info,
2311 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2312 
2313 		if (!nvlist_empty(unsup_feat)) {
2314 			fnvlist_add_nvlist(spa->spa_load_info,
2315 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2316 		}
2317 
2318 		fnvlist_free(enabled_feat);
2319 		fnvlist_free(unsup_feat);
2320 
2321 		if (!missing_feat_read) {
2322 			fnvlist_add_boolean(spa->spa_load_info,
2323 			    ZPOOL_CONFIG_CAN_RDONLY);
2324 		}
2325 
2326 		/*
2327 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2328 		 * twofold: to determine whether the pool is available for
2329 		 * import in read-write mode and (if it is not) whether the
2330 		 * pool is available for import in read-only mode. If the pool
2331 		 * is available for import in read-write mode, it is displayed
2332 		 * as available in userland; if it is not available for import
2333 		 * in read-only mode, it is displayed as unavailable in
2334 		 * userland. If the pool is available for import in read-only
2335 		 * mode but not read-write mode, it is displayed as unavailable
2336 		 * in userland with a special note that the pool is actually
2337 		 * available for open in read-only mode.
2338 		 *
2339 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2340 		 * missing a feature for write, we must first determine whether
2341 		 * the pool can be opened read-only before returning to
2342 		 * userland in order to know whether to display the
2343 		 * abovementioned note.
2344 		 */
2345 		if (missing_feat_read || (missing_feat_write &&
2346 		    spa_writeable(spa))) {
2347 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2348 			    ENOTSUP));
2349 		}
2350 	}
2351 
2352 	spa->spa_is_initializing = B_TRUE;
2353 	error = dsl_pool_open(spa->spa_dsl_pool);
2354 	spa->spa_is_initializing = B_FALSE;
2355 	if (error != 0)
2356 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2357 
2358 	if (!mosconfig) {
2359 		uint64_t hostid;
2360 		nvlist_t *policy = NULL, *nvconfig;
2361 
2362 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2363 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2364 
2365 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2366 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2367 			char *hostname;
2368 			unsigned long myhostid = 0;
2369 
2370 			VERIFY(nvlist_lookup_string(nvconfig,
2371 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2372 
2373 #ifdef	_KERNEL
2374 			myhostid = zone_get_hostid(NULL);
2375 #else	/* _KERNEL */
2376 			/*
2377 			 * We're emulating the system's hostid in userland, so
2378 			 * we can't use zone_get_hostid().
2379 			 */
2380 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2381 #endif	/* _KERNEL */
2382 			if (hostid != 0 && myhostid != 0 &&
2383 			    hostid != myhostid) {
2384 				nvlist_free(nvconfig);
2385 				cmn_err(CE_WARN, "pool '%s' could not be "
2386 				    "loaded as it was last accessed by "
2387 				    "another system (host: %s hostid: 0x%lx). "
2388 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2389 				    spa_name(spa), hostname,
2390 				    (unsigned long)hostid);
2391 				return (SET_ERROR(EBADF));
2392 			}
2393 		}
2394 		if (nvlist_lookup_nvlist(spa->spa_config,
2395 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2396 			VERIFY(nvlist_add_nvlist(nvconfig,
2397 			    ZPOOL_REWIND_POLICY, policy) == 0);
2398 
2399 		spa_config_set(spa, nvconfig);
2400 		spa_unload(spa);
2401 		spa_deactivate(spa);
2402 		spa_activate(spa, orig_mode);
2403 
2404 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2405 	}
2406 
2407 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2408 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2409 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2410 	if (error != 0)
2411 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2412 
2413 	/*
2414 	 * Load the bit that tells us to use the new accounting function
2415 	 * (raid-z deflation).  If we have an older pool, this will not
2416 	 * be present.
2417 	 */
2418 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2419 	if (error != 0 && error != ENOENT)
2420 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421 
2422 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2423 	    &spa->spa_creation_version);
2424 	if (error != 0 && error != ENOENT)
2425 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426 
2427 	/*
2428 	 * Load the persistent error log.  If we have an older pool, this will
2429 	 * not be present.
2430 	 */
2431 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2432 	if (error != 0 && error != ENOENT)
2433 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2434 
2435 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2436 	    &spa->spa_errlog_scrub);
2437 	if (error != 0 && error != ENOENT)
2438 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2439 
2440 	/*
2441 	 * Load the history object.  If we have an older pool, this
2442 	 * will not be present.
2443 	 */
2444 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2445 	if (error != 0 && error != ENOENT)
2446 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2447 
2448 	/*
2449 	 * If we're assembling the pool from the split-off vdevs of
2450 	 * an existing pool, we don't want to attach the spares & cache
2451 	 * devices.
2452 	 */
2453 
2454 	/*
2455 	 * Load any hot spares for this pool.
2456 	 */
2457 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2458 	if (error != 0 && error != ENOENT)
2459 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2460 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2461 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2462 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2463 		    &spa->spa_spares.sav_config) != 0)
2464 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465 
2466 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2467 		spa_load_spares(spa);
2468 		spa_config_exit(spa, SCL_ALL, FTAG);
2469 	} else if (error == 0) {
2470 		spa->spa_spares.sav_sync = B_TRUE;
2471 	}
2472 
2473 	/*
2474 	 * Load any level 2 ARC devices for this pool.
2475 	 */
2476 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2477 	    &spa->spa_l2cache.sav_object);
2478 	if (error != 0 && error != ENOENT)
2479 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2480 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2481 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2482 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2483 		    &spa->spa_l2cache.sav_config) != 0)
2484 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2485 
2486 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2487 		spa_load_l2cache(spa);
2488 		spa_config_exit(spa, SCL_ALL, FTAG);
2489 	} else if (error == 0) {
2490 		spa->spa_l2cache.sav_sync = B_TRUE;
2491 	}
2492 
2493 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2494 
2495 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2496 	if (error && error != ENOENT)
2497 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2498 
2499 	if (error == 0) {
2500 		uint64_t autoreplace;
2501 
2502 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2503 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2504 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2505 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2506 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2507 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2508 		    &spa->spa_dedup_ditto);
2509 
2510 		spa->spa_autoreplace = (autoreplace != 0);
2511 	}
2512 
2513 	/*
2514 	 * If the 'autoreplace' property is set, then post a resource notifying
2515 	 * the ZFS DE that it should not issue any faults for unopenable
2516 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2517 	 * unopenable vdevs so that the normal autoreplace handler can take
2518 	 * over.
2519 	 */
2520 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2521 		spa_check_removed(spa->spa_root_vdev);
2522 		/*
2523 		 * For the import case, this is done in spa_import(), because
2524 		 * at this point we're using the spare definitions from
2525 		 * the MOS config, not necessarily from the userland config.
2526 		 */
2527 		if (state != SPA_LOAD_IMPORT) {
2528 			spa_aux_check_removed(&spa->spa_spares);
2529 			spa_aux_check_removed(&spa->spa_l2cache);
2530 		}
2531 	}
2532 
2533 	/*
2534 	 * Load the vdev state for all toplevel vdevs.
2535 	 */
2536 	vdev_load(rvd);
2537 
2538 	/*
2539 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2540 	 */
2541 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2542 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2543 	spa_config_exit(spa, SCL_ALL, FTAG);
2544 
2545 	/*
2546 	 * Load the DDTs (dedup tables).
2547 	 */
2548 	error = ddt_load(spa);
2549 	if (error != 0)
2550 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2551 
2552 	spa_update_dspace(spa);
2553 
2554 	/*
2555 	 * Validate the config, using the MOS config to fill in any
2556 	 * information which might be missing.  If we fail to validate
2557 	 * the config then declare the pool unfit for use. If we're
2558 	 * assembling a pool from a split, the log is not transferred
2559 	 * over.
2560 	 */
2561 	if (type != SPA_IMPORT_ASSEMBLE) {
2562 		nvlist_t *nvconfig;
2563 
2564 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2565 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2566 
2567 		if (!spa_config_valid(spa, nvconfig)) {
2568 			nvlist_free(nvconfig);
2569 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2570 			    ENXIO));
2571 		}
2572 		nvlist_free(nvconfig);
2573 
2574 		/*
2575 		 * Now that we've validated the config, check the state of the
2576 		 * root vdev.  If it can't be opened, it indicates one or
2577 		 * more toplevel vdevs are faulted.
2578 		 */
2579 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2580 			return (SET_ERROR(ENXIO));
2581 
2582 		if (spa_check_logs(spa)) {
2583 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2584 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2585 		}
2586 	}
2587 
2588 	if (missing_feat_write) {
2589 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2590 
2591 		/*
2592 		 * At this point, we know that we can open the pool in
2593 		 * read-only mode but not read-write mode. We now have enough
2594 		 * information and can return to userland.
2595 		 */
2596 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2597 	}
2598 
2599 	/*
2600 	 * We've successfully opened the pool, verify that we're ready
2601 	 * to start pushing transactions.
2602 	 */
2603 	if (state != SPA_LOAD_TRYIMPORT) {
2604 		if (error = spa_load_verify(spa))
2605 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2606 			    error));
2607 	}
2608 
2609 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2610 	    spa->spa_load_max_txg == UINT64_MAX)) {
2611 		dmu_tx_t *tx;
2612 		int need_update = B_FALSE;
2613 
2614 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2615 
2616 		/*
2617 		 * Claim log blocks that haven't been committed yet.
2618 		 * This must all happen in a single txg.
2619 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2620 		 * invoked from zil_claim_log_block()'s i/o done callback.
2621 		 * Price of rollback is that we abandon the log.
2622 		 */
2623 		spa->spa_claiming = B_TRUE;
2624 
2625 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2626 		    spa_first_txg(spa));
2627 		(void) dmu_objset_find(spa_name(spa),
2628 		    zil_claim, tx, DS_FIND_CHILDREN);
2629 		dmu_tx_commit(tx);
2630 
2631 		spa->spa_claiming = B_FALSE;
2632 
2633 		spa_set_log_state(spa, SPA_LOG_GOOD);
2634 		spa->spa_sync_on = B_TRUE;
2635 		txg_sync_start(spa->spa_dsl_pool);
2636 
2637 		/*
2638 		 * Wait for all claims to sync.  We sync up to the highest
2639 		 * claimed log block birth time so that claimed log blocks
2640 		 * don't appear to be from the future.  spa_claim_max_txg
2641 		 * will have been set for us by either zil_check_log_chain()
2642 		 * (invoked from spa_check_logs()) or zil_claim() above.
2643 		 */
2644 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2645 
2646 		/*
2647 		 * If the config cache is stale, or we have uninitialized
2648 		 * metaslabs (see spa_vdev_add()), then update the config.
2649 		 *
2650 		 * If this is a verbatim import, trust the current
2651 		 * in-core spa_config and update the disk labels.
2652 		 */
2653 		if (config_cache_txg != spa->spa_config_txg ||
2654 		    state == SPA_LOAD_IMPORT ||
2655 		    state == SPA_LOAD_RECOVER ||
2656 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2657 			need_update = B_TRUE;
2658 
2659 		for (int c = 0; c < rvd->vdev_children; c++)
2660 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2661 				need_update = B_TRUE;
2662 
2663 		/*
2664 		 * Update the config cache asychronously in case we're the
2665 		 * root pool, in which case the config cache isn't writable yet.
2666 		 */
2667 		if (need_update)
2668 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2669 
2670 		/*
2671 		 * Check all DTLs to see if anything needs resilvering.
2672 		 */
2673 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2674 		    vdev_resilver_needed(rvd, NULL, NULL))
2675 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2676 
2677 		/*
2678 		 * Log the fact that we booted up (so that we can detect if
2679 		 * we rebooted in the middle of an operation).
2680 		 */
2681 		spa_history_log_version(spa, "open");
2682 
2683 		/*
2684 		 * Delete any inconsistent datasets.
2685 		 */
2686 		(void) dmu_objset_find(spa_name(spa),
2687 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2688 
2689 		/*
2690 		 * Clean up any stale temporary dataset userrefs.
2691 		 */
2692 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2693 	}
2694 
2695 	return (0);
2696 }
2697 
2698 static int
2699 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2700 {
2701 	int mode = spa->spa_mode;
2702 
2703 	spa_unload(spa);
2704 	spa_deactivate(spa);
2705 
2706 	spa->spa_load_max_txg--;
2707 
2708 	spa_activate(spa, mode);
2709 	spa_async_suspend(spa);
2710 
2711 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2712 }
2713 
2714 /*
2715  * If spa_load() fails this function will try loading prior txg's. If
2716  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2717  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2718  * function will not rewind the pool and will return the same error as
2719  * spa_load().
2720  */
2721 static int
2722 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2723     uint64_t max_request, int rewind_flags)
2724 {
2725 	nvlist_t *loadinfo = NULL;
2726 	nvlist_t *config = NULL;
2727 	int load_error, rewind_error;
2728 	uint64_t safe_rewind_txg;
2729 	uint64_t min_txg;
2730 
2731 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2732 		spa->spa_load_max_txg = spa->spa_load_txg;
2733 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2734 	} else {
2735 		spa->spa_load_max_txg = max_request;
2736 	}
2737 
2738 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2739 	    mosconfig);
2740 	if (load_error == 0)
2741 		return (0);
2742 
2743 	if (spa->spa_root_vdev != NULL)
2744 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2745 
2746 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2747 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2748 
2749 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2750 		nvlist_free(config);
2751 		return (load_error);
2752 	}
2753 
2754 	if (state == SPA_LOAD_RECOVER) {
2755 		/* Price of rolling back is discarding txgs, including log */
2756 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2757 	} else {
2758 		/*
2759 		 * If we aren't rolling back save the load info from our first
2760 		 * import attempt so that we can restore it after attempting
2761 		 * to rewind.
2762 		 */
2763 		loadinfo = spa->spa_load_info;
2764 		spa->spa_load_info = fnvlist_alloc();
2765 	}
2766 
2767 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2768 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2769 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2770 	    TXG_INITIAL : safe_rewind_txg;
2771 
2772 	/*
2773 	 * Continue as long as we're finding errors, we're still within
2774 	 * the acceptable rewind range, and we're still finding uberblocks
2775 	 */
2776 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2777 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2778 		if (spa->spa_load_max_txg < safe_rewind_txg)
2779 			spa->spa_extreme_rewind = B_TRUE;
2780 		rewind_error = spa_load_retry(spa, state, mosconfig);
2781 	}
2782 
2783 	spa->spa_extreme_rewind = B_FALSE;
2784 	spa->spa_load_max_txg = UINT64_MAX;
2785 
2786 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2787 		spa_config_set(spa, config);
2788 
2789 	if (state == SPA_LOAD_RECOVER) {
2790 		ASSERT3P(loadinfo, ==, NULL);
2791 		return (rewind_error);
2792 	} else {
2793 		/* Store the rewind info as part of the initial load info */
2794 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2795 		    spa->spa_load_info);
2796 
2797 		/* Restore the initial load info */
2798 		fnvlist_free(spa->spa_load_info);
2799 		spa->spa_load_info = loadinfo;
2800 
2801 		return (load_error);
2802 	}
2803 }
2804 
2805 /*
2806  * Pool Open/Import
2807  *
2808  * The import case is identical to an open except that the configuration is sent
2809  * down from userland, instead of grabbed from the configuration cache.  For the
2810  * case of an open, the pool configuration will exist in the
2811  * POOL_STATE_UNINITIALIZED state.
2812  *
2813  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2814  * the same time open the pool, without having to keep around the spa_t in some
2815  * ambiguous state.
2816  */
2817 static int
2818 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2819     nvlist_t **config)
2820 {
2821 	spa_t *spa;
2822 	spa_load_state_t state = SPA_LOAD_OPEN;
2823 	int error;
2824 	int locked = B_FALSE;
2825 
2826 	*spapp = NULL;
2827 
2828 	/*
2829 	 * As disgusting as this is, we need to support recursive calls to this
2830 	 * function because dsl_dir_open() is called during spa_load(), and ends
2831 	 * up calling spa_open() again.  The real fix is to figure out how to
2832 	 * avoid dsl_dir_open() calling this in the first place.
