1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * This file contains all the routines used when modifying on-disk SPA state. 28 * This includes opening, importing, destroying, exporting a pool, and syncing a 29 * pool. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa_impl.h> 35 #include <sys/zio.h> 36 #include <sys/zio_checksum.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/ddt.h> 42 #include <sys/vdev_impl.h> 43 #include <sys/metaslab.h> 44 #include <sys/metaslab_impl.h> 45 #include <sys/uberblock_impl.h> 46 #include <sys/txg.h> 47 #include <sys/avl.h> 48 #include <sys/dmu_traverse.h> 49 #include <sys/dmu_objset.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dataset.h> 53 #include <sys/dsl_dir.h> 54 #include <sys/dsl_prop.h> 55 #include <sys/dsl_synctask.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/arc.h> 58 #include <sys/callb.h> 59 #include <sys/systeminfo.h> 60 #include <sys/spa_boot.h> 61 #include <sys/zfs_ioctl.h> 62 #include <sys/dsl_scan.h> 63 64 #ifdef _KERNEL 65 #include <sys/bootprops.h> 66 #include <sys/callb.h> 67 #include <sys/cpupart.h> 68 #include <sys/pool.h> 69 #include <sys/sysdc.h> 70 #include <sys/zone.h> 71 #endif /* _KERNEL */ 72 73 #include "zfs_prop.h" 74 #include "zfs_comutil.h" 75 76 typedef enum zti_modes { 77 zti_mode_fixed, /* value is # of threads (min 1) */ 78 zti_mode_online_percent, /* value is % of online CPUs */ 79 zti_mode_batch, /* cpu-intensive; value is ignored */ 80 zti_mode_null, /* don't create a taskq */ 81 zti_nmodes 82 } zti_modes_t; 83 84 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 85 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 86 #define ZTI_BATCH { zti_mode_batch, 0 } 87 #define ZTI_NULL { zti_mode_null, 0 } 88 89 #define ZTI_ONE ZTI_FIX(1) 90 91 typedef struct zio_taskq_info { 92 enum zti_modes zti_mode; 93 uint_t zti_value; 94 } zio_taskq_info_t; 95 96 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 97 "issue", "issue_high", "intr", "intr_high" 98 }; 99 100 /* 101 * Define the taskq threads for the following I/O types: 102 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 103 */ 104 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 105 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 106 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 107 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 108 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 109 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL }, 110 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 111 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 112 }; 113 114 static dsl_syncfunc_t spa_sync_props; 115 static boolean_t spa_has_active_shared_spare(spa_t *spa); 116 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 117 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 118 char **ereport); 119 120 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 121 id_t zio_taskq_psrset_bind = PS_NONE; 122 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 123 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 124 125 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 126 127 /* 128 * This (illegal) pool name is used when temporarily importing a spa_t in order 129 * to get the vdev stats associated with the imported devices. 130 */ 131 #define TRYIMPORT_NAME "$import" 132 133 /* 134 * ========================================================================== 135 * SPA properties routines 136 * ========================================================================== 137 */ 138 139 /* 140 * Add a (source=src, propname=propval) list to an nvlist. 141 */ 142 static void 143 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 144 uint64_t intval, zprop_source_t src) 145 { 146 const char *propname = zpool_prop_to_name(prop); 147 nvlist_t *propval; 148 149 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 150 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 151 152 if (strval != NULL) 153 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 154 else 155 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 156 157 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 158 nvlist_free(propval); 159 } 160 161 /* 162 * Get property values from the spa configuration. 163 */ 164 static void 165 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 166 { 167 uint64_t size; 168 uint64_t alloc; 169 uint64_t cap, version; 170 zprop_source_t src = ZPROP_SRC_NONE; 171 spa_config_dirent_t *dp; 172 173 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 174 175 if (spa->spa_root_vdev != NULL) { 176 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 177 size = metaslab_class_get_space(spa_normal_class(spa)); 178 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 179 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 180 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 181 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 182 size - alloc, src); 183 184 cap = (size == 0) ? 0 : (alloc * 100 / size); 185 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 186 187 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 188 ddt_get_pool_dedup_ratio(spa), src); 189 190 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 191 spa->spa_root_vdev->vdev_state, src); 192 193 version = spa_version(spa); 194 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 195 src = ZPROP_SRC_DEFAULT; 196 else 197 src = ZPROP_SRC_LOCAL; 198 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 199 } 200 201 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 202 203 if (spa->spa_root != NULL) 204 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 205 0, ZPROP_SRC_LOCAL); 206 207 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 208 if (dp->scd_path == NULL) { 209 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 210 "none", 0, ZPROP_SRC_LOCAL); 211 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 212 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 213 dp->scd_path, 0, ZPROP_SRC_LOCAL); 214 } 215 } 216 } 217 218 /* 219 * Get zpool property values. 220 */ 221 int 222 spa_prop_get(spa_t *spa, nvlist_t **nvp) 223 { 224 objset_t *mos = spa->spa_meta_objset; 225 zap_cursor_t zc; 226 zap_attribute_t za; 227 int err; 228 229 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 230 231 mutex_enter(&spa->spa_props_lock); 232 233 /* 234 * Get properties from the spa config. 235 */ 236 spa_prop_get_config(spa, nvp); 237 238 /* If no pool property object, no more prop to get. */ 239 if (mos == NULL || spa->spa_pool_props_object == 0) { 240 mutex_exit(&spa->spa_props_lock); 241 return (0); 242 } 243 244 /* 245 * Get properties from the MOS pool property object. 246 */ 247 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 248 (err = zap_cursor_retrieve(&zc, &za)) == 0; 249 zap_cursor_advance(&zc)) { 250 uint64_t intval = 0; 251 char *strval = NULL; 252 zprop_source_t src = ZPROP_SRC_DEFAULT; 253 zpool_prop_t prop; 254 255 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 256 continue; 257 258 switch (za.za_integer_length) { 259 case 8: 260 /* integer property */ 261 if (za.za_first_integer != 262 zpool_prop_default_numeric(prop)) 263 src = ZPROP_SRC_LOCAL; 264 265 if (prop == ZPOOL_PROP_BOOTFS) { 266 dsl_pool_t *dp; 267 dsl_dataset_t *ds = NULL; 268 269 dp = spa_get_dsl(spa); 270 rw_enter(&dp->dp_config_rwlock, RW_READER); 271 if (err = dsl_dataset_hold_obj(dp, 272 za.za_first_integer, FTAG, &ds)) { 273 rw_exit(&dp->dp_config_rwlock); 274 break; 275 } 276 277 strval = kmem_alloc( 278 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 279 KM_SLEEP); 280 dsl_dataset_name(ds, strval); 281 dsl_dataset_rele(ds, FTAG); 282 rw_exit(&dp->dp_config_rwlock); 283 } else { 284 strval = NULL; 285 intval = za.za_first_integer; 286 } 287 288 spa_prop_add_list(*nvp, prop, strval, intval, src); 289 290 if (strval != NULL) 291 kmem_free(strval, 292 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 293 294 break; 295 296 case 1: 297 /* string property */ 298 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 299 err = zap_lookup(mos, spa->spa_pool_props_object, 300 za.za_name, 1, za.za_num_integers, strval); 301 if (err) { 302 kmem_free(strval, za.za_num_integers); 303 break; 304 } 305 spa_prop_add_list(*nvp, prop, strval, 0, src); 306 kmem_free(strval, za.za_num_integers); 307 break; 308 309 default: 310 break; 311 } 312 } 313 zap_cursor_fini(&zc); 314 mutex_exit(&spa->spa_props_lock); 315 out: 316 if (err && err != ENOENT) { 317 nvlist_free(*nvp); 318 *nvp = NULL; 319 return (err); 320 } 321 322 return (0); 323 } 324 325 /* 326 * Validate the given pool properties nvlist and modify the list 327 * for the property values to be set. 328 */ 329 static int 330 spa_prop_validate(spa_t *spa, nvlist_t *props) 331 { 332 nvpair_t *elem; 333 int error = 0, reset_bootfs = 0; 334 uint64_t objnum; 335 336 elem = NULL; 337 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 338 zpool_prop_t prop; 339 char *propname, *strval; 340 uint64_t intval; 341 objset_t *os; 342 char *slash; 343 344 propname = nvpair_name(elem); 345 346 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 347 return (EINVAL); 348 349 switch (prop) { 350 case ZPOOL_PROP_VERSION: 351 error = nvpair_value_uint64(elem, &intval); 352 if (!error && 353 (intval < spa_version(spa) || intval > SPA_VERSION)) 354 error = EINVAL; 355 break; 356 357 case ZPOOL_PROP_DELEGATION: 358 case ZPOOL_PROP_AUTOREPLACE: 359 case ZPOOL_PROP_LISTSNAPS: 360 case ZPOOL_PROP_AUTOEXPAND: 361 error = nvpair_value_uint64(elem, &intval); 362 if (!error && intval > 1) 363 error = EINVAL; 364 break; 365 366 case ZPOOL_PROP_BOOTFS: 367 /* 368 * If the pool version is less than SPA_VERSION_BOOTFS, 369 * or the pool is still being created (version == 0), 370 * the bootfs property cannot be set. 371 */ 372 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 373 error = ENOTSUP; 374 break; 375 } 376 377 /* 378 * Make sure the vdev config is bootable 379 */ 380 if (!vdev_is_bootable(spa->spa_root_vdev)) { 381 error = ENOTSUP; 382 break; 383 } 384 385 reset_bootfs = 1; 386 387 error = nvpair_value_string(elem, &strval); 388 389 if (!error) { 390 uint64_t compress; 391 392 if (strval == NULL || strval[0] == '\0') { 393 objnum = zpool_prop_default_numeric( 394 ZPOOL_PROP_BOOTFS); 395 break; 396 } 397 398 if (error = dmu_objset_hold(strval, FTAG, &os)) 399 break; 400 401 /* Must be ZPL and not gzip compressed. */ 402 403 if (dmu_objset_type(os) != DMU_OST_ZFS) { 404 error = ENOTSUP; 405 } else if ((error = dsl_prop_get_integer(strval, 406 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 407 &compress, NULL)) == 0 && 408 !BOOTFS_COMPRESS_VALID(compress)) { 409 error = ENOTSUP; 410 } else { 411 objnum = dmu_objset_id(os); 412 } 413 dmu_objset_rele(os, FTAG); 414 } 415 break; 416 417 case ZPOOL_PROP_FAILUREMODE: 418 error = nvpair_value_uint64(elem, &intval); 419 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 420 intval > ZIO_FAILURE_MODE_PANIC)) 421 error = EINVAL; 422 423 /* 424 * This is a special case which only occurs when 425 * the pool has completely failed. This allows 426 * the user to change the in-core failmode property 427 * without syncing it out to disk (I/Os might 428 * currently be blocked). We do this by returning 429 * EIO to the caller (spa_prop_set) to trick it 430 * into thinking we encountered a property validation 431 * error. 432 */ 433 if (!error && spa_suspended(spa)) { 434 spa->spa_failmode = intval; 435 error = EIO; 436 } 437 break; 438 439 case ZPOOL_PROP_CACHEFILE: 440 if ((error = nvpair_value_string(elem, &strval)) != 0) 441 break; 442 443 if (strval[0] == '\0') 444 break; 445 446 if (strcmp(strval, "none") == 0) 447 break; 448 449 if (strval[0] != '/') { 450 error = EINVAL; 451 break; 452 } 453 454 slash = strrchr(strval, '/'); 455 ASSERT(slash != NULL); 456 457 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 458 strcmp(slash, "/..") == 0) 459 error = EINVAL; 460 break; 461 462 case ZPOOL_PROP_DEDUPDITTO: 463 if (spa_version(spa) < SPA_VERSION_DEDUP) 464 error = ENOTSUP; 465 else 466 error = nvpair_value_uint64(elem, &intval); 467 if (error == 0 && 468 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 469 error = EINVAL; 470 break; 471 } 472 473 if (error) 474 break; 475 } 476 477 if (!error && reset_bootfs) { 478 error = nvlist_remove(props, 479 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 480 481 if (!error) { 482 error = nvlist_add_uint64(props, 483 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 484 } 485 } 486 487 return (error); 488 } 489 490 void 491 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 492 { 493 char *cachefile; 494 spa_config_dirent_t *dp; 495 496 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 497 &cachefile) != 0) 498 return; 499 500 dp = kmem_alloc(sizeof (spa_config_dirent_t), 501 KM_SLEEP); 502 503 if (cachefile[0] == '\0') 504 dp->scd_path = spa_strdup(spa_config_path); 505 else if (strcmp(cachefile, "none") == 0) 506 dp->scd_path = NULL; 507 else 508 dp->scd_path = spa_strdup(cachefile); 509 510 list_insert_head(&spa->spa_config_list, dp); 511 if (need_sync) 512 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 513 } 514 515 int 516 spa_prop_set(spa_t *spa, nvlist_t *nvp) 517 { 518 int error; 519 nvpair_t *elem; 520 boolean_t need_sync = B_FALSE; 521 zpool_prop_t prop; 522 523 if ((error = spa_prop_validate(spa, nvp)) != 0) 524 return (error); 525 526 elem = NULL; 527 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 528 if ((prop = zpool_name_to_prop( 529 nvpair_name(elem))) == ZPROP_INVAL) 530 return (EINVAL); 531 532 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 533 continue; 534 535 need_sync = B_TRUE; 536 break; 537 } 538 539 if (need_sync) 540 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 541 spa, nvp, 3)); 542 else 543 return (0); 544 } 545 546 /* 547 * If the bootfs property value is dsobj, clear it. 548 */ 549 void 550 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 551 { 552 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 553 VERIFY(zap_remove(spa->spa_meta_objset, 554 spa->spa_pool_props_object, 555 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 556 spa->spa_bootfs = 0; 557 } 558 } 559 560 /* 561 * ========================================================================== 562 * SPA state manipulation (open/create/destroy/import/export) 563 * ========================================================================== 564 */ 565 566 static int 567 spa_error_entry_compare(const void *a, const void *b) 568 { 569 spa_error_entry_t *sa = (spa_error_entry_t *)a; 570 spa_error_entry_t *sb = (spa_error_entry_t *)b; 571 int ret; 572 573 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 574 sizeof (zbookmark_t)); 575 576 if (ret < 0) 577 return (-1); 578 else if (ret > 0) 579 return (1); 580 else 581 return (0); 582 } 583 584 /* 585 * Utility function which retrieves copies of the current logs and 586 * re-initializes them in the process. 