1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * This file contains all the routines used when modifying on-disk SPA state. 28 * This includes opening, importing, destroying, exporting a pool, and syncing a 29 * pool. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa_impl.h> 35 #include <sys/zio.h> 36 #include <sys/zio_checksum.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/ddt.h> 42 #include <sys/vdev_impl.h> 43 #include <sys/metaslab.h> 44 #include <sys/metaslab_impl.h> 45 #include <sys/uberblock_impl.h> 46 #include <sys/txg.h> 47 #include <sys/avl.h> 48 #include <sys/dmu_traverse.h> 49 #include <sys/dmu_objset.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dataset.h> 53 #include <sys/dsl_dir.h> 54 #include <sys/dsl_prop.h> 55 #include <sys/dsl_synctask.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/arc.h> 58 #include <sys/callb.h> 59 #include <sys/systeminfo.h> 60 #include <sys/spa_boot.h> 61 #include <sys/zfs_ioctl.h> 62 #include <sys/dsl_scan.h> 63 64 #ifdef _KERNEL 65 #include <sys/bootprops.h> 66 #include <sys/callb.h> 67 #include <sys/cpupart.h> 68 #include <sys/pool.h> 69 #include <sys/sysdc.h> 70 #include <sys/zone.h> 71 #endif /* _KERNEL */ 72 73 #include "zfs_prop.h" 74 #include "zfs_comutil.h" 75 76 typedef enum zti_modes { 77 zti_mode_fixed, /* value is # of threads (min 1) */ 78 zti_mode_online_percent, /* value is % of online CPUs */ 79 zti_mode_batch, /* cpu-intensive; value is ignored */ 80 zti_mode_null, /* don't create a taskq */ 81 zti_nmodes 82 } zti_modes_t; 83 84 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 85 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 86 #define ZTI_BATCH { zti_mode_batch, 0 } 87 #define ZTI_NULL { zti_mode_null, 0 } 88 89 #define ZTI_ONE ZTI_FIX(1) 90 91 typedef struct zio_taskq_info { 92 enum zti_modes zti_mode; 93 uint_t zti_value; 94 } zio_taskq_info_t; 95 96 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 97 "issue", "issue_high", "intr", "intr_high" 98 }; 99 100 /* 101 * Define the taskq threads for the following I/O types: 102 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 103 */ 104 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 105 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 106 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 107 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 108 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 109 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL }, 110 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 111 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 112 }; 113 114 static dsl_syncfunc_t spa_sync_props; 115 static boolean_t spa_has_active_shared_spare(spa_t *spa); 116 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 117 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 118 char **ereport); 119 120 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 121 id_t zio_taskq_psrset_bind = PS_NONE; 122 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 123 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 124 125 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 126 127 /* 128 * This (illegal) pool name is used when temporarily importing a spa_t in order 129 * to get the vdev stats associated with the imported devices. 130 */ 131 #define TRYIMPORT_NAME "$import" 132 133 /* 134 * ========================================================================== 135 * SPA properties routines 136 * ========================================================================== 137 */ 138 139 /* 140 * Add a (source=src, propname=propval) list to an nvlist. 141 */ 142 static void 143 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 144 uint64_t intval, zprop_source_t src) 145 { 146 const char *propname = zpool_prop_to_name(prop); 147 nvlist_t *propval; 148 149 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 150 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 151 152 if (strval != NULL) 153 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 154 else 155 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 156 157 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 158 nvlist_free(propval); 159 } 160 161 /* 162 * Get property values from the spa configuration. 163 */ 164 static void 165 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 166 { 167 uint64_t size; 168 uint64_t alloc; 169 uint64_t cap, version; 170 zprop_source_t src = ZPROP_SRC_NONE; 171 spa_config_dirent_t *dp; 172 173 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 174 175 if (spa->spa_root_vdev != NULL) { 176 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 177 size = metaslab_class_get_space(spa_normal_class(spa)); 178 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 179 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 180 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 181 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 182 size - alloc, src); 183 184 cap = (size == 0) ? 0 : (alloc * 100 / size); 185 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 186 187 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 188 ddt_get_pool_dedup_ratio(spa), src); 189 190 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 191 spa->spa_root_vdev->vdev_state, src); 192 193 version = spa_version(spa); 194 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 195 src = ZPROP_SRC_DEFAULT; 196 else 197 src = ZPROP_SRC_LOCAL; 198 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 199 } 200 201 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 202 203 if (spa->spa_root != NULL) 204 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 205 0, ZPROP_SRC_LOCAL); 206 207 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 208 if (dp->scd_path == NULL) { 209 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 210 "none", 0, ZPROP_SRC_LOCAL); 211 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 212 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 213 dp->scd_path, 0, ZPROP_SRC_LOCAL); 214 } 215 } 216 } 217 218 /* 219 * Get zpool property values. 220 */ 221 int 222 spa_prop_get(spa_t *spa, nvlist_t **nvp) 223 { 224 objset_t *mos = spa->spa_meta_objset; 225 zap_cursor_t zc; 226 zap_attribute_t za; 227 int err; 228 229 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 230 231 mutex_enter(&spa->spa_props_lock); 232 233 /* 234 * Get properties from the spa config. 235 */ 236 spa_prop_get_config(spa, nvp); 237 238 /* If no pool property object, no more prop to get. */ 239 if (mos == NULL || spa->spa_pool_props_object == 0) { 240 mutex_exit(&spa->spa_props_lock); 241 return (0); 242 } 243 244 /* 245 * Get properties from the MOS pool property object. 246 */ 247 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 248 (err = zap_cursor_retrieve(&zc, &za)) == 0; 249 zap_cursor_advance(&zc)) { 250 uint64_t intval = 0; 251 char *strval = NULL; 252 zprop_source_t src = ZPROP_SRC_DEFAULT; 253 zpool_prop_t prop; 254 255 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 256 continue; 257 258 switch (za.za_integer_length) { 259 case 8: 260 /* integer property */ 261 if (za.za_first_integer != 262 zpool_prop_default_numeric(prop)) 263 src = ZPROP_SRC_LOCAL; 264 265 if (prop == ZPOOL_PROP_BOOTFS) { 266 dsl_pool_t *dp; 267 dsl_dataset_t *ds = NULL; 268 269 dp = spa_get_dsl(spa); 270 rw_enter(&dp->dp_config_rwlock, RW_READER); 271 if (err = dsl_dataset_hold_obj(dp, 272 za.za_first_integer, FTAG, &ds)) { 273 rw_exit(&dp->dp_config_rwlock); 274 break; 275 } 276 277 strval = kmem_alloc( 278 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 279 KM_SLEEP); 280 dsl_dataset_name(ds, strval); 281 dsl_dataset_rele(ds, FTAG); 282 rw_exit(&dp->dp_config_rwlock); 283 } else { 284 strval = NULL; 285 intval = za.za_first_integer; 286 } 287 288 spa_prop_add_list(*nvp, prop, strval, intval, src); 289 290 if (strval != NULL) 291 kmem_free(strval, 292 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 293 294 break; 295 296 case 1: 297 /* string property */ 298 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 299 err = zap_lookup(mos, spa->spa_pool_props_object, 300 za.za_name, 1, za.za_num_integers, strval); 301 if (err) { 302 kmem_free(strval, za.za_num_integers); 303 break; 304 } 305 spa_prop_add_list(*nvp, prop, strval, 0, src); 306 kmem_free(strval, za.za_num_integers); 307 break; 308 309 default: 310 break; 311 } 312 } 313 zap_cursor_fini(&zc); 314 mutex_exit(&spa->spa_props_lock); 315 out: 316 if (err && err != ENOENT) { 317 nvlist_free(*nvp); 318 *nvp = NULL; 319 return (err); 320 } 321 322 return (0); 323 } 324 325 /* 326 * Validate the given pool properties nvlist and modify the list 327 * for the property values to be set. 328 */ 329 static int 330 spa_prop_validate(spa_t *spa, nvlist_t *props) 331 { 332 nvpair_t *elem; 333 int error = 0, reset_bootfs = 0; 334 uint64_t objnum; 335 336 elem = NULL; 337 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 338 zpool_prop_t prop; 339 char *propname, *strval; 340 uint64_t intval; 341 objset_t *os; 342 char *slash; 343 344 propname = nvpair_name(elem); 345 346 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 347 return (EINVAL); 348 349 switch (prop) { 350 case ZPOOL_PROP_VERSION: 351 error = nvpair_value_uint64(elem, &intval); 352 if (!error && 353 (intval < spa_version(spa) || intval > SPA_VERSION)) 354 error = EINVAL; 355 break; 356 357 case ZPOOL_PROP_DELEGATION: 358 case ZPOOL_PROP_AUTOREPLACE: 359 case ZPOOL_PROP_LISTSNAPS: 360 case ZPOOL_PROP_AUTOEXPAND: 361 error = nvpair_value_uint64(elem, &intval); 362 if (!error && intval > 1) 363 error = EINVAL; 364 break; 365 366 case ZPOOL_PROP_BOOTFS: 367 /* 368 * If the pool version is less than SPA_VERSION_BOOTFS, 369 * or the pool is still being created (version == 0), 370 * the bootfs property cannot be set. 371 */ 372 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 373 error = ENOTSUP; 374 break; 375 } 376 377 /* 378 * Make sure the vdev config is bootable 379 */ 380 if (!vdev_is_bootable(spa->spa_root_vdev)) { 381 error = ENOTSUP; 382 break; 383 } 384 385 reset_bootfs = 1; 386 387 error = nvpair_value_string(elem, &strval); 388 389 if (!error) { 390 uint64_t compress; 391 392 if (strval == NULL || strval[0] == '\0') { 393 objnum = zpool_prop_default_numeric( 394 ZPOOL_PROP_BOOTFS); 395 break; 396 } 397 398 if (error = dmu_objset_hold(strval, FTAG, &os)) 399 break; 400 401 /* Must be ZPL and not gzip compressed. */ 402 403 if (dmu_objset_type(os) != DMU_OST_ZFS) { 404 error = ENOTSUP; 405 } else if ((error = dsl_prop_get_integer(strval, 406 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 407 &compress, NULL)) == 0 && 408 !BOOTFS_COMPRESS_VALID(compress)) { 409 error = ENOTSUP; 410 } else { 411 objnum = dmu_objset_id(os); 412 } 413 dmu_objset_rele(os, FTAG); 414 } 415 break; 416 417 case ZPOOL_PROP_FAILUREMODE: 418 error = nvpair_value_uint64(elem, &intval); 419 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 420 intval > ZIO_FAILURE_MODE_PANIC)) 421 error = EINVAL; 422 423 /* 424 * This is a special case which only occurs when 425 * the pool has completely failed. This allows 426 * the user to change the in-core failmode property 427 * without syncing it out to disk (I/Os might 428 * currently be blocked). We do this by returning 429 * EIO to the caller (spa_prop_set) to trick it 430 * into thinking we encountered a property validation 431 * error. 432 */ 433 if (!error && spa_suspended(spa)) { 434 spa->spa_failmode = intval; 435 error = EIO; 436 } 437 break; 438 439 case ZPOOL_PROP_CACHEFILE: 440 if ((error = nvpair_value_string(elem, &strval)) != 0) 441 break; 442 443 if (strval[0] == '\0') 444 break; 445 446 if (strcmp(strval, "none") == 0) 447 break; 448 449 if (strval[0] != '/') { 450 error = EINVAL; 451 break; 452 } 453 454 slash = strrchr(strval, '/'); 455 ASSERT(slash != NULL); 456 457 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 458 strcmp(slash, "/..") == 0) 459 error = EINVAL; 460 break; 461 462 case ZPOOL_PROP_DEDUPDITTO: 463 if (spa_version(spa) < SPA_VERSION_DEDUP) 464 error = ENOTSUP; 465 else 466 error = nvpair_value_uint64(elem, &intval); 467 if (error == 0 && 468 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 469 error = EINVAL; 470 break; 471 } 472 473 if (error) 474 break; 475 } 476 477 if (!error && reset_bootfs) { 478 error = nvlist_remove(props, 479 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 480 481 if (!error) { 482 error = nvlist_add_uint64(props, 483 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 484 } 485 } 486 487 return (error); 488 } 489 490 void 491 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 492 { 493 char *cachefile; 494 spa_config_dirent_t *dp; 495 496 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 497 &cachefile) != 0) 498 return; 499 500 dp = kmem_alloc(sizeof (spa_config_dirent_t), 501 KM_SLEEP); 502 503 if (cachefile[0] == '\0') 504 dp->scd_path = spa_strdup(spa_config_path); 505 else if (strcmp(cachefile, "none") == 0) 506 dp->scd_path = NULL; 507 else 508 dp->scd_path = spa_strdup(cachefile); 509 510 list_insert_head(&spa->spa_config_list, dp); 511 if (need_sync) 512 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 513 } 514 515 int 516 spa_prop_set(spa_t *spa, nvlist_t *nvp) 517 { 518 int error; 519 nvpair_t *elem; 520 boolean_t need_sync = B_FALSE; 521 zpool_prop_t prop; 522 523 if ((error = spa_prop_validate(spa, nvp)) != 0) 524 return (error); 525 526 elem = NULL; 527 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 528 if ((prop = zpool_name_to_prop( 529 nvpair_name(elem))) == ZPROP_INVAL) 530 return (EINVAL); 531 532 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 533 continue; 534 535 need_sync = B_TRUE; 536 break; 537 } 538 539 if (need_sync) 540 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 541 spa, nvp, 3)); 542 else 543 return (0); 544 } 545 546 /* 547 * If the bootfs property value is dsobj, clear it. 548 */ 549 void 550 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 551 { 552 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 553 VERIFY(zap_remove(spa->spa_meta_objset, 554 spa->spa_pool_props_object, 555 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 556 spa->spa_bootfs = 0; 557 } 558 } 559 560 /* 561 * ========================================================================== 562 * SPA state manipulation (open/create/destroy/import/export) 563 * ========================================================================== 564 */ 565 566 static int 567 spa_error_entry_compare(const void *a, const void *b) 568 { 569 spa_error_entry_t *sa = (spa_error_entry_t *)a; 570 spa_error_entry_t *sb = (spa_error_entry_t *)b; 571 int ret; 572 573 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 574 sizeof (zbookmark_t)); 575 576 if (ret < 0) 577 return (-1); 578 else if (ret > 0) 579 return (1); 580 else 581 return (0); 582 } 583 584 /* 585 * Utility function which retrieves copies of the current logs and 586 * re-initializes them in the process. 587 */ 588 void 589 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 590 { 591 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 592 593 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 594 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 595 596 avl_create(&spa->spa_errlist_scrub, 597 spa_error_entry_compare, sizeof (spa_error_entry_t), 598 offsetof(spa_error_entry_t, se_avl)); 599 avl_create(&spa->spa_errlist_last, 600 spa_error_entry_compare, sizeof (spa_error_entry_t), 601 offsetof(spa_error_entry_t, se_avl)); 602 } 603 604 static taskq_t * 605 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 606 uint_t value) 607 { 608 uint_t flags = TASKQ_PREPOPULATE; 609 boolean_t batch = B_FALSE; 610 611 switch (mode) { 612 case zti_mode_null: 613 return (NULL); /* no taskq needed */ 614 615 case zti_mode_fixed: 616 ASSERT3U(value, >=, 1); 617 value = MAX(value, 1); 618 break; 619 620 case zti_mode_batch: 621 batch = B_TRUE; 622 flags |= TASKQ_THREADS_CPU_PCT; 623 value = zio_taskq_batch_pct; 624 break; 625 626 case zti_mode_online_percent: 627 flags |= TASKQ_THREADS_CPU_PCT; 628 break; 629 630 default: 631 panic("unrecognized mode for %s taskq (%u:%u) in " 632 "spa_activate()", 633 name, mode, value); 634 break; 635 } 636 637 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 638 if (batch) 639 flags |= TASKQ_DC_BATCH; 640 641 return (taskq_create_sysdc(name, value, 50, INT_MAX, 642 spa->spa_proc, zio_taskq_basedc, flags)); 643 } 644 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 645 spa->spa_proc, flags)); 646 } 647 648 static void 649 spa_create_zio_taskqs(spa_t *spa) 650 { 651 for (int t = 0; t < ZIO_TYPES; t++) { 652 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 653 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 654 enum zti_modes mode = ztip->zti_mode; 655 uint_t value = ztip->zti_value; 656 char name[32]; 657 658 (void) snprintf(name, sizeof (name), 659 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 660 661 spa->spa_zio_taskq[t][q] = 662 spa_taskq_create(spa, name, mode, value); 663 } 664 } 665 } 666 667 #ifdef _KERNEL 668 static void 669 spa_thread(void *arg) 670 { 671 callb_cpr_t cprinfo; 672 673 spa_t *spa = arg; 674 user_t *pu = PTOU(curproc); 675 676 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 677 spa->spa_name); 678 679 ASSERT(curproc != &p0); 680 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 681 "zpool-%s", spa->spa_name); 682 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 683 684 /* bind this thread to the requested psrset */ 685 if (zio_taskq_psrset_bind != PS_NONE) { 686 pool_lock(); 687 mutex_enter(&cpu_lock); 688 mutex_enter(&pidlock); 689 mutex_enter(&curproc->p_lock); 690 691 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 692 0, NULL, NULL) == 0) { 693 curthread->t_bind_pset = zio_taskq_psrset_bind; 694 } else { 695 cmn_err(CE_WARN, 696 "Couldn't bind process for zfs pool \"%s\" to " 697 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 698 } 699 700 mutex_exit(&curproc->p_lock); 701 mutex_exit(&pidlock); 702 mutex_exit(&cpu_lock); 703 pool_unlock(); 704 } 705 706 if (zio_taskq_sysdc) { 707 sysdc_thread_enter(curthread, 100, 0); 708 } 709 710 spa->spa_proc = curproc; 711 spa->spa_did = curthread->t_did; 712 713 spa_create_zio_taskqs(spa); 714 715 mutex_enter(&spa->spa_proc_lock); 716 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 717 718 spa->spa_proc_state = SPA_PROC_ACTIVE; 719 cv_broadcast(&spa->spa_proc_cv); 720 721 CALLB_CPR_SAFE_BEGIN(&cprinfo); 722 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 723 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 724 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 725 726 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 727 spa->spa_proc_state = SPA_PROC_GONE; 728 spa->spa_proc = &p0; 729 cv_broadcast(&spa->spa_proc_cv); 730 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 731 732 mutex_enter(&curproc->p_lock); 733 lwp_exit(); 734 } 735 #endif 736 737 /* 738 * Activate an uninitialized pool. 739 */ 740 static void 741 spa_activate(spa_t *spa, int mode) 742 { 743 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 744 745 spa->spa_state = POOL_STATE_ACTIVE; 746 spa->spa_mode = mode; 747 748 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 749 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 750 751 /* Try to create a covering process */ 752 mutex_enter(&spa->spa_proc_lock); 753 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 754 ASSERT(spa->spa_proc == &p0); 755 spa->spa_did = 0; 756 757 /* Only create a process if we're going to be around a while. */ 758 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 759 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 760 NULL, 0) == 0) { 761 spa->spa_proc_state = SPA_PROC_CREATED; 762 while (spa->spa_proc_state == SPA_PROC_CREATED) { 763 cv_wait(&spa->spa_proc_cv, 764 &spa->spa_proc_lock); 765 } 766 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 767 ASSERT(spa->spa_proc != &p0); 768 ASSERT(spa->spa_did != 0); 769 } else { 770 #ifdef _KERNEL 771 cmn_err(CE_WARN, 772 "Couldn't create process for zfs pool \"%s\"\n", 773 spa->spa_name); 774 #endif 775 } 776 } 777 mutex_exit(&spa->spa_proc_lock); 778 779 /* If we didn't create a process, we need to create our taskqs. */ 780 if (spa->spa_proc == &p0) { 781 spa_create_zio_taskqs(spa); 782 } 783 784 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 785 offsetof(vdev_t, vdev_config_dirty_node)); 786 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 787 offsetof(vdev_t, vdev_state_dirty_node)); 788 789 txg_list_create(&spa->spa_vdev_txg_list, 790 offsetof(struct vdev, vdev_txg_node)); 791 792 avl_create(&spa->spa_errlist_scrub, 793 spa_error_entry_compare, sizeof (spa_error_entry_t), 794 offsetof(spa_error_entry_t, se_avl)); 795 avl_create(&spa->spa_errlist_last, 796 spa_error_entry_compare, sizeof (spa_error_entry_t), 797 offsetof(spa_error_entry_t, se_avl)); 798 } 799 800 /* 801 * Opposite of spa_activate(). 