2833 	 */
2834 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2835 		mutex_enter(&spa_namespace_lock);
2836 		locked = B_TRUE;
2837 	}
2838 
2839 	if ((spa = spa_lookup(pool)) == NULL) {
2840 		if (locked)
2841 			mutex_exit(&spa_namespace_lock);
2842 		return (SET_ERROR(ENOENT));
2843 	}
2844 
2845 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2846 		zpool_rewind_policy_t policy;
2847 
2848 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2849 		    &policy);
2850 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2851 			state = SPA_LOAD_RECOVER;
2852 
2853 		spa_activate(spa, spa_mode_global);
2854 
2855 		if (state != SPA_LOAD_RECOVER)
2856 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2857 
2858 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2859 		    policy.zrp_request);
2860 
2861 		if (error == EBADF) {
2862 			/*
2863 			 * If vdev_validate() returns failure (indicated by
2864 			 * EBADF), it indicates that one of the vdevs indicates
2865 			 * that the pool has been exported or destroyed.  If
2866 			 * this is the case, the config cache is out of sync and
2867 			 * we should remove the pool from the namespace.
2868 			 */
2869 			spa_unload(spa);
2870 			spa_deactivate(spa);
2871 			spa_config_sync(spa, B_TRUE, B_TRUE);
2872 			spa_remove(spa);
2873 			if (locked)
2874 				mutex_exit(&spa_namespace_lock);
2875 			return (SET_ERROR(ENOENT));
2876 		}
2877 
2878 		if (error) {
2879 			/*
2880 			 * We can't open the pool, but we still have useful
2881 			 * information: the state of each vdev after the
2882 			 * attempted vdev_open().  Return this to the user.
2883 			 */
2884 			if (config != NULL && spa->spa_config) {
2885 				VERIFY(nvlist_dup(spa->spa_config, config,
2886 				    KM_SLEEP) == 0);
2887 				VERIFY(nvlist_add_nvlist(*config,
2888 				    ZPOOL_CONFIG_LOAD_INFO,
2889 				    spa->spa_load_info) == 0);
2890 			}
2891 			spa_unload(spa);
2892 			spa_deactivate(spa);
2893 			spa->spa_last_open_failed = error;
2894 			if (locked)
2895 				mutex_exit(&spa_namespace_lock);
2896 			*spapp = NULL;
2897 			return (error);
2898 		}
2899 	}
2900 
2901 	spa_open_ref(spa, tag);
2902 
2903 	if (config != NULL)
2904 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2905 
2906 	/*
2907 	 * If we've recovered the pool, pass back any information we
2908 	 * gathered while doing the load.
2909 	 */
2910 	if (state == SPA_LOAD_RECOVER) {
2911 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2912 		    spa->spa_load_info) == 0);
2913 	}
2914 
2915 	if (locked) {
2916 		spa->spa_last_open_failed = 0;
2917 		spa->spa_last_ubsync_txg = 0;
2918 		spa->spa_load_txg = 0;
2919 		mutex_exit(&spa_namespace_lock);
2920 	}
2921 
2922 	*spapp = spa;
2923 
2924 	return (0);
2925 }
2926 
2927 int
2928 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2929     nvlist_t **config)
2930 {
2931 	return (spa_open_common(name, spapp, tag, policy, config));
2932 }
2933 
2934 int
2935 spa_open(const char *name, spa_t **spapp, void *tag)
2936 {
2937 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2938 }
2939 
2940 /*
2941  * Lookup the given spa_t, incrementing the inject count in the process,
2942  * preventing it from being exported or destroyed.
2943  */
2944 spa_t *
2945 spa_inject_addref(char *name)
2946 {
2947 	spa_t *spa;
2948 
2949 	mutex_enter(&spa_namespace_lock);
2950 	if ((spa = spa_lookup(name)) == NULL) {
2951 		mutex_exit(&spa_namespace_lock);
2952 		return (NULL);
2953 	}
2954 	spa->spa_inject_ref++;
2955 	mutex_exit(&spa_namespace_lock);
2956 
2957 	return (spa);
2958 }
2959 
2960 void
2961 spa_inject_delref(spa_t *spa)
2962 {
2963 	mutex_enter(&spa_namespace_lock);
2964 	spa->spa_inject_ref--;
2965 	mutex_exit(&spa_namespace_lock);
2966 }
2967 
2968 /*
2969  * Add spares device information to the nvlist.
2970  */
2971 static void
2972 spa_add_spares(spa_t *spa, nvlist_t *config)
2973 {
2974 	nvlist_t **spares;
2975 	uint_t i, nspares;
2976 	nvlist_t *nvroot;
2977 	uint64_t guid;
2978 	vdev_stat_t *vs;
2979 	uint_t vsc;
2980 	uint64_t pool;
2981 
2982 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2983 
2984 	if (spa->spa_spares.sav_count == 0)
2985 		return;
2986 
2987 	VERIFY(nvlist_lookup_nvlist(config,
2988 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2989 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2990 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2991 	if (nspares != 0) {
2992 		VERIFY(nvlist_add_nvlist_array(nvroot,
2993 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2994 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2995 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2996 
2997 		/*
2998 		 * Go through and find any spares which have since been
2999 		 * repurposed as an active spare.  If this is the case, update
3000 		 * their status appropriately.
3001 		 */
3002 		for (i = 0; i < nspares; i++) {
3003 			VERIFY(nvlist_lookup_uint64(spares[i],
3004 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3005 			if (spa_spare_exists(guid, &pool, NULL) &&
3006 			    pool != 0ULL) {
3007 				VERIFY(nvlist_lookup_uint64_array(
3008 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3009 				    (uint64_t **)&vs, &vsc) == 0);
3010 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3011 				vs->vs_aux = VDEV_AUX_SPARED;
3012 			}
3013 		}
3014 	}
3015 }
3016 
3017 /*
3018  * Add l2cache device information to the nvlist, including vdev stats.
3019  */
3020 static void
3021 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3022 {
3023 	nvlist_t **l2cache;
3024 	uint_t i, j, nl2cache;
3025 	nvlist_t *nvroot;
3026 	uint64_t guid;
3027 	vdev_t *vd;
3028 	vdev_stat_t *vs;
3029 	uint_t vsc;
3030 
3031 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3032 
3033 	if (spa->spa_l2cache.sav_count == 0)
3034 		return;
3035 
3036 	VERIFY(nvlist_lookup_nvlist(config,
3037 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3038 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3039 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3040 	if (nl2cache != 0) {
3041 		VERIFY(nvlist_add_nvlist_array(nvroot,
3042 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3043 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3044 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3045 
3046 		/*
3047 		 * Update level 2 cache device stats.
3048 		 */
3049 
3050 		for (i = 0; i < nl2cache; i++) {
3051 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3052 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3053 
3054 			vd = NULL;
3055 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3056 				if (guid ==
3057 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3058 					vd = spa->spa_l2cache.sav_vdevs[j];
3059 					break;
3060 				}
3061 			}
3062 			ASSERT(vd != NULL);
3063 
3064 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3065 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3066 			    == 0);
3067 			vdev_get_stats(vd, vs);
3068 		}
3069 	}
3070 }
3071 
3072 static void
3073 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3074 {
3075 	nvlist_t *features;
3076 	zap_cursor_t zc;
3077 	zap_attribute_t za;
3078 
3079 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3080 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3081 
3082 	if (spa->spa_feat_for_read_obj != 0) {
3083 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3084 		    spa->spa_feat_for_read_obj);
3085 		    zap_cursor_retrieve(&zc, &za) == 0;
3086 		    zap_cursor_advance(&zc)) {
3087 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3088 			    za.za_num_integers == 1);
3089 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3090 			    za.za_first_integer));
3091 		}
3092 		zap_cursor_fini(&zc);
3093 	}
3094 
3095 	if (spa->spa_feat_for_write_obj != 0) {
3096 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3097 		    spa->spa_feat_for_write_obj);
3098 		    zap_cursor_retrieve(&zc, &za) == 0;
3099 		    zap_cursor_advance(&zc)) {
3100 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3101 			    za.za_num_integers == 1);
3102 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3103 			    za.za_first_integer));
3104 		}
3105 		zap_cursor_fini(&zc);
3106 	}
3107 
3108 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3109 	    features) == 0);
3110 	nvlist_free(features);
3111 }
3112 
3113 int
3114 spa_get_stats(const char *name, nvlist_t **config,
3115     char *altroot, size_t buflen)
3116 {
3117 	int error;
3118 	spa_t *spa;
3119 
3120 	*config = NULL;
3121 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3122 
3123 	if (spa != NULL) {
3124 		/*
3125 		 * This still leaves a window of inconsistency where the spares
3126 		 * or l2cache devices could change and the config would be
3127 		 * self-inconsistent.
3128 		 */
3129 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3130 
3131 		if (*config != NULL) {
3132 			uint64_t loadtimes[2];
3133 
3134 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3135 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3136 			VERIFY(nvlist_add_uint64_array(*config,
3137 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3138 
3139 			VERIFY(nvlist_add_uint64(*config,
3140 			    ZPOOL_CONFIG_ERRCOUNT,
3141 			    spa_get_errlog_size(spa)) == 0);
3142 
3143 			if (spa_suspended(spa))
3144 				VERIFY(nvlist_add_uint64(*config,
3145 				    ZPOOL_CONFIG_SUSPENDED,
3146 				    spa->spa_failmode) == 0);
3147 
3148 			spa_add_spares(spa, *config);
3149 			spa_add_l2cache(spa, *config);
3150 			spa_add_feature_stats(spa, *config);
3151 		}
3152 	}
3153 
3154 	/*
3155 	 * We want to get the alternate root even for faulted pools, so we cheat
3156 	 * and call spa_lookup() directly.
3157 	 */
3158 	if (altroot) {
3159 		if (spa == NULL) {
3160 			mutex_enter(&spa_namespace_lock);
3161 			spa = spa_lookup(name);
3162 			if (spa)
3163 				spa_altroot(spa, altroot, buflen);
3164 			else
3165 				altroot[0] = '\0';
3166 			spa = NULL;
3167 			mutex_exit(&spa_namespace_lock);
3168 		} else {
3169 			spa_altroot(spa, altroot, buflen);
3170 		}
3171 	}
3172 
3173 	if (spa != NULL) {
3174 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3175 		spa_close(spa, FTAG);
3176 	}
3177 
3178 	return (error);
3179 }
3180 
3181 /*
3182  * Validate that the auxiliary device array is well formed.  We must have an
3183  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3184  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3185  * specified, as long as they are well-formed.
3186  */
3187 static int
3188 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3189     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3190     vdev_labeltype_t label)
3191 {
3192 	nvlist_t **dev;
3193 	uint_t i, ndev;
3194 	vdev_t *vd;
3195 	int error;
3196 
3197 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3198 
3199 	/*
3200 	 * It's acceptable to have no devs specified.
3201 	 */
3202 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3203 		return (0);
3204 
3205 	if (ndev == 0)
3206 		return (SET_ERROR(EINVAL));
3207 
3208 	/*
3209 	 * Make sure the pool is formatted with a version that supports this
3210 	 * device type.
3211 	 */
3212 	if (spa_version(spa) < version)
3213 		return (SET_ERROR(ENOTSUP));
3214 
3215 	/*
3216 	 * Set the pending device list so we correctly handle device in-use
3217 	 * checking.
3218 	 */
3219 	sav->sav_pending = dev;
3220 	sav->sav_npending = ndev;
3221 
3222 	for (i = 0; i < ndev; i++) {
3223 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3224 		    mode)) != 0)
3225 			goto out;
3226 
3227 		if (!vd->vdev_ops->vdev_op_leaf) {
3228 			vdev_free(vd);
3229 			error = SET_ERROR(EINVAL);
3230 			goto out;
3231 		}
3232 
3233 		/*
3234 		 * The L2ARC currently only supports disk devices in
3235 		 * kernel context.  For user-level testing, we allow it.
3236 		 */
3237 #ifdef _KERNEL
3238 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3239 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3240 			error = SET_ERROR(ENOTBLK);
3241 			vdev_free(vd);
3242 			goto out;
3243 		}
3244 #endif
3245 		vd->vdev_top = vd;
3246 
3247 		if ((error = vdev_open(vd)) == 0 &&
3248 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3249 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3250 			    vd->vdev_guid) == 0);
3251 		}
3252 
3253 		vdev_free(vd);
3254 
3255 		if (error &&
3256 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3257 			goto out;
3258 		else
3259 			error = 0;
3260 	}
3261 
3262 out:
3263 	sav->sav_pending = NULL;
3264 	sav->sav_npending = 0;
3265 	return (error);
3266 }
3267 
3268 static int
3269 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3270 {
3271 	int error;
3272 
3273 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3274 
3275 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3276 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3277 	    VDEV_LABEL_SPARE)) != 0) {
3278 		return (error);
3279 	}
3280 
3281 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3282 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3283 	    VDEV_LABEL_L2CACHE));
3284 }
3285 
3286 static void
3287 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3288     const char *config)
3289 {
3290 	int i;
3291 
3292 	if (sav->sav_config != NULL) {
3293 		nvlist_t **olddevs;
3294 		uint_t oldndevs;
3295 		nvlist_t **newdevs;
3296 
3297 		/*
3298 		 * Generate new dev list by concatentating with the
3299 		 * current dev list.
3300 		 */
3301 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3302 		    &olddevs, &oldndevs) == 0);
3303 
3304 		newdevs = kmem_alloc(sizeof (void *) *
3305 		    (ndevs + oldndevs), KM_SLEEP);
3306 		for (i = 0; i < oldndevs; i++)
3307 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3308 			    KM_SLEEP) == 0);
3309 		for (i = 0; i < ndevs; i++)
3310 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3311 			    KM_SLEEP) == 0);
3312 
3313 		VERIFY(nvlist_remove(sav->sav_config, config,
3314 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3315 
3316 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3317 		    config, newdevs, ndevs + oldndevs) == 0);
3318 		for (i = 0; i < oldndevs + ndevs; i++)
3319 			nvlist_free(newdevs[i]);
3320 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3321 	} else {
3322 		/*
3323 		 * Generate a new dev list.
3324 		 */
3325 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3326 		    KM_SLEEP) == 0);
3327 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3328 		    devs, ndevs) == 0);
3329 	}
3330 }
3331 
3332 /*
3333  * Stop and drop level 2 ARC devices
3334  */
3335 void
3336 spa_l2cache_drop(spa_t *spa)
3337 {
3338 	vdev_t *vd;
3339 	int i;
3340 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3341 
3342 	for (i = 0; i < sav->sav_count; i++) {
3343 		uint64_t pool;
3344 
3345 		vd = sav->sav_vdevs[i];
3346 		ASSERT(vd != NULL);
3347 
3348 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3349 		    pool != 0ULL && l2arc_vdev_present(vd))
3350 			l2arc_remove_vdev(vd);
3351 	}
3352 }
3353 
3354 /*
3355  * Pool Creation
3356  */
3357 int
3358 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3359     nvlist_t *zplprops)
3360 {
3361 	spa_t *spa;
3362 	char *altroot = NULL;
3363 	vdev_t *rvd;
3364 	dsl_pool_t *dp;
3365 	dmu_tx_t *tx;
3366 	int error = 0;
3367 	uint64_t txg = TXG_INITIAL;
3368 	nvlist_t **spares, **l2cache;
3369 	uint_t nspares, nl2cache;
3370 	uint64_t version, obj;
3371 	boolean_t has_features;
3372 
3373 	/*
3374 	 * If this pool already exists, return failure.
3375 	 */
3376 	mutex_enter(&spa_namespace_lock);
3377 	if (spa_lookup(pool) != NULL) {
3378 		mutex_exit(&spa_namespace_lock);
3379 		return (SET_ERROR(EEXIST));
3380 	}
3381 
3382 	/*
3383 	 * Allocate a new spa_t structure.