587 */ 588 void 589 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 590 { 591 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 592 593 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 594 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 595 596 avl_create(&spa->spa_errlist_scrub, 597 spa_error_entry_compare, sizeof (spa_error_entry_t), 598 offsetof(spa_error_entry_t, se_avl)); 599 avl_create(&spa->spa_errlist_last, 600 spa_error_entry_compare, sizeof (spa_error_entry_t), 601 offsetof(spa_error_entry_t, se_avl)); 602 } 603 604 static taskq_t * 605 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 606 uint_t value) 607 { 608 uint_t flags = TASKQ_PREPOPULATE; 609 boolean_t batch = B_FALSE; 610 611 switch (mode) { 612 case zti_mode_null: 613 return (NULL); /* no taskq needed */ 614 615 case zti_mode_fixed: 616 ASSERT3U(value, >=, 1); 617 value = MAX(value, 1); 618 break; 619 620 case zti_mode_batch: 621 batch = B_TRUE; 622 flags |= TASKQ_THREADS_CPU_PCT; 623 value = zio_taskq_batch_pct; 624 break; 625 626 case zti_mode_online_percent: 627 flags |= TASKQ_THREADS_CPU_PCT; 628 break; 629 630 default: 631 panic("unrecognized mode for %s taskq (%u:%u) in " 632 "spa_activate()", 633 name, mode, value); 634 break; 635 } 636 637 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 638 if (batch) 639 flags |= TASKQ_DC_BATCH; 640 641 return (taskq_create_sysdc(name, value, 50, INT_MAX, 642 spa->spa_proc, zio_taskq_basedc, flags)); 643 } 644 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 645 spa->spa_proc, flags)); 646 } 647 648 static void 649 spa_create_zio_taskqs(spa_t *spa) 650 { 651 for (int t = 0; t < ZIO_TYPES; t++) { 652 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 653 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 654 enum zti_modes mode = ztip->zti_mode; 655 uint_t value = ztip->zti_value; 656 char name[32]; 657 658 (void) snprintf(name, sizeof (name), 659 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 660 661 spa->spa_zio_taskq[t][q] = 662 spa_taskq_create(spa, name, mode, value); 663 } 664 } 665 } 666 667 #ifdef _KERNEL 668 static void 669 spa_thread(void *arg) 670 { 671 callb_cpr_t cprinfo; 672 673 spa_t *spa = arg; 674 user_t *pu = PTOU(curproc); 675 676 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 677 spa->spa_name); 678 679 ASSERT(curproc != &p0); 680 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 681 "zpool-%s", spa->spa_name); 682 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 683 684 /* bind this thread to the requested psrset */ 685 if (zio_taskq_psrset_bind != PS_NONE) { 686 pool_lock(); 687 mutex_enter(&cpu_lock); 688 mutex_enter(&pidlock); 689 mutex_enter(&curproc->p_lock); 690 691 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 692 0, NULL, NULL) == 0) { 693 curthread->t_bind_pset = zio_taskq_psrset_bind; 694 } else { 695 cmn_err(CE_WARN, 696 "Couldn't bind process for zfs pool \"%s\" to " 697 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 698 } 699 700 mutex_exit(&curproc->p_lock); 701 mutex_exit(&pidlock); 702 mutex_exit(&cpu_lock); 703 pool_unlock(); 704 } 705 706 if (zio_taskq_sysdc) { 707 sysdc_thread_enter(curthread, 100, 0); 708 } 709 710 spa->spa_proc = curproc; 711 spa->spa_did = curthread->t_did; 712 713 spa_create_zio_taskqs(spa); 714 715 mutex_enter(&spa->spa_proc_lock); 716 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 717 718 spa->spa_proc_state = SPA_PROC_ACTIVE; 719 cv_broadcast(&spa->spa_proc_cv); 720 721 CALLB_CPR_SAFE_BEGIN(&cprinfo); 722 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 723 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 724 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 725 726 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 727 spa->spa_proc_state = SPA_PROC_GONE; 728 spa->spa_proc = &p0; 729 cv_broadcast(&spa->spa_proc_cv); 730 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 731 732 mutex_enter(&curproc->p_lock); 733 lwp_exit(); 734 } 735 #endif 736 737 /* 738 * Activate an uninitialized pool. 739 */ 740 static void 741 spa_activate(spa_t *spa, int mode) 742 { 743 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 744 745 spa->spa_state = POOL_STATE_ACTIVE; 746 spa->spa_mode = mode; 747 748 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 749 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 750 751 /* Try to create a covering process */ 752 mutex_enter(&spa->spa_proc_lock); 753 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 754 ASSERT(spa->spa_proc == &p0); 755 spa->spa_did = 0; 756 757 /* Only create a process if we're going to be around a while. */ 758 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 759 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 760 NULL, 0) == 0) { 761 spa->spa_proc_state = SPA_PROC_CREATED; 762 while (spa->spa_proc_state == SPA_PROC_CREATED) { 763 cv_wait(&spa->spa_proc_cv, 764 &spa->spa_proc_lock); 765 } 766 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 767 ASSERT(spa->spa_proc != &p0); 768 ASSERT(spa->spa_did != 0); 769 } else { 770 #ifdef _KERNEL 771 cmn_err(CE_WARN, 772 "Couldn't create process for zfs pool \"%s\"\n", 773 spa->spa_name); 774 #endif 775 } 776 } 777 mutex_exit(&spa->spa_proc_lock); 778 779 /* If we didn't create a process, we need to create our taskqs. */ 780 if (spa->spa_proc == &p0) { 781 spa_create_zio_taskqs(spa); 782 } 783 784 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 785 offsetof(vdev_t, vdev_config_dirty_node)); 786 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 787 offsetof(vdev_t, vdev_state_dirty_node)); 788 789 txg_list_create(&spa->spa_vdev_txg_list, 790 offsetof(struct vdev, vdev_txg_node)); 791 792 avl_create(&spa->spa_errlist_scrub, 793 spa_error_entry_compare, sizeof (spa_error_entry_t), 794 offsetof(spa_error_entry_t, se_avl)); 795 avl_create(&spa->spa_errlist_last, 796 spa_error_entry_compare, sizeof (spa_error_entry_t), 797 offsetof(spa_error_entry_t, se_avl)); 798 } 799 800 /* 801 * Opposite of spa_activate(). 802 */ 803 static void 804 spa_deactivate(spa_t *spa) 805 { 806 ASSERT(spa->spa_sync_on == B_FALSE); 807 ASSERT(spa->spa_dsl_pool == NULL); 808 ASSERT(spa->spa_root_vdev == NULL); 809 ASSERT(spa->spa_async_zio_root == NULL); 810 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 811 812 txg_list_destroy(&spa->spa_vdev_txg_list); 813 814 list_destroy(&spa->spa_config_dirty_list); 815 list_destroy(&spa->spa_state_dirty_list); 816 817 for (int t = 0; t < ZIO_TYPES; t++) { 818 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 819 if (spa->spa_zio_taskq[t][q] != NULL) 820 taskq_destroy(spa->spa_zio_taskq[t][q]); 821 spa->spa_zio_taskq[t][q] = NULL; 822 } 823 } 824 825 metaslab_class_destroy(spa->spa_normal_class); 826 spa->spa_normal_class = NULL; 827 828 metaslab_class_destroy(spa->spa_log_class); 829 spa->spa_log_class = NULL; 830 831 /* 832 * If this was part of an import or the open otherwise failed, we may 833 * still have errors left in the queues. Empty them just in case. 834 */ 835 spa_errlog_drain(spa); 836 837 avl_destroy(&spa->spa_errlist_scrub); 838 avl_destroy(&spa->spa_errlist_last); 839 840 spa->spa_state = POOL_STATE_UNINITIALIZED; 841 842 mutex_enter(&spa->spa_proc_lock); 843 if (spa->spa_proc_state != SPA_PROC_NONE) { 844 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 845 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 846 cv_broadcast(&spa->spa_proc_cv); 847 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 848 ASSERT(spa->spa_proc != &p0); 849 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 850 } 851 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 852 spa->spa_proc_state = SPA_PROC_NONE; 853 } 854 ASSERT(spa->spa_proc == &p0); 855 mutex_exit(&spa->spa_proc_lock); 856 857 /* 858 * We want to make sure spa_thread() has actually exited the ZFS 859 * module, so that the module can't be unloaded out from underneath 860 * it. 861 */ 862 if (spa->spa_did != 0) { 863 thread_join(spa->spa_did); 864 spa->spa_did = 0; 865 } 866 } 867 868 /* 869 * Verify a pool configuration, and construct the vdev tree appropriately. This 870 * will create all the necessary vdevs in the appropriate layout, with each vdev 871 * in the CLOSED state. This will prep the pool before open/creation/import. 872 * All vdev validation is done by the vdev_alloc() routine. 873 */ 874 static int 875 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 876 uint_t id, int atype) 877 { 878 nvlist_t **child; 879 uint_t children; 880 int error; 881 882 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 883 return (error); 884 885 if ((*vdp)->vdev_ops->vdev_op_leaf) 886 return (0); 887 888 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 889 &child, &children); 890 891 if (error == ENOENT) 892 return (0); 893 894 if (error) { 895 vdev_free(*vdp); 896 *vdp = NULL; 897 return (EINVAL); 898 } 899 900 for (int c = 0; c < children; c++) { 901 vdev_t *vd; 902 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 903 atype)) != 0) { 904 vdev_free(*vdp); 905 *vdp = NULL; 906 return (error); 907 } 908 } 909 910 ASSERT(*vdp != NULL); 911 912 return (0); 913 } 914 915 /* 916 * Opposite of spa_load(). 917 */ 918 static void 919 spa_unload(spa_t *spa) 920 { 921 int i; 922 923 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 924 925 /* 926 * Stop async tasks. 927 */ 928 spa_async_suspend(spa); 929 930 /* 931 * Stop syncing. 932 */ 933 if (spa->spa_sync_on) { 934 txg_sync_stop(spa->spa_dsl_pool); 935 spa->spa_sync_on = B_FALSE; 936 } 937 938 /* 939 * Wait for any outstanding async I/O to complete. 940 */ 941 if (spa->spa_async_zio_root != NULL) { 942 (void) zio_wait(spa->spa_async_zio_root); 943 spa->spa_async_zio_root = NULL; 944 } 945 946 bpobj_close(&spa->spa_deferred_bpobj); 947 948 /* 949 * Close the dsl pool. 950 */ 951 if (spa->spa_dsl_pool) { 952 dsl_pool_close(spa->spa_dsl_pool); 953 spa->spa_dsl_pool = NULL; 954 spa->spa_meta_objset = NULL; 955 } 956 957 ddt_unload(spa); 958 959 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 960 961 /* 962 * Drop and purge level 2 cache 963 */ 964 spa_l2cache_drop(spa); 965 966 /* 967 * Close all vdevs. 968 */ 969 if (spa->spa_root_vdev) 970 vdev_free(spa->spa_root_vdev); 971 ASSERT(spa->spa_root_vdev == NULL); 972 973 for (i = 0; i < spa->spa_spares.sav_count; i++) 974 vdev_free(spa->spa_spares.sav_vdevs[i]); 975 if (spa->spa_spares.sav_vdevs) { 976 kmem_free(spa->spa_spares.sav_vdevs, 977 spa->spa_spares.sav_count * sizeof (void *)); 978 spa->spa_spares.sav_vdevs = NULL; 979 } 980 if (spa->spa_spares.sav_config) { 981 nvlist_free(spa->spa_spares.sav_config); 982 spa->spa_spares.sav_config = NULL; 983 } 984 spa->spa_spares.sav_count = 0; 985 986 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 987 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 988 if (spa->spa_l2cache.sav_vdevs) { 989 kmem_free(spa->spa_l2cache.sav_vdevs, 990 spa->spa_l2cache.sav_count * sizeof (void *)); 991 spa->spa_l2cache.sav_vdevs = NULL; 992 } 993 if (spa->spa_l2cache.sav_config) { 994 nvlist_free(spa->spa_l2cache.sav_config); 995 spa->spa_l2cache.sav_config = NULL; 996 } 997 spa->spa_l2cache.sav_count = 0; 998 999 spa->spa_async_suspended = 0; 1000 1001 spa_config_exit(spa, SCL_ALL, FTAG); 1002 } 1003 1004 /* 1005 * Load (or re-load) the current list of vdevs describing the active spares for 1006 * this pool. When this is called, we have some form of basic information in 1007 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1008 * then re-generate a more complete list including status information. 1009 */ 1010 static void 1011 spa_load_spares(spa_t *spa) 1012 { 1013 nvlist_t **spares; 1014 uint_t nspares; 1015 int i; 1016 vdev_t *vd, *tvd; 1017 1018 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1019 1020 /* 1021 * First, close and free any existing spare vdevs. 1022 */ 1023 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1024 vd = spa->spa_spares.sav_vdevs[i]; 1025 1026 /* Undo the call to spa_activate() below */ 1027 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1028 B_FALSE)) != NULL && tvd->vdev_isspare) 1029 spa_spare_remove(tvd); 1030 vdev_close(vd); 1031 vdev_free(vd); 1032 } 1033 1034 if (spa->spa_spares.sav_vdevs) 1035 kmem_free(spa->spa_spares.sav_vdevs, 1036 spa->spa_spares.sav_count * sizeof (void *)); 1037 1038 if (spa->spa_spares.sav_config == NULL) 1039 nspares = 0; 1040 else 1041 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1042 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1043 1044 spa->spa_spares.sav_count = (int)nspares; 1045 spa->spa_spares.sav_vdevs = NULL; 1046 1047 if (nspares == 0) 1048 return; 1049 1050 /* 1051 * Construct the array of vdevs, opening them to get status in the 1052 * process. For each spare, there is potentially two different vdev_t 1053 * structures associated with it: one in the list of spares (used only 1054 * for basic validation purposes) and one in the active vdev 1055 * configuration (if it's spared in). During this phase we open and 1056 * validate each vdev on the spare list. If the vdev also exists in the 1057 * active configuration, then we also mark this vdev as an active spare. 1058 */ 1059 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1060 KM_SLEEP); 1061 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1062 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1063 VDEV_ALLOC_SPARE) == 0); 1064 ASSERT(vd != NULL); 1065 1066 spa->spa_spares.sav_vdevs[i] = vd; 1067 1068 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1069 B_FALSE)) != NULL) { 1070 if (!tvd->vdev_isspare) 1071 spa_spare_add(tvd); 1072 1073 /* 1074 * We only mark the spare active if we were successfully 1075 * able to load the vdev. Otherwise, importing a pool 1076 * with a bad active spare would result in strange 1077 * behavior, because multiple pool would think the spare 1078 * is actively in use. 1079 * 1080 * There is a vulnerability here to an equally bizarre 1081 * circumstance, where a dead active spare is later 1082 * brought back to life (onlined or otherwise). Given 1083 * the rarity of this scenario, and the extra complexity 1084 * it adds, we ignore the possibility. 1085 */ 1086 if (!vdev_is_dead(tvd)) 1087 spa_spare_activate(tvd); 1088 } 1089 1090 vd->vdev_top = vd; 1091 vd->vdev_aux = &spa->spa_spares; 1092 1093 if (vdev_open(vd) != 0) 1094 continue; 1095 1096 if (vdev_validate_aux(vd) == 0) 1097 spa_spare_add(vd); 1098 } 1099 1100 /* 1101 * Recompute the stashed list of spares, with status information 1102 * this time. 1103 */ 1104 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1105 DATA_TYPE_NVLIST_ARRAY) == 0); 1106 1107 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1108 KM_SLEEP); 1109 for (i = 0; i < spa->spa_spares.sav_count; i++) 1110 spares[i] = vdev_config_generate(spa, 1111 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1112 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1113 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1114 for (i = 0; i < spa->spa_spares.sav_count; i++) 1115 nvlist_free(spares[i]); 1116 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1117 } 1118 1119 /* 1120 * Load (or re-load) the current list of vdevs describing the active l2cache for 1121 * this pool. When this is called, we have some form of basic information in 1122 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1123 * then re-generate a more complete list including status information. 1124 * Devices which are already active have their details maintained, and are 1125 * not re-opened. 1126 */ 1127 static void 1128 spa_load_l2cache(spa_t *spa) 1129 { 1130 nvlist_t **l2cache; 1131 uint_t nl2cache; 1132 int i, j, oldnvdevs; 1133 uint64_t guid; 1134 vdev_t *vd, **oldvdevs, **newvdevs; 1135 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1136 1137 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1138 1139 if (sav->sav_config != NULL) { 1140 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1141 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1142 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1143 } else { 1144 nl2cache = 0; 1145 } 1146 1147 oldvdevs = sav->sav_vdevs; 1148 oldnvdevs = sav->sav_count; 1149 sav->sav_vdevs = NULL; 1150 sav->sav_count = 0; 1151 1152 /* 1153 * Process new nvlist of vdevs. 