802 */ 803 static void 804 spa_deactivate(spa_t *spa) 805 { 806 ASSERT(spa->spa_sync_on == B_FALSE); 807 ASSERT(spa->spa_dsl_pool == NULL); 808 ASSERT(spa->spa_root_vdev == NULL); 809 ASSERT(spa->spa_async_zio_root == NULL); 810 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 811 812 txg_list_destroy(&spa->spa_vdev_txg_list); 813 814 list_destroy(&spa->spa_config_dirty_list); 815 list_destroy(&spa->spa_state_dirty_list); 816 817 for (int t = 0; t < ZIO_TYPES; t++) { 818 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 819 if (spa->spa_zio_taskq[t][q] != NULL) 820 taskq_destroy(spa->spa_zio_taskq[t][q]); 821 spa->spa_zio_taskq[t][q] = NULL; 822 } 823 } 824 825 metaslab_class_destroy(spa->spa_normal_class); 826 spa->spa_normal_class = NULL; 827 828 metaslab_class_destroy(spa->spa_log_class); 829 spa->spa_log_class = NULL; 830 831 /* 832 * If this was part of an import or the open otherwise failed, we may 833 * still have errors left in the queues. Empty them just in case. 834 */ 835 spa_errlog_drain(spa); 836 837 avl_destroy(&spa->spa_errlist_scrub); 838 avl_destroy(&spa->spa_errlist_last); 839 840 spa->spa_state = POOL_STATE_UNINITIALIZED; 841 842 mutex_enter(&spa->spa_proc_lock); 843 if (spa->spa_proc_state != SPA_PROC_NONE) { 844 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 845 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 846 cv_broadcast(&spa->spa_proc_cv); 847 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 848 ASSERT(spa->spa_proc != &p0); 849 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 850 } 851 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 852 spa->spa_proc_state = SPA_PROC_NONE; 853 } 854 ASSERT(spa->spa_proc == &p0); 855 mutex_exit(&spa->spa_proc_lock); 856 857 /* 858 * We want to make sure spa_thread() has actually exited the ZFS 859 * module, so that the module can't be unloaded out from underneath 860 * it. 861 */ 862 if (spa->spa_did != 0) { 863 thread_join(spa->spa_did); 864 spa->spa_did = 0; 865 } 866 } 867 868 /* 869 * Verify a pool configuration, and construct the vdev tree appropriately. This 870 * will create all the necessary vdevs in the appropriate layout, with each vdev 871 * in the CLOSED state. This will prep the pool before open/creation/import. 872 * All vdev validation is done by the vdev_alloc() routine. 873 */ 874 static int 875 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 876 uint_t id, int atype) 877 { 878 nvlist_t **child; 879 uint_t children; 880 int error; 881 882 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 883 return (error); 884 885 if ((*vdp)->vdev_ops->vdev_op_leaf) 886 return (0); 887 888 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 889 &child, &children); 890 891 if (error == ENOENT) 892 return (0); 893 894 if (error) { 895 vdev_free(*vdp); 896 *vdp = NULL; 897 return (EINVAL); 898 } 899 900 for (int c = 0; c < children; c++) { 901 vdev_t *vd; 902 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 903 atype)) != 0) { 904 vdev_free(*vdp); 905 *vdp = NULL; 906 return (error); 907 } 908 } 909 910 ASSERT(*vdp != NULL); 911 912 return (0); 913 } 914 915 /* 916 * Opposite of spa_load(). 917 */ 918 static void 919 spa_unload(spa_t *spa) 920 { 921 int i; 922 923 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 924 925 /* 926 * Stop async tasks. 927 */ 928 spa_async_suspend(spa); 929 930 /* 931 * Stop syncing. 932 */ 933 if (spa->spa_sync_on) { 934 txg_sync_stop(spa->spa_dsl_pool); 935 spa->spa_sync_on = B_FALSE; 936 } 937 938 /* 939 * Wait for any outstanding async I/O to complete. 940 */ 941 if (spa->spa_async_zio_root != NULL) { 942 (void) zio_wait(spa->spa_async_zio_root); 943 spa->spa_async_zio_root = NULL; 944 } 945 946 bpobj_close(&spa->spa_deferred_bpobj); 947 948 /* 949 * Close the dsl pool. 950 */ 951 if (spa->spa_dsl_pool) { 952 dsl_pool_close(spa->spa_dsl_pool); 953 spa->spa_dsl_pool = NULL; 954 spa->spa_meta_objset = NULL; 955 } 956 957 ddt_unload(spa); 958 959 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 960 961 /* 962 * Drop and purge level 2 cache 963 */ 964 spa_l2cache_drop(spa); 965 966 /* 967 * Close all vdevs. 968 */ 969 if (spa->spa_root_vdev) 970 vdev_free(spa->spa_root_vdev); 971 ASSERT(spa->spa_root_vdev == NULL); 972 973 for (i = 0; i < spa->spa_spares.sav_count; i++) 974 vdev_free(spa->spa_spares.sav_vdevs[i]); 975 if (spa->spa_spares.sav_vdevs) { 976 kmem_free(spa->spa_spares.sav_vdevs, 977 spa->spa_spares.sav_count * sizeof (void *)); 978 spa->spa_spares.sav_vdevs = NULL; 979 } 980 if (spa->spa_spares.sav_config) { 981 nvlist_free(spa->spa_spares.sav_config); 982 spa->spa_spares.sav_config = NULL; 983 } 984 spa->spa_spares.sav_count = 0; 985 986 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 987 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 988 if (spa->spa_l2cache.sav_vdevs) { 989 kmem_free(spa->spa_l2cache.sav_vdevs, 990 spa->spa_l2cache.sav_count * sizeof (void *)); 991 spa->spa_l2cache.sav_vdevs = NULL; 992 } 993 if (spa->spa_l2cache.sav_config) { 994 nvlist_free(spa->spa_l2cache.sav_config); 995 spa->spa_l2cache.sav_config = NULL; 996 } 997 spa->spa_l2cache.sav_count = 0; 998 999 spa->spa_async_suspended = 0; 1000 1001 spa_config_exit(spa, SCL_ALL, FTAG); 1002 } 1003 1004 /* 1005 * Load (or re-load) the current list of vdevs describing the active spares for 1006 * this pool. When this is called, we have some form of basic information in 1007 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1008 * then re-generate a more complete list including status information. 1009 */ 1010 static void 1011 spa_load_spares(spa_t *spa) 1012 { 1013 nvlist_t **spares; 1014 uint_t nspares; 1015 int i; 1016 vdev_t *vd, *tvd; 1017 1018 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1019 1020 /* 1021 * First, close and free any existing spare vdevs. 1022 */ 1023 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1024 vd = spa->spa_spares.sav_vdevs[i]; 1025 1026 /* Undo the call to spa_activate() below */ 1027 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1028 B_FALSE)) != NULL && tvd->vdev_isspare) 1029 spa_spare_remove(tvd); 1030 vdev_close(vd); 1031 vdev_free(vd); 1032 } 1033 1034 if (spa->spa_spares.sav_vdevs) 1035 kmem_free(spa->spa_spares.sav_vdevs, 1036 spa->spa_spares.sav_count * sizeof (void *)); 1037 1038 if (spa->spa_spares.sav_config == NULL) 1039 nspares = 0; 1040 else 1041 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1042 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1043 1044 spa->spa_spares.sav_count = (int)nspares; 1045 spa->spa_spares.sav_vdevs = NULL; 1046 1047 if (nspares == 0) 1048 return; 1049 1050 /* 1051 * Construct the array of vdevs, opening them to get status in the 1052 * process. For each spare, there is potentially two different vdev_t 1053 * structures associated with it: one in the list of spares (used only 1054 * for basic validation purposes) and one in the active vdev 1055 * configuration (if it's spared in). During this phase we open and 1056 * validate each vdev on the spare list. If the vdev also exists in the 1057 * active configuration, then we also mark this vdev as an active spare. 1058 */ 1059 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1060 KM_SLEEP); 1061 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1062 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1063 VDEV_ALLOC_SPARE) == 0); 1064 ASSERT(vd != NULL); 1065 1066 spa->spa_spares.sav_vdevs[i] = vd; 1067 1068 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1069 B_FALSE)) != NULL) { 1070 if (!tvd->vdev_isspare) 1071 spa_spare_add(tvd); 1072 1073 /* 1074 * We only mark the spare active if we were successfully 1075 * able to load the vdev. Otherwise, importing a pool 1076 * with a bad active spare would result in strange 1077 * behavior, because multiple pool would think the spare 1078 * is actively in use. 1079 * 1080 * There is a vulnerability here to an equally bizarre 1081 * circumstance, where a dead active spare is later 1082 * brought back to life (onlined or otherwise). Given 1083 * the rarity of this scenario, and the extra complexity 1084 * it adds, we ignore the possibility. 1085 */ 1086 if (!vdev_is_dead(tvd)) 1087 spa_spare_activate(tvd); 1088 } 1089 1090 vd->vdev_top = vd; 1091 vd->vdev_aux = &spa->spa_spares; 1092 1093 if (vdev_open(vd) != 0) 1094 continue; 1095 1096 if (vdev_validate_aux(vd) == 0) 1097 spa_spare_add(vd); 1098 } 1099 1100 /* 1101 * Recompute the stashed list of spares, with status information 1102 * this time. 1103 */ 1104 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1105 DATA_TYPE_NVLIST_ARRAY) == 0); 1106 1107 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1108 KM_SLEEP); 1109 for (i = 0; i < spa->spa_spares.sav_count; i++) 1110 spares[i] = vdev_config_generate(spa, 1111 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1112 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1113 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1114 for (i = 0; i < spa->spa_spares.sav_count; i++) 1115 nvlist_free(spares[i]); 1116 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1117 } 1118 1119 /* 1120 * Load (or re-load) the current list of vdevs describing the active l2cache for 1121 * this pool. When this is called, we have some form of basic information in 1122 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1123 * then re-generate a more complete list including status information. 1124 * Devices which are already active have their details maintained, and are 1125 * not re-opened. 1126 */ 1127 static void 1128 spa_load_l2cache(spa_t *spa) 1129 { 1130 nvlist_t **l2cache; 1131 uint_t nl2cache; 1132 int i, j, oldnvdevs; 1133 uint64_t guid; 1134 vdev_t *vd, **oldvdevs, **newvdevs; 1135 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1136 1137 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1138 1139 if (sav->sav_config != NULL) { 1140 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1141 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1142 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1143 } else { 1144 nl2cache = 0; 1145 } 1146 1147 oldvdevs = sav->sav_vdevs; 1148 oldnvdevs = sav->sav_count; 1149 sav->sav_vdevs = NULL; 1150 sav->sav_count = 0; 1151 1152 /* 1153 * Process new nvlist of vdevs. 1154 */ 1155 for (i = 0; i < nl2cache; i++) { 1156 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1157 &guid) == 0); 1158 1159 newvdevs[i] = NULL; 1160 for (j = 0; j < oldnvdevs; j++) { 1161 vd = oldvdevs[j]; 1162 if (vd != NULL && guid == vd->vdev_guid) { 1163 /* 1164 * Retain previous vdev for add/remove ops. 1165 */ 1166 newvdevs[i] = vd; 1167 oldvdevs[j] = NULL; 1168 break; 1169 } 1170 } 1171 1172 if (newvdevs[i] == NULL) { 1173 /* 1174 * Create new vdev 1175 */ 1176 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1177 VDEV_ALLOC_L2CACHE) == 0); 1178 ASSERT(vd != NULL); 1179 newvdevs[i] = vd; 1180 1181 /* 1182 * Commit this vdev as an l2cache device, 1183 * even if it fails to open. 1184 */ 1185 spa_l2cache_add(vd); 1186 1187 vd->vdev_top = vd; 1188 vd->vdev_aux = sav; 1189 1190 spa_l2cache_activate(vd); 1191 1192 if (vdev_open(vd) != 0) 1193 continue; 1194 1195 (void) vdev_validate_aux(vd); 1196 1197 if (!vdev_is_dead(vd)) 1198 l2arc_add_vdev(spa, vd); 1199 } 1200 } 1201 1202 /* 1203 * Purge vdevs that were dropped 1204 */ 1205 for (i = 0; i < oldnvdevs; i++) { 1206 uint64_t pool; 1207 1208 vd = oldvdevs[i]; 1209 if (vd != NULL) { 1210 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1211 pool != 0ULL && l2arc_vdev_present(vd)) 1212 l2arc_remove_vdev(vd); 1213 (void) vdev_close(vd); 1214 spa_l2cache_remove(vd); 1215 } 1216 } 1217 1218 if (oldvdevs) 1219 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1220 1221 if (sav->sav_config == NULL) 1222 goto out; 1223 1224 sav->sav_vdevs = newvdevs; 1225 sav->sav_count = (int)nl2cache; 1226 1227 /* 1228 * Recompute the stashed list of l2cache devices, with status 1229 * information this time. 1230 */ 1231 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1232 DATA_TYPE_NVLIST_ARRAY) == 0); 1233 1234 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1235 for (i = 0; i < sav->sav_count; i++) 1236 l2cache[i] = vdev_config_generate(spa, 1237 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1238 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1239 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1240 out: 1241 for (i = 0; i < sav->sav_count; i++) 1242 nvlist_free(l2cache[i]); 1243 if (sav->sav_count) 1244 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1245 } 1246 1247 static int 1248 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1249 { 1250 dmu_buf_t *db; 1251 char *packed = NULL; 1252 size_t nvsize = 0; 1253 int error; 1254 *value = NULL; 1255 1256 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1257 nvsize = *(uint64_t *)db->db_data; 1258 dmu_buf_rele(db, FTAG); 1259 1260 packed = kmem_alloc(nvsize, KM_SLEEP); 1261 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1262 DMU_READ_PREFETCH); 1263 if (error == 0) 1264 error = nvlist_unpack(packed, nvsize, value, 0); 1265 kmem_free(packed, nvsize); 1266 1267 return (error); 1268 } 1269 1270 /* 1271 * Checks to see if the given vdev could not be opened, in which case we post a 1272 * sysevent to notify the autoreplace code that the device has been removed. 1273 */ 1274 static void 1275 spa_check_removed(vdev_t *vd) 1276 { 1277 for (int c = 0; c < vd->vdev_children; c++) 1278 spa_check_removed(vd->vdev_child[c]); 1279 1280 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1281 zfs_post_autoreplace(vd->vdev_spa, vd); 1282 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1283 } 1284 } 1285 1286 /* 1287 * Load the slog device state from the config object since it's possible 1288 * that the label does not contain the most up-to-date information. 1289 */ 1290 void 1291 spa_load_log_state(spa_t *spa, nvlist_t *nv) 1292 { 1293 vdev_t *ovd, *rvd = spa->spa_root_vdev; 1294 1295 /* 1296 * Load the original root vdev tree from the passed config. 1297 */ 1298 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1299 VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1300 1301 for (int c = 0; c < rvd->vdev_children; c++) { 1302 vdev_t *cvd = rvd->vdev_child[c]; 1303 if (cvd->vdev_islog) 1304 vdev_load_log_state(cvd, ovd->vdev_child[c]); 1305 } 1306 vdev_free(ovd); 1307 spa_config_exit(spa, SCL_ALL, FTAG); 1308 } 1309 1310 /* 1311 * Check for missing log devices 1312 */ 1313 int 1314 spa_check_logs(spa_t *spa) 1315 { 1316 switch (spa->spa_log_state) { 1317 case SPA_LOG_MISSING: 1318 /* need to recheck in case slog has been restored */ 1319 case SPA_LOG_UNKNOWN: 1320 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1321 DS_FIND_CHILDREN)) { 1322 spa_set_log_state(spa, SPA_LOG_MISSING); 1323 return (1); 1324 } 1325 break; 1326 } 1327 return (0); 1328 } 1329 1330 static boolean_t 1331 spa_passivate_log(spa_t *spa) 1332 { 1333 vdev_t *rvd = spa->spa_root_vdev; 1334 boolean_t slog_found = B_FALSE; 1335 1336 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1337 1338 if (!spa_has_slogs(spa)) 1339 return (B_FALSE); 1340 1341 for (int c = 0; c < rvd->vdev_children; c++) { 1342 vdev_t *tvd = rvd->vdev_child[c]; 1343 metaslab_group_t *mg = tvd->vdev_mg; 1344 1345 if (tvd->vdev_islog) { 1346 metaslab_group_passivate(mg); 1347 slog_found = B_TRUE; 1348 } 1349 } 1350 1351 return (slog_found); 1352 } 1353 1354 static void 1355 spa_activate_log(spa_t *spa) 1356 { 1357 vdev_t *rvd = spa->spa_root_vdev; 1358 1359 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1360 1361 for (int c = 0; c < rvd->vdev_children; c++) { 1362 vdev_t *tvd = rvd->vdev_child[c]; 1363 metaslab_group_t *mg = tvd->vdev_mg; 1364 1365 if (tvd->vdev_islog) 1366 metaslab_group_activate(mg); 1367 } 1368 } 1369 1370 int 1371 spa_offline_log(spa_t *spa) 1372 { 1373 int error = 0; 1374 1375 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1376 NULL, DS_FIND_CHILDREN)) == 0) { 1377 1378 /* 1379 * We successfully offlined the log device, sync out the 1380 * current txg so that the "stubby" block can be removed 1381 * by zil_sync(). 1382 */ 1383 txg_wait_synced(spa->spa_dsl_pool, 0); 1384 } 1385 return (error); 1386 } 1387 1388 static void 1389 spa_aux_check_removed(spa_aux_vdev_t *sav) 1390 { 1391 for (int i = 0; i < sav->sav_count; i++) 1392 spa_check_removed(sav->sav_vdevs[i]); 1393 } 1394 1395 void 1396 spa_claim_notify(zio_t *zio) 1397 { 1398 spa_t *spa = zio->io_spa; 1399 1400 if (zio->io_error) 1401 return; 1402 1403 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1404 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1405 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1406 mutex_exit(&spa->spa_props_lock); 1407 } 1408 1409 typedef struct spa_load_error { 1410 uint64_t sle_meta_count; 1411 uint64_t sle_data_count; 1412 } spa_load_error_t; 1413 1414 static void 1415 spa_load_verify_done(zio_t *zio) 1416 { 1417 blkptr_t *bp = zio->io_bp; 1418 spa_load_error_t *sle = zio->io_private; 1419 dmu_object_type_t type = BP_GET_TYPE(bp); 1420 int error = zio->io_error; 1421 1422 if (error) { 1423 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) && 1424 type != DMU_OT_INTENT_LOG) 1425 atomic_add_64(&sle->sle_meta_count, 1); 1426 else 1427 atomic_add_64(&sle->sle_data_count, 1); 1428 } 1429 zio_data_buf_free(zio->io_data, zio->io_size); 1430 } 1431 1432 /*ARGSUSED*/ 1433 static int 1434 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1435 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1436 { 1437 if (bp != NULL) { 1438 zio_t *rio = arg; 1439 size_t size = BP_GET_PSIZE(bp); 1440 void *data = zio_data_buf_alloc(size); 1441 1442 zio_nowait(zio_read(rio, spa, bp, data, size, 1443 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1444 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1445 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1446 } 1447 return (0); 1448 } 1449 1450 static int 1451 spa_load_verify(spa_t *spa) 1452 { 1453 zio_t *rio; 1454 spa_load_error_t sle = { 0 }; 1455 zpool_rewind_policy_t policy; 1456 boolean_t verify_ok = B_FALSE; 1457 int error; 1458 1459 zpool_get_rewind_policy(spa->spa_config, &policy); 1460 1461 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1462 return (0); 1463 1464 rio = zio_root(spa, NULL, &sle, 1465 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1466 1467 error = traverse_pool(spa, spa->spa_verify_min_txg, 1468 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1469 1470 (void) zio_wait(rio); 1471 1472 spa->spa_load_meta_errors = sle.sle_meta_count; 1473 spa->spa_load_data_errors = sle.sle_data_count; 1474 1475 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1476 sle.sle_data_count <= policy.zrp_maxdata) { 1477 verify_ok = B_TRUE; 1478 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1479 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1480 } else { 1481 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1482 } 1483 1484 if (error) { 1485 if (error != ENXIO && error != EIO) 1486 error = EIO; 1487 return (error); 1488 } 1489 1490 return (verify_ok ? 0 : EIO); 1491 } 1492 1493 /* 1494 * Find a value in the pool props object. 1495 */ 1496 static void 1497 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1498 { 1499 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1500 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1501 } 1502 1503 /* 1504 * Find a value in the pool directory object. 1505 */ 1506 static int 1507 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1508 { 1509 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1510 name, sizeof (uint64_t), 1, val)); 1511 } 1512 1513 static int 1514 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1515 { 1516 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1517 return (err); 1518 } 1519 1520 /* 1521 * Fix up config after a partly-completed split. This is done with the 1522 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1523 * pool have that entry in their config, but only the splitting one contains 1524 * a list of all the guids of the vdevs that are being split off. 1525 * 1526 * This function determines what to do with that list: either rejoin 1527 * all the disks to the pool, or complete the splitting process. To attempt 1528 * the rejoin, each disk that is offlined is marked online again, and 1529 * we do a reopen() call. If the vdev label for every disk that was 1530 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1531 * then we call vdev_split() on each disk, and complete the split. 