3384 	 */
3385 	(void) nvlist_lookup_string(props,
3386 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3387 	spa = spa_add(pool, NULL, altroot);
3388 	spa_activate(spa, spa_mode_global);
3389 
3390 	if (props && (error = spa_prop_validate(spa, props))) {
3391 		spa_deactivate(spa);
3392 		spa_remove(spa);
3393 		mutex_exit(&spa_namespace_lock);
3394 		return (error);
3395 	}
3396 
3397 	has_features = B_FALSE;
3398 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3399 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3400 		if (zpool_prop_feature(nvpair_name(elem)))
3401 			has_features = B_TRUE;
3402 	}
3403 
3404 	if (has_features || nvlist_lookup_uint64(props,
3405 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3406 		version = SPA_VERSION;
3407 	}
3408 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3409 
3410 	spa->spa_first_txg = txg;
3411 	spa->spa_uberblock.ub_txg = txg - 1;
3412 	spa->spa_uberblock.ub_version = version;
3413 	spa->spa_ubsync = spa->spa_uberblock;
3414 
3415 	/*
3416 	 * Create "The Godfather" zio to hold all async IOs
3417 	 */
3418 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3419 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3420 
3421 	/*
3422 	 * Create the root vdev.
3423 	 */
3424 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3425 
3426 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3427 
3428 	ASSERT(error != 0 || rvd != NULL);
3429 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3430 
3431 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3432 		error = SET_ERROR(EINVAL);
3433 
3434 	if (error == 0 &&
3435 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3436 	    (error = spa_validate_aux(spa, nvroot, txg,
3437 	    VDEV_ALLOC_ADD)) == 0) {
3438 		for (int c = 0; c < rvd->vdev_children; c++) {
3439 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3440 			vdev_expand(rvd->vdev_child[c], txg);
3441 		}
3442 	}
3443 
3444 	spa_config_exit(spa, SCL_ALL, FTAG);
3445 
3446 	if (error != 0) {
3447 		spa_unload(spa);
3448 		spa_deactivate(spa);
3449 		spa_remove(spa);
3450 		mutex_exit(&spa_namespace_lock);
3451 		return (error);
3452 	}
3453 
3454 	/*
3455 	 * Get the list of spares, if specified.
3456 	 */
3457 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3458 	    &spares, &nspares) == 0) {
3459 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3460 		    KM_SLEEP) == 0);
3461 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3462 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3463 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3464 		spa_load_spares(spa);
3465 		spa_config_exit(spa, SCL_ALL, FTAG);
3466 		spa->spa_spares.sav_sync = B_TRUE;
3467 	}
3468 
3469 	/*
3470 	 * Get the list of level 2 cache devices, if specified.
3471 	 */
3472 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3473 	    &l2cache, &nl2cache) == 0) {
3474 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3475 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3476 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3477 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3478 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3479 		spa_load_l2cache(spa);
3480 		spa_config_exit(spa, SCL_ALL, FTAG);
3481 		spa->spa_l2cache.sav_sync = B_TRUE;
3482 	}
3483 
3484 	spa->spa_is_initializing = B_TRUE;
3485 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3486 	spa->spa_meta_objset = dp->dp_meta_objset;
3487 	spa->spa_is_initializing = B_FALSE;
3488 
3489 	/*
3490 	 * Create DDTs (dedup tables).
3491 	 */
3492 	ddt_create(spa);
3493 
3494 	spa_update_dspace(spa);
3495 
3496 	tx = dmu_tx_create_assigned(dp, txg);
3497 
3498 	/*
3499 	 * Create the pool config object.
3500 	 */
3501 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3502 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3503 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3504 
3505 	if (zap_add(spa->spa_meta_objset,
3506 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3507 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3508 		cmn_err(CE_PANIC, "failed to add pool config");
3509 	}
3510 
3511 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3512 		spa_feature_create_zap_objects(spa, tx);
3513 
3514 	if (zap_add(spa->spa_meta_objset,
3515 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3516 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3517 		cmn_err(CE_PANIC, "failed to add pool version");
3518 	}
3519 
3520 	/* Newly created pools with the right version are always deflated. */
3521 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3522 		spa->spa_deflate = TRUE;
3523 		if (zap_add(spa->spa_meta_objset,
3524 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3525 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3526 			cmn_err(CE_PANIC, "failed to add deflate");
3527 		}
3528 	}
3529 
3530 	/*
3531 	 * Create the deferred-free bpobj.  Turn off compression
3532 	 * because sync-to-convergence takes longer if the blocksize
3533 	 * keeps changing.
3534 	 */
3535 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3536 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3537 	    ZIO_COMPRESS_OFF, tx);
3538 	if (zap_add(spa->spa_meta_objset,
3539 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3540 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3541 		cmn_err(CE_PANIC, "failed to add bpobj");
3542 	}
3543 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3544 	    spa->spa_meta_objset, obj));
3545 
3546 	/*
3547 	 * Create the pool's history object.
3548 	 */
3549 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3550 		spa_history_create_obj(spa, tx);
3551 
3552 	/*
3553 	 * Set pool properties.
3554 	 */
3555 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3556 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3557 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3558 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3559 
3560 	if (props != NULL) {
3561 		spa_configfile_set(spa, props, B_FALSE);
3562 		spa_sync_props(props, tx);
3563 	}
3564 
3565 	dmu_tx_commit(tx);
3566 
3567 	spa->spa_sync_on = B_TRUE;
3568 	txg_sync_start(spa->spa_dsl_pool);
3569 
3570 	/*
3571 	 * We explicitly wait for the first transaction to complete so that our
3572 	 * bean counters are appropriately updated.
3573 	 */
3574 	txg_wait_synced(spa->spa_dsl_pool, txg);
3575 
3576 	spa_config_sync(spa, B_FALSE, B_TRUE);
3577 
3578 	spa_history_log_version(spa, "create");
3579 
3580 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3581 
3582 	mutex_exit(&spa_namespace_lock);
3583 
3584 	return (0);
3585 }
3586 
3587 #ifdef _KERNEL
3588 /*
3589  * Get the root pool information from the root disk, then import the root pool
3590  * during the system boot up time.
3591  */
3592 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3593 
3594 static nvlist_t *
3595 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3596 {
3597 	nvlist_t *config;
3598 	nvlist_t *nvtop, *nvroot;
3599 	uint64_t pgid;
3600 
3601 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3602 		return (NULL);
3603 
3604 	/*
3605 	 * Add this top-level vdev to the child array.
3606 	 */
3607 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3608 	    &nvtop) == 0);
3609 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3610 	    &pgid) == 0);
3611 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3612 
3613 	/*
3614 	 * Put this pool's top-level vdevs into a root vdev.
3615 	 */
3616 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3617 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3618 	    VDEV_TYPE_ROOT) == 0);
3619 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3620 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3621 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3622 	    &nvtop, 1) == 0);
3623 
3624 	/*
3625 	 * Replace the existing vdev_tree with the new root vdev in
3626 	 * this pool's configuration (remove the old, add the new).
3627 	 */
3628 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3629 	nvlist_free(nvroot);
3630 	return (config);
3631 }
3632 
3633 /*
3634  * Walk the vdev tree and see if we can find a device with "better"
3635  * configuration. A configuration is "better" if the label on that
3636  * device has a more recent txg.
3637  */
3638 static void
3639 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3640 {
3641 	for (int c = 0; c < vd->vdev_children; c++)
3642 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3643 
3644 	if (vd->vdev_ops->vdev_op_leaf) {
3645 		nvlist_t *label;
3646 		uint64_t label_txg;
3647 
3648 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3649 		    &label) != 0)
3650 			return;
3651 
3652 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3653 		    &label_txg) == 0);
3654 
3655 		/*
3656 		 * Do we have a better boot device?
3657 		 */
3658 		if (label_txg > *txg) {
3659 			*txg = label_txg;
3660 			*avd = vd;
3661 		}
3662 		nvlist_free(label);
3663 	}
3664 }
3665 
3666 /*
3667  * Import a root pool.
3668  *
3669  * For x86. devpath_list will consist of devid and/or physpath name of
3670  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3671  * The GRUB "findroot" command will return the vdev we should boot.
3672  *
3673  * For Sparc, devpath_list consists the physpath name of the booting device
3674  * no matter the rootpool is a single device pool or a mirrored pool.
3675  * e.g.
3676  *	"/pci@1f,0/ide@d/disk@0,0:a"
3677  */
3678 int
3679 spa_import_rootpool(char *devpath, char *devid)
3680 {
3681 	spa_t *spa;
3682 	vdev_t *rvd, *bvd, *avd = NULL;
3683 	nvlist_t *config, *nvtop;
3684 	uint64_t guid, txg;
3685 	char *pname;
3686 	int error;
3687 
3688 	/*
3689 	 * Read the label from the boot device and generate a configuration.
3690 	 */
3691 	config = spa_generate_rootconf(devpath, devid, &guid);
3692 #if defined(_OBP) && defined(_KERNEL)
3693 	if (config == NULL) {
3694 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3695 			/* iscsi boot */
3696 			get_iscsi_bootpath_phy(devpath);
3697 			config = spa_generate_rootconf(devpath, devid, &guid);
3698 		}
3699 	}
3700 #endif
3701 	if (config == NULL) {
3702 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3703 		    devpath);
3704 		return (SET_ERROR(EIO));
3705 	}
3706 
3707 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3708 	    &pname) == 0);
3709 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3710 
3711 	mutex_enter(&spa_namespace_lock);
3712 	if ((spa = spa_lookup(pname)) != NULL) {
3713 		/*
3714 		 * Remove the existing root pool from the namespace so that we
3715 		 * can replace it with the correct config we just read in.
3716 		 */
3717 		spa_remove(spa);
3718 	}
3719 
3720 	spa = spa_add(pname, config, NULL);
3721 	spa->spa_is_root = B_TRUE;
3722 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3723 
3724 	/*
3725 	 * Build up a vdev tree based on the boot device's label config.
3726 	 */
3727 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3728 	    &nvtop) == 0);
3729 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3730 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3731 	    VDEV_ALLOC_ROOTPOOL);
3732 	spa_config_exit(spa, SCL_ALL, FTAG);
3733 	if (error) {
3734 		mutex_exit(&spa_namespace_lock);
3735 		nvlist_free(config);
3736 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3737 		    pname);
3738 		return (error);
3739 	}
3740 
3741 	/*
3742 	 * Get the boot vdev.
3743 	 */
3744 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3745 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3746 		    (u_longlong_t)guid);
3747 		error = SET_ERROR(ENOENT);
3748 		goto out;
3749 	}
3750 
3751 	/*
3752 	 * Determine if there is a better boot device.
3753 	 */
3754 	avd = bvd;
3755 	spa_alt_rootvdev(rvd, &avd, &txg);
3756 	if (avd != bvd) {
3757 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3758 		    "try booting from '%s'", avd->vdev_path);
3759 		error = SET_ERROR(EINVAL);
3760 		goto out;
3761 	}
3762 
3763 	/*
3764 	 * If the boot device is part of a spare vdev then ensure that
3765 	 * we're booting off the active spare.
3766 	 */
3767 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3768 	    !bvd->vdev_isspare) {
3769 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3770 		    "try booting from '%s'",
3771 		    bvd->vdev_parent->
3772 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3773 		error = SET_ERROR(EINVAL);
3774 		goto out;
3775 	}
3776 
3777 	error = 0;
3778 out:
3779 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3780 	vdev_free(rvd);
3781 	spa_config_exit(spa, SCL_ALL, FTAG);
3782 	mutex_exit(&spa_namespace_lock);
3783 
3784 	nvlist_free(config);
3785 	return (error);
3786 }
3787 
3788 #endif
3789 
3790 /*
3791  * Import a non-root pool into the system.
3792  */
3793 int
3794 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3795 {
3796 	spa_t *spa;
3797 	char *altroot = NULL;
3798 	spa_load_state_t state = SPA_LOAD_IMPORT;
3799 	zpool_rewind_policy_t policy;
3800 	uint64_t mode = spa_mode_global;
3801 	uint64_t readonly = B_FALSE;
3802 	int error;
3803 	nvlist_t *nvroot;
3804 	nvlist_t **spares, **l2cache;
3805 	uint_t nspares, nl2cache;
3806 
3807 	/*
3808 	 * If a pool with this name exists, return failure.
3809 	 */
3810 	mutex_enter(&spa_namespace_lock);
3811 	if (spa_lookup(pool) != NULL) {
3812 		mutex_exit(&spa_namespace_lock);
3813 		return (SET_ERROR(EEXIST));
3814 	}
3815 
3816 	/*
3817 	 * Create and initialize the spa structure.
3818 	 */
3819 	(void) nvlist_lookup_string(props,
3820 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3821 	(void) nvlist_lookup_uint64(props,
3822 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3823 	if (readonly)
3824 		mode = FREAD;
3825 	spa = spa_add(pool, config, altroot);
3826 	spa->spa_import_flags = flags;
3827 
3828 	/*
3829 	 * Verbatim import - Take a pool and insert it into the namespace
3830 	 * as if it had been loaded at boot.
3831 	 */
3832 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3833 		if (props != NULL)
3834 			spa_configfile_set(spa, props, B_FALSE);
3835 
3836 		spa_config_sync(spa, B_FALSE, B_TRUE);
3837 
3838 		mutex_exit(&spa_namespace_lock);
3839 		spa_history_log_version(spa, "import");
3840 
3841 		return (0);
3842 	}
3843 
3844 	spa_activate(spa, mode);
3845 
3846 	/*
3847 	 * Don't start async tasks until we know everything is healthy.
3848 	 */
3849 	spa_async_suspend(spa);
3850 
3851 	zpool_get_rewind_policy(config, &policy);
3852 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3853 		state = SPA_LOAD_RECOVER;
3854 
3855 	/*
3856 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3857 	 * because the user-supplied config is actually the one to trust when
3858 	 * doing an import.
3859 	 */
3860 	if (state != SPA_LOAD_RECOVER)
3861 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3862 
3863 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3864 	    policy.zrp_request);
3865 
3866 	/*
3867 	 * Propagate anything learned while loading the pool and pass it
3868 	 * back to caller (i.e. rewind info, missing devices, etc).
3869 	 */
3870 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3871 	    spa->spa_load_info) == 0);
3872 
3873 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3874 	/*
3875 	 * Toss any existing sparelist, as it doesn't have any validity
3876 	 * anymore, and conflicts with spa_has_spare().
3877 	 */
3878 	if (spa->spa_spares.sav_config) {
3879 		nvlist_free(spa->spa_spares.sav_config);
3880 		spa->spa_spares.sav_config = NULL;
3881 		spa_load_spares(spa);
3882 	}
3883 	if (spa->spa_l2cache.sav_config) {
3884 		nvlist_free(spa->spa_l2cache.sav_config);
3885 		spa->spa_l2cache.sav_config = NULL;
3886 		spa_load_l2cache(spa);
3887 	}
3888 
3889 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3890 	    &nvroot) == 0);
3891 	if (error == 0)
3892 		error = spa_validate_aux(spa, nvroot, -1ULL,
3893 		    VDEV_ALLOC_SPARE);
3894 	if (error == 0)
3895 		error = spa_validate_aux(spa, nvroot, -1ULL,
3896 		    VDEV_ALLOC_L2CACHE);
3897 	spa_config_exit(spa, SCL_ALL, FTAG);
3898 
3899 	if (props != NULL)
3900 		spa_configfile_set(spa, props, B_FALSE);
3901 
3902 	if (error != 0 || (props && spa_writeable(spa) &&
3903 	    (error = spa_prop_set(spa, props)))) {
3904 		spa_unload(spa);
3905 		spa_deactivate(spa);
3906 		spa_remove(spa);
3907 		mutex_exit(&spa_namespace_lock);
3908 		return (error);
3909 	}
3910 
3911 	spa_async_resume(spa);
3912 
3913 	/*
3914 	 * Override any spares and level 2 cache devices as specified by
3915 	 * the user, as these may have correct device names/devids, etc.