1154 */ 1155 for (i = 0; i < nl2cache; i++) { 1156 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1157 &guid) == 0); 1158 1159 newvdevs[i] = NULL; 1160 for (j = 0; j < oldnvdevs; j++) { 1161 vd = oldvdevs[j]; 1162 if (vd != NULL && guid == vd->vdev_guid) { 1163 /* 1164 * Retain previous vdev for add/remove ops. 1165 */ 1166 newvdevs[i] = vd; 1167 oldvdevs[j] = NULL; 1168 break; 1169 } 1170 } 1171 1172 if (newvdevs[i] == NULL) { 1173 /* 1174 * Create new vdev 1175 */ 1176 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1177 VDEV_ALLOC_L2CACHE) == 0); 1178 ASSERT(vd != NULL); 1179 newvdevs[i] = vd; 1180 1181 /* 1182 * Commit this vdev as an l2cache device, 1183 * even if it fails to open. 1184 */ 1185 spa_l2cache_add(vd); 1186 1187 vd->vdev_top = vd; 1188 vd->vdev_aux = sav; 1189 1190 spa_l2cache_activate(vd); 1191 1192 if (vdev_open(vd) != 0) 1193 continue; 1194 1195 (void) vdev_validate_aux(vd); 1196 1197 if (!vdev_is_dead(vd)) 1198 l2arc_add_vdev(spa, vd); 1199 } 1200 } 1201 1202 /* 1203 * Purge vdevs that were dropped 1204 */ 1205 for (i = 0; i < oldnvdevs; i++) { 1206 uint64_t pool; 1207 1208 vd = oldvdevs[i]; 1209 if (vd != NULL) { 1210 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1211 pool != 0ULL && l2arc_vdev_present(vd)) 1212 l2arc_remove_vdev(vd); 1213 (void) vdev_close(vd); 1214 spa_l2cache_remove(vd); 1215 } 1216 } 1217 1218 if (oldvdevs) 1219 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1220 1221 if (sav->sav_config == NULL) 1222 goto out; 1223 1224 sav->sav_vdevs = newvdevs; 1225 sav->sav_count = (int)nl2cache; 1226 1227 /* 1228 * Recompute the stashed list of l2cache devices, with status 1229 * information this time. 1230 */ 1231 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1232 DATA_TYPE_NVLIST_ARRAY) == 0); 1233 1234 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1235 for (i = 0; i < sav->sav_count; i++) 1236 l2cache[i] = vdev_config_generate(spa, 1237 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1238 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1239 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1240 out: 1241 for (i = 0; i < sav->sav_count; i++) 1242 nvlist_free(l2cache[i]); 1243 if (sav->sav_count) 1244 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1245 } 1246 1247 static int 1248 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1249 { 1250 dmu_buf_t *db; 1251 char *packed = NULL; 1252 size_t nvsize = 0; 1253 int error; 1254 *value = NULL; 1255 1256 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1257 nvsize = *(uint64_t *)db->db_data; 1258 dmu_buf_rele(db, FTAG); 1259 1260 packed = kmem_alloc(nvsize, KM_SLEEP); 1261 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1262 DMU_READ_PREFETCH); 1263 if (error == 0) 1264 error = nvlist_unpack(packed, nvsize, value, 0); 1265 kmem_free(packed, nvsize); 1266 1267 return (error); 1268 } 1269 1270 /* 1271 * Checks to see if the given vdev could not be opened, in which case we post a 1272 * sysevent to notify the autoreplace code that the device has been removed. 1273 */ 1274 static void 1275 spa_check_removed(vdev_t *vd) 1276 { 1277 for (int c = 0; c < vd->vdev_children; c++) 1278 spa_check_removed(vd->vdev_child[c]); 1279 1280 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1281 zfs_post_autoreplace(vd->vdev_spa, vd); 1282 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1283 } 1284 } 1285 1286 /* 1287 * Load the slog device state from the config object since it's possible 1288 * that the label does not contain the most up-to-date information. 1289 */ 1290 void 1291 spa_load_log_state(spa_t *spa, nvlist_t *nv) 1292 { 1293 vdev_t *ovd, *rvd = spa->spa_root_vdev; 1294 1295 /* 1296 * Load the original root vdev tree from the passed config. 1297 */ 1298 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1299 VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1300 1301 for (int c = 0; c < rvd->vdev_children; c++) { 1302 vdev_t *cvd = rvd->vdev_child[c]; 1303 if (cvd->vdev_islog) 1304 vdev_load_log_state(cvd, ovd->vdev_child[c]); 1305 } 1306 vdev_free(ovd); 1307 spa_config_exit(spa, SCL_ALL, FTAG); 1308 } 1309 1310 /* 1311 * Check for missing log devices 1312 */ 1313 int 1314 spa_check_logs(spa_t *spa) 1315 { 1316 switch (spa->spa_log_state) { 1317 case SPA_LOG_MISSING: 1318 /* need to recheck in case slog has been restored */ 1319 case SPA_LOG_UNKNOWN: 1320 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1321 DS_FIND_CHILDREN)) { 1322 spa_set_log_state(spa, SPA_LOG_MISSING); 1323 return (1); 1324 } 1325 break; 1326 } 1327 return (0); 1328 } 1329 1330 static boolean_t 1331 spa_passivate_log(spa_t *spa) 1332 { 1333 vdev_t *rvd = spa->spa_root_vdev; 1334 boolean_t slog_found = B_FALSE; 1335 1336 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1337 1338 if (!spa_has_slogs(spa)) 1339 return (B_FALSE); 1340 1341 for (int c = 0; c < rvd->vdev_children; c++) { 1342 vdev_t *tvd = rvd->vdev_child[c]; 1343 metaslab_group_t *mg = tvd->vdev_mg; 1344 1345 if (tvd->vdev_islog) { 1346 metaslab_group_passivate(mg); 1347 slog_found = B_TRUE; 1348 } 1349 } 1350 1351 return (slog_found); 1352 } 1353 1354 static void 1355 spa_activate_log(spa_t *spa) 1356 { 1357 vdev_t *rvd = spa->spa_root_vdev; 1358 1359 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1360 1361 for (int c = 0; c < rvd->vdev_children; c++) { 1362 vdev_t *tvd = rvd->vdev_child[c]; 1363 metaslab_group_t *mg = tvd->vdev_mg; 1364 1365 if (tvd->vdev_islog) 1366 metaslab_group_activate(mg); 1367 } 1368 } 1369 1370 int 1371 spa_offline_log(spa_t *spa) 1372 { 1373 int error = 0; 1374 1375 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1376 NULL, DS_FIND_CHILDREN)) == 0) { 1377 1378 /* 1379 * We successfully offlined the log device, sync out the 1380 * current txg so that the "stubby" block can be removed 1381 * by zil_sync(). 1382 */ 1383 txg_wait_synced(spa->spa_dsl_pool, 0); 1384 } 1385 return (error); 1386 } 1387 1388 static void 1389 spa_aux_check_removed(spa_aux_vdev_t *sav) 1390 { 1391 for (int i = 0; i < sav->sav_count; i++) 1392 spa_check_removed(sav->sav_vdevs[i]); 1393 } 1394 1395 void 1396 spa_claim_notify(zio_t *zio) 1397 { 1398 spa_t *spa = zio->io_spa; 1399 1400 if (zio->io_error) 1401 return; 1402 1403 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1404 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1405 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1406 mutex_exit(&spa->spa_props_lock); 1407 } 1408 1409 typedef struct spa_load_error { 1410 uint64_t sle_meta_count; 1411 uint64_t sle_data_count; 1412 } spa_load_error_t; 1413 1414 static void 1415 spa_load_verify_done(zio_t *zio) 1416 { 1417 blkptr_t *bp = zio->io_bp; 1418 spa_load_error_t *sle = zio->io_private; 1419 dmu_object_type_t type = BP_GET_TYPE(bp); 1420 int error = zio->io_error; 1421 1422 if (error) { 1423 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) && 1424 type != DMU_OT_INTENT_LOG) 1425 atomic_add_64(&sle->sle_meta_count, 1); 1426 else 1427 atomic_add_64(&sle->sle_data_count, 1); 1428 } 1429 zio_data_buf_free(zio->io_data, zio->io_size); 1430 } 1431 1432 /*ARGSUSED*/ 1433 static int 1434 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1435 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1436 { 1437 if (bp != NULL) { 1438 zio_t *rio = arg; 1439 size_t size = BP_GET_PSIZE(bp); 1440 void *data = zio_data_buf_alloc(size); 1441 1442 zio_nowait(zio_read(rio, spa, bp, data, size, 1443 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1444 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1445 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1446 } 1447 return (0); 1448 } 1449 1450 static int 1451 spa_load_verify(spa_t *spa) 1452 { 1453 zio_t *rio; 1454 spa_load_error_t sle = { 0 }; 1455 zpool_rewind_policy_t policy; 1456 boolean_t verify_ok = B_FALSE; 1457 int error; 1458 1459 zpool_get_rewind_policy(spa->spa_config, &policy); 1460 1461 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1462 return (0); 1463 1464 rio = zio_root(spa, NULL, &sle, 1465 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1466 1467 error = traverse_pool(spa, spa->spa_verify_min_txg, 1468 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1469 1470 (void) zio_wait(rio); 1471 1472 spa->spa_load_meta_errors = sle.sle_meta_count; 1473 spa->spa_load_data_errors = sle.sle_data_count; 1474 1475 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1476 sle.sle_data_count <= policy.zrp_maxdata) { 1477 verify_ok = B_TRUE; 1478 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1479 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1480 } else { 1481 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1482 } 1483 1484 if (error) { 1485 if (error != ENXIO && error != EIO) 1486 error = EIO; 1487 return (error); 1488 } 1489 1490 return (verify_ok ? 0 : EIO); 1491 } 1492 1493 /* 1494 * Find a value in the pool props object. 1495 */ 1496 static void 1497 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1498 { 1499 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1500 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1501 } 1502 1503 /* 1504 * Find a value in the pool directory object. 1505 */ 1506 static int 1507 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1508 { 1509 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1510 name, sizeof (uint64_t), 1, val)); 1511 } 1512 1513 static int 1514 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1515 { 1516 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1517 return (err); 1518 } 1519 1520 /* 1521 * Fix up config after a partly-completed split. This is done with the 1522 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1523 * pool have that entry in their config, but only the splitting one contains 1524 * a list of all the guids of the vdevs that are being split off. 1525 * 1526 * This function determines what to do with that list: either rejoin 1527 * all the disks to the pool, or complete the splitting process. To attempt 1528 * the rejoin, each disk that is offlined is marked online again, and 1529 * we do a reopen() call. If the vdev label for every disk that was 1530 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1531 * then we call vdev_split() on each disk, and complete the split. 1532 * 1533 * Otherwise we leave the config alone, with all the vdevs in place in 1534 * the original pool. 1535 */ 1536 static void 1537 spa_try_repair(spa_t *spa, nvlist_t *config) 1538 { 1539 uint_t extracted; 1540 uint64_t *glist; 1541 uint_t i, gcount; 1542 nvlist_t *nvl; 1543 vdev_t **vd; 1544 boolean_t attempt_reopen; 1545 1546 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1547 return; 1548 1549 /* check that the config is complete */ 1550 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1551 &glist, &gcount) != 0) 1552 return; 1553 1554 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1555 1556 /* attempt to online all the vdevs & validate */ 1557 attempt_reopen = B_TRUE; 1558 for (i = 0; i < gcount; i++) { 1559 if (glist[i] == 0) /* vdev is hole */ 1560 continue; 1561 1562 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1563 if (vd[i] == NULL) { 1564 /* 1565 * Don't bother attempting to reopen the disks; 1566 * just do the split. 1567 */ 1568 attempt_reopen = B_FALSE; 1569 } else { 1570 /* attempt to re-online it */ 1571 vd[i]->vdev_offline = B_FALSE; 1572 } 1573 } 1574 1575 if (attempt_reopen) { 1576 vdev_reopen(spa->spa_root_vdev); 1577 1578 /* check each device to see what state it's in */ 1579 for (extracted = 0, i = 0; i < gcount; i++) { 1580 if (vd[i] != NULL && 1581 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1582 break; 1583 ++extracted; 1584 } 1585 } 1586 1587 /* 1588 * If every disk has been moved to the new pool, or if we never 1589 * even attempted to look at them, then we split them off for 1590 * good. 1591 */ 1592 if (!attempt_reopen || gcount == extracted) { 1593 for (i = 0; i < gcount; i++) 1594 if (vd[i] != NULL) 1595 vdev_split(vd[i]); 1596 vdev_reopen(spa->spa_root_vdev); 1597 } 1598 1599 kmem_free(vd, gcount * sizeof (vdev_t *)); 1600 } 1601 1602 static int 1603 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1604 boolean_t mosconfig) 1605 { 1606 nvlist_t *config = spa->spa_config; 1607 char *ereport = FM_EREPORT_ZFS_POOL; 1608 int error; 1609 uint64_t pool_guid; 1610 nvlist_t *nvl; 1611 1612 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1613 return (EINVAL); 1614 1615 /* 1616 * Versioning wasn't explicitly added to the label until later, so if 1617 * it's not present treat it as the initial version. 1618 */ 1619 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1620 &spa->spa_ubsync.ub_version) != 0) 1621 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1622 1623 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1624 &spa->spa_config_txg); 1625 1626 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1627 spa_guid_exists(pool_guid, 0)) { 1628 error = EEXIST; 1629 } else { 1630 spa->spa_load_guid = pool_guid; 1631 1632 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1633 &nvl) == 0) { 1634 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1635 KM_SLEEP) == 0); 1636 } 1637 1638 gethrestime(&spa->spa_loaded_ts); 1639 error = spa_load_impl(spa, pool_guid, config, state, type, 1640 mosconfig, &ereport); 1641 } 1642 1643 spa->spa_minref = refcount_count(&spa->spa_refcount); 1644 if (error) { 1645 if (error != EEXIST) { 1646 spa->spa_loaded_ts.tv_sec = 0; 1647 spa->spa_loaded_ts.tv_nsec = 0; 1648 } 1649 if (error != EBADF) { 1650 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1651 } 1652 } 1653 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1654 spa->spa_ena = 0; 1655 1656 return (error); 1657 } 1658 1659 /* 1660 * Load an existing storage pool, using the pool's builtin spa_config as a 1661 * source of configuration information. 1662 */ 1663 static int 1664 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1665 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1666 char **ereport) 1667 { 1668 int error = 0; 1669 nvlist_t *nvroot = NULL; 1670 vdev_t *rvd; 1671 uberblock_t *ub = &spa->spa_uberblock; 1672 uint64_t config_cache_txg = spa->spa_config_txg; 1673 int orig_mode = spa->spa_mode; 1674 int parse; 1675 uint64_t obj; 1676 1677 /* 1678 * If this is an untrusted config, access the pool in read-only mode. 1679 * This prevents things like resilvering recently removed devices. 1680 */ 1681 if (!mosconfig) 1682 spa->spa_mode = FREAD; 1683 1684 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1685 1686 spa->spa_load_state = state; 1687 1688 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 1689 return (EINVAL); 1690 1691 parse = (type == SPA_IMPORT_EXISTING ? 1692 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 1693 1694 /* 1695 * Create "The Godfather" zio to hold all async IOs 1696 */ 1697 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1698 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1699 1700 /* 1701 * Parse the configuration into a vdev tree. We explicitly set the 1702 * value that will be returned by spa_version() since parsing the 1703 * configuration requires knowing the version number. 1704 */ 1705 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1706 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 1707 spa_config_exit(spa, SCL_ALL, FTAG); 1708 1709 if (error != 0) 1710 return (error); 1711 1712 ASSERT(spa->spa_root_vdev == rvd); 1713 1714 if (type != SPA_IMPORT_ASSEMBLE) { 1715 ASSERT(spa_guid(spa) == pool_guid); 1716 } 1717 1718 /* 1719 * Try to open all vdevs, loading each label in the process. 1720 */ 1721 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1722 error = vdev_open(rvd); 1723 spa_config_exit(spa, SCL_ALL, FTAG); 1724 if (error != 0) 1725 return (error); 1726 1727 /* 1728 * We need to validate the vdev labels against the configuration that 1729 * we have in hand, which is dependent on the setting of mosconfig. If 1730 * mosconfig is true then we're validating the vdev labels based on 1731 * that config. Otherwise, we're validating against the cached config 1732 * (zpool.cache) that was read when we loaded the zfs module, and then 1733 * later we will recursively call spa_load() and validate against 1734 * the vdev config. 1735 * 1736 * If we're assembling a new pool that's been split off from an 1737 * existing pool, the labels haven't yet been updated so we skip 1738 * validation for now. 1739 */ 1740 if (type != SPA_IMPORT_ASSEMBLE) { 1741 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1742 error = vdev_validate(rvd); 1743 spa_config_exit(spa, SCL_ALL, FTAG); 1744 1745 if (error != 0) 1746 return (error); 1747 1748 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1749 return (ENXIO); 1750 } 1751 1752 /* 1753 * Find the best uberblock. 