1532 * 1533 * Otherwise we leave the config alone, with all the vdevs in place in 1534 * the original pool. 1535 */ 1536 static void 1537 spa_try_repair(spa_t *spa, nvlist_t *config) 1538 { 1539 uint_t extracted; 1540 uint64_t *glist; 1541 uint_t i, gcount; 1542 nvlist_t *nvl; 1543 vdev_t **vd; 1544 boolean_t attempt_reopen; 1545 1546 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1547 return; 1548 1549 /* check that the config is complete */ 1550 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1551 &glist, &gcount) != 0) 1552 return; 1553 1554 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1555 1556 /* attempt to online all the vdevs & validate */ 1557 attempt_reopen = B_TRUE; 1558 for (i = 0; i < gcount; i++) { 1559 if (glist[i] == 0) /* vdev is hole */ 1560 continue; 1561 1562 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1563 if (vd[i] == NULL) { 1564 /* 1565 * Don't bother attempting to reopen the disks; 1566 * just do the split. 1567 */ 1568 attempt_reopen = B_FALSE; 1569 } else { 1570 /* attempt to re-online it */ 1571 vd[i]->vdev_offline = B_FALSE; 1572 } 1573 } 1574 1575 if (attempt_reopen) { 1576 vdev_reopen(spa->spa_root_vdev); 1577 1578 /* check each device to see what state it's in */ 1579 for (extracted = 0, i = 0; i < gcount; i++) { 1580 if (vd[i] != NULL && 1581 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1582 break; 1583 ++extracted; 1584 } 1585 } 1586 1587 /* 1588 * If every disk has been moved to the new pool, or if we never 1589 * even attempted to look at them, then we split them off for 1590 * good. 1591 */ 1592 if (!attempt_reopen || gcount == extracted) { 1593 for (i = 0; i < gcount; i++) 1594 if (vd[i] != NULL) 1595 vdev_split(vd[i]); 1596 vdev_reopen(spa->spa_root_vdev); 1597 } 1598 1599 kmem_free(vd, gcount * sizeof (vdev_t *)); 1600 } 1601 1602 static int 1603 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1604 boolean_t mosconfig) 1605 { 1606 nvlist_t *config = spa->spa_config; 1607 char *ereport = FM_EREPORT_ZFS_POOL; 1608 int error; 1609 uint64_t pool_guid; 1610 nvlist_t *nvl; 1611 1612 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1613 return (EINVAL); 1614 1615 /* 1616 * Versioning wasn't explicitly added to the label until later, so if 1617 * it's not present treat it as the initial version. 1618 */ 1619 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1620 &spa->spa_ubsync.ub_version) != 0) 1621 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1622 1623 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1624 &spa->spa_config_txg); 1625 1626 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1627 spa_guid_exists(pool_guid, 0)) { 1628 error = EEXIST; 1629 } else { 1630 spa->spa_load_guid = pool_guid; 1631 1632 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1633 &nvl) == 0) { 1634 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1635 KM_SLEEP) == 0); 1636 } 1637 1638 error = spa_load_impl(spa, pool_guid, config, state, type, 1639 mosconfig, &ereport); 1640 } 1641 1642 spa->spa_minref = refcount_count(&spa->spa_refcount); 1643 if (error && error != EBADF) 1644 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1645 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1646 spa->spa_ena = 0; 1647 1648 return (error); 1649 } 1650 1651 /* 1652 * Load an existing storage pool, using the pool's builtin spa_config as a 1653 * source of configuration information. 1654 */ 1655 static int 1656 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1657 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1658 char **ereport) 1659 { 1660 int error = 0; 1661 nvlist_t *nvroot = NULL; 1662 vdev_t *rvd; 1663 uberblock_t *ub = &spa->spa_uberblock; 1664 uint64_t config_cache_txg = spa->spa_config_txg; 1665 int orig_mode = spa->spa_mode; 1666 int parse; 1667 uint64_t obj; 1668 1669 /* 1670 * If this is an untrusted config, access the pool in read-only mode. 1671 * This prevents things like resilvering recently removed devices. 1672 */ 1673 if (!mosconfig) 1674 spa->spa_mode = FREAD; 1675 1676 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1677 1678 spa->spa_load_state = state; 1679 1680 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 1681 return (EINVAL); 1682 1683 parse = (type == SPA_IMPORT_EXISTING ? 1684 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 1685 1686 /* 1687 * Create "The Godfather" zio to hold all async IOs 1688 */ 1689 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1690 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1691 1692 /* 1693 * Parse the configuration into a vdev tree. We explicitly set the 1694 * value that will be returned by spa_version() since parsing the 1695 * configuration requires knowing the version number. 1696 */ 1697 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1698 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 1699 spa_config_exit(spa, SCL_ALL, FTAG); 1700 1701 if (error != 0) 1702 return (error); 1703 1704 ASSERT(spa->spa_root_vdev == rvd); 1705 1706 if (type != SPA_IMPORT_ASSEMBLE) { 1707 ASSERT(spa_guid(spa) == pool_guid); 1708 } 1709 1710 /* 1711 * Try to open all vdevs, loading each label in the process. 1712 */ 1713 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1714 error = vdev_open(rvd); 1715 spa_config_exit(spa, SCL_ALL, FTAG); 1716 if (error != 0) 1717 return (error); 1718 1719 /* 1720 * We need to validate the vdev labels against the configuration that 1721 * we have in hand, which is dependent on the setting of mosconfig. If 1722 * mosconfig is true then we're validating the vdev labels based on 1723 * that config. Otherwise, we're validating against the cached config 1724 * (zpool.cache) that was read when we loaded the zfs module, and then 1725 * later we will recursively call spa_load() and validate against 1726 * the vdev config. 1727 * 1728 * If we're assembling a new pool that's been split off from an 1729 * existing pool, the labels haven't yet been updated so we skip 1730 * validation for now. 1731 */ 1732 if (type != SPA_IMPORT_ASSEMBLE) { 1733 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1734 error = vdev_validate(rvd); 1735 spa_config_exit(spa, SCL_ALL, FTAG); 1736 1737 if (error != 0) 1738 return (error); 1739 1740 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1741 return (ENXIO); 1742 } 1743 1744 /* 1745 * Find the best uberblock. 1746 */ 1747 vdev_uberblock_load(NULL, rvd, ub); 1748 1749 /* 1750 * If we weren't able to find a single valid uberblock, return failure. 1751 */ 1752 if (ub->ub_txg == 0) 1753 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 1754 1755 /* 1756 * If the pool is newer than the code, we can't open it. 1757 */ 1758 if (ub->ub_version > SPA_VERSION) 1759 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 1760 1761 /* 1762 * If the vdev guid sum doesn't match the uberblock, we have an 1763 * incomplete configuration. 1764 */ 1765 if (mosconfig && type != SPA_IMPORT_ASSEMBLE && 1766 rvd->vdev_guid_sum != ub->ub_guid_sum) 1767 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 1768 1769 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 1770 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1771 spa_try_repair(spa, config); 1772 spa_config_exit(spa, SCL_ALL, FTAG); 1773 nvlist_free(spa->spa_config_splitting); 1774 spa->spa_config_splitting = NULL; 1775 } 1776 1777 /* 1778 * Initialize internal SPA structures. 1779 */ 1780 spa->spa_state = POOL_STATE_ACTIVE; 1781 spa->spa_ubsync = spa->spa_uberblock; 1782 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 1783 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 1784 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 1785 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 1786 spa->spa_claim_max_txg = spa->spa_first_txg; 1787 spa->spa_prev_software_version = ub->ub_software_version; 1788 1789 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1790 if (error) 1791 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1792 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1793 1794 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 1795 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1796 1797 if (!mosconfig) { 1798 uint64_t hostid; 1799 nvlist_t *policy = NULL, *nvconfig; 1800 1801 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 1802 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1803 1804 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 1805 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1806 char *hostname; 1807 unsigned long myhostid = 0; 1808 1809 VERIFY(nvlist_lookup_string(nvconfig, 1810 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1811 1812 #ifdef _KERNEL 1813 myhostid = zone_get_hostid(NULL); 1814 #else /* _KERNEL */ 1815 /* 1816 * We're emulating the system's hostid in userland, so 1817 * we can't use zone_get_hostid(). 1818 */ 1819 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1820 #endif /* _KERNEL */ 1821 if (hostid != 0 && myhostid != 0 && 1822 hostid != myhostid) { 1823 nvlist_free(nvconfig); 1824 cmn_err(CE_WARN, "pool '%s' could not be " 1825 "loaded as it was last accessed by " 1826 "another system (host: %s hostid: 0x%lx). " 1827 "See: http://www.sun.com/msg/ZFS-8000-EY", 1828 spa_name(spa), hostname, 1829 (unsigned long)hostid); 1830 return (EBADF); 1831 } 1832 } 1833 if (nvlist_lookup_nvlist(spa->spa_config, 1834 ZPOOL_REWIND_POLICY, &policy) == 0) 1835 VERIFY(nvlist_add_nvlist(nvconfig, 1836 ZPOOL_REWIND_POLICY, policy) == 0); 1837 1838 spa_config_set(spa, nvconfig); 1839 spa_unload(spa); 1840 spa_deactivate(spa); 1841 spa_activate(spa, orig_mode); 1842 1843 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 1844 } 1845 1846 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 1847 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1848 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 1849 if (error != 0) 1850 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1851 1852 /* 1853 * Load the bit that tells us to use the new accounting function 1854 * (raid-z deflation). If we have an older pool, this will not 1855 * be present. 1856 */ 1857 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 1858 if (error != 0 && error != ENOENT) 1859 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1860 1861 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 1862 &spa->spa_creation_version); 1863 if (error != 0 && error != ENOENT) 1864 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1865 1866 /* 1867 * Load the persistent error log. If we have an older pool, this will 1868 * not be present. 1869 */ 1870 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 1871 if (error != 0 && error != ENOENT) 1872 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1873 1874 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 1875 &spa->spa_errlog_scrub); 1876 if (error != 0 && error != ENOENT) 1877 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1878 1879 /* 1880 * Load the history object. If we have an older pool, this 1881 * will not be present. 1882 */ 1883 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 1884 if (error != 0 && error != ENOENT) 1885 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1886 1887 /* 1888 * If we're assembling the pool from the split-off vdevs of 1889 * an existing pool, we don't want to attach the spares & cache 1890 * devices. 1891 */ 1892 1893 /* 1894 * Load any hot spares for this pool. 1895 */ 1896 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 1897 if (error != 0 && error != ENOENT) 1898 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1899 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1900 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1901 if (load_nvlist(spa, spa->spa_spares.sav_object, 1902 &spa->spa_spares.sav_config) != 0) 1903 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1904 1905 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1906 spa_load_spares(spa); 1907 spa_config_exit(spa, SCL_ALL, FTAG); 1908 } else if (error == 0) { 1909 spa->spa_spares.sav_sync = B_TRUE; 1910 } 1911 1912 /* 1913 * Load any level 2 ARC devices for this pool. 1914 */ 1915 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 1916 &spa->spa_l2cache.sav_object); 1917 if (error != 0 && error != ENOENT) 1918 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1919 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1920 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1921 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1922 &spa->spa_l2cache.sav_config) != 0) 1923 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1924 1925 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1926 spa_load_l2cache(spa); 1927 spa_config_exit(spa, SCL_ALL, FTAG); 1928 } else if (error == 0) { 1929 spa->spa_l2cache.sav_sync = B_TRUE; 1930 } 1931 1932 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1933 1934 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 1935 if (error && error != ENOENT) 1936 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1937 1938 if (error == 0) { 1939 uint64_t autoreplace; 1940 1941 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 1942 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 1943 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 1944 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 1945 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 1946 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 1947 &spa->spa_dedup_ditto); 1948 1949 spa->spa_autoreplace = (autoreplace != 0); 1950 } 1951 1952 /* 1953 * If the 'autoreplace' property is set, then post a resource notifying 1954 * the ZFS DE that it should not issue any faults for unopenable 1955 * devices. We also iterate over the vdevs, and post a sysevent for any 1956 * unopenable vdevs so that the normal autoreplace handler can take 1957 * over. 1958 */ 1959 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 1960 spa_check_removed(spa->spa_root_vdev); 1961 /* 1962 * For the import case, this is done in spa_import(), because 1963 * at this point we're using the spare definitions from 1964 * the MOS config, not necessarily from the userland config. 1965 */ 1966 if (state != SPA_LOAD_IMPORT) { 1967 spa_aux_check_removed(&spa->spa_spares); 1968 spa_aux_check_removed(&spa->spa_l2cache); 1969 } 1970 } 1971 1972 /* 1973 * Load the vdev state for all toplevel vdevs. 1974 */ 1975 vdev_load(rvd); 1976 1977 /* 1978 * Propagate the leaf DTLs we just loaded all the way up the tree. 1979 */ 1980 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1981 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1982 spa_config_exit(spa, SCL_ALL, FTAG); 1983 1984 /* 1985 * Check the state of the root vdev. If it can't be opened, it 1986 * indicates one or more toplevel vdevs are faulted. 1987 */ 1988 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1989 return (ENXIO); 1990 1991 /* 1992 * Load the DDTs (dedup tables). 1993 */ 1994 error = ddt_load(spa); 1995 if (error != 0) 1996 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1997 1998 spa_update_dspace(spa); 1999 2000 if (state != SPA_LOAD_TRYIMPORT) { 2001 error = spa_load_verify(spa); 2002 if (error) 2003 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2004 error)); 2005 } 2006 2007 /* 2008 * Load the intent log state and check log integrity. If we're 2009 * assembling a pool from a split, the log is not transferred over. 2010 */ 2011 if (type != SPA_IMPORT_ASSEMBLE) { 2012 nvlist_t *nvconfig; 2013 2014 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2015 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2016 2017 VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE, 2018 &nvroot) == 0); 2019 spa_load_log_state(spa, nvroot); 2020 nvlist_free(nvconfig); 2021 2022 if (spa_check_logs(spa)) { 2023 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2024 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2025 } 2026 } 2027 2028 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2029 spa->spa_load_max_txg == UINT64_MAX)) { 2030 dmu_tx_t *tx; 2031 int need_update = B_FALSE; 2032 2033 ASSERT(state != SPA_LOAD_TRYIMPORT); 2034 2035 /* 2036 * Claim log blocks that haven't been committed yet. 2037 * This must all happen in a single txg. 2038 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2039 * invoked from zil_claim_log_block()'s i/o done callback. 2040 * Price of rollback is that we abandon the log. 2041 */ 2042 spa->spa_claiming = B_TRUE; 2043 2044 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2045 spa_first_txg(spa)); 2046 (void) dmu_objset_find(spa_name(spa), 2047 zil_claim, tx, DS_FIND_CHILDREN); 2048 dmu_tx_commit(tx); 2049 2050 spa->spa_claiming = B_FALSE; 2051 2052 spa_set_log_state(spa, SPA_LOG_GOOD); 2053 spa->spa_sync_on = B_TRUE; 2054 txg_sync_start(spa->spa_dsl_pool); 2055 2056 /* 2057 * Wait for all claims to sync. We sync up to the highest 2058 * claimed log block birth time so that claimed log blocks 2059 * don't appear to be from the future. spa_claim_max_txg 2060 * will have been set for us by either zil_check_log_chain() 2061 * (invoked from spa_check_logs()) or zil_claim() above. 2062 */ 2063 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2064 2065 /* 2066 * If the config cache is stale, or we have uninitialized 2067 * metaslabs (see spa_vdev_add()), then update the config. 2068 * 2069 * If spa_load_verbatim is true, trust the current 2070 * in-core spa_config and update the disk labels. 2071 */ 2072 if (config_cache_txg != spa->spa_config_txg || 2073 state == SPA_LOAD_IMPORT || spa->spa_load_verbatim || 2074 state == SPA_LOAD_RECOVER) 2075 need_update = B_TRUE; 2076 2077 for (int c = 0; c < rvd->vdev_children; c++) 2078 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2079 need_update = B_TRUE; 2080 2081 /* 2082 * Update the config cache asychronously in case we're the 2083 * root pool, in which case the config cache isn't writable yet. 2084 */ 2085 if (need_update) 2086 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2087 2088 /* 2089 * Check all DTLs to see if anything needs resilvering. 2090 */ 2091 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2092 vdev_resilver_needed(rvd, NULL, NULL)) 2093 spa_async_request(spa, SPA_ASYNC_RESILVER); 2094 2095 /* 2096 * Delete any inconsistent datasets. 2097 */ 2098 (void) dmu_objset_find(spa_name(spa), 2099 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2100 2101 /* 2102 * Clean up any stale temporary dataset userrefs. 2103 */ 2104 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2105 } 2106 2107 return (0); 2108 } 2109 2110 static int 2111 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2112 { 2113 spa_unload(spa); 2114 spa_deactivate(spa); 2115 2116 spa->spa_load_max_txg--; 2117 2118 spa_activate(spa, spa_mode_global); 2119 spa_async_suspend(spa); 2120 2121 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2122 } 2123 2124 static int 2125 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2126 uint64_t max_request, int rewind_flags) 2127 { 2128 nvlist_t *config = NULL; 2129 int load_error, rewind_error; 2130 uint64_t safe_rewind_txg; 2131 uint64_t min_txg; 2132 2133 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2134 spa->spa_load_max_txg = spa->spa_load_txg; 2135 spa_set_log_state(spa, SPA_LOG_CLEAR); 2136 } else { 2137 spa->spa_load_max_txg = max_request; 2138 } 2139 2140 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2141 mosconfig); 2142 if (load_error == 0) 2143 return (0); 2144 2145 if (spa->spa_root_vdev != NULL) 2146 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2147 2148 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2149 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2150 2151 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2152 nvlist_free(config); 2153 return (load_error); 2154 } 2155 2156 /* Price of rolling back is discarding txgs, including log */ 2157 if (state == SPA_LOAD_RECOVER) 2158 spa_set_log_state(spa, SPA_LOG_CLEAR); 2159 2160 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2161 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2162 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2163 TXG_INITIAL : safe_rewind_txg; 2164 2165 /* 2166 * Continue as long as we're finding errors, we're still within 2167 * the acceptable rewind range, and we're still finding uberblocks 2168 */ 2169 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2170 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2171 if (spa->spa_load_max_txg < safe_rewind_txg) 2172 spa->spa_extreme_rewind = B_TRUE; 2173 rewind_error = spa_load_retry(spa, state, mosconfig); 2174 } 2175 2176 if (config) 2177 spa_rewind_data_to_nvlist(spa, config); 2178 2179 spa->spa_extreme_rewind = B_FALSE; 2180 spa->spa_load_max_txg = UINT64_MAX; 2181 2182 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2183 spa_config_set(spa, config); 2184 2185 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error); 2186 } 2187 2188 /* 2189 * Pool Open/Import 2190 * 2191 * The import case is identical to an open except that the configuration is sent 2192 * down from userland, instead of grabbed from the configuration cache. For the 2193 * case of an open, the pool configuration will exist in the 2194 * POOL_STATE_UNINITIALIZED state. 