3916 	 */
3917 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3918 	    &spares, &nspares) == 0) {
3919 		if (spa->spa_spares.sav_config)
3920 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3921 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3922 		else
3923 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3924 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3925 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3926 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3927 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3928 		spa_load_spares(spa);
3929 		spa_config_exit(spa, SCL_ALL, FTAG);
3930 		spa->spa_spares.sav_sync = B_TRUE;
3931 	}
3932 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3933 	    &l2cache, &nl2cache) == 0) {
3934 		if (spa->spa_l2cache.sav_config)
3935 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3936 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3937 		else
3938 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3939 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3940 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3941 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3942 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3943 		spa_load_l2cache(spa);
3944 		spa_config_exit(spa, SCL_ALL, FTAG);
3945 		spa->spa_l2cache.sav_sync = B_TRUE;
3946 	}
3947 
3948 	/*
3949 	 * Check for any removed devices.
3950 	 */
3951 	if (spa->spa_autoreplace) {
3952 		spa_aux_check_removed(&spa->spa_spares);
3953 		spa_aux_check_removed(&spa->spa_l2cache);
3954 	}
3955 
3956 	if (spa_writeable(spa)) {
3957 		/*
3958 		 * Update the config cache to include the newly-imported pool.
3959 		 */
3960 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3961 	}
3962 
3963 	/*
3964 	 * It's possible that the pool was expanded while it was exported.
3965 	 * We kick off an async task to handle this for us.
3966 	 */
3967 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3968 
3969 	mutex_exit(&spa_namespace_lock);
3970 	spa_history_log_version(spa, "import");
3971 
3972 	return (0);
3973 }
3974 
3975 nvlist_t *
3976 spa_tryimport(nvlist_t *tryconfig)
3977 {
3978 	nvlist_t *config = NULL;
3979 	char *poolname;
3980 	spa_t *spa;
3981 	uint64_t state;
3982 	int error;
3983 
3984 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3985 		return (NULL);
3986 
3987 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3988 		return (NULL);
3989 
3990 	/*
3991 	 * Create and initialize the spa structure.
3992 	 */
3993 	mutex_enter(&spa_namespace_lock);
3994 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3995 	spa_activate(spa, FREAD);
3996 
3997 	/*
3998 	 * Pass off the heavy lifting to spa_load().
3999 	 * Pass TRUE for mosconfig because the user-supplied config
4000 	 * is actually the one to trust when doing an import.
4001 	 */
4002 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4003 
4004 	/*
4005 	 * If 'tryconfig' was at least parsable, return the current config.
4006 	 */
4007 	if (spa->spa_root_vdev != NULL) {
4008 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4009 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4010 		    poolname) == 0);
4011 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4012 		    state) == 0);
4013 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4014 		    spa->spa_uberblock.ub_timestamp) == 0);
4015 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4016 		    spa->spa_load_info) == 0);
4017 
4018 		/*
4019 		 * If the bootfs property exists on this pool then we
4020 		 * copy it out so that external consumers can tell which
4021 		 * pools are bootable.
4022 		 */
4023 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4024 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4025 
4026 			/*
4027 			 * We have to play games with the name since the
4028 			 * pool was opened as TRYIMPORT_NAME.
4029 			 */
4030 			if (dsl_dsobj_to_dsname(spa_name(spa),
4031 			    spa->spa_bootfs, tmpname) == 0) {
4032 				char *cp;
4033 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4034 
4035 				cp = strchr(tmpname, '/');
4036 				if (cp == NULL) {
4037 					(void) strlcpy(dsname, tmpname,
4038 					    MAXPATHLEN);
4039 				} else {
4040 					(void) snprintf(dsname, MAXPATHLEN,
4041 					    "%s/%s", poolname, ++cp);
4042 				}
4043 				VERIFY(nvlist_add_string(config,
4044 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4045 				kmem_free(dsname, MAXPATHLEN);
4046 			}
4047 			kmem_free(tmpname, MAXPATHLEN);
4048 		}
4049 
4050 		/*
4051 		 * Add the list of hot spares and level 2 cache devices.
4052 		 */
4053 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4054 		spa_add_spares(spa, config);
4055 		spa_add_l2cache(spa, config);
4056 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4057 	}
4058 
4059 	spa_unload(spa);
4060 	spa_deactivate(spa);
4061 	spa_remove(spa);
4062 	mutex_exit(&spa_namespace_lock);
4063 
4064 	return (config);
4065 }
4066 
4067 /*
4068  * Pool export/destroy
4069  *
4070  * The act of destroying or exporting a pool is very simple.  We make sure there
4071  * is no more pending I/O and any references to the pool are gone.  Then, we
4072  * update the pool state and sync all the labels to disk, removing the
4073  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4074  * we don't sync the labels or remove the configuration cache.
4075  */
4076 static int
4077 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4078     boolean_t force, boolean_t hardforce)
4079 {
4080 	spa_t *spa;
4081 
4082 	if (oldconfig)
4083 		*oldconfig = NULL;
4084 
4085 	if (!(spa_mode_global & FWRITE))
4086 		return (SET_ERROR(EROFS));
4087 
4088 	mutex_enter(&spa_namespace_lock);
4089 	if ((spa = spa_lookup(pool)) == NULL) {
4090 		mutex_exit(&spa_namespace_lock);
4091 		return (SET_ERROR(ENOENT));
4092 	}
4093 
4094 	/*
4095 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4096 	 * reacquire the namespace lock, and see if we can export.
4097 	 */
4098 	spa_open_ref(spa, FTAG);
4099 	mutex_exit(&spa_namespace_lock);
4100 	spa_async_suspend(spa);
4101 	mutex_enter(&spa_namespace_lock);
4102 	spa_close(spa, FTAG);
4103 
4104 	/*
4105 	 * The pool will be in core if it's openable,
4106 	 * in which case we can modify its state.
4107 	 */
4108 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4109 		/*
4110 		 * Objsets may be open only because they're dirty, so we
4111 		 * have to force it to sync before checking spa_refcnt.
4112 		 */
4113 		txg_wait_synced(spa->spa_dsl_pool, 0);
4114 
4115 		/*
4116 		 * A pool cannot be exported or destroyed if there are active
4117 		 * references.  If we are resetting a pool, allow references by
4118 		 * fault injection handlers.
4119 		 */
4120 		if (!spa_refcount_zero(spa) ||
4121 		    (spa->spa_inject_ref != 0 &&
4122 		    new_state != POOL_STATE_UNINITIALIZED)) {
4123 			spa_async_resume(spa);
4124 			mutex_exit(&spa_namespace_lock);
4125 			return (SET_ERROR(EBUSY));
4126 		}
4127 
4128 		/*
4129 		 * A pool cannot be exported if it has an active shared spare.
4130 		 * This is to prevent other pools stealing the active spare
4131 		 * from an exported pool. At user's own will, such pool can
4132 		 * be forcedly exported.
4133 		 */
4134 		if (!force && new_state == POOL_STATE_EXPORTED &&
4135 		    spa_has_active_shared_spare(spa)) {
4136 			spa_async_resume(spa);
4137 			mutex_exit(&spa_namespace_lock);
4138 			return (SET_ERROR(EXDEV));
4139 		}
4140 
4141 		/*
4142 		 * We want this to be reflected on every label,
4143 		 * so mark them all dirty.  spa_unload() will do the
4144 		 * final sync that pushes these changes out.
4145 		 */
4146 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4147 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4148 			spa->spa_state = new_state;
4149 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4150 			    TXG_DEFER_SIZE + 1;
4151 			vdev_config_dirty(spa->spa_root_vdev);
4152 			spa_config_exit(spa, SCL_ALL, FTAG);
4153 		}
4154 	}
4155 
4156 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4157 
4158 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4159 		spa_unload(spa);
4160 		spa_deactivate(spa);
4161 	}
4162 
4163 	if (oldconfig && spa->spa_config)
4164 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4165 
4166 	if (new_state != POOL_STATE_UNINITIALIZED) {
4167 		if (!hardforce)
4168 			spa_config_sync(spa, B_TRUE, B_TRUE);
4169 		spa_remove(spa);
4170 	}
4171 	mutex_exit(&spa_namespace_lock);
4172 
4173 	return (0);
4174 }
4175 
4176 /*
4177  * Destroy a storage pool.
4178  */
4179 int
4180 spa_destroy(char *pool)
4181 {
4182 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4183 	    B_FALSE, B_FALSE));
4184 }
4185 
4186 /*
4187  * Export a storage pool.
4188  */
4189 int
4190 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4191     boolean_t hardforce)
4192 {
4193 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4194 	    force, hardforce));
4195 }
4196 
4197 /*
4198  * Similar to spa_export(), this unloads the spa_t without actually removing it
4199  * from the namespace in any way.
4200  */
4201 int
4202 spa_reset(char *pool)
4203 {
4204 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4205 	    B_FALSE, B_FALSE));
4206 }
4207 
4208 /*
4209  * ==========================================================================
4210  * Device manipulation
4211  * ==========================================================================
4212  */
4213 
4214 /*
4215  * Add a device to a storage pool.
4216  */
4217 int
4218 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4219 {
4220 	uint64_t txg, id;
4221 	int error;
4222 	vdev_t *rvd = spa->spa_root_vdev;
4223 	vdev_t *vd, *tvd;
4224 	nvlist_t **spares, **l2cache;
4225 	uint_t nspares, nl2cache;
4226 
4227 	ASSERT(spa_writeable(spa));
4228 
4229 	txg = spa_vdev_enter(spa);
4230 
4231 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4232 	    VDEV_ALLOC_ADD)) != 0)
4233 		return (spa_vdev_exit(spa, NULL, txg, error));
4234 
4235 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4236 
4237 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4238 	    &nspares) != 0)
4239 		nspares = 0;
4240 
4241 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4242 	    &nl2cache) != 0)
4243 		nl2cache = 0;
4244 
4245 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4246 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4247 
4248 	if (vd->vdev_children != 0 &&
4249 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4250 		return (spa_vdev_exit(spa, vd, txg, error));
4251 
4252 	/*
4253 	 * We must validate the spares and l2cache devices after checking the
4254 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4255 	 */
4256 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4257 		return (spa_vdev_exit(spa, vd, txg, error));
4258 
4259 	/*
4260 	 * Transfer each new top-level vdev from vd to rvd.
4261 	 */
4262 	for (int c = 0; c < vd->vdev_children; c++) {
4263 
4264 		/*
4265 		 * Set the vdev id to the first hole, if one exists.
4266 		 */
4267 		for (id = 0; id < rvd->vdev_children; id++) {
4268 			if (rvd->vdev_child[id]->vdev_ishole) {
4269 				vdev_free(rvd->vdev_child[id]);
4270 				break;
4271 			}
4272 		}
4273 		tvd = vd->vdev_child[c];
4274 		vdev_remove_child(vd, tvd);
4275 		tvd->vdev_id = id;
4276 		vdev_add_child(rvd, tvd);
4277 		vdev_config_dirty(tvd);
4278 	}
4279 
4280 	if (nspares != 0) {
4281 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4282 		    ZPOOL_CONFIG_SPARES);
4283 		spa_load_spares(spa);
4284 		spa->spa_spares.sav_sync = B_TRUE;
4285 	}
4286 
4287 	if (nl2cache != 0) {
4288 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4289 		    ZPOOL_CONFIG_L2CACHE);
4290 		spa_load_l2cache(spa);
4291 		spa->spa_l2cache.sav_sync = B_TRUE;
4292 	}
4293 
4294 	/*
4295 	 * We have to be careful when adding new vdevs to an existing pool.
4296 	 * If other threads start allocating from these vdevs before we
4297 	 * sync the config cache, and we lose power, then upon reboot we may
4298 	 * fail to open the pool because there are DVAs that the config cache
4299 	 * can't translate.  Therefore, we first add the vdevs without
4300 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4301 	 * and then let spa_config_update() initialize the new metaslabs.
4302 	 *
4303 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4304 	 * if we lose power at any point in this sequence, the remaining
4305 	 * steps will be completed the next time we load the pool.
4306 	 */
4307 	(void) spa_vdev_exit(spa, vd, txg, 0);
4308 
4309 	mutex_enter(&spa_namespace_lock);
4310 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4311 	mutex_exit(&spa_namespace_lock);
4312 
4313 	return (0);
4314 }
4315 
4316 /*
4317  * Attach a device to a mirror.  The arguments are the path to any device
4318  * in the mirror, and the nvroot for the new device.  If the path specifies
4319  * a device that is not mirrored, we automatically insert the mirror vdev.
4320  *
4321  * If 'replacing' is specified, the new device is intended to replace the
4322  * existing device; in this case the two devices are made into their own
4323  * mirror using the 'replacing' vdev, which is functionally identical to
4324  * the mirror vdev (it actually reuses all the same ops) but has a few
4325  * extra rules: you can't attach to it after it's been created, and upon
4326  * completion of resilvering, the first disk (the one being replaced)
4327  * is automatically detached.
4328  */
4329 int
4330 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4331 {
4332 	uint64_t txg, dtl_max_txg;
4333 	vdev_t *rvd = spa->spa_root_vdev;
4334 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4335 	vdev_ops_t *pvops;
4336 	char *oldvdpath, *newvdpath;
4337 	int newvd_isspare;
4338 	int error;
4339 
4340 	ASSERT(spa_writeable(spa));
4341 
4342 	txg = spa_vdev_enter(spa);
4343 
4344 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4345 
4346 	if (oldvd == NULL)
4347 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4348 
4349 	if (!oldvd->vdev_ops->vdev_op_leaf)
4350 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4351 
4352 	pvd = oldvd->vdev_parent;
4353 
4354 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4355 	    VDEV_ALLOC_ATTACH)) != 0)
4356 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4357 
4358 	if (newrootvd->vdev_children != 1)
4359 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4360 
4361 	newvd = newrootvd->vdev_child[0];
4362 
4363 	if (!newvd->vdev_ops->vdev_op_leaf)
4364 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4365 
4366 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4367 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4368 
4369 	/*
4370 	 * Spares can't replace logs
4371 	 */
4372 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4373 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4374 
4375 	if (!replacing) {
4376 		/*
4377 		 * For attach, the only allowable parent is a mirror or the root
4378 		 * vdev.
4379 		 */
4380 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4381 		    pvd->vdev_ops != &vdev_root_ops)
4382 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4383 
4384 		pvops = &vdev_mirror_ops;
4385 	} else {
4386 		/*
4387 		 * Active hot spares can only be replaced by inactive hot
4388 		 * spares.
4389 		 */
4390 		if (pvd->vdev_ops == &vdev_spare_ops &&
4391 		    oldvd->vdev_isspare &&
4392 		    !spa_has_spare(spa, newvd->vdev_guid))
4393 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4394 
4395 		/*
4396 		 * If the source is a hot spare, and the parent isn't already a
4397 		 * spare, then we want to create a new hot spare.  Otherwise, we
4398 		 * want to create a replacing vdev.  The user is not allowed to
4399 		 * attach to a spared vdev child unless the 'isspare' state is
4400 		 * the same (spare replaces spare, non-spare replaces
4401 		 * non-spare).
4402 		 */
4403 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4404 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4405 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4406 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4407 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4408 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4409 		}
4410 
4411 		if (newvd->vdev_isspare)
4412 			pvops = &vdev_spare_ops;
4413 		else
4414 			pvops = &vdev_replacing_ops;
4415 	}
4416 
4417 	/*
4418 	 * Make sure the new device is big enough.
4419 	 */
4420 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4421 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4422 
4423 	/*
4424 	 * The new device cannot have a higher alignment requirement
4425 	 * than the top-level vdev.
4426 	 */
4427 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4428 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4429 
4430 	/*
4431 	 * If this is an in-place replacement, update oldvd's path and devid
4432 	 * to make it distinguishable from newvd, and unopenable from now on.