1754 */ 1755 vdev_uberblock_load(NULL, rvd, ub); 1756 1757 /* 1758 * If we weren't able to find a single valid uberblock, return failure. 1759 */ 1760 if (ub->ub_txg == 0) 1761 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 1762 1763 /* 1764 * If the pool is newer than the code, we can't open it. 1765 */ 1766 if (ub->ub_version > SPA_VERSION) 1767 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 1768 1769 /* 1770 * If the vdev guid sum doesn't match the uberblock, we have an 1771 * incomplete configuration. 1772 */ 1773 if (mosconfig && type != SPA_IMPORT_ASSEMBLE && 1774 rvd->vdev_guid_sum != ub->ub_guid_sum) 1775 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 1776 1777 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 1778 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1779 spa_try_repair(spa, config); 1780 spa_config_exit(spa, SCL_ALL, FTAG); 1781 nvlist_free(spa->spa_config_splitting); 1782 spa->spa_config_splitting = NULL; 1783 } 1784 1785 /* 1786 * Initialize internal SPA structures. 1787 */ 1788 spa->spa_state = POOL_STATE_ACTIVE; 1789 spa->spa_ubsync = spa->spa_uberblock; 1790 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 1791 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 1792 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 1793 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 1794 spa->spa_claim_max_txg = spa->spa_first_txg; 1795 spa->spa_prev_software_version = ub->ub_software_version; 1796 1797 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1798 if (error) 1799 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1800 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1801 1802 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 1803 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1804 1805 if (!mosconfig) { 1806 uint64_t hostid; 1807 nvlist_t *policy = NULL, *nvconfig; 1808 1809 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 1810 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1811 1812 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 1813 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1814 char *hostname; 1815 unsigned long myhostid = 0; 1816 1817 VERIFY(nvlist_lookup_string(nvconfig, 1818 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1819 1820 #ifdef _KERNEL 1821 myhostid = zone_get_hostid(NULL); 1822 #else /* _KERNEL */ 1823 /* 1824 * We're emulating the system's hostid in userland, so 1825 * we can't use zone_get_hostid(). 1826 */ 1827 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1828 #endif /* _KERNEL */ 1829 if (hostid != 0 && myhostid != 0 && 1830 hostid != myhostid) { 1831 nvlist_free(nvconfig); 1832 cmn_err(CE_WARN, "pool '%s' could not be " 1833 "loaded as it was last accessed by " 1834 "another system (host: %s hostid: 0x%lx). " 1835 "See: http://www.sun.com/msg/ZFS-8000-EY", 1836 spa_name(spa), hostname, 1837 (unsigned long)hostid); 1838 return (EBADF); 1839 } 1840 } 1841 if (nvlist_lookup_nvlist(spa->spa_config, 1842 ZPOOL_REWIND_POLICY, &policy) == 0) 1843 VERIFY(nvlist_add_nvlist(nvconfig, 1844 ZPOOL_REWIND_POLICY, policy) == 0); 1845 1846 spa_config_set(spa, nvconfig); 1847 spa_unload(spa); 1848 spa_deactivate(spa); 1849 spa_activate(spa, orig_mode); 1850 1851 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 1852 } 1853 1854 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 1855 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1856 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 1857 if (error != 0) 1858 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1859 1860 /* 1861 * Load the bit that tells us to use the new accounting function 1862 * (raid-z deflation). If we have an older pool, this will not 1863 * be present. 1864 */ 1865 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 1866 if (error != 0 && error != ENOENT) 1867 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1868 1869 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 1870 &spa->spa_creation_version); 1871 if (error != 0 && error != ENOENT) 1872 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1873 1874 /* 1875 * Load the persistent error log. If we have an older pool, this will 1876 * not be present. 1877 */ 1878 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 1879 if (error != 0 && error != ENOENT) 1880 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1881 1882 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 1883 &spa->spa_errlog_scrub); 1884 if (error != 0 && error != ENOENT) 1885 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1886 1887 /* 1888 * Load the history object. If we have an older pool, this 1889 * will not be present. 1890 */ 1891 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 1892 if (error != 0 && error != ENOENT) 1893 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1894 1895 /* 1896 * If we're assembling the pool from the split-off vdevs of 1897 * an existing pool, we don't want to attach the spares & cache 1898 * devices. 1899 */ 1900 1901 /* 1902 * Load any hot spares for this pool. 1903 */ 1904 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 1905 if (error != 0 && error != ENOENT) 1906 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1907 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1908 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1909 if (load_nvlist(spa, spa->spa_spares.sav_object, 1910 &spa->spa_spares.sav_config) != 0) 1911 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1912 1913 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1914 spa_load_spares(spa); 1915 spa_config_exit(spa, SCL_ALL, FTAG); 1916 } else if (error == 0) { 1917 spa->spa_spares.sav_sync = B_TRUE; 1918 } 1919 1920 /* 1921 * Load any level 2 ARC devices for this pool. 1922 */ 1923 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 1924 &spa->spa_l2cache.sav_object); 1925 if (error != 0 && error != ENOENT) 1926 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1927 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1928 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1929 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1930 &spa->spa_l2cache.sav_config) != 0) 1931 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1932 1933 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1934 spa_load_l2cache(spa); 1935 spa_config_exit(spa, SCL_ALL, FTAG); 1936 } else if (error == 0) { 1937 spa->spa_l2cache.sav_sync = B_TRUE; 1938 } 1939 1940 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1941 1942 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 1943 if (error && error != ENOENT) 1944 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1945 1946 if (error == 0) { 1947 uint64_t autoreplace; 1948 1949 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 1950 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 1951 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 1952 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 1953 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 1954 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 1955 &spa->spa_dedup_ditto); 1956 1957 spa->spa_autoreplace = (autoreplace != 0); 1958 } 1959 1960 /* 1961 * If the 'autoreplace' property is set, then post a resource notifying 1962 * the ZFS DE that it should not issue any faults for unopenable 1963 * devices. We also iterate over the vdevs, and post a sysevent for any 1964 * unopenable vdevs so that the normal autoreplace handler can take 1965 * over. 1966 */ 1967 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 1968 spa_check_removed(spa->spa_root_vdev); 1969 /* 1970 * For the import case, this is done in spa_import(), because 1971 * at this point we're using the spare definitions from 1972 * the MOS config, not necessarily from the userland config. 1973 */ 1974 if (state != SPA_LOAD_IMPORT) { 1975 spa_aux_check_removed(&spa->spa_spares); 1976 spa_aux_check_removed(&spa->spa_l2cache); 1977 } 1978 } 1979 1980 /* 1981 * Load the vdev state for all toplevel vdevs. 1982 */ 1983 vdev_load(rvd); 1984 1985 /* 1986 * Propagate the leaf DTLs we just loaded all the way up the tree. 1987 */ 1988 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1989 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1990 spa_config_exit(spa, SCL_ALL, FTAG); 1991 1992 /* 1993 * Check the state of the root vdev. If it can't be opened, it 1994 * indicates one or more toplevel vdevs are faulted. 1995 */ 1996 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1997 return (ENXIO); 1998 1999 /* 2000 * Load the DDTs (dedup tables). 2001 */ 2002 error = ddt_load(spa); 2003 if (error != 0) 2004 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2005 2006 spa_update_dspace(spa); 2007 2008 if (state != SPA_LOAD_TRYIMPORT) { 2009 error = spa_load_verify(spa); 2010 if (error) 2011 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2012 error)); 2013 } 2014 2015 /* 2016 * Load the intent log state and check log integrity. If we're 2017 * assembling a pool from a split, the log is not transferred over. 2018 */ 2019 if (type != SPA_IMPORT_ASSEMBLE) { 2020 nvlist_t *nvconfig; 2021 2022 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2023 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2024 2025 VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE, 2026 &nvroot) == 0); 2027 spa_load_log_state(spa, nvroot); 2028 nvlist_free(nvconfig); 2029 2030 if (spa_check_logs(spa)) { 2031 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2032 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2033 } 2034 } 2035 2036 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2037 spa->spa_load_max_txg == UINT64_MAX)) { 2038 dmu_tx_t *tx; 2039 int need_update = B_FALSE; 2040 2041 ASSERT(state != SPA_LOAD_TRYIMPORT); 2042 2043 /* 2044 * Claim log blocks that haven't been committed yet. 2045 * This must all happen in a single txg. 2046 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2047 * invoked from zil_claim_log_block()'s i/o done callback. 2048 * Price of rollback is that we abandon the log. 2049 */ 2050 spa->spa_claiming = B_TRUE; 2051 2052 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2053 spa_first_txg(spa)); 2054 (void) dmu_objset_find(spa_name(spa), 2055 zil_claim, tx, DS_FIND_CHILDREN); 2056 dmu_tx_commit(tx); 2057 2058 spa->spa_claiming = B_FALSE; 2059 2060 spa_set_log_state(spa, SPA_LOG_GOOD); 2061 spa->spa_sync_on = B_TRUE; 2062 txg_sync_start(spa->spa_dsl_pool); 2063 2064 /* 2065 * Wait for all claims to sync. We sync up to the highest 2066 * claimed log block birth time so that claimed log blocks 2067 * don't appear to be from the future. spa_claim_max_txg 2068 * will have been set for us by either zil_check_log_chain() 2069 * (invoked from spa_check_logs()) or zil_claim() above. 2070 */ 2071 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2072 2073 /* 2074 * If the config cache is stale, or we have uninitialized 2075 * metaslabs (see spa_vdev_add()), then update the config. 2076 * 2077 * If spa_load_verbatim is true, trust the current 2078 * in-core spa_config and update the disk labels. 2079 */ 2080 if (config_cache_txg != spa->spa_config_txg || 2081 state == SPA_LOAD_IMPORT || spa->spa_load_verbatim || 2082 state == SPA_LOAD_RECOVER) 2083 need_update = B_TRUE; 2084 2085 for (int c = 0; c < rvd->vdev_children; c++) 2086 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2087 need_update = B_TRUE; 2088 2089 /* 2090 * Update the config cache asychronously in case we're the 2091 * root pool, in which case the config cache isn't writable yet. 2092 */ 2093 if (need_update) 2094 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2095 2096 /* 2097 * Check all DTLs to see if anything needs resilvering. 2098 */ 2099 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2100 vdev_resilver_needed(rvd, NULL, NULL)) 2101 spa_async_request(spa, SPA_ASYNC_RESILVER); 2102 2103 /* 2104 * Delete any inconsistent datasets. 2105 */ 2106 (void) dmu_objset_find(spa_name(spa), 2107 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2108 2109 /* 2110 * Clean up any stale temporary dataset userrefs. 2111 */ 2112 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2113 } 2114 2115 return (0); 2116 } 2117 2118 static int 2119 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2120 { 2121 spa_unload(spa); 2122 spa_deactivate(spa); 2123 2124 spa->spa_load_max_txg--; 2125 2126 spa_activate(spa, spa_mode_global); 2127 spa_async_suspend(spa); 2128 2129 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2130 } 2131 2132 static int 2133 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2134 uint64_t max_request, int rewind_flags) 2135 { 2136 nvlist_t *config = NULL; 2137 int load_error, rewind_error; 2138 uint64_t safe_rewind_txg; 2139 uint64_t min_txg; 2140 2141 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2142 spa->spa_load_max_txg = spa->spa_load_txg; 2143 spa_set_log_state(spa, SPA_LOG_CLEAR); 2144 } else { 2145 spa->spa_load_max_txg = max_request; 2146 } 2147 2148 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2149 mosconfig); 2150 if (load_error == 0) 2151 return (0); 2152 2153 if (spa->spa_root_vdev != NULL) 2154 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2155 2156 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2157 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2158 2159 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2160 nvlist_free(config); 2161 return (load_error); 2162 } 2163 2164 /* Price of rolling back is discarding txgs, including log */ 2165 if (state == SPA_LOAD_RECOVER) 2166 spa_set_log_state(spa, SPA_LOG_CLEAR); 2167 2168 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2169 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2170 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2171 TXG_INITIAL : safe_rewind_txg; 2172 2173 /* 2174 * Continue as long as we're finding errors, we're still within 2175 * the acceptable rewind range, and we're still finding uberblocks 2176 */ 2177 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2178 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2179 if (spa->spa_load_max_txg < safe_rewind_txg) 2180 spa->spa_extreme_rewind = B_TRUE; 2181 rewind_error = spa_load_retry(spa, state, mosconfig); 2182 } 2183 2184 if (config) 2185 spa_rewind_data_to_nvlist(spa, config); 2186 2187 spa->spa_extreme_rewind = B_FALSE; 2188 spa->spa_load_max_txg = UINT64_MAX; 2189 2190 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2191 spa_config_set(spa, config); 2192 2193 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error); 2194 } 2195 2196 /* 2197 * Pool Open/Import 2198 * 2199 * The import case is identical to an open except that the configuration is sent 2200 * down from userland, instead of grabbed from the configuration cache. For the 2201 * case of an open, the pool configuration will exist in the 2202 * POOL_STATE_UNINITIALIZED state. 2203 * 2204 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2205 * the same time open the pool, without having to keep around the spa_t in some 2206 * ambiguous state. 2207 */ 2208 static int 2209 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2210 nvlist_t **config) 2211 { 2212 spa_t *spa; 2213 int error; 2214 int locked = B_FALSE; 2215 2216 *spapp = NULL; 2217 2218 /* 2219 * As disgusting as this is, we need to support recursive calls to this 2220 * function because dsl_dir_open() is called during spa_load(), and ends 2221 * up calling spa_open() again. The real fix is to figure out how to 2222 * avoid dsl_dir_open() calling this in the first place. 