2195 * 2196 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2197 * the same time open the pool, without having to keep around the spa_t in some 2198 * ambiguous state. 2199 */ 2200 static int 2201 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2202 nvlist_t **config) 2203 { 2204 spa_t *spa; 2205 int error; 2206 int locked = B_FALSE; 2207 2208 *spapp = NULL; 2209 2210 /* 2211 * As disgusting as this is, we need to support recursive calls to this 2212 * function because dsl_dir_open() is called during spa_load(), and ends 2213 * up calling spa_open() again. The real fix is to figure out how to 2214 * avoid dsl_dir_open() calling this in the first place. 2215 */ 2216 if (mutex_owner(&spa_namespace_lock) != curthread) { 2217 mutex_enter(&spa_namespace_lock); 2218 locked = B_TRUE; 2219 } 2220 2221 if ((spa = spa_lookup(pool)) == NULL) { 2222 if (locked) 2223 mutex_exit(&spa_namespace_lock); 2224 return (ENOENT); 2225 } 2226 2227 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2228 spa_load_state_t state = SPA_LOAD_OPEN; 2229 zpool_rewind_policy_t policy; 2230 2231 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2232 &policy); 2233 if (policy.zrp_request & ZPOOL_DO_REWIND) 2234 state = SPA_LOAD_RECOVER; 2235 2236 spa_activate(spa, spa_mode_global); 2237 2238 if (state != SPA_LOAD_RECOVER) 2239 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2240 2241 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2242 policy.zrp_request); 2243 2244 if (error == EBADF) { 2245 /* 2246 * If vdev_validate() returns failure (indicated by 2247 * EBADF), it indicates that one of the vdevs indicates 2248 * that the pool has been exported or destroyed. If 2249 * this is the case, the config cache is out of sync and 2250 * we should remove the pool from the namespace. 2251 */ 2252 spa_unload(spa); 2253 spa_deactivate(spa); 2254 spa_config_sync(spa, B_TRUE, B_TRUE); 2255 spa_remove(spa); 2256 if (locked) 2257 mutex_exit(&spa_namespace_lock); 2258 return (ENOENT); 2259 } 2260 2261 if (error) { 2262 /* 2263 * We can't open the pool, but we still have useful 2264 * information: the state of each vdev after the 2265 * attempted vdev_open(). Return this to the user. 2266 */ 2267 if (config != NULL && spa->spa_config) 2268 VERIFY(nvlist_dup(spa->spa_config, config, 2269 KM_SLEEP) == 0); 2270 spa_unload(spa); 2271 spa_deactivate(spa); 2272 spa->spa_last_open_failed = error; 2273 if (locked) 2274 mutex_exit(&spa_namespace_lock); 2275 *spapp = NULL; 2276 return (error); 2277 } 2278 2279 } 2280 2281 spa_open_ref(spa, tag); 2282 2283 2284 if (config != NULL) 2285 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2286 2287 if (locked) { 2288 spa->spa_last_open_failed = 0; 2289 spa->spa_last_ubsync_txg = 0; 2290 spa->spa_load_txg = 0; 2291 mutex_exit(&spa_namespace_lock); 2292 } 2293 2294 *spapp = spa; 2295 2296 return (0); 2297 } 2298 2299 int 2300 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2301 nvlist_t **config) 2302 { 2303 return (spa_open_common(name, spapp, tag, policy, config)); 2304 } 2305 2306 int 2307 spa_open(const char *name, spa_t **spapp, void *tag) 2308 { 2309 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2310 } 2311 2312 /* 2313 * Lookup the given spa_t, incrementing the inject count in the process, 2314 * preventing it from being exported or destroyed. 2315 */ 2316 spa_t * 2317 spa_inject_addref(char *name) 2318 { 2319 spa_t *spa; 2320 2321 mutex_enter(&spa_namespace_lock); 2322 if ((spa = spa_lookup(name)) == NULL) { 2323 mutex_exit(&spa_namespace_lock); 2324 return (NULL); 2325 } 2326 spa->spa_inject_ref++; 2327 mutex_exit(&spa_namespace_lock); 2328 2329 return (spa); 2330 } 2331 2332 void 2333 spa_inject_delref(spa_t *spa) 2334 { 2335 mutex_enter(&spa_namespace_lock); 2336 spa->spa_inject_ref--; 2337 mutex_exit(&spa_namespace_lock); 2338 } 2339 2340 /* 2341 * Add spares device information to the nvlist. 2342 */ 2343 static void 2344 spa_add_spares(spa_t *spa, nvlist_t *config) 2345 { 2346 nvlist_t **spares; 2347 uint_t i, nspares; 2348 nvlist_t *nvroot; 2349 uint64_t guid; 2350 vdev_stat_t *vs; 2351 uint_t vsc; 2352 uint64_t pool; 2353 2354 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2355 2356 if (spa->spa_spares.sav_count == 0) 2357 return; 2358 2359 VERIFY(nvlist_lookup_nvlist(config, 2360 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2361 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2362 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2363 if (nspares != 0) { 2364 VERIFY(nvlist_add_nvlist_array(nvroot, 2365 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2366 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2367 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2368 2369 /* 2370 * Go through and find any spares which have since been 2371 * repurposed as an active spare. If this is the case, update 2372 * their status appropriately. 2373 */ 2374 for (i = 0; i < nspares; i++) { 2375 VERIFY(nvlist_lookup_uint64(spares[i], 2376 ZPOOL_CONFIG_GUID, &guid) == 0); 2377 if (spa_spare_exists(guid, &pool, NULL) && 2378 pool != 0ULL) { 2379 VERIFY(nvlist_lookup_uint64_array( 2380 spares[i], ZPOOL_CONFIG_VDEV_STATS, 2381 (uint64_t **)&vs, &vsc) == 0); 2382 vs->vs_state = VDEV_STATE_CANT_OPEN; 2383 vs->vs_aux = VDEV_AUX_SPARED; 2384 } 2385 } 2386 } 2387 } 2388 2389 /* 2390 * Add l2cache device information to the nvlist, including vdev stats. 2391 */ 2392 static void 2393 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2394 { 2395 nvlist_t **l2cache; 2396 uint_t i, j, nl2cache; 2397 nvlist_t *nvroot; 2398 uint64_t guid; 2399 vdev_t *vd; 2400 vdev_stat_t *vs; 2401 uint_t vsc; 2402 2403 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2404 2405 if (spa->spa_l2cache.sav_count == 0) 2406 return; 2407 2408 VERIFY(nvlist_lookup_nvlist(config, 2409 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2410 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2411 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2412 if (nl2cache != 0) { 2413 VERIFY(nvlist_add_nvlist_array(nvroot, 2414 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2415 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2416 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2417 2418 /* 2419 * Update level 2 cache device stats. 2420 */ 2421 2422 for (i = 0; i < nl2cache; i++) { 2423 VERIFY(nvlist_lookup_uint64(l2cache[i], 2424 ZPOOL_CONFIG_GUID, &guid) == 0); 2425 2426 vd = NULL; 2427 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2428 if (guid == 2429 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2430 vd = spa->spa_l2cache.sav_vdevs[j]; 2431 break; 2432 } 2433 } 2434 ASSERT(vd != NULL); 2435 2436 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2437 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 2438 == 0); 2439 vdev_get_stats(vd, vs); 2440 } 2441 } 2442 } 2443 2444 int 2445 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 2446 { 2447 int error; 2448 spa_t *spa; 2449 2450 *config = NULL; 2451 error = spa_open_common(name, &spa, FTAG, NULL, config); 2452 2453 if (spa != NULL) { 2454 /* 2455 * This still leaves a window of inconsistency where the spares 2456 * or l2cache devices could change and the config would be 2457 * self-inconsistent. 2458 */ 2459 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2460 2461 if (*config != NULL) { 2462 VERIFY(nvlist_add_uint64(*config, 2463 ZPOOL_CONFIG_ERRCOUNT, 2464 spa_get_errlog_size(spa)) == 0); 2465 2466 if (spa_suspended(spa)) 2467 VERIFY(nvlist_add_uint64(*config, 2468 ZPOOL_CONFIG_SUSPENDED, 2469 spa->spa_failmode) == 0); 2470 2471 spa_add_spares(spa, *config); 2472 spa_add_l2cache(spa, *config); 2473 } 2474 } 2475 2476 /* 2477 * We want to get the alternate root even for faulted pools, so we cheat 2478 * and call spa_lookup() directly. 2479 */ 2480 if (altroot) { 2481 if (spa == NULL) { 2482 mutex_enter(&spa_namespace_lock); 2483 spa = spa_lookup(name); 2484 if (spa) 2485 spa_altroot(spa, altroot, buflen); 2486 else 2487 altroot[0] = '\0'; 2488 spa = NULL; 2489 mutex_exit(&spa_namespace_lock); 2490 } else { 2491 spa_altroot(spa, altroot, buflen); 2492 } 2493 } 2494 2495 if (spa != NULL) { 2496 spa_config_exit(spa, SCL_CONFIG, FTAG); 2497 spa_close(spa, FTAG); 2498 } 2499 2500 return (error); 2501 } 2502 2503 /* 2504 * Validate that the auxiliary device array is well formed. We must have an 2505 * array of nvlists, each which describes a valid leaf vdev. If this is an 2506 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 2507 * specified, as long as they are well-formed. 2508 */ 2509 static int 2510 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 2511 spa_aux_vdev_t *sav, const char *config, uint64_t version, 2512 vdev_labeltype_t label) 2513 { 2514 nvlist_t **dev; 2515 uint_t i, ndev; 2516 vdev_t *vd; 2517 int error; 2518 2519 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2520 2521 /* 2522 * It's acceptable to have no devs specified. 2523 */ 2524 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 2525 return (0); 2526 2527 if (ndev == 0) 2528 return (EINVAL); 2529 2530 /* 2531 * Make sure the pool is formatted with a version that supports this 2532 * device type. 2533 */ 2534 if (spa_version(spa) < version) 2535 return (ENOTSUP); 2536 2537 /* 2538 * Set the pending device list so we correctly handle device in-use 2539 * checking. 2540 */ 2541 sav->sav_pending = dev; 2542 sav->sav_npending = ndev; 2543 2544 for (i = 0; i < ndev; i++) { 2545 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 2546 mode)) != 0) 2547 goto out; 2548 2549 if (!vd->vdev_ops->vdev_op_leaf) { 2550 vdev_free(vd); 2551 error = EINVAL; 2552 goto out; 2553 } 2554 2555 /* 2556 * The L2ARC currently only supports disk devices in 2557 * kernel context. For user-level testing, we allow it. 2558 */ 2559 #ifdef _KERNEL 2560 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 2561 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 2562 error = ENOTBLK; 2563 goto out; 2564 } 2565 #endif 2566 vd->vdev_top = vd; 2567 2568 if ((error = vdev_open(vd)) == 0 && 2569 (error = vdev_label_init(vd, crtxg, label)) == 0) { 2570 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 2571 vd->vdev_guid) == 0); 2572 } 2573 2574 vdev_free(vd); 2575 2576 if (error && 2577 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 2578 goto out; 2579 else 2580 error = 0; 2581 } 2582 2583 out: 2584 sav->sav_pending = NULL; 2585 sav->sav_npending = 0; 2586 return (error); 2587 } 2588 2589 static int 2590 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2591 { 2592 int error; 2593 2594 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2595 2596 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2597 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2598 VDEV_LABEL_SPARE)) != 0) { 2599 return (error); 2600 } 2601 2602 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2603 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2604 VDEV_LABEL_L2CACHE)); 2605 } 2606 2607 static void 2608 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2609 const char *config) 2610 { 2611 int i; 2612 2613 if (sav->sav_config != NULL) { 2614 nvlist_t **olddevs; 2615 uint_t oldndevs; 2616 nvlist_t **newdevs; 2617 2618 /* 2619 * Generate new dev list by concatentating with the 2620 * current dev list. 2621 */ 2622 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2623 &olddevs, &oldndevs) == 0); 2624 2625 newdevs = kmem_alloc(sizeof (void *) * 2626 (ndevs + oldndevs), KM_SLEEP); 2627 for (i = 0; i < oldndevs; i++) 2628 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2629 KM_SLEEP) == 0); 2630 for (i = 0; i < ndevs; i++) 2631 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2632 KM_SLEEP) == 0); 2633 2634 VERIFY(nvlist_remove(sav->sav_config, config, 2635 DATA_TYPE_NVLIST_ARRAY) == 0); 2636 2637 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2638 config, newdevs, ndevs + oldndevs) == 0); 2639 for (i = 0; i < oldndevs + ndevs; i++) 2640 nvlist_free(newdevs[i]); 2641 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2642 } else { 2643 /* 2644 * Generate a new dev list. 2645 */ 2646 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2647 KM_SLEEP) == 0); 2648 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2649 devs, ndevs) == 0); 2650 } 2651 } 2652 2653 /* 2654 * Stop and drop level 2 ARC devices 2655 */ 2656 void 2657 spa_l2cache_drop(spa_t *spa) 2658 { 2659 vdev_t *vd; 2660 int i; 2661 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2662 2663 for (i = 0; i < sav->sav_count; i++) { 2664 uint64_t pool; 2665 2666 vd = sav->sav_vdevs[i]; 2667 ASSERT(vd != NULL); 2668 2669 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2670 pool != 0ULL && l2arc_vdev_present(vd)) 2671 l2arc_remove_vdev(vd); 2672 if (vd->vdev_isl2cache) 2673 spa_l2cache_remove(vd); 2674 vdev_clear_stats(vd); 2675 (void) vdev_close(vd); 2676 } 2677 } 2678 2679 /* 2680 * Pool Creation 2681 */ 2682 int 2683 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2684 const char *history_str, nvlist_t *zplprops) 2685 { 2686 spa_t *spa; 2687 char *altroot = NULL; 2688 vdev_t *rvd; 2689 dsl_pool_t *dp; 2690 dmu_tx_t *tx; 2691 int error = 0; 2692 uint64_t txg = TXG_INITIAL; 2693 nvlist_t **spares, **l2cache; 2694 uint_t nspares, nl2cache; 2695 uint64_t version, obj; 2696 2697 /* 2698 * If this pool already exists, return failure. 2699 */ 2700 mutex_enter(&spa_namespace_lock); 2701 if (spa_lookup(pool) != NULL) { 2702 mutex_exit(&spa_namespace_lock); 2703 return (EEXIST); 2704 } 2705 2706 /* 2707 * Allocate a new spa_t structure. 2708 */ 2709 (void) nvlist_lookup_string(props, 2710 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2711 spa = spa_add(pool, NULL, altroot); 2712 spa_activate(spa, spa_mode_global); 2713 2714 if (props && (error = spa_prop_validate(spa, props))) { 2715 spa_deactivate(spa); 2716 spa_remove(spa); 2717 mutex_exit(&spa_namespace_lock); 2718 return (error); 2719 } 2720 2721 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2722 &version) != 0) 2723 version = SPA_VERSION; 2724 ASSERT(version <= SPA_VERSION); 2725 2726 spa->spa_first_txg = txg; 2727 spa->spa_uberblock.ub_txg = txg - 1; 2728 spa->spa_uberblock.ub_version = version; 2729 spa->spa_ubsync = spa->spa_uberblock; 2730 2731 /* 2732 * Create "The Godfather" zio to hold all async IOs 2733 */ 2734 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2735 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2736 2737 /* 2738 * Create the root vdev. 2739 */ 2740 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2741 2742 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2743 2744 ASSERT(error != 0 || rvd != NULL); 2745 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2746 2747 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2748 error = EINVAL; 2749 2750 if (error == 0 && 2751 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2752 (error = spa_validate_aux(spa, nvroot, txg, 2753 VDEV_ALLOC_ADD)) == 0) { 2754 for (int c = 0; c < rvd->vdev_children; c++) { 2755 vdev_metaslab_set_size(rvd->vdev_child[c]); 2756 vdev_expand(rvd->vdev_child[c], txg); 2757 } 2758 } 2759 2760 spa_config_exit(spa, SCL_ALL, FTAG); 2761 2762 if (error != 0) { 2763 spa_unload(spa); 2764 spa_deactivate(spa); 2765 spa_remove(spa); 2766 mutex_exit(&spa_namespace_lock); 2767 return (error); 2768 } 2769 2770 /* 2771 * Get the list of spares, if specified. 2772 */ 2773 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2774 &spares, &nspares) == 0) { 2775 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2776 KM_SLEEP) == 0); 2777 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2778 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2779 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2780 spa_load_spares(spa); 2781 spa_config_exit(spa, SCL_ALL, FTAG); 2782 spa->spa_spares.sav_sync = B_TRUE; 2783 } 2784 2785 /* 2786 * Get the list of level 2 cache devices, if specified. 2787 */ 2788 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2789 &l2cache, &nl2cache) == 0) { 2790 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2791 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2792 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2793 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2794 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2795 spa_load_l2cache(spa); 2796 spa_config_exit(spa, SCL_ALL, FTAG); 2797 spa->spa_l2cache.sav_sync = B_TRUE; 2798 } 2799 2800 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2801 spa->spa_meta_objset = dp->dp_meta_objset; 2802 2803 /* 2804 * Create DDTs (dedup tables). 2805 */ 2806 ddt_create(spa); 2807 2808 spa_update_dspace(spa); 2809 2810 tx = dmu_tx_create_assigned(dp, txg); 2811 2812 /* 2813 * Create the pool config object. 2814 */ 2815 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2816 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2817 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2818 2819 if (zap_add(spa->spa_meta_objset, 2820 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2821 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2822 cmn_err(CE_PANIC, "failed to add pool config"); 2823 } 2824 2825 if (zap_add(spa->spa_meta_objset, 2826 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 2827 sizeof (uint64_t), 1, &version, tx) != 0) { 2828 cmn_err(CE_PANIC, "failed to add pool version"); 2829 } 2830 2831 /* Newly created pools with the right version are always deflated. */ 2832 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2833 spa->spa_deflate = TRUE; 2834 if (zap_add(spa->spa_meta_objset, 2835 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2836 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2837 cmn_err(CE_PANIC, "failed to add deflate"); 2838 } 2839 } 2840 2841 /* 2842 * Create the deferred-free bpobj. Turn off compression 2843 * because sync-to-convergence takes longer if the blocksize 2844 * keeps changing. 2845 */ 2846 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 2847 dmu_object_set_compress(spa->spa_meta_objset, obj, 2848 ZIO_COMPRESS_OFF, tx); 2849 if (zap_add(spa->spa_meta_objset, 2850 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 2851 sizeof (uint64_t), 1, &obj, tx) != 0) { 2852 cmn_err(CE_PANIC, "failed to add bpobj"); 2853 } 2854 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 2855 spa->spa_meta_objset, obj)); 2856 2857 /* 2858 * Create the pool's history object. 2859 */ 2860 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2861 spa_history_create_obj(spa, tx); 2862 2863 /* 2864 * Set pool properties. 2865 */ 2866 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2867 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2868 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2869 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 2870 2871 if (props != NULL) { 2872 spa_configfile_set(spa, props, B_FALSE); 2873 spa_sync_props(spa, props, tx); 2874 } 2875 2876 dmu_tx_commit(tx); 2877 2878 spa->spa_sync_on = B_TRUE; 2879 txg_sync_start(spa->spa_dsl_pool); 2880 2881 /* 2882 * We explicitly wait for the first transaction to complete so that our 2883 * bean counters are appropriately updated. 2884 */ 2885 txg_wait_synced(spa->spa_dsl_pool, txg); 2886 2887 spa_config_sync(spa, B_FALSE, B_TRUE); 2888 2889 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2890 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2891 spa_history_log_version(spa, LOG_POOL_CREATE); 2892 2893 spa->spa_minref = refcount_count(&spa->spa_refcount); 2894 2895 mutex_exit(&spa_namespace_lock); 2896 2897 return (0); 2898 } 2899 2900 #ifdef _KERNEL 2901 /* 2902 * Get the root pool information from the root disk, then import the root pool 2903 * during the system boot up time. 2904 */ 2905 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 2906 2907 static nvlist_t * 2908 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 2909 { 2910 nvlist_t *config; 2911 nvlist_t *nvtop, *nvroot; 2912 uint64_t pgid; 2913 2914 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 2915 return (NULL); 2916 2917 /* 2918 * Add this top-level vdev to the child array. 