4433 	 */
4434 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4435 		spa_strfree(oldvd->vdev_path);
4436 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4437 		    KM_SLEEP);
4438 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4439 		    newvd->vdev_path, "old");
4440 		if (oldvd->vdev_devid != NULL) {
4441 			spa_strfree(oldvd->vdev_devid);
4442 			oldvd->vdev_devid = NULL;
4443 		}
4444 	}
4445 
4446 	/* mark the device being resilvered */
4447 	newvd->vdev_resilvering = B_TRUE;
4448 
4449 	/*
4450 	 * If the parent is not a mirror, or if we're replacing, insert the new
4451 	 * mirror/replacing/spare vdev above oldvd.
4452 	 */
4453 	if (pvd->vdev_ops != pvops)
4454 		pvd = vdev_add_parent(oldvd, pvops);
4455 
4456 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4457 	ASSERT(pvd->vdev_ops == pvops);
4458 	ASSERT(oldvd->vdev_parent == pvd);
4459 
4460 	/*
4461 	 * Extract the new device from its root and add it to pvd.
4462 	 */
4463 	vdev_remove_child(newrootvd, newvd);
4464 	newvd->vdev_id = pvd->vdev_children;
4465 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4466 	vdev_add_child(pvd, newvd);
4467 
4468 	tvd = newvd->vdev_top;
4469 	ASSERT(pvd->vdev_top == tvd);
4470 	ASSERT(tvd->vdev_parent == rvd);
4471 
4472 	vdev_config_dirty(tvd);
4473 
4474 	/*
4475 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4476 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4477 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4478 	 */
4479 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4480 
4481 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4482 	    dtl_max_txg - TXG_INITIAL);
4483 
4484 	if (newvd->vdev_isspare) {
4485 		spa_spare_activate(newvd);
4486 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4487 	}
4488 
4489 	oldvdpath = spa_strdup(oldvd->vdev_path);
4490 	newvdpath = spa_strdup(newvd->vdev_path);
4491 	newvd_isspare = newvd->vdev_isspare;
4492 
4493 	/*
4494 	 * Mark newvd's DTL dirty in this txg.
4495 	 */
4496 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4497 
4498 	/*
4499 	 * Restart the resilver
4500 	 */
4501 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4502 
4503 	/*
4504 	 * Commit the config
4505 	 */
4506 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4507 
4508 	spa_history_log_internal(spa, "vdev attach", NULL,
4509 	    "%s vdev=%s %s vdev=%s",
4510 	    replacing && newvd_isspare ? "spare in" :
4511 	    replacing ? "replace" : "attach", newvdpath,
4512 	    replacing ? "for" : "to", oldvdpath);
4513 
4514 	spa_strfree(oldvdpath);
4515 	spa_strfree(newvdpath);
4516 
4517 	if (spa->spa_bootfs)
4518 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4519 
4520 	return (0);
4521 }
4522 
4523 /*
4524  * Detach a device from a mirror or replacing vdev.
4525  *
4526  * If 'replace_done' is specified, only detach if the parent
4527  * is a replacing vdev.
4528  */
4529 int
4530 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4531 {
4532 	uint64_t txg;
4533 	int error;
4534 	vdev_t *rvd = spa->spa_root_vdev;
4535 	vdev_t *vd, *pvd, *cvd, *tvd;
4536 	boolean_t unspare = B_FALSE;
4537 	uint64_t unspare_guid = 0;
4538 	char *vdpath;
4539 
4540 	ASSERT(spa_writeable(spa));
4541 
4542 	txg = spa_vdev_enter(spa);
4543 
4544 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4545 
4546 	if (vd == NULL)
4547 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4548 
4549 	if (!vd->vdev_ops->vdev_op_leaf)
4550 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4551 
4552 	pvd = vd->vdev_parent;
4553 
4554 	/*
4555 	 * If the parent/child relationship is not as expected, don't do it.
4556 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4557 	 * vdev that's replacing B with C.  The user's intent in replacing
4558 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4559 	 * the replace by detaching C, the expected behavior is to end up
4560 	 * M(A,B).  But suppose that right after deciding to detach C,
4561 	 * the replacement of B completes.  We would have M(A,C), and then
4562 	 * ask to detach C, which would leave us with just A -- not what
4563 	 * the user wanted.  To prevent this, we make sure that the
4564 	 * parent/child relationship hasn't changed -- in this example,
4565 	 * that C's parent is still the replacing vdev R.
4566 	 */
4567 	if (pvd->vdev_guid != pguid && pguid != 0)
4568 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4569 
4570 	/*
4571 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4572 	 */
4573 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4574 	    pvd->vdev_ops != &vdev_spare_ops)
4575 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4576 
4577 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4578 	    spa_version(spa) >= SPA_VERSION_SPARES);
4579 
4580 	/*
4581 	 * Only mirror, replacing, and spare vdevs support detach.
4582 	 */
4583 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4584 	    pvd->vdev_ops != &vdev_mirror_ops &&
4585 	    pvd->vdev_ops != &vdev_spare_ops)
4586 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4587 
4588 	/*
4589 	 * If this device has the only valid copy of some data,
4590 	 * we cannot safely detach it.
4591 	 */
4592 	if (vdev_dtl_required(vd))
4593 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4594 
4595 	ASSERT(pvd->vdev_children >= 2);
4596 
4597 	/*
4598 	 * If we are detaching the second disk from a replacing vdev, then
4599 	 * check to see if we changed the original vdev's path to have "/old"
4600 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4601 	 */
4602 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4603 	    vd->vdev_path != NULL) {
4604 		size_t len = strlen(vd->vdev_path);
4605 
4606 		for (int c = 0; c < pvd->vdev_children; c++) {
4607 			cvd = pvd->vdev_child[c];
4608 
4609 			if (cvd == vd || cvd->vdev_path == NULL)
4610 				continue;
4611 
4612 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4613 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4614 				spa_strfree(cvd->vdev_path);
4615 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4616 				break;
4617 			}
4618 		}
4619 	}
4620 
4621 	/*
4622 	 * If we are detaching the original disk from a spare, then it implies
4623 	 * that the spare should become a real disk, and be removed from the
4624 	 * active spare list for the pool.
4625 	 */
4626 	if (pvd->vdev_ops == &vdev_spare_ops &&
4627 	    vd->vdev_id == 0 &&
4628 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4629 		unspare = B_TRUE;
4630 
4631 	/*
4632 	 * Erase the disk labels so the disk can be used for other things.
4633 	 * This must be done after all other error cases are handled,
4634 	 * but before we disembowel vd (so we can still do I/O to it).
4635 	 * But if we can't do it, don't treat the error as fatal --
4636 	 * it may be that the unwritability of the disk is the reason
4637 	 * it's being detached!
4638 	 */
4639 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4640 
4641 	/*
4642 	 * Remove vd from its parent and compact the parent's children.
4643 	 */
4644 	vdev_remove_child(pvd, vd);
4645 	vdev_compact_children(pvd);
4646 
4647 	/*
4648 	 * Remember one of the remaining children so we can get tvd below.
4649 	 */
4650 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4651 
4652 	/*
4653 	 * If we need to remove the remaining child from the list of hot spares,
4654 	 * do it now, marking the vdev as no longer a spare in the process.
4655 	 * We must do this before vdev_remove_parent(), because that can
4656 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4657 	 * reason, we must remove the spare now, in the same txg as the detach;
4658 	 * otherwise someone could attach a new sibling, change the GUID, and
4659 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4660 	 */
4661 	if (unspare) {
4662 		ASSERT(cvd->vdev_isspare);
4663 		spa_spare_remove(cvd);
4664 		unspare_guid = cvd->vdev_guid;
4665 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4666 		cvd->vdev_unspare = B_TRUE;
4667 	}
4668 
4669 	/*
4670 	 * If the parent mirror/replacing vdev only has one child,
4671 	 * the parent is no longer needed.  Remove it from the tree.
4672 	 */
4673 	if (pvd->vdev_children == 1) {
4674 		if (pvd->vdev_ops == &vdev_spare_ops)
4675 			cvd->vdev_unspare = B_FALSE;
4676 		vdev_remove_parent(cvd);
4677 		cvd->vdev_resilvering = B_FALSE;
4678 	}
4679 
4680 
4681 	/*
4682 	 * We don't set tvd until now because the parent we just removed
4683 	 * may have been the previous top-level vdev.
4684 	 */
4685 	tvd = cvd->vdev_top;
4686 	ASSERT(tvd->vdev_parent == rvd);
4687 
4688 	/*
4689 	 * Reevaluate the parent vdev state.
4690 	 */
4691 	vdev_propagate_state(cvd);
4692 
4693 	/*
4694 	 * If the 'autoexpand' property is set on the pool then automatically
4695 	 * try to expand the size of the pool. For example if the device we
4696 	 * just detached was smaller than the others, it may be possible to
4697 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4698 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4699 	 */
4700 	if (spa->spa_autoexpand) {
4701 		vdev_reopen(tvd);
4702 		vdev_expand(tvd, txg);
4703 	}
4704 
4705 	vdev_config_dirty(tvd);
4706 
4707 	/*
4708 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4709 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4710 	 * But first make sure we're not on any *other* txg's DTL list, to
4711 	 * prevent vd from being accessed after it's freed.
4712 	 */
4713 	vdpath = spa_strdup(vd->vdev_path);
4714 	for (int t = 0; t < TXG_SIZE; t++)
4715 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4716 	vd->vdev_detached = B_TRUE;
4717 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4718 
4719 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4720 
4721 	/* hang on to the spa before we release the lock */
4722 	spa_open_ref(spa, FTAG);
4723 
4724 	error = spa_vdev_exit(spa, vd, txg, 0);
4725 
4726 	spa_history_log_internal(spa, "detach", NULL,
4727 	    "vdev=%s", vdpath);
4728 	spa_strfree(vdpath);
4729 
4730 	/*
4731 	 * If this was the removal of the original device in a hot spare vdev,
4732 	 * then we want to go through and remove the device from the hot spare
4733 	 * list of every other pool.
4734 	 */
4735 	if (unspare) {
4736 		spa_t *altspa = NULL;
4737 
4738 		mutex_enter(&spa_namespace_lock);
4739 		while ((altspa = spa_next(altspa)) != NULL) {
4740 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4741 			    altspa == spa)
4742 				continue;
4743 
4744 			spa_open_ref(altspa, FTAG);
4745 			mutex_exit(&spa_namespace_lock);
4746 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4747 			mutex_enter(&spa_namespace_lock);
4748 			spa_close(altspa, FTAG);
4749 		}
4750 		mutex_exit(&spa_namespace_lock);
4751 
4752 		/* search the rest of the vdevs for spares to remove */
4753 		spa_vdev_resilver_done(spa);
4754 	}
4755 
4756 	/* all done with the spa; OK to release */
4757 	mutex_enter(&spa_namespace_lock);
4758 	spa_close(spa, FTAG);
4759 	mutex_exit(&spa_namespace_lock);
4760 
4761 	return (error);
4762 }
4763 
4764 /*
4765  * Split a set of devices from their mirrors, and create a new pool from them.
4766  */
4767 int
4768 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4769     nvlist_t *props, boolean_t exp)
4770 {
4771 	int error = 0;
4772 	uint64_t txg, *glist;
4773 	spa_t *newspa;
4774 	uint_t c, children, lastlog;
4775 	nvlist_t **child, *nvl, *tmp;
4776 	dmu_tx_t *tx;
4777 	char *altroot = NULL;
4778 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4779 	boolean_t activate_slog;
4780 
4781 	ASSERT(spa_writeable(spa));
4782 
4783 	txg = spa_vdev_enter(spa);
4784 
4785 	/* clear the log and flush everything up to now */
4786 	activate_slog = spa_passivate_log(spa);
4787 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4788 	error = spa_offline_log(spa);
4789 	txg = spa_vdev_config_enter(spa);
4790 
4791 	if (activate_slog)
4792 		spa_activate_log(spa);
4793 
4794 	if (error != 0)
4795 		return (spa_vdev_exit(spa, NULL, txg, error));
4796 
4797 	/* check new spa name before going any further */
4798 	if (spa_lookup(newname) != NULL)
4799 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4800 
4801 	/*
4802 	 * scan through all the children to ensure they're all mirrors
4803 	 */
4804 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4805 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4806 	    &children) != 0)
4807 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4808 
4809 	/* first, check to ensure we've got the right child count */
4810 	rvd = spa->spa_root_vdev;
4811 	lastlog = 0;
4812 	for (c = 0; c < rvd->vdev_children; c++) {
4813 		vdev_t *vd = rvd->vdev_child[c];
4814 
4815 		/* don't count the holes & logs as children */
4816 		if (vd->vdev_islog || vd->vdev_ishole) {
4817 			if (lastlog == 0)
4818 				lastlog = c;
4819 			continue;
4820 		}
4821 
4822 		lastlog = 0;
4823 	}
4824 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4825 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4826 
4827 	/* next, ensure no spare or cache devices are part of the split */
4828 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4829 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4830 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4831 
4832 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4833 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4834 
4835 	/* then, loop over each vdev and validate it */
4836 	for (c = 0; c < children; c++) {
4837 		uint64_t is_hole = 0;
4838 
4839 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4840 		    &is_hole);
4841 
4842 		if (is_hole != 0) {
4843 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4844 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4845 				continue;
4846 			} else {
4847 				error = SET_ERROR(EINVAL);
4848 				break;
4849 			}
4850 		}
4851 
4852 		/* which disk is going to be split? */
4853 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4854 		    &glist[c]) != 0) {
4855 			error = SET_ERROR(EINVAL);
4856 			break;
4857 		}
4858 
4859 		/* look it up in the spa */
4860 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4861 		if (vml[c] == NULL) {
4862 			error = SET_ERROR(ENODEV);
4863 			break;
4864 		}
4865 
4866 		/* make sure there's nothing stopping the split */
4867 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4868 		    vml[c]->vdev_islog ||
4869 		    vml[c]->vdev_ishole ||
4870 		    vml[c]->vdev_isspare ||
4871 		    vml[c]->vdev_isl2cache ||
4872 		    !vdev_writeable(vml[c]) ||
4873 		    vml[c]->vdev_children != 0 ||
4874 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4875 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4876 			error = SET_ERROR(EINVAL);
4877 			break;
4878 		}
4879 
4880 		if (vdev_dtl_required(vml[c])) {
4881 			error = SET_ERROR(EBUSY);
4882 			break;
4883 		}
4884 
4885 		/* we need certain info from the top level */
4886 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4887 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4888 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4889 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4890 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4891 		    vml[c]->vdev_top->vdev_asize) == 0);
4892 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4893 		    vml[c]->vdev_top->vdev_ashift) == 0);
4894 	}
4895 
4896 	if (error != 0) {
4897 		kmem_free(vml, children * sizeof (vdev_t *));
4898 		kmem_free(glist, children * sizeof (uint64_t));
4899 		return (spa_vdev_exit(spa, NULL, txg, error));
4900 	}
4901 
4902 	/* stop writers from using the disks */
4903 	for (c = 0; c < children; c++) {
4904 		if (vml[c] != NULL)
4905 			vml[c]->vdev_offline = B_TRUE;
4906 	}
4907 	vdev_reopen(spa->spa_root_vdev);
4908 
4909 	/*
4910 	 * Temporarily record the splitting vdevs in the spa config.  This
4911 	 * will disappear once the config is regenerated.