2223 */ 2224 if (mutex_owner(&spa_namespace_lock) != curthread) { 2225 mutex_enter(&spa_namespace_lock); 2226 locked = B_TRUE; 2227 } 2228 2229 if ((spa = spa_lookup(pool)) == NULL) { 2230 if (locked) 2231 mutex_exit(&spa_namespace_lock); 2232 return (ENOENT); 2233 } 2234 2235 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2236 spa_load_state_t state = SPA_LOAD_OPEN; 2237 zpool_rewind_policy_t policy; 2238 2239 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2240 &policy); 2241 if (policy.zrp_request & ZPOOL_DO_REWIND) 2242 state = SPA_LOAD_RECOVER; 2243 2244 spa_activate(spa, spa_mode_global); 2245 2246 if (state != SPA_LOAD_RECOVER) 2247 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2248 2249 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2250 policy.zrp_request); 2251 2252 if (error == EBADF) { 2253 /* 2254 * If vdev_validate() returns failure (indicated by 2255 * EBADF), it indicates that one of the vdevs indicates 2256 * that the pool has been exported or destroyed. If 2257 * this is the case, the config cache is out of sync and 2258 * we should remove the pool from the namespace. 2259 */ 2260 spa_unload(spa); 2261 spa_deactivate(spa); 2262 spa_config_sync(spa, B_TRUE, B_TRUE); 2263 spa_remove(spa); 2264 if (locked) 2265 mutex_exit(&spa_namespace_lock); 2266 return (ENOENT); 2267 } 2268 2269 if (error) { 2270 /* 2271 * We can't open the pool, but we still have useful 2272 * information: the state of each vdev after the 2273 * attempted vdev_open(). Return this to the user. 2274 */ 2275 if (config != NULL && spa->spa_config) 2276 VERIFY(nvlist_dup(spa->spa_config, config, 2277 KM_SLEEP) == 0); 2278 spa_unload(spa); 2279 spa_deactivate(spa); 2280 spa->spa_last_open_failed = error; 2281 if (locked) 2282 mutex_exit(&spa_namespace_lock); 2283 *spapp = NULL; 2284 return (error); 2285 } 2286 2287 } 2288 2289 spa_open_ref(spa, tag); 2290 2291 if (config != NULL) 2292 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2293 2294 if (locked) { 2295 spa->spa_last_open_failed = 0; 2296 spa->spa_last_ubsync_txg = 0; 2297 spa->spa_load_txg = 0; 2298 mutex_exit(&spa_namespace_lock); 2299 } 2300 2301 *spapp = spa; 2302 2303 return (0); 2304 } 2305 2306 int 2307 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2308 nvlist_t **config) 2309 { 2310 return (spa_open_common(name, spapp, tag, policy, config)); 2311 } 2312 2313 int 2314 spa_open(const char *name, spa_t **spapp, void *tag) 2315 { 2316 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2317 } 2318 2319 /* 2320 * Lookup the given spa_t, incrementing the inject count in the process, 2321 * preventing it from being exported or destroyed. 2322 */ 2323 spa_t * 2324 spa_inject_addref(char *name) 2325 { 2326 spa_t *spa; 2327 2328 mutex_enter(&spa_namespace_lock); 2329 if ((spa = spa_lookup(name)) == NULL) { 2330 mutex_exit(&spa_namespace_lock); 2331 return (NULL); 2332 } 2333 spa->spa_inject_ref++; 2334 mutex_exit(&spa_namespace_lock); 2335 2336 return (spa); 2337 } 2338 2339 void 2340 spa_inject_delref(spa_t *spa) 2341 { 2342 mutex_enter(&spa_namespace_lock); 2343 spa->spa_inject_ref--; 2344 mutex_exit(&spa_namespace_lock); 2345 } 2346 2347 /* 2348 * Add spares device information to the nvlist. 2349 */ 2350 static void 2351 spa_add_spares(spa_t *spa, nvlist_t *config) 2352 { 2353 nvlist_t **spares; 2354 uint_t i, nspares; 2355 nvlist_t *nvroot; 2356 uint64_t guid; 2357 vdev_stat_t *vs; 2358 uint_t vsc; 2359 uint64_t pool; 2360 2361 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2362 2363 if (spa->spa_spares.sav_count == 0) 2364 return; 2365 2366 VERIFY(nvlist_lookup_nvlist(config, 2367 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2368 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2369 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2370 if (nspares != 0) { 2371 VERIFY(nvlist_add_nvlist_array(nvroot, 2372 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2373 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2374 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2375 2376 /* 2377 * Go through and find any spares which have since been 2378 * repurposed as an active spare. If this is the case, update 2379 * their status appropriately. 2380 */ 2381 for (i = 0; i < nspares; i++) { 2382 VERIFY(nvlist_lookup_uint64(spares[i], 2383 ZPOOL_CONFIG_GUID, &guid) == 0); 2384 if (spa_spare_exists(guid, &pool, NULL) && 2385 pool != 0ULL) { 2386 VERIFY(nvlist_lookup_uint64_array( 2387 spares[i], ZPOOL_CONFIG_VDEV_STATS, 2388 (uint64_t **)&vs, &vsc) == 0); 2389 vs->vs_state = VDEV_STATE_CANT_OPEN; 2390 vs->vs_aux = VDEV_AUX_SPARED; 2391 } 2392 } 2393 } 2394 } 2395 2396 /* 2397 * Add l2cache device information to the nvlist, including vdev stats. 2398 */ 2399 static void 2400 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2401 { 2402 nvlist_t **l2cache; 2403 uint_t i, j, nl2cache; 2404 nvlist_t *nvroot; 2405 uint64_t guid; 2406 vdev_t *vd; 2407 vdev_stat_t *vs; 2408 uint_t vsc; 2409 2410 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2411 2412 if (spa->spa_l2cache.sav_count == 0) 2413 return; 2414 2415 VERIFY(nvlist_lookup_nvlist(config, 2416 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2417 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2418 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2419 if (nl2cache != 0) { 2420 VERIFY(nvlist_add_nvlist_array(nvroot, 2421 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2422 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2423 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2424 2425 /* 2426 * Update level 2 cache device stats. 2427 */ 2428 2429 for (i = 0; i < nl2cache; i++) { 2430 VERIFY(nvlist_lookup_uint64(l2cache[i], 2431 ZPOOL_CONFIG_GUID, &guid) == 0); 2432 2433 vd = NULL; 2434 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2435 if (guid == 2436 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2437 vd = spa->spa_l2cache.sav_vdevs[j]; 2438 break; 2439 } 2440 } 2441 ASSERT(vd != NULL); 2442 2443 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2444 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 2445 == 0); 2446 vdev_get_stats(vd, vs); 2447 } 2448 } 2449 } 2450 2451 int 2452 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 2453 { 2454 int error; 2455 spa_t *spa; 2456 2457 *config = NULL; 2458 error = spa_open_common(name, &spa, FTAG, NULL, config); 2459 2460 if (spa != NULL) { 2461 /* 2462 * This still leaves a window of inconsistency where the spares 2463 * or l2cache devices could change and the config would be 2464 * self-inconsistent. 2465 */ 2466 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2467 2468 if (*config != NULL) { 2469 uint64_t loadtimes[2]; 2470 2471 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 2472 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 2473 VERIFY(nvlist_add_uint64_array(*config, 2474 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 2475 2476 VERIFY(nvlist_add_uint64(*config, 2477 ZPOOL_CONFIG_ERRCOUNT, 2478 spa_get_errlog_size(spa)) == 0); 2479 2480 if (spa_suspended(spa)) 2481 VERIFY(nvlist_add_uint64(*config, 2482 ZPOOL_CONFIG_SUSPENDED, 2483 spa->spa_failmode) == 0); 2484 2485 spa_add_spares(spa, *config); 2486 spa_add_l2cache(spa, *config); 2487 } 2488 } 2489 2490 /* 2491 * We want to get the alternate root even for faulted pools, so we cheat 2492 * and call spa_lookup() directly. 2493 */ 2494 if (altroot) { 2495 if (spa == NULL) { 2496 mutex_enter(&spa_namespace_lock); 2497 spa = spa_lookup(name); 2498 if (spa) 2499 spa_altroot(spa, altroot, buflen); 2500 else 2501 altroot[0] = '\0'; 2502 spa = NULL; 2503 mutex_exit(&spa_namespace_lock); 2504 } else { 2505 spa_altroot(spa, altroot, buflen); 2506 } 2507 } 2508 2509 if (spa != NULL) { 2510 spa_config_exit(spa, SCL_CONFIG, FTAG); 2511 spa_close(spa, FTAG); 2512 } 2513 2514 return (error); 2515 } 2516 2517 /* 2518 * Validate that the auxiliary device array is well formed. We must have an 2519 * array of nvlists, each which describes a valid leaf vdev. If this is an 2520 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 2521 * specified, as long as they are well-formed. 2522 */ 2523 static int 2524 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 2525 spa_aux_vdev_t *sav, const char *config, uint64_t version, 2526 vdev_labeltype_t label) 2527 { 2528 nvlist_t **dev; 2529 uint_t i, ndev; 2530 vdev_t *vd; 2531 int error; 2532 2533 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2534 2535 /* 2536 * It's acceptable to have no devs specified. 2537 */ 2538 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 2539 return (0); 2540 2541 if (ndev == 0) 2542 return (EINVAL); 2543 2544 /* 2545 * Make sure the pool is formatted with a version that supports this 2546 * device type. 2547 */ 2548 if (spa_version(spa) < version) 2549 return (ENOTSUP); 2550 2551 /* 2552 * Set the pending device list so we correctly handle device in-use 2553 * checking. 2554 */ 2555 sav->sav_pending = dev; 2556 sav->sav_npending = ndev; 2557 2558 for (i = 0; i < ndev; i++) { 2559 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 2560 mode)) != 0) 2561 goto out; 2562 2563 if (!vd->vdev_ops->vdev_op_leaf) { 2564 vdev_free(vd); 2565 error = EINVAL; 2566 goto out; 2567 } 2568 2569 /* 2570 * The L2ARC currently only supports disk devices in 2571 * kernel context. For user-level testing, we allow it. 2572 */ 2573 #ifdef _KERNEL 2574 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 2575 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 2576 error = ENOTBLK; 2577 goto out; 2578 } 2579 #endif 2580 vd->vdev_top = vd; 2581 2582 if ((error = vdev_open(vd)) == 0 && 2583 (error = vdev_label_init(vd, crtxg, label)) == 0) { 2584 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 2585 vd->vdev_guid) == 0); 2586 } 2587 2588 vdev_free(vd); 2589 2590 if (error && 2591 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 2592 goto out; 2593 else 2594 error = 0; 2595 } 2596 2597 out: 2598 sav->sav_pending = NULL; 2599 sav->sav_npending = 0; 2600 return (error); 2601 } 2602 2603 static int 2604 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2605 { 2606 int error; 2607 2608 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2609 2610 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2611 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2612 VDEV_LABEL_SPARE)) != 0) { 2613 return (error); 2614 } 2615 2616 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2617 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2618 VDEV_LABEL_L2CACHE)); 2619 } 2620 2621 static void 2622 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2623 const char *config) 2624 { 2625 int i; 2626 2627 if (sav->sav_config != NULL) { 2628 nvlist_t **olddevs; 2629 uint_t oldndevs; 2630 nvlist_t **newdevs; 2631 2632 /* 2633 * Generate new dev list by concatentating with the 2634 * current dev list. 2635 */ 2636 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2637 &olddevs, &oldndevs) == 0); 2638 2639 newdevs = kmem_alloc(sizeof (void *) * 2640 (ndevs + oldndevs), KM_SLEEP); 2641 for (i = 0; i < oldndevs; i++) 2642 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2643 KM_SLEEP) == 0); 2644 for (i = 0; i < ndevs; i++) 2645 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2646 KM_SLEEP) == 0); 2647 2648 VERIFY(nvlist_remove(sav->sav_config, config, 2649 DATA_TYPE_NVLIST_ARRAY) == 0); 2650 2651 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2652 config, newdevs, ndevs + oldndevs) == 0); 2653 for (i = 0; i < oldndevs + ndevs; i++) 2654 nvlist_free(newdevs[i]); 2655 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2656 } else { 2657 /* 2658 * Generate a new dev list. 2659 */ 2660 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2661 KM_SLEEP) == 0); 2662 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2663 devs, ndevs) == 0); 2664 } 2665 } 2666 2667 /* 2668 * Stop and drop level 2 ARC devices 2669 */ 2670 void 2671 spa_l2cache_drop(spa_t *spa) 2672 { 2673 vdev_t *vd; 2674 int i; 2675 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2676 2677 for (i = 0; i < sav->sav_count; i++) { 2678 uint64_t pool; 2679 2680 vd = sav->sav_vdevs[i]; 2681 ASSERT(vd != NULL); 2682 2683 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2684 pool != 0ULL && l2arc_vdev_present(vd)) 2685 l2arc_remove_vdev(vd); 2686 if (vd->vdev_isl2cache) 2687 spa_l2cache_remove(vd); 2688 vdev_clear_stats(vd); 2689 (void) vdev_close(vd); 2690 } 2691 } 2692 2693 /* 2694 * Pool Creation 2695 */ 2696 int 2697 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2698 const char *history_str, nvlist_t *zplprops) 2699 { 2700 spa_t *spa; 2701 char *altroot = NULL; 2702 vdev_t *rvd; 2703 dsl_pool_t *dp; 2704 dmu_tx_t *tx; 2705 int error = 0; 2706 uint64_t txg = TXG_INITIAL; 2707 nvlist_t **spares, **l2cache; 2708 uint_t nspares, nl2cache; 2709 uint64_t version, obj; 2710 2711 /* 2712 * If this pool already exists, return failure. 2713 */ 2714 mutex_enter(&spa_namespace_lock); 2715 if (spa_lookup(pool) != NULL) { 2716 mutex_exit(&spa_namespace_lock); 2717 return (EEXIST); 2718 } 2719 2720 /* 2721 * Allocate a new spa_t structure. 2722 */ 2723 (void) nvlist_lookup_string(props, 2724 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2725 spa = spa_add(pool, NULL, altroot); 2726 spa_activate(spa, spa_mode_global); 2727 2728 if (props && (error = spa_prop_validate(spa, props))) { 2729 spa_deactivate(spa); 2730 spa_remove(spa); 2731 mutex_exit(&spa_namespace_lock); 2732 return (error); 2733 } 2734 2735 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2736 &version) != 0) 2737 version = SPA_VERSION; 2738 ASSERT(version <= SPA_VERSION); 2739 2740 spa->spa_first_txg = txg; 2741 spa->spa_uberblock.ub_txg = txg - 1; 2742 spa->spa_uberblock.ub_version = version; 2743 spa->spa_ubsync = spa->spa_uberblock; 2744 2745 /* 2746 * Create "The Godfather" zio to hold all async IOs 2747 */ 2748 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2749 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2750 2751 /* 2752 * Create the root vdev. 2753 */ 2754 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2755 2756 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2757 2758 ASSERT(error != 0 || rvd != NULL); 2759 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2760 2761 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2762 error = EINVAL; 2763 2764 if (error == 0 && 2765 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2766 (error = spa_validate_aux(spa, nvroot, txg, 2767 VDEV_ALLOC_ADD)) == 0) { 2768 for (int c = 0; c < rvd->vdev_children; c++) { 2769 vdev_metaslab_set_size(rvd->vdev_child[c]); 2770 vdev_expand(rvd->vdev_child[c], txg); 2771 } 2772 } 2773 2774 spa_config_exit(spa, SCL_ALL, FTAG); 2775 2776 if (error != 0) { 2777 spa_unload(spa); 2778 spa_deactivate(spa); 2779 spa_remove(spa); 2780 mutex_exit(&spa_namespace_lock); 2781 return (error); 2782 } 2783 2784 /* 2785 * Get the list of spares, if specified. 2786 */ 2787 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2788 &spares, &nspares) == 0) { 2789 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2790 KM_SLEEP) == 0); 2791 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2792 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2793 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2794 spa_load_spares(spa); 2795 spa_config_exit(spa, SCL_ALL, FTAG); 2796 spa->spa_spares.sav_sync = B_TRUE; 2797 } 2798 2799 /* 2800 * Get the list of level 2 cache devices, if specified. 2801 */ 2802 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2803 &l2cache, &nl2cache) == 0) { 2804 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2805 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2806 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2807 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2808 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2809 spa_load_l2cache(spa); 2810 spa_config_exit(spa, SCL_ALL, FTAG); 2811 spa->spa_l2cache.sav_sync = B_TRUE; 2812 } 2813 2814 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2815 spa->spa_meta_objset = dp->dp_meta_objset; 2816 2817 /* 2818 * Create DDTs (dedup tables). 