2919 */ 2920 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2921 &nvtop) == 0); 2922 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 2923 &pgid) == 0); 2924 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 2925 2926 /* 2927 * Put this pool's top-level vdevs into a root vdev. 2928 */ 2929 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2930 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 2931 VDEV_TYPE_ROOT) == 0); 2932 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2933 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2934 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2935 &nvtop, 1) == 0); 2936 2937 /* 2938 * Replace the existing vdev_tree with the new root vdev in 2939 * this pool's configuration (remove the old, add the new). 2940 */ 2941 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2942 nvlist_free(nvroot); 2943 return (config); 2944 } 2945 2946 /* 2947 * Walk the vdev tree and see if we can find a device with "better" 2948 * configuration. A configuration is "better" if the label on that 2949 * device has a more recent txg. 2950 */ 2951 static void 2952 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 2953 { 2954 for (int c = 0; c < vd->vdev_children; c++) 2955 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 2956 2957 if (vd->vdev_ops->vdev_op_leaf) { 2958 nvlist_t *label; 2959 uint64_t label_txg; 2960 2961 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 2962 &label) != 0) 2963 return; 2964 2965 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 2966 &label_txg) == 0); 2967 2968 /* 2969 * Do we have a better boot device? 2970 */ 2971 if (label_txg > *txg) { 2972 *txg = label_txg; 2973 *avd = vd; 2974 } 2975 nvlist_free(label); 2976 } 2977 } 2978 2979 /* 2980 * Import a root pool. 2981 * 2982 * For x86. devpath_list will consist of devid and/or physpath name of 2983 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2984 * The GRUB "findroot" command will return the vdev we should boot. 2985 * 2986 * For Sparc, devpath_list consists the physpath name of the booting device 2987 * no matter the rootpool is a single device pool or a mirrored pool. 2988 * e.g. 2989 * "/pci@1f,0/ide@d/disk@0,0:a" 2990 */ 2991 int 2992 spa_import_rootpool(char *devpath, char *devid) 2993 { 2994 spa_t *spa; 2995 vdev_t *rvd, *bvd, *avd = NULL; 2996 nvlist_t *config, *nvtop; 2997 uint64_t guid, txg; 2998 char *pname; 2999 int error; 3000 3001 /* 3002 * Read the label from the boot device and generate a configuration. 3003 */ 3004 config = spa_generate_rootconf(devpath, devid, &guid); 3005 #if defined(_OBP) && defined(_KERNEL) 3006 if (config == NULL) { 3007 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3008 /* iscsi boot */ 3009 get_iscsi_bootpath_phy(devpath); 3010 config = spa_generate_rootconf(devpath, devid, &guid); 3011 } 3012 } 3013 #endif 3014 if (config == NULL) { 3015 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 3016 devpath); 3017 return (EIO); 3018 } 3019 3020 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3021 &pname) == 0); 3022 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3023 3024 mutex_enter(&spa_namespace_lock); 3025 if ((spa = spa_lookup(pname)) != NULL) { 3026 /* 3027 * Remove the existing root pool from the namespace so that we 3028 * can replace it with the correct config we just read in. 3029 */ 3030 spa_remove(spa); 3031 } 3032 3033 spa = spa_add(pname, config, NULL); 3034 spa->spa_is_root = B_TRUE; 3035 spa->spa_load_verbatim = B_TRUE; 3036 3037 /* 3038 * Build up a vdev tree based on the boot device's label config. 3039 */ 3040 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3041 &nvtop) == 0); 3042 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3043 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3044 VDEV_ALLOC_ROOTPOOL); 3045 spa_config_exit(spa, SCL_ALL, FTAG); 3046 if (error) { 3047 mutex_exit(&spa_namespace_lock); 3048 nvlist_free(config); 3049 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3050 pname); 3051 return (error); 3052 } 3053 3054 /* 3055 * Get the boot vdev. 3056 */ 3057 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3058 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3059 (u_longlong_t)guid); 3060 error = ENOENT; 3061 goto out; 3062 } 3063 3064 /* 3065 * Determine if there is a better boot device. 3066 */ 3067 avd = bvd; 3068 spa_alt_rootvdev(rvd, &avd, &txg); 3069 if (avd != bvd) { 3070 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3071 "try booting from '%s'", avd->vdev_path); 3072 error = EINVAL; 3073 goto out; 3074 } 3075 3076 /* 3077 * If the boot device is part of a spare vdev then ensure that 3078 * we're booting off the active spare. 3079 */ 3080 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3081 !bvd->vdev_isspare) { 3082 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3083 "try booting from '%s'", 3084 bvd->vdev_parent->vdev_child[1]->vdev_path); 3085 error = EINVAL; 3086 goto out; 3087 } 3088 3089 error = 0; 3090 spa_history_log_version(spa, LOG_POOL_IMPORT); 3091 out: 3092 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3093 vdev_free(rvd); 3094 spa_config_exit(spa, SCL_ALL, FTAG); 3095 mutex_exit(&spa_namespace_lock); 3096 3097 nvlist_free(config); 3098 return (error); 3099 } 3100 3101 #endif 3102 3103 /* 3104 * Take a pool and insert it into the namespace as if it had been loaded at 3105 * boot. 3106 */ 3107 int 3108 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props) 3109 { 3110 spa_t *spa; 3111 char *altroot = NULL; 3112 3113 mutex_enter(&spa_namespace_lock); 3114 if (spa_lookup(pool) != NULL) { 3115 mutex_exit(&spa_namespace_lock); 3116 return (EEXIST); 3117 } 3118 3119 (void) nvlist_lookup_string(props, 3120 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3121 spa = spa_add(pool, config, altroot); 3122 3123 spa->spa_load_verbatim = B_TRUE; 3124 3125 if (props != NULL) 3126 spa_configfile_set(spa, props, B_FALSE); 3127 3128 spa_config_sync(spa, B_FALSE, B_TRUE); 3129 3130 mutex_exit(&spa_namespace_lock); 3131 spa_history_log_version(spa, LOG_POOL_IMPORT); 3132 3133 return (0); 3134 } 3135 3136 /* 3137 * Import a non-root pool into the system. 3138 */ 3139 int 3140 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 3141 { 3142 spa_t *spa; 3143 char *altroot = NULL; 3144 spa_load_state_t state = SPA_LOAD_IMPORT; 3145 zpool_rewind_policy_t policy; 3146 int error; 3147 nvlist_t *nvroot; 3148 nvlist_t **spares, **l2cache; 3149 uint_t nspares, nl2cache; 3150 3151 /* 3152 * If a pool with this name exists, return failure. 3153 */ 3154 mutex_enter(&spa_namespace_lock); 3155 if (spa_lookup(pool) != NULL) { 3156 mutex_exit(&spa_namespace_lock); 3157 return (EEXIST); 3158 } 3159 3160 zpool_get_rewind_policy(config, &policy); 3161 if (policy.zrp_request & ZPOOL_DO_REWIND) 3162 state = SPA_LOAD_RECOVER; 3163 3164 /* 3165 * Create and initialize the spa structure. 3166 */ 3167 (void) nvlist_lookup_string(props, 3168 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3169 spa = spa_add(pool, config, altroot); 3170 spa_activate(spa, spa_mode_global); 3171 3172 /* 3173 * Don't start async tasks until we know everything is healthy. 3174 */ 3175 spa_async_suspend(spa); 3176 3177 /* 3178 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3179 * because the user-supplied config is actually the one to trust when 3180 * doing an import. 3181 */ 3182 if (state != SPA_LOAD_RECOVER) 3183 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3184 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3185 policy.zrp_request); 3186 3187 /* 3188 * Propagate anything learned about failing or best txgs 3189 * back to caller 3190 */ 3191 spa_rewind_data_to_nvlist(spa, config); 3192 3193 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3194 /* 3195 * Toss any existing sparelist, as it doesn't have any validity 3196 * anymore, and conflicts with spa_has_spare(). 3197 */ 3198 if (spa->spa_spares.sav_config) { 3199 nvlist_free(spa->spa_spares.sav_config); 3200 spa->spa_spares.sav_config = NULL; 3201 spa_load_spares(spa); 3202 } 3203 if (spa->spa_l2cache.sav_config) { 3204 nvlist_free(spa->spa_l2cache.sav_config); 3205 spa->spa_l2cache.sav_config = NULL; 3206 spa_load_l2cache(spa); 3207 } 3208 3209 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3210 &nvroot) == 0); 3211 if (error == 0) 3212 error = spa_validate_aux(spa, nvroot, -1ULL, 3213 VDEV_ALLOC_SPARE); 3214 if (error == 0) 3215 error = spa_validate_aux(spa, nvroot, -1ULL, 3216 VDEV_ALLOC_L2CACHE); 3217 spa_config_exit(spa, SCL_ALL, FTAG); 3218 3219 if (props != NULL) 3220 spa_configfile_set(spa, props, B_FALSE); 3221 3222 if (error != 0 || (props && spa_writeable(spa) && 3223 (error = spa_prop_set(spa, props)))) { 3224 spa_unload(spa); 3225 spa_deactivate(spa); 3226 spa_remove(spa); 3227 mutex_exit(&spa_namespace_lock); 3228 return (error); 3229 } 3230 3231 spa_async_resume(spa); 3232 3233 /* 3234 * Override any spares and level 2 cache devices as specified by 3235 * the user, as these may have correct device names/devids, etc. 3236 */ 3237 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3238 &spares, &nspares) == 0) { 3239 if (spa->spa_spares.sav_config) 3240 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3241 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3242 else 3243 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3244 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3245 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3246 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3247 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3248 spa_load_spares(spa); 3249 spa_config_exit(spa, SCL_ALL, FTAG); 3250 spa->spa_spares.sav_sync = B_TRUE; 3251 } 3252 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3253 &l2cache, &nl2cache) == 0) { 3254 if (spa->spa_l2cache.sav_config) 3255 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3256 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3257 else 3258 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3259 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3260 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3261 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3262 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3263 spa_load_l2cache(spa); 3264 spa_config_exit(spa, SCL_ALL, FTAG); 3265 spa->spa_l2cache.sav_sync = B_TRUE; 3266 } 3267 3268 /* 3269 * Check for any removed devices. 3270 */ 3271 if (spa->spa_autoreplace) { 3272 spa_aux_check_removed(&spa->spa_spares); 3273 spa_aux_check_removed(&spa->spa_l2cache); 3274 } 3275 3276 if (spa_writeable(spa)) { 3277 /* 3278 * Update the config cache to include the newly-imported pool. 3279 */ 3280 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3281 } 3282 3283 /* 3284 * It's possible that the pool was expanded while it was exported. 3285 * We kick off an async task to handle this for us. 3286 */ 3287 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3288 3289 mutex_exit(&spa_namespace_lock); 3290 spa_history_log_version(spa, LOG_POOL_IMPORT); 3291 3292 return (0); 3293 } 3294 3295 nvlist_t * 3296 spa_tryimport(nvlist_t *tryconfig) 3297 { 3298 nvlist_t *config = NULL; 3299 char *poolname; 3300 spa_t *spa; 3301 uint64_t state; 3302 int error; 3303 3304 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3305 return (NULL); 3306 3307 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3308 return (NULL); 3309 3310 /* 3311 * Create and initialize the spa structure. 3312 */ 3313 mutex_enter(&spa_namespace_lock); 3314 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3315 spa_activate(spa, FREAD); 3316 3317 /* 3318 * Pass off the heavy lifting to spa_load(). 3319 * Pass TRUE for mosconfig because the user-supplied config 3320 * is actually the one to trust when doing an import. 3321 */ 3322 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3323 3324 /* 3325 * If 'tryconfig' was at least parsable, return the current config. 3326 */ 3327 if (spa->spa_root_vdev != NULL) { 3328 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3329 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3330 poolname) == 0); 3331 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3332 state) == 0); 3333 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3334 spa->spa_uberblock.ub_timestamp) == 0); 3335 3336 /* 3337 * If the bootfs property exists on this pool then we 3338 * copy it out so that external consumers can tell which 3339 * pools are bootable. 3340 */ 3341 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3342 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3343 3344 /* 3345 * We have to play games with the name since the 3346 * pool was opened as TRYIMPORT_NAME. 3347 */ 3348 if (dsl_dsobj_to_dsname(spa_name(spa), 3349 spa->spa_bootfs, tmpname) == 0) { 3350 char *cp; 3351 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3352 3353 cp = strchr(tmpname, '/'); 3354 if (cp == NULL) { 3355 (void) strlcpy(dsname, tmpname, 3356 MAXPATHLEN); 3357 } else { 3358 (void) snprintf(dsname, MAXPATHLEN, 3359 "%s/%s", poolname, ++cp); 3360 } 3361 VERIFY(nvlist_add_string(config, 3362 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3363 kmem_free(dsname, MAXPATHLEN); 3364 } 3365 kmem_free(tmpname, MAXPATHLEN); 3366 } 3367 3368 /* 3369 * Add the list of hot spares and level 2 cache devices. 3370 */ 3371 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3372 spa_add_spares(spa, config); 3373 spa_add_l2cache(spa, config); 3374 spa_config_exit(spa, SCL_CONFIG, FTAG); 3375 } 3376 3377 spa_unload(spa); 3378 spa_deactivate(spa); 3379 spa_remove(spa); 3380 mutex_exit(&spa_namespace_lock); 3381 3382 return (config); 3383 } 3384 3385 /* 3386 * Pool export/destroy 3387 * 3388 * The act of destroying or exporting a pool is very simple. We make sure there 3389 * is no more pending I/O and any references to the pool are gone. Then, we 3390 * update the pool state and sync all the labels to disk, removing the 3391 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3392 * we don't sync the labels or remove the configuration cache. 3393 */ 3394 static int 3395 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3396 boolean_t force, boolean_t hardforce) 3397 { 3398 spa_t *spa; 3399 3400 if (oldconfig) 3401 *oldconfig = NULL; 3402 3403 if (!(spa_mode_global & FWRITE)) 3404 return (EROFS); 3405 3406 mutex_enter(&spa_namespace_lock); 3407 if ((spa = spa_lookup(pool)) == NULL) { 3408 mutex_exit(&spa_namespace_lock); 3409 return (ENOENT); 3410 } 3411 3412 /* 3413 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3414 * reacquire the namespace lock, and see if we can export. 3415 */ 3416 spa_open_ref(spa, FTAG); 3417 mutex_exit(&spa_namespace_lock); 3418 spa_async_suspend(spa); 3419 mutex_enter(&spa_namespace_lock); 3420 spa_close(spa, FTAG); 3421 3422 /* 3423 * The pool will be in core if it's openable, 3424 * in which case we can modify its state. 3425 */ 3426 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3427 /* 3428 * Objsets may be open only because they're dirty, so we 3429 * have to force it to sync before checking spa_refcnt. 3430 */ 3431 txg_wait_synced(spa->spa_dsl_pool, 0); 3432 3433 /* 3434 * A pool cannot be exported or destroyed if there are active 3435 * references. If we are resetting a pool, allow references by 3436 * fault injection handlers. 3437 */ 3438 if (!spa_refcount_zero(spa) || 3439 (spa->spa_inject_ref != 0 && 3440 new_state != POOL_STATE_UNINITIALIZED)) { 3441 spa_async_resume(spa); 3442 mutex_exit(&spa_namespace_lock); 3443 return (EBUSY); 3444 } 3445 3446 /* 3447 * A pool cannot be exported if it has an active shared spare. 3448 * This is to prevent other pools stealing the active spare 3449 * from an exported pool. At user's own will, such pool can 3450 * be forcedly exported. 3451 */ 3452 if (!force && new_state == POOL_STATE_EXPORTED && 3453 spa_has_active_shared_spare(spa)) { 3454 spa_async_resume(spa); 3455 mutex_exit(&spa_namespace_lock); 3456 return (EXDEV); 3457 } 3458 3459 /* 3460 * We want this to be reflected on every label, 3461 * so mark them all dirty. spa_unload() will do the 3462 * final sync that pushes these changes out. 3463 */ 3464 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 3465 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3466 spa->spa_state = new_state; 3467 spa->spa_final_txg = spa_last_synced_txg(spa) + 3468 TXG_DEFER_SIZE + 1; 3469 vdev_config_dirty(spa->spa_root_vdev); 3470 spa_config_exit(spa, SCL_ALL, FTAG); 3471 } 3472 } 3473 3474 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 3475 3476 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3477 spa_unload(spa); 3478 spa_deactivate(spa); 3479 } 3480 3481 if (oldconfig && spa->spa_config) 3482 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 3483 3484 if (new_state != POOL_STATE_UNINITIALIZED) { 3485 if (!hardforce) 3486 spa_config_sync(spa, B_TRUE, B_TRUE); 3487 spa_remove(spa); 3488 } 3489 mutex_exit(&spa_namespace_lock); 3490 3491 return (0); 3492 } 3493 3494 /* 3495 * Destroy a storage pool. 3496 */ 3497 int 3498 spa_destroy(char *pool) 3499 { 3500 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 3501 B_FALSE, B_FALSE)); 3502 } 3503 3504 /* 3505 * Export a storage pool. 3506 */ 3507 int 3508 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 3509 boolean_t hardforce) 3510 { 3511 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 3512 force, hardforce)); 3513 } 3514 3515 /* 3516 * Similar to spa_export(), this unloads the spa_t without actually removing it 3517 * from the namespace in any way. 3518 */ 3519 int 3520 spa_reset(char *pool) 3521 { 3522 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 3523 B_FALSE, B_FALSE)); 3524 } 3525 3526 /* 3527 * ========================================================================== 3528 * Device manipulation 3529 * ========================================================================== 3530 */ 3531 3532 /* 3533 * Add a device to a storage pool. 3534 */ 3535 int 3536 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 3537 { 3538 uint64_t txg, id; 3539 int error; 3540 vdev_t *rvd = spa->spa_root_vdev; 3541 vdev_t *vd, *tvd; 3542 nvlist_t **spares, **l2cache; 3543 uint_t nspares, nl2cache; 3544 3545 txg = spa_vdev_enter(spa); 3546 3547 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 3548 VDEV_ALLOC_ADD)) != 0) 3549 return (spa_vdev_exit(spa, NULL, txg, error)); 3550 3551 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 3552 3553 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 3554 &nspares) != 0) 3555 nspares = 0; 3556 3557 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 3558 &nl2cache) != 0) 3559 nl2cache = 0; 3560 3561 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 3562 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 3563 3564 if (vd->vdev_children != 0 && 3565 (error = vdev_create(vd, txg, B_FALSE)) != 0) 3566 return (spa_vdev_exit(spa, vd, txg, error)); 3567 3568 /* 3569 * We must validate the spares and l2cache devices after checking the 3570 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 3571 */ 3572 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 3573 return (spa_vdev_exit(spa, vd, txg, error)); 3574 3575 /* 3576 * Transfer each new top-level vdev from vd to rvd. 3577 */ 3578 for (int c = 0; c < vd->vdev_children; c++) { 3579 3580 /* 3581 * Set the vdev id to the first hole, if one exists. 3582 */ 3583 for (id = 0; id < rvd->vdev_children; id++) { 3584 if (rvd->vdev_child[id]->vdev_ishole) { 3585 vdev_free(rvd->vdev_child[id]); 3586 break; 3587 } 3588 } 3589 tvd = vd->vdev_child[c]; 3590 vdev_remove_child(vd, tvd); 3591 tvd->vdev_id = id; 3592 vdev_add_child(rvd, tvd); 3593 vdev_config_dirty(tvd); 3594 } 3595 3596 if (nspares != 0) { 3597 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 3598 ZPOOL_CONFIG_SPARES); 3599 spa_load_spares(spa); 3600 spa->spa_spares.sav_sync = B_TRUE; 3601 } 3602 3603 if (nl2cache != 0) { 3604 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 3605 ZPOOL_CONFIG_L2CACHE); 3606 spa_load_l2cache(spa); 3607 spa->spa_l2cache.sav_sync = B_TRUE; 3608 } 3609 3610 /* 3611 * We have to be careful when adding new vdevs to an existing pool. 3612 * If other threads start allocating from these vdevs before we 3613 * sync the config cache, and we lose power, then upon reboot we may 3614 * fail to open the pool because there are DVAs that the config cache 3615 * can't translate. Therefore, we first add the vdevs without 3616 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 3617 * and then let spa_config_update() initialize the new metaslabs. 