4912 	 */
4913 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4914 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4915 	    glist, children) == 0);
4916 	kmem_free(glist, children * sizeof (uint64_t));
4917 
4918 	mutex_enter(&spa->spa_props_lock);
4919 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4920 	    nvl) == 0);
4921 	mutex_exit(&spa->spa_props_lock);
4922 	spa->spa_config_splitting = nvl;
4923 	vdev_config_dirty(spa->spa_root_vdev);
4924 
4925 	/* configure and create the new pool */
4926 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4927 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4928 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4929 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4930 	    spa_version(spa)) == 0);
4931 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4932 	    spa->spa_config_txg) == 0);
4933 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4934 	    spa_generate_guid(NULL)) == 0);
4935 	(void) nvlist_lookup_string(props,
4936 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4937 
4938 	/* add the new pool to the namespace */
4939 	newspa = spa_add(newname, config, altroot);
4940 	newspa->spa_config_txg = spa->spa_config_txg;
4941 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4942 
4943 	/* release the spa config lock, retaining the namespace lock */
4944 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4945 
4946 	if (zio_injection_enabled)
4947 		zio_handle_panic_injection(spa, FTAG, 1);
4948 
4949 	spa_activate(newspa, spa_mode_global);
4950 	spa_async_suspend(newspa);
4951 
4952 	/* create the new pool from the disks of the original pool */
4953 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4954 	if (error)
4955 		goto out;
4956 
4957 	/* if that worked, generate a real config for the new pool */
4958 	if (newspa->spa_root_vdev != NULL) {
4959 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4960 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4961 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4962 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4963 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4964 		    B_TRUE));
4965 	}
4966 
4967 	/* set the props */
4968 	if (props != NULL) {
4969 		spa_configfile_set(newspa, props, B_FALSE);
4970 		error = spa_prop_set(newspa, props);
4971 		if (error)
4972 			goto out;
4973 	}
4974 
4975 	/* flush everything */
4976 	txg = spa_vdev_config_enter(newspa);
4977 	vdev_config_dirty(newspa->spa_root_vdev);
4978 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4979 
4980 	if (zio_injection_enabled)
4981 		zio_handle_panic_injection(spa, FTAG, 2);
4982 
4983 	spa_async_resume(newspa);
4984 
4985 	/* finally, update the original pool's config */
4986 	txg = spa_vdev_config_enter(spa);
4987 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4988 	error = dmu_tx_assign(tx, TXG_WAIT);
4989 	if (error != 0)
4990 		dmu_tx_abort(tx);
4991 	for (c = 0; c < children; c++) {
4992 		if (vml[c] != NULL) {
4993 			vdev_split(vml[c]);
4994 			if (error == 0)
4995 				spa_history_log_internal(spa, "detach", tx,
4996 				    "vdev=%s", vml[c]->vdev_path);
4997 			vdev_free(vml[c]);
4998 		}
4999 	}
5000 	vdev_config_dirty(spa->spa_root_vdev);
5001 	spa->spa_config_splitting = NULL;
5002 	nvlist_free(nvl);
5003 	if (error == 0)
5004 		dmu_tx_commit(tx);
5005 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5006 
5007 	if (zio_injection_enabled)
5008 		zio_handle_panic_injection(spa, FTAG, 3);
5009 
5010 	/* split is complete; log a history record */
5011 	spa_history_log_internal(newspa, "split", NULL,
5012 	    "from pool %s", spa_name(spa));
5013 
5014 	kmem_free(vml, children * sizeof (vdev_t *));
5015 
5016 	/* if we're not going to mount the filesystems in userland, export */
5017 	if (exp)
5018 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5019 		    B_FALSE, B_FALSE);
5020 
5021 	return (error);
5022 
5023 out:
5024 	spa_unload(newspa);
5025 	spa_deactivate(newspa);
5026 	spa_remove(newspa);
5027 
5028 	txg = spa_vdev_config_enter(spa);
5029 
5030 	/* re-online all offlined disks */
5031 	for (c = 0; c < children; c++) {
5032 		if (vml[c] != NULL)
5033 			vml[c]->vdev_offline = B_FALSE;
5034 	}
5035 	vdev_reopen(spa->spa_root_vdev);
5036 
5037 	nvlist_free(spa->spa_config_splitting);
5038 	spa->spa_config_splitting = NULL;
5039 	(void) spa_vdev_exit(spa, NULL, txg, error);
5040 
5041 	kmem_free(vml, children * sizeof (vdev_t *));
5042 	return (error);
5043 }
5044 
5045 static nvlist_t *
5046 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5047 {
5048 	for (int i = 0; i < count; i++) {
5049 		uint64_t guid;
5050 
5051 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5052 		    &guid) == 0);
5053 
5054 		if (guid == target_guid)
5055 			return (nvpp[i]);
5056 	}
5057 
5058 	return (NULL);
5059 }
5060 
5061 static void
5062 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5063 	nvlist_t *dev_to_remove)
5064 {
5065 	nvlist_t **newdev = NULL;
5066 
5067 	if (count > 1)
5068 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5069 
5070 	for (int i = 0, j = 0; i < count; i++) {
5071 		if (dev[i] == dev_to_remove)
5072 			continue;
5073 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5074 	}
5075 
5076 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5077 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5078 
5079 	for (int i = 0; i < count - 1; i++)
5080 		nvlist_free(newdev[i]);
5081 
5082 	if (count > 1)
5083 		kmem_free(newdev, (count - 1) * sizeof (void *));
5084 }
5085 
5086 /*
5087  * Evacuate the device.
5088  */
5089 static int
5090 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5091 {
5092 	uint64_t txg;
5093 	int error = 0;
5094 
5095 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5096 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5097 	ASSERT(vd == vd->vdev_top);
5098 
5099 	/*
5100 	 * Evacuate the device.  We don't hold the config lock as writer
5101 	 * since we need to do I/O but we do keep the
5102 	 * spa_namespace_lock held.  Once this completes the device
5103 	 * should no longer have any blocks allocated on it.
5104 	 */
5105 	if (vd->vdev_islog) {
5106 		if (vd->vdev_stat.vs_alloc != 0)
5107 			error = spa_offline_log(spa);
5108 	} else {
5109 		error = SET_ERROR(ENOTSUP);
5110 	}
5111 
5112 	if (error)
5113 		return (error);
5114 
5115 	/*
5116 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5117 	 * associated with this vdev, and wait for these changes to sync.
5118 	 */
5119 	ASSERT0(vd->vdev_stat.vs_alloc);
5120 	txg = spa_vdev_config_enter(spa);
5121 	vd->vdev_removing = B_TRUE;
5122 	vdev_dirty(vd, 0, NULL, txg);
5123 	vdev_config_dirty(vd);
5124 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5125 
5126 	return (0);
5127 }
5128 
5129 /*
5130  * Complete the removal by cleaning up the namespace.
5131  */
5132 static void
5133 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5134 {
5135 	vdev_t *rvd = spa->spa_root_vdev;
5136 	uint64_t id = vd->vdev_id;
5137 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5138 
5139 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5140 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5141 	ASSERT(vd == vd->vdev_top);
5142 
5143 	/*
5144 	 * Only remove any devices which are empty.
5145 	 */
5146 	if (vd->vdev_stat.vs_alloc != 0)
5147 		return;
5148 
5149 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5150 
5151 	if (list_link_active(&vd->vdev_state_dirty_node))
5152 		vdev_state_clean(vd);
5153 	if (list_link_active(&vd->vdev_config_dirty_node))
5154 		vdev_config_clean(vd);
5155 
5156 	vdev_free(vd);
5157 
5158 	if (last_vdev) {
5159 		vdev_compact_children(rvd);
5160 	} else {
5161 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5162 		vdev_add_child(rvd, vd);
5163 	}
5164 	vdev_config_dirty(rvd);
5165 
5166 	/*
5167 	 * Reassess the health of our root vdev.
5168 	 */
5169 	vdev_reopen(rvd);
5170 }
5171 
5172 /*
5173  * Remove a device from the pool -
5174  *
5175  * Removing a device from the vdev namespace requires several steps
5176  * and can take a significant amount of time.  As a result we use
5177  * the spa_vdev_config_[enter/exit] functions which allow us to
5178  * grab and release the spa_config_lock while still holding the namespace
5179  * lock.  During each step the configuration is synced out.
5180  *
5181  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5182  * devices.
5183  */
5184 int
5185 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5186 {
5187 	vdev_t *vd;
5188 	metaslab_group_t *mg;
5189 	nvlist_t **spares, **l2cache, *nv;
5190 	uint64_t txg = 0;
5191 	uint_t nspares, nl2cache;
5192 	int error = 0;
5193 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5194 
5195 	ASSERT(spa_writeable(spa));
5196 
5197 	if (!locked)
5198 		txg = spa_vdev_enter(spa);
5199 
5200 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5201 
5202 	if (spa->spa_spares.sav_vdevs != NULL &&
5203 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5204 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5205 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5206 		/*
5207 		 * Only remove the hot spare if it's not currently in use
5208 		 * in this pool.
5209 		 */
5210 		if (vd == NULL || unspare) {
5211 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5212 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5213 			spa_load_spares(spa);
5214 			spa->spa_spares.sav_sync = B_TRUE;
5215 		} else {
5216 			error = SET_ERROR(EBUSY);
5217 		}
5218 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5219 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5220 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5221 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5222 		/*
5223 		 * Cache devices can always be removed.
5224 		 */
5225 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5226 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5227 		spa_load_l2cache(spa);
5228 		spa->spa_l2cache.sav_sync = B_TRUE;
5229 	} else if (vd != NULL && vd->vdev_islog) {
5230 		ASSERT(!locked);
5231 		ASSERT(vd == vd->vdev_top);
5232 
5233 		/*
5234 		 * XXX - Once we have bp-rewrite this should
5235 		 * become the common case.
5236 		 */
5237 
5238 		mg = vd->vdev_mg;
5239 
5240 		/*
5241 		 * Stop allocating from this vdev.
5242 		 */
5243 		metaslab_group_passivate(mg);
5244 
5245 		/*
5246 		 * Wait for the youngest allocations and frees to sync,
5247 		 * and then wait for the deferral of those frees to finish.
5248 		 */
5249 		spa_vdev_config_exit(spa, NULL,
5250 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5251 
5252 		/*
5253 		 * Attempt to evacuate the vdev.
5254 		 */
5255 		error = spa_vdev_remove_evacuate(spa, vd);
5256 
5257 		txg = spa_vdev_config_enter(spa);
5258 
5259 		/*
5260 		 * If we couldn't evacuate the vdev, unwind.
5261 		 */
5262 		if (error) {
5263 			metaslab_group_activate(mg);
5264 			return (spa_vdev_exit(spa, NULL, txg, error));
5265 		}
5266 
5267 		/*
5268 		 * Clean up the vdev namespace.
5269 		 */
5270 		spa_vdev_remove_from_namespace(spa, vd);
5271 
5272 	} else if (vd != NULL) {
5273 		/*
5274 		 * Normal vdevs cannot be removed (yet).
5275 		 */
5276 		error = SET_ERROR(ENOTSUP);
5277 	} else {
5278 		/*
5279 		 * There is no vdev of any kind with the specified guid.
5280 		 */
5281 		error = SET_ERROR(ENOENT);
5282 	}
5283 
5284 	if (!locked)
5285 		return (spa_vdev_exit(spa, NULL, txg, error));
5286 
5287 	return (error);
5288 }
5289 
5290 /*
5291  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5292  * currently spared, so we can detach it.
5293  */
5294 static vdev_t *
5295 spa_vdev_resilver_done_hunt(vdev_t *vd)
5296 {
5297 	vdev_t *newvd, *oldvd;
5298 
5299 	for (int c = 0; c < vd->vdev_children; c++) {
5300 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5301 		if (oldvd != NULL)
5302 			return (oldvd);
5303 	}
5304 
5305 	/*
5306 	 * Check for a completed replacement.  We always consider the first
5307 	 * vdev in the list to be the oldest vdev, and the last one to be
5308 	 * the newest (see spa_vdev_attach() for how that works).  In
5309 	 * the case where the newest vdev is faulted, we will not automatically
5310 	 * remove it after a resilver completes.  This is OK as it will require
5311 	 * user intervention to determine which disk the admin wishes to keep.
5312 	 */
5313 	if (vd->vdev_ops == &vdev_replacing_ops) {
5314 		ASSERT(vd->vdev_children > 1);
5315 
5316 		newvd = vd->vdev_child[vd->vdev_children - 1];
5317 		oldvd = vd->vdev_child[0];
5318 
5319 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5320 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5321 		    !vdev_dtl_required(oldvd))
5322 			return (oldvd);
5323 	}
5324 
5325 	/*
5326 	 * Check for a completed resilver with the 'unspare' flag set.
5327 	 */
5328 	if (vd->vdev_ops == &vdev_spare_ops) {
5329 		vdev_t *first = vd->vdev_child[0];
5330 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5331 
5332 		if (last->vdev_unspare) {
5333 			oldvd = first;
5334 			newvd = last;
5335 		} else if (first->vdev_unspare) {
5336 			oldvd = last;
5337 			newvd = first;
5338 		} else {
5339 			oldvd = NULL;
5340 		}
5341 
5342 		if (oldvd != NULL &&
5343 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5344 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5345 		    !vdev_dtl_required(oldvd))
5346 			return (oldvd);
5347 
5348 		/*
5349 		 * If there are more than two spares attached to a disk,
5350 		 * and those spares are not required, then we want to
5351 		 * attempt to free them up now so that they can be used
5352 		 * by other pools.  Once we're back down to a single
5353 		 * disk+spare, we stop removing them.
5354 		 */
5355 		if (vd->vdev_children > 2) {
5356 			newvd = vd->vdev_child[1];
5357 
5358 			if (newvd->vdev_isspare && last->vdev_isspare &&
5359 			    vdev_dtl_empty(last, DTL_MISSING) &&
5360 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5361 			    !vdev_dtl_required(newvd))
5362 				return (newvd);
5363 		}
5364 	}
5365 
5366 	return (NULL);
5367 }
5368 
5369 static void
5370 spa_vdev_resilver_done(spa_t *spa)
5371 {
5372 	vdev_t *vd, *pvd, *ppvd;
5373 	uint64_t guid, sguid, pguid, ppguid;
5374 
5375 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5376 
5377 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5378 		pvd = vd->vdev_parent;
5379 		ppvd = pvd->vdev_parent;
5380 		guid = vd->vdev_guid;
5381 		pguid = pvd->vdev_guid;
5382 		ppguid = ppvd->vdev_guid;
5383 		sguid = 0;
5384 		/*
5385 		 * If we have just finished replacing a hot spared device, then
5386 		 * we need to detach the parent's first child (the original hot
5387 		 * spare) as well.
5388 		 */
5389 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5390 		    ppvd->vdev_children == 2) {
5391 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5392 			sguid = ppvd->vdev_child[1]->vdev_guid;
5393 		}
5394 		spa_config_exit(spa, SCL_ALL, FTAG);
5395 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5396 			return;
5397 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5398 			return;
5399 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5400 	}
5401 
5402 	spa_config_exit(spa, SCL_ALL, FTAG);
5403 }
5404 
5405 /*
5406  * Update the stored path or FRU for this vdev.
5407  */
5408 int
5409 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5410     boolean_t ispath)
5411 {
5412 	vdev_t *vd;
5413 	boolean_t sync = B_FALSE;
5414 
5415 	ASSERT(spa_writeable(spa));
5416 
5417 	spa_vdev_state_enter(spa, SCL_ALL);
5418 
5419 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5420 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5421 
5422 	if (!vd->vdev_ops->vdev_op_leaf)
5423 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5424 
5425 	if (ispath) {
5426 		if (strcmp(value, vd->vdev_path) != 0) {
5427 			spa_strfree(vd->vdev_path);
5428 			vd->vdev_path = spa_strdup(value);
5429 			sync = B_TRUE;
5430 		}
5431 	} else {
5432 		if (vd->vdev_fru == NULL) {
5433 			vd->vdev_fru = spa_strdup(value);
5434 			sync = B_TRUE;
5435 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5436 			spa_strfree(vd->vdev_fru);
5437 			vd->vdev_fru = spa_strdup(value);
5438 			sync = B_TRUE;
5439 		}
5440 	}
5441 
5442 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5443 }
5444 
5445 int
5446 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5447 {
5448 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5449 }
5450 
5451 int
5452 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5453 {
5454 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5455 }
5456 
5457 /*
5458  * ==========================================================================
5459  * SPA Scanning
5460  * ==========================================================================
5461  */
5462 
5463 int
5464 spa_scan_stop(spa_t *spa)
5465 {
5466 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5467 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5468 		return (SET_ERROR(EBUSY));
5469 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5470 }
5471 
5472 int
5473 spa_scan(spa_t *spa, pool_scan_func_t func)
5474 {
5475 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5476 
5477 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5478 		return (SET_ERROR(ENOTSUP));
5479 
5480 	/*
5481 	 * If a resilver was requested, but there is no DTL on a
5482 	 * writeable leaf device, we have nothing to do.