2819 */ 2820 ddt_create(spa); 2821 2822 spa_update_dspace(spa); 2823 2824 tx = dmu_tx_create_assigned(dp, txg); 2825 2826 /* 2827 * Create the pool config object. 2828 */ 2829 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2830 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2831 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2832 2833 if (zap_add(spa->spa_meta_objset, 2834 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2835 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2836 cmn_err(CE_PANIC, "failed to add pool config"); 2837 } 2838 2839 if (zap_add(spa->spa_meta_objset, 2840 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 2841 sizeof (uint64_t), 1, &version, tx) != 0) { 2842 cmn_err(CE_PANIC, "failed to add pool version"); 2843 } 2844 2845 /* Newly created pools with the right version are always deflated. */ 2846 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2847 spa->spa_deflate = TRUE; 2848 if (zap_add(spa->spa_meta_objset, 2849 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2850 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2851 cmn_err(CE_PANIC, "failed to add deflate"); 2852 } 2853 } 2854 2855 /* 2856 * Create the deferred-free bpobj. Turn off compression 2857 * because sync-to-convergence takes longer if the blocksize 2858 * keeps changing. 2859 */ 2860 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 2861 dmu_object_set_compress(spa->spa_meta_objset, obj, 2862 ZIO_COMPRESS_OFF, tx); 2863 if (zap_add(spa->spa_meta_objset, 2864 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 2865 sizeof (uint64_t), 1, &obj, tx) != 0) { 2866 cmn_err(CE_PANIC, "failed to add bpobj"); 2867 } 2868 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 2869 spa->spa_meta_objset, obj)); 2870 2871 /* 2872 * Create the pool's history object. 2873 */ 2874 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2875 spa_history_create_obj(spa, tx); 2876 2877 /* 2878 * Set pool properties. 2879 */ 2880 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2881 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2882 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2883 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 2884 2885 if (props != NULL) { 2886 spa_configfile_set(spa, props, B_FALSE); 2887 spa_sync_props(spa, props, tx); 2888 } 2889 2890 dmu_tx_commit(tx); 2891 2892 spa->spa_sync_on = B_TRUE; 2893 txg_sync_start(spa->spa_dsl_pool); 2894 2895 /* 2896 * We explicitly wait for the first transaction to complete so that our 2897 * bean counters are appropriately updated. 2898 */ 2899 txg_wait_synced(spa->spa_dsl_pool, txg); 2900 2901 spa_config_sync(spa, B_FALSE, B_TRUE); 2902 2903 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2904 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2905 spa_history_log_version(spa, LOG_POOL_CREATE); 2906 2907 spa->spa_minref = refcount_count(&spa->spa_refcount); 2908 2909 mutex_exit(&spa_namespace_lock); 2910 2911 return (0); 2912 } 2913 2914 #ifdef _KERNEL 2915 /* 2916 * Get the root pool information from the root disk, then import the root pool 2917 * during the system boot up time. 2918 */ 2919 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 2920 2921 static nvlist_t * 2922 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 2923 { 2924 nvlist_t *config; 2925 nvlist_t *nvtop, *nvroot; 2926 uint64_t pgid; 2927 2928 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 2929 return (NULL); 2930 2931 /* 2932 * Add this top-level vdev to the child array. 2933 */ 2934 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2935 &nvtop) == 0); 2936 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 2937 &pgid) == 0); 2938 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 2939 2940 /* 2941 * Put this pool's top-level vdevs into a root vdev. 2942 */ 2943 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2944 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 2945 VDEV_TYPE_ROOT) == 0); 2946 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2947 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2948 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2949 &nvtop, 1) == 0); 2950 2951 /* 2952 * Replace the existing vdev_tree with the new root vdev in 2953 * this pool's configuration (remove the old, add the new). 2954 */ 2955 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2956 nvlist_free(nvroot); 2957 return (config); 2958 } 2959 2960 /* 2961 * Walk the vdev tree and see if we can find a device with "better" 2962 * configuration. A configuration is "better" if the label on that 2963 * device has a more recent txg. 2964 */ 2965 static void 2966 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 2967 { 2968 for (int c = 0; c < vd->vdev_children; c++) 2969 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 2970 2971 if (vd->vdev_ops->vdev_op_leaf) { 2972 nvlist_t *label; 2973 uint64_t label_txg; 2974 2975 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 2976 &label) != 0) 2977 return; 2978 2979 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 2980 &label_txg) == 0); 2981 2982 /* 2983 * Do we have a better boot device? 2984 */ 2985 if (label_txg > *txg) { 2986 *txg = label_txg; 2987 *avd = vd; 2988 } 2989 nvlist_free(label); 2990 } 2991 } 2992 2993 /* 2994 * Import a root pool. 2995 * 2996 * For x86. devpath_list will consist of devid and/or physpath name of 2997 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2998 * The GRUB "findroot" command will return the vdev we should boot. 2999 * 3000 * For Sparc, devpath_list consists the physpath name of the booting device 3001 * no matter the rootpool is a single device pool or a mirrored pool. 3002 * e.g. 3003 * "/pci@1f,0/ide@d/disk@0,0:a" 3004 */ 3005 int 3006 spa_import_rootpool(char *devpath, char *devid) 3007 { 3008 spa_t *spa; 3009 vdev_t *rvd, *bvd, *avd = NULL; 3010 nvlist_t *config, *nvtop; 3011 uint64_t guid, txg; 3012 char *pname; 3013 int error; 3014 3015 /* 3016 * Read the label from the boot device and generate a configuration. 3017 */ 3018 config = spa_generate_rootconf(devpath, devid, &guid); 3019 #if defined(_OBP) && defined(_KERNEL) 3020 if (config == NULL) { 3021 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3022 /* iscsi boot */ 3023 get_iscsi_bootpath_phy(devpath); 3024 config = spa_generate_rootconf(devpath, devid, &guid); 3025 } 3026 } 3027 #endif 3028 if (config == NULL) { 3029 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 3030 devpath); 3031 return (EIO); 3032 } 3033 3034 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3035 &pname) == 0); 3036 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3037 3038 mutex_enter(&spa_namespace_lock); 3039 if ((spa = spa_lookup(pname)) != NULL) { 3040 /* 3041 * Remove the existing root pool from the namespace so that we 3042 * can replace it with the correct config we just read in. 3043 */ 3044 spa_remove(spa); 3045 } 3046 3047 spa = spa_add(pname, config, NULL); 3048 spa->spa_is_root = B_TRUE; 3049 spa->spa_load_verbatim = B_TRUE; 3050 3051 /* 3052 * Build up a vdev tree based on the boot device's label config. 3053 */ 3054 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3055 &nvtop) == 0); 3056 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3057 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3058 VDEV_ALLOC_ROOTPOOL); 3059 spa_config_exit(spa, SCL_ALL, FTAG); 3060 if (error) { 3061 mutex_exit(&spa_namespace_lock); 3062 nvlist_free(config); 3063 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3064 pname); 3065 return (error); 3066 } 3067 3068 /* 3069 * Get the boot vdev. 3070 */ 3071 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3072 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3073 (u_longlong_t)guid); 3074 error = ENOENT; 3075 goto out; 3076 } 3077 3078 /* 3079 * Determine if there is a better boot device. 3080 */ 3081 avd = bvd; 3082 spa_alt_rootvdev(rvd, &avd, &txg); 3083 if (avd != bvd) { 3084 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3085 "try booting from '%s'", avd->vdev_path); 3086 error = EINVAL; 3087 goto out; 3088 } 3089 3090 /* 3091 * If the boot device is part of a spare vdev then ensure that 3092 * we're booting off the active spare. 3093 */ 3094 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3095 !bvd->vdev_isspare) { 3096 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3097 "try booting from '%s'", 3098 bvd->vdev_parent->vdev_child[1]->vdev_path); 3099 error = EINVAL; 3100 goto out; 3101 } 3102 3103 error = 0; 3104 spa_history_log_version(spa, LOG_POOL_IMPORT); 3105 out: 3106 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3107 vdev_free(rvd); 3108 spa_config_exit(spa, SCL_ALL, FTAG); 3109 mutex_exit(&spa_namespace_lock); 3110 3111 nvlist_free(config); 3112 return (error); 3113 } 3114 3115 #endif 3116 3117 /* 3118 * Take a pool and insert it into the namespace as if it had been loaded at 3119 * boot. 3120 */ 3121 int 3122 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props) 3123 { 3124 spa_t *spa; 3125 char *altroot = NULL; 3126 3127 mutex_enter(&spa_namespace_lock); 3128 if (spa_lookup(pool) != NULL) { 3129 mutex_exit(&spa_namespace_lock); 3130 return (EEXIST); 3131 } 3132 3133 (void) nvlist_lookup_string(props, 3134 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3135 spa = spa_add(pool, config, altroot); 3136 3137 spa->spa_load_verbatim = B_TRUE; 3138 3139 if (props != NULL) 3140 spa_configfile_set(spa, props, B_FALSE); 3141 3142 spa_config_sync(spa, B_FALSE, B_TRUE); 3143 3144 mutex_exit(&spa_namespace_lock); 3145 spa_history_log_version(spa, LOG_POOL_IMPORT); 3146 3147 return (0); 3148 } 3149 3150 /* 3151 * Import a non-root pool into the system. 3152 */ 3153 int 3154 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 3155 { 3156 spa_t *spa; 3157 char *altroot = NULL; 3158 spa_load_state_t state = SPA_LOAD_IMPORT; 3159 zpool_rewind_policy_t policy; 3160 int error; 3161 nvlist_t *nvroot; 3162 nvlist_t **spares, **l2cache; 3163 uint_t nspares, nl2cache; 3164 3165 /* 3166 * If a pool with this name exists, return failure. 3167 */ 3168 mutex_enter(&spa_namespace_lock); 3169 if (spa_lookup(pool) != NULL) { 3170 mutex_exit(&spa_namespace_lock); 3171 return (EEXIST); 3172 } 3173 3174 zpool_get_rewind_policy(config, &policy); 3175 if (policy.zrp_request & ZPOOL_DO_REWIND) 3176 state = SPA_LOAD_RECOVER; 3177 3178 /* 3179 * Create and initialize the spa structure. 3180 */ 3181 (void) nvlist_lookup_string(props, 3182 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3183 spa = spa_add(pool, config, altroot); 3184 spa_activate(spa, spa_mode_global); 3185 3186 /* 3187 * Don't start async tasks until we know everything is healthy. 3188 */ 3189 spa_async_suspend(spa); 3190 3191 /* 3192 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3193 * because the user-supplied config is actually the one to trust when 3194 * doing an import. 3195 */ 3196 if (state != SPA_LOAD_RECOVER) 3197 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3198 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3199 policy.zrp_request); 3200 3201 /* 3202 * Propagate anything learned about failing or best txgs 3203 * back to caller 3204 */ 3205 spa_rewind_data_to_nvlist(spa, config); 3206 3207 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3208 /* 3209 * Toss any existing sparelist, as it doesn't have any validity 3210 * anymore, and conflicts with spa_has_spare(). 3211 */ 3212 if (spa->spa_spares.sav_config) { 3213 nvlist_free(spa->spa_spares.sav_config); 3214 spa->spa_spares.sav_config = NULL; 3215 spa_load_spares(spa); 3216 } 3217 if (spa->spa_l2cache.sav_config) { 3218 nvlist_free(spa->spa_l2cache.sav_config); 3219 spa->spa_l2cache.sav_config = NULL; 3220 spa_load_l2cache(spa); 3221 } 3222 3223 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3224 &nvroot) == 0); 3225 if (error == 0) 3226 error = spa_validate_aux(spa, nvroot, -1ULL, 3227 VDEV_ALLOC_SPARE); 3228 if (error == 0) 3229 error = spa_validate_aux(spa, nvroot, -1ULL, 3230 VDEV_ALLOC_L2CACHE); 3231 spa_config_exit(spa, SCL_ALL, FTAG); 3232 3233 if (props != NULL) 3234 spa_configfile_set(spa, props, B_FALSE); 3235 3236 if (error != 0 || (props && spa_writeable(spa) && 3237 (error = spa_prop_set(spa, props)))) { 3238 spa_unload(spa); 3239 spa_deactivate(spa); 3240 spa_remove(spa); 3241 mutex_exit(&spa_namespace_lock); 3242 return (error); 3243 } 3244 3245 spa_async_resume(spa); 3246 3247 /* 3248 * Override any spares and level 2 cache devices as specified by 3249 * the user, as these may have correct device names/devids, etc. 3250 */ 3251 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3252 &spares, &nspares) == 0) { 3253 if (spa->spa_spares.sav_config) 3254 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3255 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3256 else 3257 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3258 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3259 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3260 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3261 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3262 spa_load_spares(spa); 3263 spa_config_exit(spa, SCL_ALL, FTAG); 3264 spa->spa_spares.sav_sync = B_TRUE; 3265 } 3266 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3267 &l2cache, &nl2cache) == 0) { 3268 if (spa->spa_l2cache.sav_config) 3269 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3270 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3271 else 3272 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3273 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3274 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3275 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3276 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3277 spa_load_l2cache(spa); 3278 spa_config_exit(spa, SCL_ALL, FTAG); 3279 spa->spa_l2cache.sav_sync = B_TRUE; 3280 } 3281 3282 /* 3283 * Check for any removed devices. 3284 */ 3285 if (spa->spa_autoreplace) { 3286 spa_aux_check_removed(&spa->spa_spares); 3287 spa_aux_check_removed(&spa->spa_l2cache); 3288 } 3289 3290 if (spa_writeable(spa)) { 3291 /* 3292 * Update the config cache to include the newly-imported pool. 3293 */ 3294 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3295 } 3296 3297 /* 3298 * It's possible that the pool was expanded while it was exported. 3299 * We kick off an async task to handle this for us. 3300 */ 3301 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3302 3303 mutex_exit(&spa_namespace_lock); 3304 spa_history_log_version(spa, LOG_POOL_IMPORT); 3305 3306 return (0); 3307 } 3308 3309 nvlist_t * 3310 spa_tryimport(nvlist_t *tryconfig) 3311 { 3312 nvlist_t *config = NULL; 3313 char *poolname; 3314 spa_t *spa; 3315 uint64_t state; 3316 int error; 3317 3318 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3319 return (NULL); 3320 3321 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3322 return (NULL); 3323 3324 /* 3325 * Create and initialize the spa structure. 3326 */ 3327 mutex_enter(&spa_namespace_lock); 3328 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3329 spa_activate(spa, FREAD); 3330 3331 /* 3332 * Pass off the heavy lifting to spa_load(). 3333 * Pass TRUE for mosconfig because the user-supplied config 3334 * is actually the one to trust when doing an import. 3335 */ 3336 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3337 3338 /* 3339 * If 'tryconfig' was at least parsable, return the current config. 3340 */ 3341 if (spa->spa_root_vdev != NULL) { 3342 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3343 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3344 poolname) == 0); 3345 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3346 state) == 0); 3347 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3348 spa->spa_uberblock.ub_timestamp) == 0); 3349 3350 /* 3351 * If the bootfs property exists on this pool then we 3352 * copy it out so that external consumers can tell which 3353 * pools are bootable. 