3618 * 3619 * spa_load() checks for added-but-not-initialized vdevs, so that 3620 * if we lose power at any point in this sequence, the remaining 3621 * steps will be completed the next time we load the pool. 3622 */ 3623 (void) spa_vdev_exit(spa, vd, txg, 0); 3624 3625 mutex_enter(&spa_namespace_lock); 3626 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3627 mutex_exit(&spa_namespace_lock); 3628 3629 return (0); 3630 } 3631 3632 /* 3633 * Attach a device to a mirror. The arguments are the path to any device 3634 * in the mirror, and the nvroot for the new device. If the path specifies 3635 * a device that is not mirrored, we automatically insert the mirror vdev. 3636 * 3637 * If 'replacing' is specified, the new device is intended to replace the 3638 * existing device; in this case the two devices are made into their own 3639 * mirror using the 'replacing' vdev, which is functionally identical to 3640 * the mirror vdev (it actually reuses all the same ops) but has a few 3641 * extra rules: you can't attach to it after it's been created, and upon 3642 * completion of resilvering, the first disk (the one being replaced) 3643 * is automatically detached. 3644 */ 3645 int 3646 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3647 { 3648 uint64_t txg, dtl_max_txg; 3649 vdev_t *rvd = spa->spa_root_vdev; 3650 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3651 vdev_ops_t *pvops; 3652 char *oldvdpath, *newvdpath; 3653 int newvd_isspare; 3654 int error; 3655 3656 txg = spa_vdev_enter(spa); 3657 3658 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3659 3660 if (oldvd == NULL) 3661 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3662 3663 if (!oldvd->vdev_ops->vdev_op_leaf) 3664 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3665 3666 pvd = oldvd->vdev_parent; 3667 3668 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3669 VDEV_ALLOC_ADD)) != 0) 3670 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3671 3672 if (newrootvd->vdev_children != 1) 3673 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3674 3675 newvd = newrootvd->vdev_child[0]; 3676 3677 if (!newvd->vdev_ops->vdev_op_leaf) 3678 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3679 3680 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3681 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3682 3683 /* 3684 * Spares can't replace logs 3685 */ 3686 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3687 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3688 3689 if (!replacing) { 3690 /* 3691 * For attach, the only allowable parent is a mirror or the root 3692 * vdev. 3693 */ 3694 if (pvd->vdev_ops != &vdev_mirror_ops && 3695 pvd->vdev_ops != &vdev_root_ops) 3696 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3697 3698 pvops = &vdev_mirror_ops; 3699 } else { 3700 /* 3701 * Active hot spares can only be replaced by inactive hot 3702 * spares. 3703 */ 3704 if (pvd->vdev_ops == &vdev_spare_ops && 3705 pvd->vdev_child[1] == oldvd && 3706 !spa_has_spare(spa, newvd->vdev_guid)) 3707 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3708 3709 /* 3710 * If the source is a hot spare, and the parent isn't already a 3711 * spare, then we want to create a new hot spare. Otherwise, we 3712 * want to create a replacing vdev. The user is not allowed to 3713 * attach to a spared vdev child unless the 'isspare' state is 3714 * the same (spare replaces spare, non-spare replaces 3715 * non-spare). 3716 */ 3717 if (pvd->vdev_ops == &vdev_replacing_ops) 3718 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3719 else if (pvd->vdev_ops == &vdev_spare_ops && 3720 newvd->vdev_isspare != oldvd->vdev_isspare) 3721 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3722 else if (pvd->vdev_ops != &vdev_spare_ops && 3723 newvd->vdev_isspare) 3724 pvops = &vdev_spare_ops; 3725 else 3726 pvops = &vdev_replacing_ops; 3727 } 3728 3729 /* 3730 * Make sure the new device is big enough. 3731 */ 3732 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3733 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3734 3735 /* 3736 * The new device cannot have a higher alignment requirement 3737 * than the top-level vdev. 3738 */ 3739 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3740 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3741 3742 /* 3743 * If this is an in-place replacement, update oldvd's path and devid 3744 * to make it distinguishable from newvd, and unopenable from now on. 3745 */ 3746 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3747 spa_strfree(oldvd->vdev_path); 3748 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3749 KM_SLEEP); 3750 (void) sprintf(oldvd->vdev_path, "%s/%s", 3751 newvd->vdev_path, "old"); 3752 if (oldvd->vdev_devid != NULL) { 3753 spa_strfree(oldvd->vdev_devid); 3754 oldvd->vdev_devid = NULL; 3755 } 3756 } 3757 3758 /* 3759 * If the parent is not a mirror, or if we're replacing, insert the new 3760 * mirror/replacing/spare vdev above oldvd. 3761 */ 3762 if (pvd->vdev_ops != pvops) 3763 pvd = vdev_add_parent(oldvd, pvops); 3764 3765 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3766 ASSERT(pvd->vdev_ops == pvops); 3767 ASSERT(oldvd->vdev_parent == pvd); 3768 3769 /* 3770 * Extract the new device from its root and add it to pvd. 3771 */ 3772 vdev_remove_child(newrootvd, newvd); 3773 newvd->vdev_id = pvd->vdev_children; 3774 newvd->vdev_crtxg = oldvd->vdev_crtxg; 3775 vdev_add_child(pvd, newvd); 3776 3777 tvd = newvd->vdev_top; 3778 ASSERT(pvd->vdev_top == tvd); 3779 ASSERT(tvd->vdev_parent == rvd); 3780 3781 vdev_config_dirty(tvd); 3782 3783 /* 3784 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 3785 * for any dmu_sync-ed blocks. It will propagate upward when 3786 * spa_vdev_exit() calls vdev_dtl_reassess(). 3787 */ 3788 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 3789 3790 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 3791 dtl_max_txg - TXG_INITIAL); 3792 3793 if (newvd->vdev_isspare) { 3794 spa_spare_activate(newvd); 3795 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3796 } 3797 3798 oldvdpath = spa_strdup(oldvd->vdev_path); 3799 newvdpath = spa_strdup(newvd->vdev_path); 3800 newvd_isspare = newvd->vdev_isspare; 3801 3802 /* 3803 * Mark newvd's DTL dirty in this txg. 3804 */ 3805 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3806 3807 /* 3808 * Restart the resilver 3809 */ 3810 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 3811 3812 /* 3813 * Commit the config 3814 */ 3815 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 3816 3817 spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL, 3818 "%s vdev=%s %s vdev=%s", 3819 replacing && newvd_isspare ? "spare in" : 3820 replacing ? "replace" : "attach", newvdpath, 3821 replacing ? "for" : "to", oldvdpath); 3822 3823 spa_strfree(oldvdpath); 3824 spa_strfree(newvdpath); 3825 3826 return (0); 3827 } 3828 3829 /* 3830 * Detach a device from a mirror or replacing vdev. 3831 * If 'replace_done' is specified, only detach if the parent 3832 * is a replacing vdev. 3833 */ 3834 int 3835 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3836 { 3837 uint64_t txg; 3838 int error; 3839 vdev_t *rvd = spa->spa_root_vdev; 3840 vdev_t *vd, *pvd, *cvd, *tvd; 3841 boolean_t unspare = B_FALSE; 3842 uint64_t unspare_guid; 3843 size_t len; 3844 char *vdpath; 3845 3846 txg = spa_vdev_enter(spa); 3847 3848 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3849 3850 if (vd == NULL) 3851 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3852 3853 if (!vd->vdev_ops->vdev_op_leaf) 3854 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3855 3856 pvd = vd->vdev_parent; 3857 3858 /* 3859 * If the parent/child relationship is not as expected, don't do it. 3860 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3861 * vdev that's replacing B with C. The user's intent in replacing 3862 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3863 * the replace by detaching C, the expected behavior is to end up 3864 * M(A,B). But suppose that right after deciding to detach C, 3865 * the replacement of B completes. We would have M(A,C), and then 3866 * ask to detach C, which would leave us with just A -- not what 3867 * the user wanted. To prevent this, we make sure that the 3868 * parent/child relationship hasn't changed -- in this example, 3869 * that C's parent is still the replacing vdev R. 3870 */ 3871 if (pvd->vdev_guid != pguid && pguid != 0) 3872 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3873 3874 /* 3875 * If replace_done is specified, only remove this device if it's 3876 * the first child of a replacing vdev. For the 'spare' vdev, either 3877 * disk can be removed. 3878 */ 3879 if (replace_done) { 3880 if (pvd->vdev_ops == &vdev_replacing_ops) { 3881 if (vd->vdev_id != 0) 3882 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3883 } else if (pvd->vdev_ops != &vdev_spare_ops) { 3884 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3885 } 3886 } 3887 3888 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 3889 spa_version(spa) >= SPA_VERSION_SPARES); 3890 3891 /* 3892 * Only mirror, replacing, and spare vdevs support detach. 3893 */ 3894 if (pvd->vdev_ops != &vdev_replacing_ops && 3895 pvd->vdev_ops != &vdev_mirror_ops && 3896 pvd->vdev_ops != &vdev_spare_ops) 3897 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3898 3899 /* 3900 * If this device has the only valid copy of some data, 3901 * we cannot safely detach it. 3902 */ 3903 if (vdev_dtl_required(vd)) 3904 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3905 3906 ASSERT(pvd->vdev_children >= 2); 3907 3908 /* 3909 * If we are detaching the second disk from a replacing vdev, then 3910 * check to see if we changed the original vdev's path to have "/old" 3911 * at the end in spa_vdev_attach(). If so, undo that change now. 3912 */ 3913 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3914 pvd->vdev_child[0]->vdev_path != NULL && 3915 pvd->vdev_child[1]->vdev_path != NULL) { 3916 ASSERT(pvd->vdev_child[1] == vd); 3917 cvd = pvd->vdev_child[0]; 3918 len = strlen(vd->vdev_path); 3919 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3920 strcmp(cvd->vdev_path + len, "/old") == 0) { 3921 spa_strfree(cvd->vdev_path); 3922 cvd->vdev_path = spa_strdup(vd->vdev_path); 3923 } 3924 } 3925 3926 /* 3927 * If we are detaching the original disk from a spare, then it implies 3928 * that the spare should become a real disk, and be removed from the 3929 * active spare list for the pool. 3930 */ 3931 if (pvd->vdev_ops == &vdev_spare_ops && 3932 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 3933 unspare = B_TRUE; 3934 3935 /* 3936 * Erase the disk labels so the disk can be used for other things. 3937 * This must be done after all other error cases are handled, 3938 * but before we disembowel vd (so we can still do I/O to it). 3939 * But if we can't do it, don't treat the error as fatal -- 3940 * it may be that the unwritability of the disk is the reason 3941 * it's being detached! 3942 */ 3943 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3944 3945 /* 3946 * Remove vd from its parent and compact the parent's children. 3947 */ 3948 vdev_remove_child(pvd, vd); 3949 vdev_compact_children(pvd); 3950 3951 /* 3952 * Remember one of the remaining children so we can get tvd below. 3953 */ 3954 cvd = pvd->vdev_child[0]; 3955 3956 /* 3957 * If we need to remove the remaining child from the list of hot spares, 3958 * do it now, marking the vdev as no longer a spare in the process. 3959 * We must do this before vdev_remove_parent(), because that can 3960 * change the GUID if it creates a new toplevel GUID. For a similar 3961 * reason, we must remove the spare now, in the same txg as the detach; 3962 * otherwise someone could attach a new sibling, change the GUID, and 3963 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 3964 */ 3965 if (unspare) { 3966 ASSERT(cvd->vdev_isspare); 3967 spa_spare_remove(cvd); 3968 unspare_guid = cvd->vdev_guid; 3969 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3970 } 3971 3972 /* 3973 * If the parent mirror/replacing vdev only has one child, 3974 * the parent is no longer needed. Remove it from the tree. 3975 */ 3976 if (pvd->vdev_children == 1) 3977 vdev_remove_parent(cvd); 3978 3979 /* 3980 * We don't set tvd until now because the parent we just removed 3981 * may have been the previous top-level vdev. 3982 */ 3983 tvd = cvd->vdev_top; 3984 ASSERT(tvd->vdev_parent == rvd); 3985 3986 /* 3987 * Reevaluate the parent vdev state. 3988 */ 3989 vdev_propagate_state(cvd); 3990 3991 /* 3992 * If the 'autoexpand' property is set on the pool then automatically 3993 * try to expand the size of the pool. For example if the device we 3994 * just detached was smaller than the others, it may be possible to 3995 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 3996 * first so that we can obtain the updated sizes of the leaf vdevs. 3997 */ 3998 if (spa->spa_autoexpand) { 3999 vdev_reopen(tvd); 4000 vdev_expand(tvd, txg); 4001 } 4002 4003 vdev_config_dirty(tvd); 4004 4005 /* 4006 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4007 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4008 * But first make sure we're not on any *other* txg's DTL list, to 4009 * prevent vd from being accessed after it's freed. 4010 */ 4011 vdpath = spa_strdup(vd->vdev_path); 4012 for (int t = 0; t < TXG_SIZE; t++) 4013 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4014 vd->vdev_detached = B_TRUE; 4015 vdev_dirty(tvd, VDD_DTL, vd, txg); 4016 4017 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4018 4019 error = spa_vdev_exit(spa, vd, txg, 0); 4020 4021 spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL, 4022 "vdev=%s", vdpath); 4023 spa_strfree(vdpath); 4024 4025 /* 4026 * If this was the removal of the original device in a hot spare vdev, 4027 * then we want to go through and remove the device from the hot spare 4028 * list of every other pool. 4029 */ 4030 if (unspare) { 4031 spa_t *myspa = spa; 4032 spa = NULL; 4033 mutex_enter(&spa_namespace_lock); 4034 while ((spa = spa_next(spa)) != NULL) { 4035 if (spa->spa_state != POOL_STATE_ACTIVE) 4036 continue; 4037 if (spa == myspa) 4038 continue; 4039 spa_open_ref(spa, FTAG); 4040 mutex_exit(&spa_namespace_lock); 4041 (void) spa_vdev_remove(spa, unspare_guid, 4042 B_TRUE); 4043 mutex_enter(&spa_namespace_lock); 4044 spa_close(spa, FTAG); 4045 } 4046 mutex_exit(&spa_namespace_lock); 4047 } 4048 4049 return (error); 4050 } 4051 4052 /* 4053 * Split a set of devices from their mirrors, and create a new pool from them. 4054 */ 4055 int 4056 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4057 nvlist_t *props, boolean_t exp) 4058 { 4059 int error = 0; 4060 uint64_t txg, *glist; 4061 spa_t *newspa; 4062 uint_t c, children, lastlog; 4063 nvlist_t **child, *nvl, *tmp; 4064 dmu_tx_t *tx; 4065 char *altroot = NULL; 4066 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4067 boolean_t activate_slog; 4068 4069 if (!spa_writeable(spa)) 4070 return (EROFS); 4071 4072 txg = spa_vdev_enter(spa); 4073 4074 /* clear the log and flush everything up to now */ 4075 activate_slog = spa_passivate_log(spa); 4076 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4077 error = spa_offline_log(spa); 4078 txg = spa_vdev_config_enter(spa); 4079 4080 if (activate_slog) 4081 spa_activate_log(spa); 4082 4083 if (error != 0) 4084 return (spa_vdev_exit(spa, NULL, txg, error)); 4085 4086 /* check new spa name before going any further */ 4087 if (spa_lookup(newname) != NULL) 4088 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4089 4090 /* 4091 * scan through all the children to ensure they're all mirrors 4092 */ 4093 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4094 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4095 &children) != 0) 4096 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4097 4098 /* first, check to ensure we've got the right child count */ 4099 rvd = spa->spa_root_vdev; 4100 lastlog = 0; 4101 for (c = 0; c < rvd->vdev_children; c++) { 4102 vdev_t *vd = rvd->vdev_child[c]; 4103 4104 /* don't count the holes & logs as children */ 4105 if (vd->vdev_islog || vd->vdev_ishole) { 4106 if (lastlog == 0) 4107 lastlog = c; 4108 continue; 4109 } 4110 4111 lastlog = 0; 4112 } 4113 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4114 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4115 4116 /* next, ensure no spare or cache devices are part of the split */ 4117 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4118 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4119 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4120 4121 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4122 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4123 4124 /* then, loop over each vdev and validate it */ 4125 for (c = 0; c < children; c++) { 4126 uint64_t is_hole = 0; 4127 4128 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4129 &is_hole); 4130 4131 if (is_hole != 0) { 4132 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4133 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4134 continue; 4135 } else { 4136 error = EINVAL; 4137 break; 4138 } 4139 } 4140 4141 /* which disk is going to be split? */ 4142 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4143 &glist[c]) != 0) { 4144 error = EINVAL; 4145 break; 4146 } 4147 4148 /* look it up in the spa */ 4149 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4150 if (vml[c] == NULL) { 4151 error = ENODEV; 4152 break; 4153 } 4154 4155 /* make sure there's nothing stopping the split */ 4156 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4157 vml[c]->vdev_islog || 4158 vml[c]->vdev_ishole || 4159 vml[c]->vdev_isspare || 4160 vml[c]->vdev_isl2cache || 4161 !vdev_writeable(vml[c]) || 4162 vml[c]->vdev_children != 0 || 4163 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4164 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4165 error = EINVAL; 4166 break; 4167 } 4168 4169 if (vdev_dtl_required(vml[c])) { 4170 error = EBUSY; 4171 break; 4172 } 4173 4174 /* we need certain info from the top level */ 4175 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4176 vml[c]->vdev_top->vdev_ms_array) == 0); 4177 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4178 vml[c]->vdev_top->vdev_ms_shift) == 0); 4179 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4180 vml[c]->vdev_top->vdev_asize) == 0); 4181 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4182 vml[c]->vdev_top->vdev_ashift) == 0); 4183 } 4184 4185 if (error != 0) { 4186 kmem_free(vml, children * sizeof (vdev_t *)); 4187 kmem_free(glist, children * sizeof (uint64_t)); 4188 return (spa_vdev_exit(spa, NULL, txg, error)); 4189 } 4190 4191 /* stop writers from using the disks */ 4192 for (c = 0; c < children; c++) { 4193 if (vml[c] != NULL) 4194 vml[c]->vdev_offline = B_TRUE; 4195 } 4196 vdev_reopen(spa->spa_root_vdev); 4197 4198 /* 4199 * Temporarily record the splitting vdevs in the spa config. This 4200 * will disappear once the config is regenerated. 