5483 	 */
5484 	if (func == POOL_SCAN_RESILVER &&
5485 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5486 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5487 		return (0);
5488 	}
5489 
5490 	return (dsl_scan(spa->spa_dsl_pool, func));
5491 }
5492 
5493 /*
5494  * ==========================================================================
5495  * SPA async task processing
5496  * ==========================================================================
5497  */
5498 
5499 static void
5500 spa_async_remove(spa_t *spa, vdev_t *vd)
5501 {
5502 	if (vd->vdev_remove_wanted) {
5503 		vd->vdev_remove_wanted = B_FALSE;
5504 		vd->vdev_delayed_close = B_FALSE;
5505 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5506 
5507 		/*
5508 		 * We want to clear the stats, but we don't want to do a full
5509 		 * vdev_clear() as that will cause us to throw away
5510 		 * degraded/faulted state as well as attempt to reopen the
5511 		 * device, all of which is a waste.
5512 		 */
5513 		vd->vdev_stat.vs_read_errors = 0;
5514 		vd->vdev_stat.vs_write_errors = 0;
5515 		vd->vdev_stat.vs_checksum_errors = 0;
5516 
5517 		vdev_state_dirty(vd->vdev_top);
5518 	}
5519 
5520 	for (int c = 0; c < vd->vdev_children; c++)
5521 		spa_async_remove(spa, vd->vdev_child[c]);
5522 }
5523 
5524 static void
5525 spa_async_probe(spa_t *spa, vdev_t *vd)
5526 {
5527 	if (vd->vdev_probe_wanted) {
5528 		vd->vdev_probe_wanted = B_FALSE;
5529 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5530 	}
5531 
5532 	for (int c = 0; c < vd->vdev_children; c++)
5533 		spa_async_probe(spa, vd->vdev_child[c]);
5534 }
5535 
5536 static void
5537 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5538 {
5539 	sysevent_id_t eid;
5540 	nvlist_t *attr;
5541 	char *physpath;
5542 
5543 	if (!spa->spa_autoexpand)
5544 		return;
5545 
5546 	for (int c = 0; c < vd->vdev_children; c++) {
5547 		vdev_t *cvd = vd->vdev_child[c];
5548 		spa_async_autoexpand(spa, cvd);
5549 	}
5550 
5551 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5552 		return;
5553 
5554 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5555 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5556 
5557 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5558 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5559 
5560 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5561 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5562 
5563 	nvlist_free(attr);
5564 	kmem_free(physpath, MAXPATHLEN);
5565 }
5566 
5567 static void
5568 spa_async_thread(spa_t *spa)
5569 {
5570 	int tasks;
5571 
5572 	ASSERT(spa->spa_sync_on);
5573 
5574 	mutex_enter(&spa->spa_async_lock);
5575 	tasks = spa->spa_async_tasks;
5576 	spa->spa_async_tasks = 0;
5577 	mutex_exit(&spa->spa_async_lock);
5578 
5579 	/*
5580 	 * See if the config needs to be updated.
5581 	 */
5582 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5583 		uint64_t old_space, new_space;
5584 
5585 		mutex_enter(&spa_namespace_lock);
5586 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5587 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5588 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5589 		mutex_exit(&spa_namespace_lock);
5590 
5591 		/*
5592 		 * If the pool grew as a result of the config update,
5593 		 * then log an internal history event.
5594 		 */
5595 		if (new_space != old_space) {
5596 			spa_history_log_internal(spa, "vdev online", NULL,
5597 			    "pool '%s' size: %llu(+%llu)",
5598 			    spa_name(spa), new_space, new_space - old_space);
5599 		}
5600 	}
5601 
5602 	/*
5603 	 * See if any devices need to be marked REMOVED.
5604 	 */
5605 	if (tasks & SPA_ASYNC_REMOVE) {
5606 		spa_vdev_state_enter(spa, SCL_NONE);
5607 		spa_async_remove(spa, spa->spa_root_vdev);
5608 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5609 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5610 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5611 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5612 		(void) spa_vdev_state_exit(spa, NULL, 0);
5613 	}
5614 
5615 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5616 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5617 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5618 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5619 	}
5620 
5621 	/*
5622 	 * See if any devices need to be probed.
5623 	 */
5624 	if (tasks & SPA_ASYNC_PROBE) {
5625 		spa_vdev_state_enter(spa, SCL_NONE);
5626 		spa_async_probe(spa, spa->spa_root_vdev);
5627 		(void) spa_vdev_state_exit(spa, NULL, 0);
5628 	}
5629 
5630 	/*
5631 	 * If any devices are done replacing, detach them.
5632 	 */
5633 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5634 		spa_vdev_resilver_done(spa);
5635 
5636 	/*
5637 	 * Kick off a resilver.
5638 	 */
5639 	if (tasks & SPA_ASYNC_RESILVER)
5640 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5641 
5642 	/*
5643 	 * Let the world know that we're done.
5644 	 */
5645 	mutex_enter(&spa->spa_async_lock);
5646 	spa->spa_async_thread = NULL;
5647 	cv_broadcast(&spa->spa_async_cv);
5648 	mutex_exit(&spa->spa_async_lock);
5649 	thread_exit();
5650 }
5651 
5652 void
5653 spa_async_suspend(spa_t *spa)
5654 {
5655 	mutex_enter(&spa->spa_async_lock);
5656 	spa->spa_async_suspended++;
5657 	while (spa->spa_async_thread != NULL)
5658 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5659 	mutex_exit(&spa->spa_async_lock);
5660 }
5661 
5662 void
5663 spa_async_resume(spa_t *spa)
5664 {
5665 	mutex_enter(&spa->spa_async_lock);
5666 	ASSERT(spa->spa_async_suspended != 0);
5667 	spa->spa_async_suspended--;
5668 	mutex_exit(&spa->spa_async_lock);
5669 }
5670 
5671 static boolean_t
5672 spa_async_tasks_pending(spa_t *spa)
5673 {
5674 	uint_t non_config_tasks;
5675 	uint_t config_task;
5676 	boolean_t config_task_suspended;
5677 
5678 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5679 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5680 	if (spa->spa_ccw_fail_time == 0) {
5681 		config_task_suspended = B_FALSE;
5682 	} else {
5683 		config_task_suspended =
5684 		    (gethrtime() - spa->spa_ccw_fail_time) <
5685 		    (zfs_ccw_retry_interval * NANOSEC);
5686 	}
5687 
5688 	return (non_config_tasks || (config_task && !config_task_suspended));
5689 }
5690 
5691 static void
5692 spa_async_dispatch(spa_t *spa)
5693 {
5694 	mutex_enter(&spa->spa_async_lock);
5695 	if (spa_async_tasks_pending(spa) &&
5696 	    !spa->spa_async_suspended &&
5697 	    spa->spa_async_thread == NULL &&
5698 	    rootdir != NULL)
5699 		spa->spa_async_thread = thread_create(NULL, 0,
5700 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5701 	mutex_exit(&spa->spa_async_lock);
5702 }
5703 
5704 void
5705 spa_async_request(spa_t *spa, int task)
5706 {
5707 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5708 	mutex_enter(&spa->spa_async_lock);
5709 	spa->spa_async_tasks |= task;
5710 	mutex_exit(&spa->spa_async_lock);
5711 }
5712 
5713 /*
5714  * ==========================================================================
5715  * SPA syncing routines
5716  * ==========================================================================
5717  */
5718 
5719 static int
5720 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5721 {
5722 	bpobj_t *bpo = arg;
5723 	bpobj_enqueue(bpo, bp, tx);
5724 	return (0);
5725 }
5726 
5727 static int
5728 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5729 {
5730 	zio_t *zio = arg;
5731 
5732 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5733 	    zio->io_flags));
5734 	return (0);
5735 }
5736 
5737 static void
5738 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5739 {
5740 	char *packed = NULL;
5741 	size_t bufsize;
5742 	size_t nvsize = 0;
5743 	dmu_buf_t *db;
5744 
5745 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5746 
5747 	/*
5748 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5749 	 * information.  This avoids the dbuf_will_dirty() path and
5750 	 * saves us a pre-read to get data we don't actually care about.
5751 	 */
5752 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5753 	packed = kmem_alloc(bufsize, KM_SLEEP);
5754 
5755 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5756 	    KM_SLEEP) == 0);
5757 	bzero(packed + nvsize, bufsize - nvsize);
5758 
5759 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5760 
5761 	kmem_free(packed, bufsize);
5762 
5763 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5764 	dmu_buf_will_dirty(db, tx);
5765 	*(uint64_t *)db->db_data = nvsize;
5766 	dmu_buf_rele(db, FTAG);
5767 }
5768 
5769 static void
5770 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5771     const char *config, const char *entry)
5772 {
5773 	nvlist_t *nvroot;
5774 	nvlist_t **list;
5775 	int i;
5776 
5777 	if (!sav->sav_sync)
5778 		return;
5779 
5780 	/*
5781 	 * Update the MOS nvlist describing the list of available devices.
5782 	 * spa_validate_aux() will have already made sure this nvlist is
5783 	 * valid and the vdevs are labeled appropriately.
5784 	 */
5785 	if (sav->sav_object == 0) {
5786 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5787 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5788 		    sizeof (uint64_t), tx);
5789 		VERIFY(zap_update(spa->spa_meta_objset,
5790 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5791 		    &sav->sav_object, tx) == 0);
5792 	}
5793 
5794 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5795 	if (sav->sav_count == 0) {
5796 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5797 	} else {
5798 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5799 		for (i = 0; i < sav->sav_count; i++)
5800 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5801 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5802 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5803 		    sav->sav_count) == 0);
5804 		for (i = 0; i < sav->sav_count; i++)
5805 			nvlist_free(list[i]);
5806 		kmem_free(list, sav->sav_count * sizeof (void *));
5807 	}
5808 
5809 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5810 	nvlist_free(nvroot);
5811 
5812 	sav->sav_sync = B_FALSE;
5813 }
5814 
5815 static void
5816 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5817 {
5818 	nvlist_t *config;
5819 
5820 	if (list_is_empty(&spa->spa_config_dirty_list))
5821 		return;
5822 
5823 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5824 
5825 	config = spa_config_generate(spa, spa->spa_root_vdev,
5826 	    dmu_tx_get_txg(tx), B_FALSE);
5827 
5828 	/*
5829 	 * If we're upgrading the spa version then make sure that
5830 	 * the config object gets updated with the correct version.
5831 	 */
5832 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5833 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5834 		    spa->spa_uberblock.ub_version);
5835 
5836 	spa_config_exit(spa, SCL_STATE, FTAG);
5837 
5838 	if (spa->spa_config_syncing)
5839 		nvlist_free(spa->spa_config_syncing);
5840 	spa->spa_config_syncing = config;
5841 
5842 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5843 }
5844 
5845 static void
5846 spa_sync_version(void *arg, dmu_tx_t *tx)
5847 {
5848 	uint64_t *versionp = arg;
5849 	uint64_t version = *versionp;
5850 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5851 
5852 	/*
5853 	 * Setting the version is special cased when first creating the pool.
5854 	 */
5855 	ASSERT(tx->tx_txg != TXG_INITIAL);
5856 
5857 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5858 	ASSERT(version >= spa_version(spa));
5859 
5860 	spa->spa_uberblock.ub_version = version;
5861 	vdev_config_dirty(spa->spa_root_vdev);
5862 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5863 }
5864 
5865 /*
5866  * Set zpool properties.
5867  */
5868 static void
5869 spa_sync_props(void *arg, dmu_tx_t *tx)
5870 {
5871 	nvlist_t *nvp = arg;
5872 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5873 	objset_t *mos = spa->spa_meta_objset;
5874 	nvpair_t *elem = NULL;
5875 
5876 	mutex_enter(&spa->spa_props_lock);
5877 
5878 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5879 		uint64_t intval;
5880 		char *strval, *fname;
5881 		zpool_prop_t prop;
5882 		const char *propname;
5883 		zprop_type_t proptype;
5884 		zfeature_info_t *feature;
5885 
5886 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5887 		case ZPROP_INVAL:
5888 			/*
5889 			 * We checked this earlier in spa_prop_validate().
5890 			 */
5891 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5892 
5893 			fname = strchr(nvpair_name(elem), '@') + 1;
5894 			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5895 
5896 			spa_feature_enable(spa, feature, tx);
5897 			spa_history_log_internal(spa, "set", tx,
5898 			    "%s=enabled", nvpair_name(elem));
5899 			break;
5900 
5901 		case ZPOOL_PROP_VERSION:
5902 			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5903 			/*
5904 			 * The version is synced seperatly before other
5905 			 * properties and should be correct by now.
5906 			 */
5907 			ASSERT3U(spa_version(spa), >=, intval);
5908 			break;
5909 
5910 		case ZPOOL_PROP_ALTROOT:
5911 			/*
5912 			 * 'altroot' is a non-persistent property. It should
5913 			 * have been set temporarily at creation or import time.
5914 			 */
5915 			ASSERT(spa->spa_root != NULL);
5916 			break;
5917 
5918 		case ZPOOL_PROP_READONLY:
5919 		case ZPOOL_PROP_CACHEFILE:
5920 			/*
5921 			 * 'readonly' and 'cachefile' are also non-persisitent
5922 			 * properties.
5923 			 */
5924 			break;
5925 		case ZPOOL_PROP_COMMENT:
5926 			VERIFY(nvpair_value_string(elem, &strval) == 0);
5927 			if (spa->spa_comment != NULL)
5928 				spa_strfree(spa->spa_comment);
5929 			spa->spa_comment = spa_strdup(strval);
5930 			/*
5931 			 * We need to dirty the configuration on all the vdevs
5932 			 * so that their labels get updated.  It's unnecessary
5933 			 * to do this for pool creation since the vdev's
5934 			 * configuratoin has already been dirtied.
5935 			 */
5936 			if (tx->tx_txg != TXG_INITIAL)
5937 				vdev_config_dirty(spa->spa_root_vdev);
5938 			spa_history_log_internal(spa, "set", tx,
5939 			    "%s=%s", nvpair_name(elem), strval);
5940 			break;
5941 		default:
5942 			/*
5943 			 * Set pool property values in the poolprops mos object.