3354 */ 3355 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3356 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3357 3358 /* 3359 * We have to play games with the name since the 3360 * pool was opened as TRYIMPORT_NAME. 3361 */ 3362 if (dsl_dsobj_to_dsname(spa_name(spa), 3363 spa->spa_bootfs, tmpname) == 0) { 3364 char *cp; 3365 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3366 3367 cp = strchr(tmpname, '/'); 3368 if (cp == NULL) { 3369 (void) strlcpy(dsname, tmpname, 3370 MAXPATHLEN); 3371 } else { 3372 (void) snprintf(dsname, MAXPATHLEN, 3373 "%s/%s", poolname, ++cp); 3374 } 3375 VERIFY(nvlist_add_string(config, 3376 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3377 kmem_free(dsname, MAXPATHLEN); 3378 } 3379 kmem_free(tmpname, MAXPATHLEN); 3380 } 3381 3382 /* 3383 * Add the list of hot spares and level 2 cache devices. 3384 */ 3385 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3386 spa_add_spares(spa, config); 3387 spa_add_l2cache(spa, config); 3388 spa_config_exit(spa, SCL_CONFIG, FTAG); 3389 } 3390 3391 spa_unload(spa); 3392 spa_deactivate(spa); 3393 spa_remove(spa); 3394 mutex_exit(&spa_namespace_lock); 3395 3396 return (config); 3397 } 3398 3399 /* 3400 * Pool export/destroy 3401 * 3402 * The act of destroying or exporting a pool is very simple. We make sure there 3403 * is no more pending I/O and any references to the pool are gone. Then, we 3404 * update the pool state and sync all the labels to disk, removing the 3405 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3406 * we don't sync the labels or remove the configuration cache. 3407 */ 3408 static int 3409 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3410 boolean_t force, boolean_t hardforce) 3411 { 3412 spa_t *spa; 3413 3414 if (oldconfig) 3415 *oldconfig = NULL; 3416 3417 if (!(spa_mode_global & FWRITE)) 3418 return (EROFS); 3419 3420 mutex_enter(&spa_namespace_lock); 3421 if ((spa = spa_lookup(pool)) == NULL) { 3422 mutex_exit(&spa_namespace_lock); 3423 return (ENOENT); 3424 } 3425 3426 /* 3427 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3428 * reacquire the namespace lock, and see if we can export. 3429 */ 3430 spa_open_ref(spa, FTAG); 3431 mutex_exit(&spa_namespace_lock); 3432 spa_async_suspend(spa); 3433 mutex_enter(&spa_namespace_lock); 3434 spa_close(spa, FTAG); 3435 3436 /* 3437 * The pool will be in core if it's openable, 3438 * in which case we can modify its state. 3439 */ 3440 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3441 /* 3442 * Objsets may be open only because they're dirty, so we 3443 * have to force it to sync before checking spa_refcnt. 3444 */ 3445 txg_wait_synced(spa->spa_dsl_pool, 0); 3446 3447 /* 3448 * A pool cannot be exported or destroyed if there are active 3449 * references. If we are resetting a pool, allow references by 3450 * fault injection handlers. 3451 */ 3452 if (!spa_refcount_zero(spa) || 3453 (spa->spa_inject_ref != 0 && 3454 new_state != POOL_STATE_UNINITIALIZED)) { 3455 spa_async_resume(spa); 3456 mutex_exit(&spa_namespace_lock); 3457 return (EBUSY); 3458 } 3459 3460 /* 3461 * A pool cannot be exported if it has an active shared spare. 3462 * This is to prevent other pools stealing the active spare 3463 * from an exported pool. At user's own will, such pool can 3464 * be forcedly exported. 3465 */ 3466 if (!force && new_state == POOL_STATE_EXPORTED && 3467 spa_has_active_shared_spare(spa)) { 3468 spa_async_resume(spa); 3469 mutex_exit(&spa_namespace_lock); 3470 return (EXDEV); 3471 } 3472 3473 /* 3474 * We want this to be reflected on every label, 3475 * so mark them all dirty. spa_unload() will do the 3476 * final sync that pushes these changes out. 3477 */ 3478 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 3479 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3480 spa->spa_state = new_state; 3481 spa->spa_final_txg = spa_last_synced_txg(spa) + 3482 TXG_DEFER_SIZE + 1; 3483 vdev_config_dirty(spa->spa_root_vdev); 3484 spa_config_exit(spa, SCL_ALL, FTAG); 3485 } 3486 } 3487 3488 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 3489 3490 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3491 spa_unload(spa); 3492 spa_deactivate(spa); 3493 } 3494 3495 if (oldconfig && spa->spa_config) 3496 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 3497 3498 if (new_state != POOL_STATE_UNINITIALIZED) { 3499 if (!hardforce) 3500 spa_config_sync(spa, B_TRUE, B_TRUE); 3501 spa_remove(spa); 3502 } 3503 mutex_exit(&spa_namespace_lock); 3504 3505 return (0); 3506 } 3507 3508 /* 3509 * Destroy a storage pool. 3510 */ 3511 int 3512 spa_destroy(char *pool) 3513 { 3514 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 3515 B_FALSE, B_FALSE)); 3516 } 3517 3518 /* 3519 * Export a storage pool. 3520 */ 3521 int 3522 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 3523 boolean_t hardforce) 3524 { 3525 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 3526 force, hardforce)); 3527 } 3528 3529 /* 3530 * Similar to spa_export(), this unloads the spa_t without actually removing it 3531 * from the namespace in any way. 3532 */ 3533 int 3534 spa_reset(char *pool) 3535 { 3536 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 3537 B_FALSE, B_FALSE)); 3538 } 3539 3540 /* 3541 * ========================================================================== 3542 * Device manipulation 3543 * ========================================================================== 3544 */ 3545 3546 /* 3547 * Add a device to a storage pool. 3548 */ 3549 int 3550 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 3551 { 3552 uint64_t txg, id; 3553 int error; 3554 vdev_t *rvd = spa->spa_root_vdev; 3555 vdev_t *vd, *tvd; 3556 nvlist_t **spares, **l2cache; 3557 uint_t nspares, nl2cache; 3558 3559 txg = spa_vdev_enter(spa); 3560 3561 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 3562 VDEV_ALLOC_ADD)) != 0) 3563 return (spa_vdev_exit(spa, NULL, txg, error)); 3564 3565 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 3566 3567 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 3568 &nspares) != 0) 3569 nspares = 0; 3570 3571 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 3572 &nl2cache) != 0) 3573 nl2cache = 0; 3574 3575 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 3576 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 3577 3578 if (vd->vdev_children != 0 && 3579 (error = vdev_create(vd, txg, B_FALSE)) != 0) 3580 return (spa_vdev_exit(spa, vd, txg, error)); 3581 3582 /* 3583 * We must validate the spares and l2cache devices after checking the 3584 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 3585 */ 3586 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 3587 return (spa_vdev_exit(spa, vd, txg, error)); 3588 3589 /* 3590 * Transfer each new top-level vdev from vd to rvd. 3591 */ 3592 for (int c = 0; c < vd->vdev_children; c++) { 3593 3594 /* 3595 * Set the vdev id to the first hole, if one exists. 3596 */ 3597 for (id = 0; id < rvd->vdev_children; id++) { 3598 if (rvd->vdev_child[id]->vdev_ishole) { 3599 vdev_free(rvd->vdev_child[id]); 3600 break; 3601 } 3602 } 3603 tvd = vd->vdev_child[c]; 3604 vdev_remove_child(vd, tvd); 3605 tvd->vdev_id = id; 3606 vdev_add_child(rvd, tvd); 3607 vdev_config_dirty(tvd); 3608 } 3609 3610 if (nspares != 0) { 3611 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 3612 ZPOOL_CONFIG_SPARES); 3613 spa_load_spares(spa); 3614 spa->spa_spares.sav_sync = B_TRUE; 3615 } 3616 3617 if (nl2cache != 0) { 3618 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 3619 ZPOOL_CONFIG_L2CACHE); 3620 spa_load_l2cache(spa); 3621 spa->spa_l2cache.sav_sync = B_TRUE; 3622 } 3623 3624 /* 3625 * We have to be careful when adding new vdevs to an existing pool. 3626 * If other threads start allocating from these vdevs before we 3627 * sync the config cache, and we lose power, then upon reboot we may 3628 * fail to open the pool because there are DVAs that the config cache 3629 * can't translate. Therefore, we first add the vdevs without 3630 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 3631 * and then let spa_config_update() initialize the new metaslabs. 3632 * 3633 * spa_load() checks for added-but-not-initialized vdevs, so that 3634 * if we lose power at any point in this sequence, the remaining 3635 * steps will be completed the next time we load the pool. 3636 */ 3637 (void) spa_vdev_exit(spa, vd, txg, 0); 3638 3639 mutex_enter(&spa_namespace_lock); 3640 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3641 mutex_exit(&spa_namespace_lock); 3642 3643 return (0); 3644 } 3645 3646 /* 3647 * Attach a device to a mirror. The arguments are the path to any device 3648 * in the mirror, and the nvroot for the new device. If the path specifies 3649 * a device that is not mirrored, we automatically insert the mirror vdev. 3650 * 3651 * If 'replacing' is specified, the new device is intended to replace the 3652 * existing device; in this case the two devices are made into their own 3653 * mirror using the 'replacing' vdev, which is functionally identical to 3654 * the mirror vdev (it actually reuses all the same ops) but has a few 3655 * extra rules: you can't attach to it after it's been created, and upon 3656 * completion of resilvering, the first disk (the one being replaced) 3657 * is automatically detached. 3658 */ 3659 int 3660 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3661 { 3662 uint64_t txg, dtl_max_txg; 3663 vdev_t *rvd = spa->spa_root_vdev; 3664 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3665 vdev_ops_t *pvops; 3666 char *oldvdpath, *newvdpath; 3667 int newvd_isspare; 3668 int error; 3669 3670 txg = spa_vdev_enter(spa); 3671 3672 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3673 3674 if (oldvd == NULL) 3675 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3676 3677 if (!oldvd->vdev_ops->vdev_op_leaf) 3678 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3679 3680 pvd = oldvd->vdev_parent; 3681 3682 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3683 VDEV_ALLOC_ADD)) != 0) 3684 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3685 3686 if (newrootvd->vdev_children != 1) 3687 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3688 3689 newvd = newrootvd->vdev_child[0]; 3690 3691 if (!newvd->vdev_ops->vdev_op_leaf) 3692 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3693 3694 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3695 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3696 3697 /* 3698 * Spares can't replace logs 3699 */ 3700 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3701 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3702 3703 if (!replacing) { 3704 /* 3705 * For attach, the only allowable parent is a mirror or the root 3706 * vdev. 3707 */ 3708 if (pvd->vdev_ops != &vdev_mirror_ops && 3709 pvd->vdev_ops != &vdev_root_ops) 3710 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3711 3712 pvops = &vdev_mirror_ops; 3713 } else { 3714 /* 3715 * Active hot spares can only be replaced by inactive hot 3716 * spares. 3717 */ 3718 if (pvd->vdev_ops == &vdev_spare_ops && 3719 pvd->vdev_child[1] == oldvd && 3720 !spa_has_spare(spa, newvd->vdev_guid)) 3721 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3722 3723 /* 3724 * If the source is a hot spare, and the parent isn't already a 3725 * spare, then we want to create a new hot spare. Otherwise, we 3726 * want to create a replacing vdev. The user is not allowed to 3727 * attach to a spared vdev child unless the 'isspare' state is 3728 * the same (spare replaces spare, non-spare replaces 3729 * non-spare). 3730 */ 3731 if (pvd->vdev_ops == &vdev_replacing_ops) 3732 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3733 else if (pvd->vdev_ops == &vdev_spare_ops && 3734 newvd->vdev_isspare != oldvd->vdev_isspare) 3735 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3736 else if (pvd->vdev_ops != &vdev_spare_ops && 3737 newvd->vdev_isspare) 3738 pvops = &vdev_spare_ops; 3739 else 3740 pvops = &vdev_replacing_ops; 3741 } 3742 3743 /* 3744 * Make sure the new device is big enough. 3745 */ 3746 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3747 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3748 3749 /* 3750 * The new device cannot have a higher alignment requirement 3751 * than the top-level vdev. 3752 */ 3753 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3754 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3755 3756 /* 3757 * If this is an in-place replacement, update oldvd's path and devid 3758 * to make it distinguishable from newvd, and unopenable from now on. 3759 */ 3760 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3761 spa_strfree(oldvd->vdev_path); 3762 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3763 KM_SLEEP); 3764 (void) sprintf(oldvd->vdev_path, "%s/%s", 3765 newvd->vdev_path, "old"); 3766 if (oldvd->vdev_devid != NULL) { 3767 spa_strfree(oldvd->vdev_devid); 3768 oldvd->vdev_devid = NULL; 3769 } 3770 } 3771 3772 /* 3773 * If the parent is not a mirror, or if we're replacing, insert the new 3774 * mirror/replacing/spare vdev above oldvd. 3775 */ 3776 if (pvd->vdev_ops != pvops) 3777 pvd = vdev_add_parent(oldvd, pvops); 3778 3779 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3780 ASSERT(pvd->vdev_ops == pvops); 3781 ASSERT(oldvd->vdev_parent == pvd); 3782 3783 /* 3784 * Extract the new device from its root and add it to pvd. 3785 */ 3786 vdev_remove_child(newrootvd, newvd); 3787 newvd->vdev_id = pvd->vdev_children; 3788 newvd->vdev_crtxg = oldvd->vdev_crtxg; 3789 vdev_add_child(pvd, newvd); 3790 3791 tvd = newvd->vdev_top; 3792 ASSERT(pvd->vdev_top == tvd); 3793 ASSERT(tvd->vdev_parent == rvd); 3794 3795 vdev_config_dirty(tvd); 3796 3797 /* 3798 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 3799 * for any dmu_sync-ed blocks. It will propagate upward when 3800 * spa_vdev_exit() calls vdev_dtl_reassess(). 3801 */ 3802 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 3803 3804 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 3805 dtl_max_txg - TXG_INITIAL); 3806 3807 if (newvd->vdev_isspare) { 3808 spa_spare_activate(newvd); 3809 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3810 } 3811 3812 oldvdpath = spa_strdup(oldvd->vdev_path); 3813 newvdpath = spa_strdup(newvd->vdev_path); 3814 newvd_isspare = newvd->vdev_isspare; 3815 3816 /* 3817 * Mark newvd's DTL dirty in this txg. 3818 */ 3819 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3820 3821 /* 3822 * Restart the resilver 3823 */ 3824 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 3825 3826 /* 3827 * Commit the config 3828 */ 3829 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 3830 3831 spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL, 3832 "%s vdev=%s %s vdev=%s", 3833 replacing && newvd_isspare ? "spare in" : 3834 replacing ? "replace" : "attach", newvdpath, 3835 replacing ? "for" : "to", oldvdpath); 3836 3837 spa_strfree(oldvdpath); 3838 spa_strfree(newvdpath); 3839 3840 return (0); 3841 } 3842 3843 /* 3844 * Detach a device from a mirror or replacing vdev. 3845 * If 'replace_done' is specified, only detach if the parent 3846 * is a replacing vdev. 3847 */ 3848 int 3849 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3850 { 3851 uint64_t txg; 3852 int error; 3853 vdev_t *rvd = spa->spa_root_vdev; 3854 vdev_t *vd, *pvd, *cvd, *tvd; 3855 boolean_t unspare = B_FALSE; 3856 uint64_t unspare_guid; 3857 size_t len; 3858 char *vdpath; 3859 3860 txg = spa_vdev_enter(spa); 3861 3862 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3863 3864 if (vd == NULL) 3865 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3866 3867 if (!vd->vdev_ops->vdev_op_leaf) 3868 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3869 3870 pvd = vd->vdev_parent; 3871 3872 /* 3873 * If the parent/child relationship is not as expected, don't do it. 3874 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3875 * vdev that's replacing B with C. The user's intent in replacing 3876 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3877 * the replace by detaching C, the expected behavior is to end up 3878 * M(A,B). But suppose that right after deciding to detach C, 3879 * the replacement of B completes. We would have M(A,C), and then 3880 * ask to detach C, which would leave us with just A -- not what 3881 * the user wanted. To prevent this, we make sure that the 3882 * parent/child relationship hasn't changed -- in this example, 3883 * that C's parent is still the replacing vdev R. 3884 */ 3885 if (pvd->vdev_guid != pguid && pguid != 0) 3886 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3887 3888 /* 3889 * If replace_done is specified, only remove this device if it's 3890 * the first child of a replacing vdev. For the 'spare' vdev, either 3891 * disk can be removed. 