4201 */ 4202 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4203 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4204 glist, children) == 0); 4205 kmem_free(glist, children * sizeof (uint64_t)); 4206 4207 mutex_enter(&spa->spa_props_lock); 4208 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4209 nvl) == 0); 4210 mutex_exit(&spa->spa_props_lock); 4211 spa->spa_config_splitting = nvl; 4212 vdev_config_dirty(spa->spa_root_vdev); 4213 4214 /* configure and create the new pool */ 4215 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4216 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4217 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4218 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4219 spa_version(spa)) == 0); 4220 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4221 spa->spa_config_txg) == 0); 4222 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4223 spa_generate_guid(NULL)) == 0); 4224 (void) nvlist_lookup_string(props, 4225 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4226 4227 /* add the new pool to the namespace */ 4228 newspa = spa_add(newname, config, altroot); 4229 newspa->spa_config_txg = spa->spa_config_txg; 4230 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4231 4232 /* release the spa config lock, retaining the namespace lock */ 4233 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4234 4235 if (zio_injection_enabled) 4236 zio_handle_panic_injection(spa, FTAG, 1); 4237 4238 spa_activate(newspa, spa_mode_global); 4239 spa_async_suspend(newspa); 4240 4241 /* create the new pool from the disks of the original pool */ 4242 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4243 if (error) 4244 goto out; 4245 4246 /* if that worked, generate a real config for the new pool */ 4247 if (newspa->spa_root_vdev != NULL) { 4248 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4249 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4250 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4251 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4252 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4253 B_TRUE)); 4254 } 4255 4256 /* set the props */ 4257 if (props != NULL) { 4258 spa_configfile_set(newspa, props, B_FALSE); 4259 error = spa_prop_set(newspa, props); 4260 if (error) 4261 goto out; 4262 } 4263 4264 /* flush everything */ 4265 txg = spa_vdev_config_enter(newspa); 4266 vdev_config_dirty(newspa->spa_root_vdev); 4267 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4268 4269 if (zio_injection_enabled) 4270 zio_handle_panic_injection(spa, FTAG, 2); 4271 4272 spa_async_resume(newspa); 4273 4274 /* finally, update the original pool's config */ 4275 txg = spa_vdev_config_enter(spa); 4276 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4277 error = dmu_tx_assign(tx, TXG_WAIT); 4278 if (error != 0) 4279 dmu_tx_abort(tx); 4280 for (c = 0; c < children; c++) { 4281 if (vml[c] != NULL) { 4282 vdev_split(vml[c]); 4283 if (error == 0) 4284 spa_history_log_internal(LOG_POOL_VDEV_DETACH, 4285 spa, tx, "vdev=%s", 4286 vml[c]->vdev_path); 4287 vdev_free(vml[c]); 4288 } 4289 } 4290 vdev_config_dirty(spa->spa_root_vdev); 4291 spa->spa_config_splitting = NULL; 4292 nvlist_free(nvl); 4293 if (error == 0) 4294 dmu_tx_commit(tx); 4295 (void) spa_vdev_exit(spa, NULL, txg, 0); 4296 4297 if (zio_injection_enabled) 4298 zio_handle_panic_injection(spa, FTAG, 3); 4299 4300 /* split is complete; log a history record */ 4301 spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL, 4302 "split new pool %s from pool %s", newname, spa_name(spa)); 4303 4304 kmem_free(vml, children * sizeof (vdev_t *)); 4305 4306 /* if we're not going to mount the filesystems in userland, export */ 4307 if (exp) 4308 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4309 B_FALSE, B_FALSE); 4310 4311 return (error); 4312 4313 out: 4314 spa_unload(newspa); 4315 spa_deactivate(newspa); 4316 spa_remove(newspa); 4317 4318 txg = spa_vdev_config_enter(spa); 4319 4320 /* re-online all offlined disks */ 4321 for (c = 0; c < children; c++) { 4322 if (vml[c] != NULL) 4323 vml[c]->vdev_offline = B_FALSE; 4324 } 4325 vdev_reopen(spa->spa_root_vdev); 4326 4327 nvlist_free(spa->spa_config_splitting); 4328 spa->spa_config_splitting = NULL; 4329 (void) spa_vdev_exit(spa, NULL, txg, error); 4330 4331 kmem_free(vml, children * sizeof (vdev_t *)); 4332 return (error); 4333 } 4334 4335 static nvlist_t * 4336 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4337 { 4338 for (int i = 0; i < count; i++) { 4339 uint64_t guid; 4340 4341 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4342 &guid) == 0); 4343 4344 if (guid == target_guid) 4345 return (nvpp[i]); 4346 } 4347 4348 return (NULL); 4349 } 4350 4351 static void 4352 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4353 nvlist_t *dev_to_remove) 4354 { 4355 nvlist_t **newdev = NULL; 4356 4357 if (count > 1) 4358 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4359 4360 for (int i = 0, j = 0; i < count; i++) { 4361 if (dev[i] == dev_to_remove) 4362 continue; 4363 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4364 } 4365 4366 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4367 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4368 4369 for (int i = 0; i < count - 1; i++) 4370 nvlist_free(newdev[i]); 4371 4372 if (count > 1) 4373 kmem_free(newdev, (count - 1) * sizeof (void *)); 4374 } 4375 4376 /* 4377 * Evacuate the device. 4378 */ 4379 static int 4380 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 4381 { 4382 uint64_t txg; 4383 int error = 0; 4384 4385 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4386 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4387 ASSERT(vd == vd->vdev_top); 4388 4389 /* 4390 * Evacuate the device. We don't hold the config lock as writer 4391 * since we need to do I/O but we do keep the 4392 * spa_namespace_lock held. Once this completes the device 4393 * should no longer have any blocks allocated on it. 4394 */ 4395 if (vd->vdev_islog) { 4396 if (vd->vdev_stat.vs_alloc != 0) 4397 error = spa_offline_log(spa); 4398 } else { 4399 error = ENOTSUP; 4400 } 4401 4402 if (error) 4403 return (error); 4404 4405 /* 4406 * The evacuation succeeded. Remove any remaining MOS metadata 4407 * associated with this vdev, and wait for these changes to sync. 4408 */ 4409 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 4410 txg = spa_vdev_config_enter(spa); 4411 vd->vdev_removing = B_TRUE; 4412 vdev_dirty(vd, 0, NULL, txg); 4413 vdev_config_dirty(vd); 4414 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4415 4416 return (0); 4417 } 4418 4419 /* 4420 * Complete the removal by cleaning up the namespace. 4421 */ 4422 static void 4423 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 4424 { 4425 vdev_t *rvd = spa->spa_root_vdev; 4426 uint64_t id = vd->vdev_id; 4427 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 4428 4429 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4430 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4431 ASSERT(vd == vd->vdev_top); 4432 4433 /* 4434 * Only remove any devices which are empty. 4435 */ 4436 if (vd->vdev_stat.vs_alloc != 0) 4437 return; 4438 4439 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4440 4441 if (list_link_active(&vd->vdev_state_dirty_node)) 4442 vdev_state_clean(vd); 4443 if (list_link_active(&vd->vdev_config_dirty_node)) 4444 vdev_config_clean(vd); 4445 4446 vdev_free(vd); 4447 4448 if (last_vdev) { 4449 vdev_compact_children(rvd); 4450 } else { 4451 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 4452 vdev_add_child(rvd, vd); 4453 } 4454 vdev_config_dirty(rvd); 4455 4456 /* 4457 * Reassess the health of our root vdev. 4458 */ 4459 vdev_reopen(rvd); 4460 } 4461 4462 /* 4463 * Remove a device from the pool - 4464 * 4465 * Removing a device from the vdev namespace requires several steps 4466 * and can take a significant amount of time. As a result we use 4467 * the spa_vdev_config_[enter/exit] functions which allow us to 4468 * grab and release the spa_config_lock while still holding the namespace 4469 * lock. During each step the configuration is synced out. 4470 */ 4471 4472 /* 4473 * Remove a device from the pool. Currently, this supports removing only hot 4474 * spares, slogs, and level 2 ARC devices. 4475 */ 4476 int 4477 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 4478 { 4479 vdev_t *vd; 4480 metaslab_group_t *mg; 4481 nvlist_t **spares, **l2cache, *nv; 4482 uint64_t txg = 0; 4483 uint_t nspares, nl2cache; 4484 int error = 0; 4485 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 4486 4487 if (!locked) 4488 txg = spa_vdev_enter(spa); 4489 4490 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4491 4492 if (spa->spa_spares.sav_vdevs != NULL && 4493 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4494 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 4495 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 4496 /* 4497 * Only remove the hot spare if it's not currently in use 4498 * in this pool. 4499 */ 4500 if (vd == NULL || unspare) { 4501 spa_vdev_remove_aux(spa->spa_spares.sav_config, 4502 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 4503 spa_load_spares(spa); 4504 spa->spa_spares.sav_sync = B_TRUE; 4505 } else { 4506 error = EBUSY; 4507 } 4508 } else if (spa->spa_l2cache.sav_vdevs != NULL && 4509 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4510 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 4511 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 4512 /* 4513 * Cache devices can always be removed. 4514 */ 4515 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 4516 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 4517 spa_load_l2cache(spa); 4518 spa->spa_l2cache.sav_sync = B_TRUE; 4519 } else if (vd != NULL && vd->vdev_islog) { 4520 ASSERT(!locked); 4521 ASSERT(vd == vd->vdev_top); 4522 4523 /* 4524 * XXX - Once we have bp-rewrite this should 4525 * become the common case. 4526 */ 4527 4528 mg = vd->vdev_mg; 4529 4530 /* 4531 * Stop allocating from this vdev. 4532 */ 4533 metaslab_group_passivate(mg); 4534 4535 /* 4536 * Wait for the youngest allocations and frees to sync, 4537 * and then wait for the deferral of those frees to finish. 4538 */ 4539 spa_vdev_config_exit(spa, NULL, 4540 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 4541 4542 /* 4543 * Attempt to evacuate the vdev. 4544 */ 4545 error = spa_vdev_remove_evacuate(spa, vd); 4546 4547 txg = spa_vdev_config_enter(spa); 4548 4549 /* 4550 * If we couldn't evacuate the vdev, unwind. 4551 */ 4552 if (error) { 4553 metaslab_group_activate(mg); 4554 return (spa_vdev_exit(spa, NULL, txg, error)); 4555 } 4556 4557 /* 4558 * Clean up the vdev namespace. 4559 */ 4560 spa_vdev_remove_from_namespace(spa, vd); 4561 4562 } else if (vd != NULL) { 4563 /* 4564 * Normal vdevs cannot be removed (yet). 4565 */ 4566 error = ENOTSUP; 4567 } else { 4568 /* 4569 * There is no vdev of any kind with the specified guid. 4570 */ 4571 error = ENOENT; 4572 } 4573 4574 if (!locked) 4575 return (spa_vdev_exit(spa, NULL, txg, error)); 4576 4577 return (error); 4578 } 4579 4580 /* 4581 * Find any device that's done replacing, or a vdev marked 'unspare' that's 4582 * current spared, so we can detach it. 4583 */ 4584 static vdev_t * 4585 spa_vdev_resilver_done_hunt(vdev_t *vd) 4586 { 4587 vdev_t *newvd, *oldvd; 4588 4589 for (int c = 0; c < vd->vdev_children; c++) { 4590 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 4591 if (oldvd != NULL) 4592 return (oldvd); 4593 } 4594 4595 /* 4596 * Check for a completed replacement. 4597 */ 4598 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 4599 oldvd = vd->vdev_child[0]; 4600 newvd = vd->vdev_child[1]; 4601 4602 if (vdev_dtl_empty(newvd, DTL_MISSING) && 4603 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4604 !vdev_dtl_required(oldvd)) 4605 return (oldvd); 4606 } 4607 4608 /* 4609 * Check for a completed resilver with the 'unspare' flag set. 4610 */ 4611 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 4612 newvd = vd->vdev_child[0]; 4613 oldvd = vd->vdev_child[1]; 4614 4615 if (newvd->vdev_unspare && 4616 vdev_dtl_empty(newvd, DTL_MISSING) && 4617 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4618 !vdev_dtl_required(oldvd)) { 4619 newvd->vdev_unspare = 0; 4620 return (oldvd); 4621 } 4622 } 4623 4624 return (NULL); 4625 } 4626 4627 static void 4628 spa_vdev_resilver_done(spa_t *spa) 4629 { 4630 vdev_t *vd, *pvd, *ppvd; 4631 uint64_t guid, sguid, pguid, ppguid; 4632 4633 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4634 4635 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 4636 pvd = vd->vdev_parent; 4637 ppvd = pvd->vdev_parent; 4638 guid = vd->vdev_guid; 4639 pguid = pvd->vdev_guid; 4640 ppguid = ppvd->vdev_guid; 4641 sguid = 0; 4642 /* 4643 * If we have just finished replacing a hot spared device, then 4644 * we need to detach the parent's first child (the original hot 4645 * spare) as well. 4646 */ 4647 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 4648 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 4649 ASSERT(ppvd->vdev_children == 2); 4650 sguid = ppvd->vdev_child[1]->vdev_guid; 4651 } 4652 spa_config_exit(spa, SCL_ALL, FTAG); 4653 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 4654 return; 4655 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 4656 return; 4657 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4658 } 4659 4660 spa_config_exit(spa, SCL_ALL, FTAG); 4661 } 4662 4663 /* 4664 * Update the stored path or FRU for this vdev. 4665 */ 4666 int 4667 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 4668 boolean_t ispath) 4669 { 4670 vdev_t *vd; 4671 boolean_t sync = B_FALSE; 4672 4673 spa_vdev_state_enter(spa, SCL_ALL); 4674 4675 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4676 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 4677 4678 if (!vd->vdev_ops->vdev_op_leaf) 4679 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4680 4681 if (ispath) { 4682 if (strcmp(value, vd->vdev_path) != 0) { 4683 spa_strfree(vd->vdev_path); 4684 vd->vdev_path = spa_strdup(value); 4685 sync = B_TRUE; 4686 } 4687 } else { 4688 if (vd->vdev_fru == NULL) { 4689 vd->vdev_fru = spa_strdup(value); 4690 sync = B_TRUE; 4691 } else if (strcmp(value, vd->vdev_fru) != 0) { 4692 spa_strfree(vd->vdev_fru); 4693 vd->vdev_fru = spa_strdup(value); 4694 sync = B_TRUE; 4695 } 4696 } 4697 4698 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 4699 } 4700 4701 int 4702 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 4703 { 4704 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 4705 } 4706 4707 int 4708 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 4709 { 4710 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 4711 } 4712 4713 /* 4714 * ========================================================================== 4715 * SPA Scanning 4716 * ========================================================================== 4717 */ 4718 4719 int 4720 spa_scan_stop(spa_t *spa) 4721 { 4722 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4723 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 4724 return (EBUSY); 4725 return (dsl_scan_cancel(spa->spa_dsl_pool)); 4726 } 4727 4728 int 4729 spa_scan(spa_t *spa, pool_scan_func_t func) 4730 { 4731 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4732 4733 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 4734 return (ENOTSUP); 4735 4736 /* 4737 * If a resilver was requested, but there is no DTL on a 4738 * writeable leaf device, we have nothing to do. 4739 */ 4740 if (func == POOL_SCAN_RESILVER && 4741 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4742 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4743 return (0); 4744 } 4745 4746 return (dsl_scan(spa->spa_dsl_pool, func)); 4747 } 4748 4749 /* 4750 * ========================================================================== 4751 * SPA async task processing 4752 * ========================================================================== 4753 */ 4754 4755 static void 4756 spa_async_remove(spa_t *spa, vdev_t *vd) 4757 { 4758 if (vd->vdev_remove_wanted) { 4759 vd->vdev_remove_wanted = B_FALSE; 4760 vd->vdev_delayed_close = B_FALSE; 4761 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 4762 4763 /* 4764 * We want to clear the stats, but we don't want to do a full 4765 * vdev_clear() as that will cause us to throw away 4766 * degraded/faulted state as well as attempt to reopen the 4767 * device, all of which is a waste. 4768 */ 4769 vd->vdev_stat.vs_read_errors = 0; 4770 vd->vdev_stat.vs_write_errors = 0; 4771 vd->vdev_stat.vs_checksum_errors = 0; 4772 4773 vdev_state_dirty(vd->vdev_top); 4774 } 4775 4776 for (int c = 0; c < vd->vdev_children; c++) 4777 spa_async_remove(spa, vd->vdev_child[c]); 4778 } 4779 4780 static void 4781 spa_async_probe(spa_t *spa, vdev_t *vd) 4782 { 4783 if (vd->vdev_probe_wanted) { 4784 vd->vdev_probe_wanted = B_FALSE; 4785 vdev_reopen(vd); /* vdev_open() does the actual probe */ 4786 } 4787 4788 for (int c = 0; c < vd->vdev_children; c++) 4789 spa_async_probe(spa, vd->vdev_child[c]); 4790 } 4791 4792 static void 4793 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 4794 { 4795 sysevent_id_t eid; 4796 nvlist_t *attr; 4797 char *physpath; 4798 4799 if (!spa->spa_autoexpand) 4800 return; 4801 4802 for (int c = 0; c < vd->vdev_children; c++) { 4803 vdev_t *cvd = vd->vdev_child[c]; 4804 spa_async_autoexpand(spa, cvd); 4805 } 4806 4807 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 4808 return; 4809 4810 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4811 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 4812 4813 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4814 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 4815 4816 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 4817 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 4818 4819 nvlist_free(attr); 4820 kmem_free(physpath, MAXPATHLEN); 4821 } 4822 4823 static void 4824 spa_async_thread(spa_t *spa) 4825 { 4826 int tasks; 4827 4828 ASSERT(spa->spa_sync_on); 4829 4830 mutex_enter(&spa->spa_async_lock); 4831 tasks = spa->spa_async_tasks; 4832 spa->spa_async_tasks = 0; 4833 mutex_exit(&spa->spa_async_lock); 4834 4835 /* 4836 * See if the config needs to be updated. 4837 */ 4838 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 4839 uint64_t old_space, new_space; 4840 4841 mutex_enter(&spa_namespace_lock); 4842 old_space = metaslab_class_get_space(spa_normal_class(spa)); 4843 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4844 new_space = metaslab_class_get_space(spa_normal_class(spa)); 4845 mutex_exit(&spa_namespace_lock); 4846 4847 /* 4848 * If the pool grew as a result of the config update, 4849 * then log an internal history event. 4850 */ 4851 if (new_space != old_space) { 4852 spa_history_log_internal(LOG_POOL_VDEV_ONLINE, 4853 spa, NULL, 4854 "pool '%s' size: %llu(+%llu)", 4855 spa_name(spa), new_space, new_space - old_space); 4856 } 4857 } 4858 4859 /* 4860 * See if any devices need to be marked REMOVED. 4861 */ 4862 if (tasks & SPA_ASYNC_REMOVE) { 4863 spa_vdev_state_enter(spa, SCL_NONE); 4864 spa_async_remove(spa, spa->spa_root_vdev); 4865 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 4866 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 4867 for (int i = 0; i < spa->spa_spares.sav_count; i++) 4868 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 4869 (void) spa_vdev_state_exit(spa, NULL, 0); 4870 } 4871 4872 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 4873 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4874 spa_async_autoexpand(spa, spa->spa_root_vdev); 4875 spa_config_exit(spa, SCL_CONFIG, FTAG); 4876 } 4877 4878 /* 4879 * See if any devices need to be probed. 4880 */ 4881 if (tasks & SPA_ASYNC_PROBE) { 4882 spa_vdev_state_enter(spa, SCL_NONE); 4883 spa_async_probe(spa, spa->spa_root_vdev); 4884 (void) spa_vdev_state_exit(spa, NULL, 0); 4885 } 4886 4887 /* 4888 * If any devices are done replacing, detach them. 4889 */ 4890 if (tasks & SPA_ASYNC_RESILVER_DONE) 4891 spa_vdev_resilver_done(spa); 4892 4893 /* 4894 * Kick off a resilver. 4895 */ 4896 if (tasks & SPA_ASYNC_RESILVER) 4897 dsl_resilver_restart(spa->spa_dsl_pool, 0); 4898 4899 /* 4900 * Let the world know that we're done. 4901 */ 4902 mutex_enter(&spa->spa_async_lock); 4903 spa->spa_async_thread = NULL; 4904 cv_broadcast(&spa->spa_async_cv); 4905 mutex_exit(&spa->spa_async_lock); 4906 thread_exit(); 4907 } 4908 4909 void 4910 spa_async_suspend(spa_t *spa) 4911 { 4912 mutex_enter(&spa->spa_async_lock); 4913 spa->spa_async_suspended++; 4914 while (spa->spa_async_thread != NULL) 4915 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 4916 mutex_exit(&spa->spa_async_lock); 4917 } 4918 4919 void 4920 spa_async_resume(spa_t *spa) 4921 { 4922 mutex_enter(&spa->spa_async_lock); 4923 ASSERT(spa->spa_async_suspended != 0); 4924 spa->spa_async_suspended--; 4925 mutex_exit(&spa->spa_async_lock); 4926 } 4927 4928 static void 4929 spa_async_dispatch(spa_t *spa) 4930 { 4931 mutex_enter(&spa->spa_async_lock); 4932 if (spa->spa_async_tasks && !spa->spa_async_suspended && 4933 spa->spa_async_thread == NULL && 4934 rootdir != NULL && !vn_is_readonly(rootdir)) 4935 spa->spa_async_thread = thread_create(NULL, 0, 4936 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 4937 mutex_exit(&spa->spa_async_lock); 4938 } 4939 4940 void 4941 spa_async_request(spa_t *spa, int task) 4942 { 4943 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 4944 mutex_enter(&spa->spa_async_lock); 4945 spa->spa_async_tasks |= task; 4946 mutex_exit(&spa->spa_async_lock); 4947 } 4948 4949 /* 4950 * ========================================================================== 4951 * SPA syncing routines 4952 * ========================================================================== 4953 */ 4954 4955 static int 4956 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 4957 { 4958 bpobj_t *bpo = arg; 4959 bpobj_enqueue(bpo, bp, tx); 4960 return (0); 4961 } 4962 4963 static int 4964 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 4965 { 4966 zio_t *zio = arg; 4967 4968 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 4969 zio->io_flags)); 4970 return (0); 4971 } 4972 4973 static void 4974 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 4975 { 4976 char *packed = NULL; 4977 size_t bufsize; 4978 size_t nvsize = 0; 4979 dmu_buf_t *db; 4980 4981 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 4982 4983 /* 4984 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 4985 * information. This avoids the dbuf_will_dirty() path and 4986 * saves us a pre-read to get data we don't actually care about. 