5944 			 */
5945 			if (spa->spa_pool_props_object == 0) {
5946 				spa->spa_pool_props_object =
5947 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
5948 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5949 				    tx);
5950 			}
5951 
5952 			/* normalize the property name */
5953 			propname = zpool_prop_to_name(prop);
5954 			proptype = zpool_prop_get_type(prop);
5955 
5956 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5957 				ASSERT(proptype == PROP_TYPE_STRING);
5958 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5959 				VERIFY(zap_update(mos,
5960 				    spa->spa_pool_props_object, propname,
5961 				    1, strlen(strval) + 1, strval, tx) == 0);
5962 				spa_history_log_internal(spa, "set", tx,
5963 				    "%s=%s", nvpair_name(elem), strval);
5964 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5965 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5966 
5967 				if (proptype == PROP_TYPE_INDEX) {
5968 					const char *unused;
5969 					VERIFY(zpool_prop_index_to_string(
5970 					    prop, intval, &unused) == 0);
5971 				}
5972 				VERIFY(zap_update(mos,
5973 				    spa->spa_pool_props_object, propname,
5974 				    8, 1, &intval, tx) == 0);
5975 				spa_history_log_internal(spa, "set", tx,
5976 				    "%s=%lld", nvpair_name(elem), intval);
5977 			} else {
5978 				ASSERT(0); /* not allowed */
5979 			}
5980 
5981 			switch (prop) {
5982 			case ZPOOL_PROP_DELEGATION:
5983 				spa->spa_delegation = intval;
5984 				break;
5985 			case ZPOOL_PROP_BOOTFS:
5986 				spa->spa_bootfs = intval;
5987 				break;
5988 			case ZPOOL_PROP_FAILUREMODE:
5989 				spa->spa_failmode = intval;
5990 				break;
5991 			case ZPOOL_PROP_AUTOEXPAND:
5992 				spa->spa_autoexpand = intval;
5993 				if (tx->tx_txg != TXG_INITIAL)
5994 					spa_async_request(spa,
5995 					    SPA_ASYNC_AUTOEXPAND);
5996 				break;
5997 			case ZPOOL_PROP_DEDUPDITTO:
5998 				spa->spa_dedup_ditto = intval;
5999 				break;
6000 			default:
6001 				break;
6002 			}
6003 		}
6004 
6005 	}
6006 
6007 	mutex_exit(&spa->spa_props_lock);
6008 }
6009 
6010 /*
6011  * Perform one-time upgrade on-disk changes.  spa_version() does not
6012  * reflect the new version this txg, so there must be no changes this
6013  * txg to anything that the upgrade code depends on after it executes.
6014  * Therefore this must be called after dsl_pool_sync() does the sync
6015  * tasks.
6016  */
6017 static void
6018 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6019 {
6020 	dsl_pool_t *dp = spa->spa_dsl_pool;
6021 
6022 	ASSERT(spa->spa_sync_pass == 1);
6023 
6024 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6025 
6026 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6027 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6028 		dsl_pool_create_origin(dp, tx);
6029 
6030 		/* Keeping the origin open increases spa_minref */
6031 		spa->spa_minref += 3;
6032 	}
6033 
6034 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6035 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6036 		dsl_pool_upgrade_clones(dp, tx);
6037 	}
6038 
6039 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6040 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6041 		dsl_pool_upgrade_dir_clones(dp, tx);
6042 
6043 		/* Keeping the freedir open increases spa_minref */
6044 		spa->spa_minref += 3;
6045 	}
6046 
6047 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6048 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6049 		spa_feature_create_zap_objects(spa, tx);
6050 	}
6051 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6052 }
6053 
6054 /*
6055  * Sync the specified transaction group.  New blocks may be dirtied as
6056  * part of the process, so we iterate until it converges.
6057  */
6058 void
6059 spa_sync(spa_t *spa, uint64_t txg)
6060 {
6061 	dsl_pool_t *dp = spa->spa_dsl_pool;
6062 	objset_t *mos = spa->spa_meta_objset;
6063 	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6064 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6065 	vdev_t *rvd = spa->spa_root_vdev;
6066 	vdev_t *vd;
6067 	dmu_tx_t *tx;
6068 	int error;
6069 
6070 	VERIFY(spa_writeable(spa));
6071 
6072 	/*
6073 	 * Lock out configuration changes.
6074 	 */
6075 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6076 
6077 	spa->spa_syncing_txg = txg;
6078 	spa->spa_sync_pass = 0;
6079 
6080 	/*
6081 	 * If there are any pending vdev state changes, convert them
6082 	 * into config changes that go out with this transaction group.
6083 	 */
6084 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6085 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6086 		/*
6087 		 * We need the write lock here because, for aux vdevs,
6088 		 * calling vdev_config_dirty() modifies sav_config.
6089 		 * This is ugly and will become unnecessary when we
6090 		 * eliminate the aux vdev wart by integrating all vdevs
6091 		 * into the root vdev tree.
6092 		 */
6093 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6094 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6095 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6096 			vdev_state_clean(vd);
6097 			vdev_config_dirty(vd);
6098 		}
6099 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6100 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6101 	}
6102 	spa_config_exit(spa, SCL_STATE, FTAG);
6103 
6104 	tx = dmu_tx_create_assigned(dp, txg);
6105 
6106 	spa->spa_sync_starttime = gethrtime();
6107 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6108 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6109 
6110 	/*
6111 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6112 	 * set spa_deflate if we have no raid-z vdevs.
6113 	 */
6114 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6115 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6116 		int i;
6117 
6118 		for (i = 0; i < rvd->vdev_children; i++) {
6119 			vd = rvd->vdev_child[i];
6120 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6121 				break;
6122 		}
6123 		if (i == rvd->vdev_children) {
6124 			spa->spa_deflate = TRUE;
6125 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6126 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6127 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6128 		}
6129 	}
6130 
6131 	/*
6132 	 * If anything has changed in this txg, or if someone is waiting
6133 	 * for this txg to sync (eg, spa_vdev_remove()), push the
6134 	 * deferred frees from the previous txg.  If not, leave them
6135 	 * alone so that we don't generate work on an otherwise idle
6136 	 * system.
6137 	 */
6138 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6139 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6140 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6141 	    ((dsl_scan_active(dp->dp_scan) ||
6142 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6143 		zio_t *zio = zio_root(spa, NULL, NULL, 0);
6144 		VERIFY3U(bpobj_iterate(defer_bpo,
6145 		    spa_free_sync_cb, zio, tx), ==, 0);
6146 		VERIFY0(zio_wait(zio));
6147 	}
6148 
6149 	/*
6150 	 * Iterate to convergence.
6151 	 */
6152 	do {
6153 		int pass = ++spa->spa_sync_pass;
6154 
6155 		spa_sync_config_object(spa, tx);
6156 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6157 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6158 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6159 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6160 		spa_errlog_sync(spa, txg);
6161 		dsl_pool_sync(dp, txg);
6162 
6163 		if (pass < zfs_sync_pass_deferred_free) {
6164 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
6165 			bplist_iterate(free_bpl, spa_free_sync_cb,
6166 			    zio, tx);
6167 			VERIFY(zio_wait(zio) == 0);
6168 		} else {
6169 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6170 			    defer_bpo, tx);
6171 		}
6172 
6173 		ddt_sync(spa, txg);
6174 		dsl_scan_sync(dp, tx);
6175 
6176 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6177 			vdev_sync(vd, txg);
6178 
6179 		if (pass == 1)
6180 			spa_sync_upgrades(spa, tx);
6181 
6182 	} while (dmu_objset_is_dirty(mos, txg));
6183 
6184 	/*
6185 	 * Rewrite the vdev configuration (which includes the uberblock)
6186 	 * to commit the transaction group.
6187 	 *
6188 	 * If there are no dirty vdevs, we sync the uberblock to a few
6189 	 * random top-level vdevs that are known to be visible in the
6190 	 * config cache (see spa_vdev_add() for a complete description).
6191 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6192 	 */
6193 	for (;;) {
6194 		/*
6195 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6196 		 * while we're attempting to write the vdev labels.
6197 		 */
6198 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6199 
6200 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6201 			vdev_t *svd[SPA_DVAS_PER_BP];
6202 			int svdcount = 0;
6203 			int children = rvd->vdev_children;
6204 			int c0 = spa_get_random(children);
6205 
6206 			for (int c = 0; c < children; c++) {
6207 				vd = rvd->vdev_child[(c0 + c) % children];
6208 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6209 					continue;
6210 				svd[svdcount++] = vd;
6211 				if (svdcount == SPA_DVAS_PER_BP)
6212 					break;
6213 			}
6214 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6215 			if (error != 0)
6216 				error = vdev_config_sync(svd, svdcount, txg,
6217 				    B_TRUE);
6218 		} else {
6219 			error = vdev_config_sync(rvd->vdev_child,
6220 			    rvd->vdev_children, txg, B_FALSE);
6221 			if (error != 0)
6222 				error = vdev_config_sync(rvd->vdev_child,
6223 				    rvd->vdev_children, txg, B_TRUE);
6224 		}
6225 
6226 		if (error == 0)
6227 			spa->spa_last_synced_guid = rvd->vdev_guid;
6228 
6229 		spa_config_exit(spa, SCL_STATE, FTAG);
6230 
6231 		if (error == 0)
6232 			break;
6233 		zio_suspend(spa, NULL);
6234 		zio_resume_wait(spa);
6235 	}
6236 	dmu_tx_commit(tx);
6237 
6238 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6239 
6240 	/*
6241 	 * Clear the dirty config list.
6242 	 */
6243 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6244 		vdev_config_clean(vd);
6245 
6246 	/*
6247 	 * Now that the new config has synced transactionally,
6248 	 * let it become visible to the config cache.
6249 	 */
6250 	if (spa->spa_config_syncing != NULL) {
6251 		spa_config_set(spa, spa->spa_config_syncing);
6252 		spa->spa_config_txg = txg;
6253 		spa->spa_config_syncing = NULL;
6254 	}
6255 
6256 	spa->spa_ubsync = spa->spa_uberblock;
6257 
6258 	dsl_pool_sync_done(dp, txg);
6259 
6260 	/*
6261 	 * Update usable space statistics.
6262 	 */
6263 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6264 		vdev_sync_done(vd, txg);
6265 
6266 	spa_update_dspace(spa);
6267 
6268 	/*
6269 	 * It had better be the case that we didn't dirty anything
6270 	 * since vdev_config_sync().
6271 	 */
6272 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6273 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6274 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6275 
6276 	spa->spa_sync_pass = 0;
6277 
6278 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6279 
6280 	spa_handle_ignored_writes(spa);
6281 
6282 	/*
6283 	 * If any async tasks have been requested, kick them off.
6284 	 */
6285 	spa_async_dispatch(spa);
6286 }
6287 
6288 /*
6289  * Sync all pools.  We don't want to hold the namespace lock across these
6290  * operations, so we take a reference on the spa_t and drop the lock during the
6291  * sync.
6292  */
6293 void
6294 spa_sync_allpools(void)
6295 {
6296 	spa_t *spa = NULL;
6297 	mutex_enter(&spa_namespace_lock);
6298 	while ((spa = spa_next(spa)) != NULL) {
6299 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6300 		    !spa_writeable(spa) || spa_suspended(spa))
6301 			continue;
6302 		spa_open_ref(spa, FTAG);
6303 		mutex_exit(&spa_namespace_lock);
6304 		txg_wait_synced(spa_get_dsl(spa), 0);
6305 		mutex_enter(&spa_namespace_lock);
6306 		spa_close(spa, FTAG);
6307 	}
6308 	mutex_exit(&spa_namespace_lock);
6309 }
6310 
6311 /*
6312  * ==========================================================================
6313  * Miscellaneous routines
6314  * ==========================================================================
6315  */
6316 
6317 /*
6318  * Remove all pools in the system.
6319  */
6320 void
6321 spa_evict_all(void)
6322 {
6323 	spa_t *spa;
6324 
6325 	/*
6326 	 * Remove all cached state.  All pools should be closed now,
6327 	 * so every spa in the AVL tree should be unreferenced.
6328 	 */
6329 	mutex_enter(&spa_namespace_lock);
6330 	while ((spa = spa_next(NULL)) != NULL) {
6331 		/*
6332 		 * Stop async tasks.  The async thread may need to detach
6333 		 * a device that's been replaced, which requires grabbing
6334 		 * spa_namespace_lock, so we must drop it here.
6335 		 */
6336 		spa_open_ref(spa, FTAG);
6337 		mutex_exit(&spa_namespace_lock);
6338 		spa_async_suspend(spa);
6339 		mutex_enter(&spa_namespace_lock);
6340 		spa_close(spa, FTAG);
6341 
6342 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6343 			spa_unload(spa);
6344 			spa_deactivate(spa);
6345 		}
6346 		spa_remove(spa);
6347 	}
6348 	mutex_exit(&spa_namespace_lock);
6349 }
6350 
6351 vdev_t *
6352 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6353 {
6354 	vdev_t *vd;
6355 	int i;
6356 
6357 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6358 		return (vd);
6359 
6360 	if (aux) {
6361 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6362 			vd = spa->spa_l2cache.sav_vdevs[i];
6363 			if (vd->vdev_guid == guid)
6364 				return (vd);
6365 		}
6366 
6367 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6368 			vd = spa->spa_spares.sav_vdevs[i];
6369 			if (vd->vdev_guid == guid)
6370 				return (vd);
6371 		}
6372 	}
6373 
6374 	return (NULL);
6375 }
6376 
6377 void
6378 spa_upgrade(spa_t *spa, uint64_t version)
6379 {
6380 	ASSERT(spa_writeable(spa));
6381 
6382 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6383 
6384 	/*
6385 	 * This should only be called for a non-faulted pool, and since a
6386 	 * future version would result in an unopenable pool, this shouldn't be
6387 	 * possible.
6388 	 */
6389 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6390 	ASSERT(version >= spa->spa_uberblock.ub_version);
6391 
6392 	spa->spa_uberblock.ub_version = version;
6393 	vdev_config_dirty(spa->spa_root_vdev);
6394 
6395 	spa_config_exit(spa, SCL_ALL, FTAG);
6396 
6397 	txg_wait_synced(spa_get_dsl(spa), 0);
6398 }
6399 
6400 boolean_t
6401 spa_has_spare(spa_t *spa, uint64_t guid)
6402 {
6403 	int i;
6404 	uint64_t spareguid;
6405 	spa_aux_vdev_t *sav = &spa->spa_spares;
6406 
6407 	for (i = 0; i < sav->sav_count; i++)
6408 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6409 			return (B_TRUE);
6410 
6411 	for (i = 0; i < sav->sav_npending; i++) {
6412 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6413 		    &spareguid) == 0 && spareguid == guid)
6414 			return (B_TRUE);
6415 	}
6416 
6417 	return (B_FALSE);
6418 }
6419 
6420 /*
6421  * Check if a pool has an active shared spare device.
6422  * Note: reference count of an active spare is 2, as a spare and as a replace
6423  */
6424 static boolean_t
6425 spa_has_active_shared_spare(spa_t *spa)
6426 {
6427 	int i, refcnt;
6428 	uint64_t pool;
6429 	spa_aux_vdev_t *sav = &spa->spa_spares;
6430 
6431 	for (i = 0; i < sav->sav_count; i++) {
6432 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6433 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6434 		    refcnt > 2)
6435 			return (B_TRUE);
6436 	}
6437 
6438 	return (B_FALSE);
6439 }
6440 
6441 /*
6442  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6443  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6444  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6445  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6446  * or zdb as real changes.
6447  */
6448 void
6449 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6450 {
6451 #ifdef _KERNEL
6452 	sysevent_t		*ev;
6453 	sysevent_attr_list_t	*attr = NULL;
6454 	sysevent_value_t	value;
6455 	sysevent_id_t		eid;
6456 
6457 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6458 	    SE_SLEEP);
6459 
6460 	value.value_type = SE_DATA_TYPE_STRING;
6461 	value.value.sv_string = spa_name(spa);
6462 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6463 		goto done;
6464 
6465 	value.value_type = SE_DATA_TYPE_UINT64;
6466 	value.value.sv_uint64 = spa_guid(spa);
6467 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6468 		goto done;
6469 
6470 	if (vd) {
6471 		value.value_type = SE_DATA_TYPE_UINT64;
6472 		value.value.sv_uint64 = vd->vdev_guid;
6473 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6474 		    SE_SLEEP) != 0)
6475 			goto done;
6476 
6477 		if (vd->vdev_path) {
6478 			value.value_type = SE_DATA_TYPE_STRING;
6479 			value.value.sv_string = vd->vdev_path;
6480 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6481 			    &value, SE_SLEEP) != 0)
6482 				goto done;
6483 		}
6484 	}
6485 
6486 	if (sysevent_attach_attributes(ev, attr) != 0)
6487 		goto done;
6488 	attr = NULL;
6489 
6490 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6491 
6492 done:
6493 	if (attr)
6494 		sysevent_free_attr(attr);
6495 	sysevent_free(ev);
6496 #endif
6497 }
6498