4987 */ 4988 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 4989 packed = kmem_alloc(bufsize, KM_SLEEP); 4990 4991 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 4992 KM_SLEEP) == 0); 4993 bzero(packed + nvsize, bufsize - nvsize); 4994 4995 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 4996 4997 kmem_free(packed, bufsize); 4998 4999 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5000 dmu_buf_will_dirty(db, tx); 5001 *(uint64_t *)db->db_data = nvsize; 5002 dmu_buf_rele(db, FTAG); 5003 } 5004 5005 static void 5006 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5007 const char *config, const char *entry) 5008 { 5009 nvlist_t *nvroot; 5010 nvlist_t **list; 5011 int i; 5012 5013 if (!sav->sav_sync) 5014 return; 5015 5016 /* 5017 * Update the MOS nvlist describing the list of available devices. 5018 * spa_validate_aux() will have already made sure this nvlist is 5019 * valid and the vdevs are labeled appropriately. 5020 */ 5021 if (sav->sav_object == 0) { 5022 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5023 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5024 sizeof (uint64_t), tx); 5025 VERIFY(zap_update(spa->spa_meta_objset, 5026 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5027 &sav->sav_object, tx) == 0); 5028 } 5029 5030 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5031 if (sav->sav_count == 0) { 5032 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5033 } else { 5034 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5035 for (i = 0; i < sav->sav_count; i++) 5036 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5037 B_FALSE, VDEV_CONFIG_L2CACHE); 5038 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5039 sav->sav_count) == 0); 5040 for (i = 0; i < sav->sav_count; i++) 5041 nvlist_free(list[i]); 5042 kmem_free(list, sav->sav_count * sizeof (void *)); 5043 } 5044 5045 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5046 nvlist_free(nvroot); 5047 5048 sav->sav_sync = B_FALSE; 5049 } 5050 5051 static void 5052 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5053 { 5054 nvlist_t *config; 5055 5056 if (list_is_empty(&spa->spa_config_dirty_list)) 5057 return; 5058 5059 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5060 5061 config = spa_config_generate(spa, spa->spa_root_vdev, 5062 dmu_tx_get_txg(tx), B_FALSE); 5063 5064 spa_config_exit(spa, SCL_STATE, FTAG); 5065 5066 if (spa->spa_config_syncing) 5067 nvlist_free(spa->spa_config_syncing); 5068 spa->spa_config_syncing = config; 5069 5070 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5071 } 5072 5073 /* 5074 * Set zpool properties. 5075 */ 5076 static void 5077 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx) 5078 { 5079 spa_t *spa = arg1; 5080 objset_t *mos = spa->spa_meta_objset; 5081 nvlist_t *nvp = arg2; 5082 nvpair_t *elem; 5083 uint64_t intval; 5084 char *strval; 5085 zpool_prop_t prop; 5086 const char *propname; 5087 zprop_type_t proptype; 5088 5089 mutex_enter(&spa->spa_props_lock); 5090 5091 elem = NULL; 5092 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5093 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5094 case ZPOOL_PROP_VERSION: 5095 /* 5096 * Only set version for non-zpool-creation cases 5097 * (set/import). spa_create() needs special care 5098 * for version setting. 5099 */ 5100 if (tx->tx_txg != TXG_INITIAL) { 5101 VERIFY(nvpair_value_uint64(elem, 5102 &intval) == 0); 5103 ASSERT(intval <= SPA_VERSION); 5104 ASSERT(intval >= spa_version(spa)); 5105 spa->spa_uberblock.ub_version = intval; 5106 vdev_config_dirty(spa->spa_root_vdev); 5107 } 5108 break; 5109 5110 case ZPOOL_PROP_ALTROOT: 5111 /* 5112 * 'altroot' is a non-persistent property. It should 5113 * have been set temporarily at creation or import time. 5114 */ 5115 ASSERT(spa->spa_root != NULL); 5116 break; 5117 5118 case ZPOOL_PROP_CACHEFILE: 5119 /* 5120 * 'cachefile' is also a non-persisitent property. 5121 */ 5122 break; 5123 default: 5124 /* 5125 * Set pool property values in the poolprops mos object. 5126 */ 5127 if (spa->spa_pool_props_object == 0) { 5128 VERIFY((spa->spa_pool_props_object = 5129 zap_create(mos, DMU_OT_POOL_PROPS, 5130 DMU_OT_NONE, 0, tx)) > 0); 5131 5132 VERIFY(zap_update(mos, 5133 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5134 8, 1, &spa->spa_pool_props_object, tx) 5135 == 0); 5136 } 5137 5138 /* normalize the property name */ 5139 propname = zpool_prop_to_name(prop); 5140 proptype = zpool_prop_get_type(prop); 5141 5142 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5143 ASSERT(proptype == PROP_TYPE_STRING); 5144 VERIFY(nvpair_value_string(elem, &strval) == 0); 5145 VERIFY(zap_update(mos, 5146 spa->spa_pool_props_object, propname, 5147 1, strlen(strval) + 1, strval, tx) == 0); 5148 5149 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5150 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5151 5152 if (proptype == PROP_TYPE_INDEX) { 5153 const char *unused; 5154 VERIFY(zpool_prop_index_to_string( 5155 prop, intval, &unused) == 0); 5156 } 5157 VERIFY(zap_update(mos, 5158 spa->spa_pool_props_object, propname, 5159 8, 1, &intval, tx) == 0); 5160 } else { 5161 ASSERT(0); /* not allowed */ 5162 } 5163 5164 switch (prop) { 5165 case ZPOOL_PROP_DELEGATION: 5166 spa->spa_delegation = intval; 5167 break; 5168 case ZPOOL_PROP_BOOTFS: 5169 spa->spa_bootfs = intval; 5170 break; 5171 case ZPOOL_PROP_FAILUREMODE: 5172 spa->spa_failmode = intval; 5173 break; 5174 case ZPOOL_PROP_AUTOEXPAND: 5175 spa->spa_autoexpand = intval; 5176 if (tx->tx_txg != TXG_INITIAL) 5177 spa_async_request(spa, 5178 SPA_ASYNC_AUTOEXPAND); 5179 break; 5180 case ZPOOL_PROP_DEDUPDITTO: 5181 spa->spa_dedup_ditto = intval; 5182 break; 5183 default: 5184 break; 5185 } 5186 } 5187 5188 /* log internal history if this is not a zpool create */ 5189 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 5190 tx->tx_txg != TXG_INITIAL) { 5191 spa_history_log_internal(LOG_POOL_PROPSET, 5192 spa, tx, "%s %lld %s", 5193 nvpair_name(elem), intval, spa_name(spa)); 5194 } 5195 } 5196 5197 mutex_exit(&spa->spa_props_lock); 5198 } 5199 5200 /* 5201 * Perform one-time upgrade on-disk changes. spa_version() does not 5202 * reflect the new version this txg, so there must be no changes this 5203 * txg to anything that the upgrade code depends on after it executes. 5204 * Therefore this must be called after dsl_pool_sync() does the sync 5205 * tasks. 5206 */ 5207 static void 5208 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 5209 { 5210 dsl_pool_t *dp = spa->spa_dsl_pool; 5211 5212 ASSERT(spa->spa_sync_pass == 1); 5213 5214 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5215 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5216 dsl_pool_create_origin(dp, tx); 5217 5218 /* Keeping the origin open increases spa_minref */ 5219 spa->spa_minref += 3; 5220 } 5221 5222 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5223 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5224 dsl_pool_upgrade_clones(dp, tx); 5225 } 5226 5227 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 5228 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 5229 dsl_pool_upgrade_dir_clones(dp, tx); 5230 5231 /* Keeping the freedir open increases spa_minref */ 5232 spa->spa_minref += 3; 5233 } 5234 } 5235 5236 /* 5237 * Sync the specified transaction group. New blocks may be dirtied as 5238 * part of the process, so we iterate until it converges. 5239 */ 5240 void 5241 spa_sync(spa_t *spa, uint64_t txg) 5242 { 5243 dsl_pool_t *dp = spa->spa_dsl_pool; 5244 objset_t *mos = spa->spa_meta_objset; 5245 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 5246 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5247 vdev_t *rvd = spa->spa_root_vdev; 5248 vdev_t *vd; 5249 dmu_tx_t *tx; 5250 int error; 5251 5252 /* 5253 * Lock out configuration changes. 5254 */ 5255 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5256 5257 spa->spa_syncing_txg = txg; 5258 spa->spa_sync_pass = 0; 5259 5260 /* 5261 * If there are any pending vdev state changes, convert them 5262 * into config changes that go out with this transaction group. 5263 */ 5264 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5265 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5266 /* 5267 * We need the write lock here because, for aux vdevs, 5268 * calling vdev_config_dirty() modifies sav_config. 5269 * This is ugly and will become unnecessary when we 5270 * eliminate the aux vdev wart by integrating all vdevs 5271 * into the root vdev tree. 5272 */ 5273 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5274 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5275 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5276 vdev_state_clean(vd); 5277 vdev_config_dirty(vd); 5278 } 5279 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5280 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5281 } 5282 spa_config_exit(spa, SCL_STATE, FTAG); 5283 5284 tx = dmu_tx_create_assigned(dp, txg); 5285 5286 /* 5287 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5288 * set spa_deflate if we have no raid-z vdevs. 5289 */ 5290 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5291 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5292 int i; 5293 5294 for (i = 0; i < rvd->vdev_children; i++) { 5295 vd = rvd->vdev_child[i]; 5296 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 5297 break; 5298 } 5299 if (i == rvd->vdev_children) { 5300 spa->spa_deflate = TRUE; 5301 VERIFY(0 == zap_add(spa->spa_meta_objset, 5302 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5303 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 5304 } 5305 } 5306 5307 /* 5308 * If anything has changed in this txg, or if someone is waiting 5309 * for this txg to sync (eg, spa_vdev_remove()), push the 5310 * deferred frees from the previous txg. If not, leave them 5311 * alone so that we don't generate work on an otherwise idle 5312 * system. 5313 */ 5314 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 5315 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 5316 !txg_list_empty(&dp->dp_sync_tasks, txg) || 5317 ((dsl_scan_active(dp->dp_scan) || 5318 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 5319 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5320 VERIFY3U(bpobj_iterate(defer_bpo, 5321 spa_free_sync_cb, zio, tx), ==, 0); 5322 VERIFY3U(zio_wait(zio), ==, 0); 5323 } 5324 5325 /* 5326 * Iterate to convergence. 5327 */ 5328 do { 5329 int pass = ++spa->spa_sync_pass; 5330 5331 spa_sync_config_object(spa, tx); 5332 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 5333 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 5334 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 5335 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 5336 spa_errlog_sync(spa, txg); 5337 dsl_pool_sync(dp, txg); 5338 5339 if (pass <= SYNC_PASS_DEFERRED_FREE) { 5340 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5341 bplist_iterate(free_bpl, spa_free_sync_cb, 5342 zio, tx); 5343 VERIFY(zio_wait(zio) == 0); 5344 } else { 5345 bplist_iterate(free_bpl, bpobj_enqueue_cb, 5346 defer_bpo, tx); 5347 } 5348 5349 ddt_sync(spa, txg); 5350 dsl_scan_sync(dp, tx); 5351 5352 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 5353 vdev_sync(vd, txg); 5354 5355 if (pass == 1) 5356 spa_sync_upgrades(spa, tx); 5357 5358 } while (dmu_objset_is_dirty(mos, txg)); 5359 5360 /* 5361 * Rewrite the vdev configuration (which includes the uberblock) 5362 * to commit the transaction group. 5363 * 5364 * If there are no dirty vdevs, we sync the uberblock to a few 5365 * random top-level vdevs that are known to be visible in the 5366 * config cache (see spa_vdev_add() for a complete description). 5367 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 5368 */ 5369 for (;;) { 5370 /* 5371 * We hold SCL_STATE to prevent vdev open/close/etc. 5372 * while we're attempting to write the vdev labels. 5373 */ 5374 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5375 5376 if (list_is_empty(&spa->spa_config_dirty_list)) { 5377 vdev_t *svd[SPA_DVAS_PER_BP]; 5378 int svdcount = 0; 5379 int children = rvd->vdev_children; 5380 int c0 = spa_get_random(children); 5381 5382 for (int c = 0; c < children; c++) { 5383 vd = rvd->vdev_child[(c0 + c) % children]; 5384 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 5385 continue; 5386 svd[svdcount++] = vd; 5387 if (svdcount == SPA_DVAS_PER_BP) 5388 break; 5389 } 5390 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 5391 if (error != 0) 5392 error = vdev_config_sync(svd, svdcount, txg, 5393 B_TRUE); 5394 } else { 5395 error = vdev_config_sync(rvd->vdev_child, 5396 rvd->vdev_children, txg, B_FALSE); 5397 if (error != 0) 5398 error = vdev_config_sync(rvd->vdev_child, 5399 rvd->vdev_children, txg, B_TRUE); 5400 } 5401 5402 spa_config_exit(spa, SCL_STATE, FTAG); 5403 5404 if (error == 0) 5405 break; 5406 zio_suspend(spa, NULL); 5407 zio_resume_wait(spa); 5408 } 5409 dmu_tx_commit(tx); 5410 5411 /* 5412 * Clear the dirty config list. 5413 */ 5414 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 5415 vdev_config_clean(vd); 5416 5417 /* 5418 * Now that the new config has synced transactionally, 5419 * let it become visible to the config cache. 5420 */ 5421 if (spa->spa_config_syncing != NULL) { 5422 spa_config_set(spa, spa->spa_config_syncing); 5423 spa->spa_config_txg = txg; 5424 spa->spa_config_syncing = NULL; 5425 } 5426 5427 spa->spa_ubsync = spa->spa_uberblock; 5428 5429 dsl_pool_sync_done(dp, txg); 5430 5431 /* 5432 * Update usable space statistics. 5433 */ 5434 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 5435 vdev_sync_done(vd, txg); 5436 5437 spa_update_dspace(spa); 5438 5439 /* 5440 * It had better be the case that we didn't dirty anything 5441 * since vdev_config_sync(). 5442 */ 5443 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 5444 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 5445 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 5446 5447 spa->spa_sync_pass = 0; 5448 5449 spa_config_exit(spa, SCL_CONFIG, FTAG); 5450 5451 spa_handle_ignored_writes(spa); 5452 5453 /* 5454 * If any async tasks have been requested, kick them off. 5455 */ 5456 spa_async_dispatch(spa); 5457 } 5458 5459 /* 5460 * Sync all pools. We don't want to hold the namespace lock across these 5461 * operations, so we take a reference on the spa_t and drop the lock during the 5462 * sync. 5463 */ 5464 void 5465 spa_sync_allpools(void) 5466 { 5467 spa_t *spa = NULL; 5468 mutex_enter(&spa_namespace_lock); 5469 while ((spa = spa_next(spa)) != NULL) { 5470 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 5471 continue; 5472 spa_open_ref(spa, FTAG); 5473 mutex_exit(&spa_namespace_lock); 5474 txg_wait_synced(spa_get_dsl(spa), 0); 5475 mutex_enter(&spa_namespace_lock); 5476 spa_close(spa, FTAG); 5477 } 5478 mutex_exit(&spa_namespace_lock); 5479 } 5480 5481 /* 5482 * ========================================================================== 5483 * Miscellaneous routines 5484 * ========================================================================== 5485 */ 5486 5487 /* 5488 * Remove all pools in the system. 5489 */ 5490 void 5491 spa_evict_all(void) 5492 { 5493 spa_t *spa; 5494 5495 /* 5496 * Remove all cached state. All pools should be closed now, 5497 * so every spa in the AVL tree should be unreferenced. 5498 */ 5499 mutex_enter(&spa_namespace_lock); 5500 while ((spa = spa_next(NULL)) != NULL) { 5501 /* 5502 * Stop async tasks. The async thread may need to detach 5503 * a device that's been replaced, which requires grabbing 5504 * spa_namespace_lock, so we must drop it here. 5505 */ 5506 spa_open_ref(spa, FTAG); 5507 mutex_exit(&spa_namespace_lock); 5508 spa_async_suspend(spa); 5509 mutex_enter(&spa_namespace_lock); 5510 spa_close(spa, FTAG); 5511 5512 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5513 spa_unload(spa); 5514 spa_deactivate(spa); 5515 } 5516 spa_remove(spa); 5517 } 5518 mutex_exit(&spa_namespace_lock); 5519 } 5520 5521 vdev_t * 5522 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 5523 { 5524 vdev_t *vd; 5525 int i; 5526 5527 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 5528 return (vd); 5529 5530 if (aux) { 5531 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 5532 vd = spa->spa_l2cache.sav_vdevs[i]; 5533 if (vd->vdev_guid == guid) 5534 return (vd); 5535 } 5536 5537 for (i = 0; i < spa->spa_spares.sav_count; i++) { 5538 vd = spa->spa_spares.sav_vdevs[i]; 5539 if (vd->vdev_guid == guid) 5540 return (vd); 5541 } 5542 } 5543 5544 return (NULL); 5545 } 5546 5547 void 5548 spa_upgrade(spa_t *spa, uint64_t version) 5549 { 5550 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5551 5552 /* 5553 * This should only be called for a non-faulted pool, and since a 5554 * future version would result in an unopenable pool, this shouldn't be 5555 * possible. 5556 */ 5557 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 5558 ASSERT(version >= spa->spa_uberblock.ub_version); 5559 5560 spa->spa_uberblock.ub_version = version; 5561 vdev_config_dirty(spa->spa_root_vdev); 5562 5563 spa_config_exit(spa, SCL_ALL, FTAG); 5564 5565 txg_wait_synced(spa_get_dsl(spa), 0); 5566 } 5567 5568 boolean_t 5569 spa_has_spare(spa_t *spa, uint64_t guid) 5570 { 5571 int i; 5572 uint64_t spareguid; 5573 spa_aux_vdev_t *sav = &spa->spa_spares; 5574 5575 for (i = 0; i < sav->sav_count; i++) 5576 if (sav->sav_vdevs[i]->vdev_guid == guid) 5577 return (B_TRUE); 5578 5579 for (i = 0; i < sav->sav_npending; i++) { 5580 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 5581 &spareguid) == 0 && spareguid == guid) 5582 return (B_TRUE); 5583 } 5584 5585 return (B_FALSE); 5586 } 5587 5588 /* 5589 * Check if a pool has an active shared spare device. 5590 * Note: reference count of an active spare is 2, as a spare and as a replace 5591 */ 5592 static boolean_t 5593 spa_has_active_shared_spare(spa_t *spa) 5594 { 5595 int i, refcnt; 5596 uint64_t pool; 5597 spa_aux_vdev_t *sav = &spa->spa_spares; 5598 5599 for (i = 0; i < sav->sav_count; i++) { 5600 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 5601 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 5602 refcnt > 2) 5603 return (B_TRUE); 5604 } 5605 5606 return (B_FALSE); 5607 } 5608 5609 /* 5610 * Post a sysevent corresponding to the given event. The 'name' must be one of 5611 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 5612 * filled in from the spa and (optionally) the vdev. This doesn't do anything 5613 * in the userland libzpool, as we don't want consumers to misinterpret ztest 5614 * or zdb as real changes. 5615 */ 5616 void 5617 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 5618 { 5619 #ifdef _KERNEL 5620 sysevent_t *ev; 5621 sysevent_attr_list_t *attr = NULL; 5622 sysevent_value_t value; 5623 sysevent_id_t eid; 5624 5625 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 5626 SE_SLEEP); 5627 5628 value.value_type = SE_DATA_TYPE_STRING; 5629 value.value.sv_string = spa_name(spa); 5630 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 5631 goto done; 5632 5633 value.value_type = SE_DATA_TYPE_UINT64; 5634 value.value.sv_uint64 = spa_guid(spa); 5635 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 5636 goto done; 5637 5638 if (vd) { 5639 value.value_type = SE_DATA_TYPE_UINT64; 5640 value.value.sv_uint64 = vd->vdev_guid; 5641 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 5642 SE_SLEEP) != 0) 5643 goto done; 5644 5645 if (vd->vdev_path) { 5646 value.value_type = SE_DATA_TYPE_STRING; 5647 value.value.sv_string = vd->vdev_path; 5648 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 5649 &value, SE_SLEEP) != 0) 5650 goto done; 5651 } 5652 } 5653 5654 if (sysevent_attach_attributes(ev, attr) != 0) 5655 goto done; 5656 attr = NULL; 5657 5658 (void) log_sysevent(ev, SE_SLEEP, &eid); 5659 5660 done: 5661 if (attr) 5662 sysevent_free_attr(attr); 5663 sysevent_free(ev); 5664 #endif 5665 } 5666