3892 */ 3893 if (replace_done) { 3894 if (pvd->vdev_ops == &vdev_replacing_ops) { 3895 if (vd->vdev_id != 0) 3896 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3897 } else if (pvd->vdev_ops != &vdev_spare_ops) { 3898 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3899 } 3900 } 3901 3902 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 3903 spa_version(spa) >= SPA_VERSION_SPARES); 3904 3905 /* 3906 * Only mirror, replacing, and spare vdevs support detach. 3907 */ 3908 if (pvd->vdev_ops != &vdev_replacing_ops && 3909 pvd->vdev_ops != &vdev_mirror_ops && 3910 pvd->vdev_ops != &vdev_spare_ops) 3911 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3912 3913 /* 3914 * If this device has the only valid copy of some data, 3915 * we cannot safely detach it. 3916 */ 3917 if (vdev_dtl_required(vd)) 3918 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3919 3920 ASSERT(pvd->vdev_children >= 2); 3921 3922 /* 3923 * If we are detaching the second disk from a replacing vdev, then 3924 * check to see if we changed the original vdev's path to have "/old" 3925 * at the end in spa_vdev_attach(). If so, undo that change now. 3926 */ 3927 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3928 pvd->vdev_child[0]->vdev_path != NULL && 3929 pvd->vdev_child[1]->vdev_path != NULL) { 3930 ASSERT(pvd->vdev_child[1] == vd); 3931 cvd = pvd->vdev_child[0]; 3932 len = strlen(vd->vdev_path); 3933 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3934 strcmp(cvd->vdev_path + len, "/old") == 0) { 3935 spa_strfree(cvd->vdev_path); 3936 cvd->vdev_path = spa_strdup(vd->vdev_path); 3937 } 3938 } 3939 3940 /* 3941 * If we are detaching the original disk from a spare, then it implies 3942 * that the spare should become a real disk, and be removed from the 3943 * active spare list for the pool. 3944 */ 3945 if (pvd->vdev_ops == &vdev_spare_ops && 3946 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 3947 unspare = B_TRUE; 3948 3949 /* 3950 * Erase the disk labels so the disk can be used for other things. 3951 * This must be done after all other error cases are handled, 3952 * but before we disembowel vd (so we can still do I/O to it). 3953 * But if we can't do it, don't treat the error as fatal -- 3954 * it may be that the unwritability of the disk is the reason 3955 * it's being detached! 3956 */ 3957 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3958 3959 /* 3960 * Remove vd from its parent and compact the parent's children. 3961 */ 3962 vdev_remove_child(pvd, vd); 3963 vdev_compact_children(pvd); 3964 3965 /* 3966 * Remember one of the remaining children so we can get tvd below. 3967 */ 3968 cvd = pvd->vdev_child[0]; 3969 3970 /* 3971 * If we need to remove the remaining child from the list of hot spares, 3972 * do it now, marking the vdev as no longer a spare in the process. 3973 * We must do this before vdev_remove_parent(), because that can 3974 * change the GUID if it creates a new toplevel GUID. For a similar 3975 * reason, we must remove the spare now, in the same txg as the detach; 3976 * otherwise someone could attach a new sibling, change the GUID, and 3977 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 3978 */ 3979 if (unspare) { 3980 ASSERT(cvd->vdev_isspare); 3981 spa_spare_remove(cvd); 3982 unspare_guid = cvd->vdev_guid; 3983 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3984 } 3985 3986 /* 3987 * If the parent mirror/replacing vdev only has one child, 3988 * the parent is no longer needed. Remove it from the tree. 3989 */ 3990 if (pvd->vdev_children == 1) 3991 vdev_remove_parent(cvd); 3992 3993 /* 3994 * We don't set tvd until now because the parent we just removed 3995 * may have been the previous top-level vdev. 3996 */ 3997 tvd = cvd->vdev_top; 3998 ASSERT(tvd->vdev_parent == rvd); 3999 4000 /* 4001 * Reevaluate the parent vdev state. 4002 */ 4003 vdev_propagate_state(cvd); 4004 4005 /* 4006 * If the 'autoexpand' property is set on the pool then automatically 4007 * try to expand the size of the pool. For example if the device we 4008 * just detached was smaller than the others, it may be possible to 4009 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4010 * first so that we can obtain the updated sizes of the leaf vdevs. 4011 */ 4012 if (spa->spa_autoexpand) { 4013 vdev_reopen(tvd); 4014 vdev_expand(tvd, txg); 4015 } 4016 4017 vdev_config_dirty(tvd); 4018 4019 /* 4020 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4021 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4022 * But first make sure we're not on any *other* txg's DTL list, to 4023 * prevent vd from being accessed after it's freed. 4024 */ 4025 vdpath = spa_strdup(vd->vdev_path); 4026 for (int t = 0; t < TXG_SIZE; t++) 4027 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4028 vd->vdev_detached = B_TRUE; 4029 vdev_dirty(tvd, VDD_DTL, vd, txg); 4030 4031 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4032 4033 error = spa_vdev_exit(spa, vd, txg, 0); 4034 4035 spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL, 4036 "vdev=%s", vdpath); 4037 spa_strfree(vdpath); 4038 4039 /* 4040 * If this was the removal of the original device in a hot spare vdev, 4041 * then we want to go through and remove the device from the hot spare 4042 * list of every other pool. 4043 */ 4044 if (unspare) { 4045 spa_t *myspa = spa; 4046 spa = NULL; 4047 mutex_enter(&spa_namespace_lock); 4048 while ((spa = spa_next(spa)) != NULL) { 4049 if (spa->spa_state != POOL_STATE_ACTIVE) 4050 continue; 4051 if (spa == myspa) 4052 continue; 4053 spa_open_ref(spa, FTAG); 4054 mutex_exit(&spa_namespace_lock); 4055 (void) spa_vdev_remove(spa, unspare_guid, 4056 B_TRUE); 4057 mutex_enter(&spa_namespace_lock); 4058 spa_close(spa, FTAG); 4059 } 4060 mutex_exit(&spa_namespace_lock); 4061 } 4062 4063 return (error); 4064 } 4065 4066 /* 4067 * Split a set of devices from their mirrors, and create a new pool from them. 4068 */ 4069 int 4070 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4071 nvlist_t *props, boolean_t exp) 4072 { 4073 int error = 0; 4074 uint64_t txg, *glist; 4075 spa_t *newspa; 4076 uint_t c, children, lastlog; 4077 nvlist_t **child, *nvl, *tmp; 4078 dmu_tx_t *tx; 4079 char *altroot = NULL; 4080 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4081 boolean_t activate_slog; 4082 4083 if (!spa_writeable(spa)) 4084 return (EROFS); 4085 4086 txg = spa_vdev_enter(spa); 4087 4088 /* clear the log and flush everything up to now */ 4089 activate_slog = spa_passivate_log(spa); 4090 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4091 error = spa_offline_log(spa); 4092 txg = spa_vdev_config_enter(spa); 4093 4094 if (activate_slog) 4095 spa_activate_log(spa); 4096 4097 if (error != 0) 4098 return (spa_vdev_exit(spa, NULL, txg, error)); 4099 4100 /* check new spa name before going any further */ 4101 if (spa_lookup(newname) != NULL) 4102 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4103 4104 /* 4105 * scan through all the children to ensure they're all mirrors 4106 */ 4107 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4108 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4109 &children) != 0) 4110 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4111 4112 /* first, check to ensure we've got the right child count */ 4113 rvd = spa->spa_root_vdev; 4114 lastlog = 0; 4115 for (c = 0; c < rvd->vdev_children; c++) { 4116 vdev_t *vd = rvd->vdev_child[c]; 4117 4118 /* don't count the holes & logs as children */ 4119 if (vd->vdev_islog || vd->vdev_ishole) { 4120 if (lastlog == 0) 4121 lastlog = c; 4122 continue; 4123 } 4124 4125 lastlog = 0; 4126 } 4127 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4128 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4129 4130 /* next, ensure no spare or cache devices are part of the split */ 4131 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4132 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4133 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4134 4135 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4136 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4137 4138 /* then, loop over each vdev and validate it */ 4139 for (c = 0; c < children; c++) { 4140 uint64_t is_hole = 0; 4141 4142 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4143 &is_hole); 4144 4145 if (is_hole != 0) { 4146 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4147 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4148 continue; 4149 } else { 4150 error = EINVAL; 4151 break; 4152 } 4153 } 4154 4155 /* which disk is going to be split? */ 4156 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4157 &glist[c]) != 0) { 4158 error = EINVAL; 4159 break; 4160 } 4161 4162 /* look it up in the spa */ 4163 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4164 if (vml[c] == NULL) { 4165 error = ENODEV; 4166 break; 4167 } 4168 4169 /* make sure there's nothing stopping the split */ 4170 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4171 vml[c]->vdev_islog || 4172 vml[c]->vdev_ishole || 4173 vml[c]->vdev_isspare || 4174 vml[c]->vdev_isl2cache || 4175 !vdev_writeable(vml[c]) || 4176 vml[c]->vdev_children != 0 || 4177 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4178 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4179 error = EINVAL; 4180 break; 4181 } 4182 4183 if (vdev_dtl_required(vml[c])) { 4184 error = EBUSY; 4185 break; 4186 } 4187 4188 /* we need certain info from the top level */ 4189 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4190 vml[c]->vdev_top->vdev_ms_array) == 0); 4191 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4192 vml[c]->vdev_top->vdev_ms_shift) == 0); 4193 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4194 vml[c]->vdev_top->vdev_asize) == 0); 4195 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4196 vml[c]->vdev_top->vdev_ashift) == 0); 4197 } 4198 4199 if (error != 0) { 4200 kmem_free(vml, children * sizeof (vdev_t *)); 4201 kmem_free(glist, children * sizeof (uint64_t)); 4202 return (spa_vdev_exit(spa, NULL, txg, error)); 4203 } 4204 4205 /* stop writers from using the disks */ 4206 for (c = 0; c < children; c++) { 4207 if (vml[c] != NULL) 4208 vml[c]->vdev_offline = B_TRUE; 4209 } 4210 vdev_reopen(spa->spa_root_vdev); 4211 4212 /* 4213 * Temporarily record the splitting vdevs in the spa config. This 4214 * will disappear once the config is regenerated. 4215 */ 4216 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4217 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4218 glist, children) == 0); 4219 kmem_free(glist, children * sizeof (uint64_t)); 4220 4221 mutex_enter(&spa->spa_props_lock); 4222 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4223 nvl) == 0); 4224 mutex_exit(&spa->spa_props_lock); 4225 spa->spa_config_splitting = nvl; 4226 vdev_config_dirty(spa->spa_root_vdev); 4227 4228 /* configure and create the new pool */ 4229 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4230 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4231 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4232 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4233 spa_version(spa)) == 0); 4234 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4235 spa->spa_config_txg) == 0); 4236 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4237 spa_generate_guid(NULL)) == 0); 4238 (void) nvlist_lookup_string(props, 4239 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4240 4241 /* add the new pool to the namespace */ 4242 newspa = spa_add(newname, config, altroot); 4243 newspa->spa_config_txg = spa->spa_config_txg; 4244 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4245 4246 /* release the spa config lock, retaining the namespace lock */ 4247 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4248 4249 if (zio_injection_enabled) 4250 zio_handle_panic_injection(spa, FTAG, 1); 4251 4252 spa_activate(newspa, spa_mode_global); 4253 spa_async_suspend(newspa); 4254 4255 /* create the new pool from the disks of the original pool */ 4256 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4257 if (error) 4258 goto out; 4259 4260 /* if that worked, generate a real config for the new pool */ 4261 if (newspa->spa_root_vdev != NULL) { 4262 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4263 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4264 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4265 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4266 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4267 B_TRUE)); 4268 } 4269 4270 /* set the props */ 4271 if (props != NULL) { 4272 spa_configfile_set(newspa, props, B_FALSE); 4273 error = spa_prop_set(newspa, props); 4274 if (error) 4275 goto out; 4276 } 4277 4278 /* flush everything */ 4279 txg = spa_vdev_config_enter(newspa); 4280 vdev_config_dirty(newspa->spa_root_vdev); 4281 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4282 4283 if (zio_injection_enabled) 4284 zio_handle_panic_injection(spa, FTAG, 2); 4285 4286 spa_async_resume(newspa); 4287 4288 /* finally, update the original pool's config */ 4289 txg = spa_vdev_config_enter(spa); 4290 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4291 error = dmu_tx_assign(tx, TXG_WAIT); 4292 if (error != 0) 4293 dmu_tx_abort(tx); 4294 for (c = 0; c < children; c++) { 4295 if (vml[c] != NULL) { 4296 vdev_split(vml[c]); 4297 if (error == 0) 4298 spa_history_log_internal(LOG_POOL_VDEV_DETACH, 4299 spa, tx, "vdev=%s", 4300 vml[c]->vdev_path); 4301 vdev_free(vml[c]); 4302 } 4303 } 4304 vdev_config_dirty(spa->spa_root_vdev); 4305 spa->spa_config_splitting = NULL; 4306 nvlist_free(nvl); 4307 if (error == 0) 4308 dmu_tx_commit(tx); 4309 (void) spa_vdev_exit(spa, NULL, txg, 0); 4310 4311 if (zio_injection_enabled) 4312 zio_handle_panic_injection(spa, FTAG, 3); 4313 4314 /* split is complete; log a history record */ 4315 spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL, 4316 "split new pool %s from pool %s", newname, spa_name(spa)); 4317 4318 kmem_free(vml, children * sizeof (vdev_t *)); 4319 4320 /* if we're not going to mount the filesystems in userland, export */ 4321 if (exp) 4322 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4323 B_FALSE, B_FALSE); 4324 4325 return (error); 4326 4327 out: 4328 spa_unload(newspa); 4329 spa_deactivate(newspa); 4330 spa_remove(newspa); 4331 4332 txg = spa_vdev_config_enter(spa); 4333 4334 /* re-online all offlined disks */ 4335 for (c = 0; c < children; c++) { 4336 if (vml[c] != NULL) 4337 vml[c]->vdev_offline = B_FALSE; 4338 } 4339 vdev_reopen(spa->spa_root_vdev); 4340 4341 nvlist_free(spa->spa_config_splitting); 4342 spa->spa_config_splitting = NULL; 4343 (void) spa_vdev_exit(spa, NULL, txg, error); 4344 4345 kmem_free(vml, children * sizeof (vdev_t *)); 4346 return (error); 4347 } 4348 4349 static nvlist_t * 4350 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4351 { 4352 for (int i = 0; i < count; i++) { 4353 uint64_t guid; 4354 4355 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4356 &guid) == 0); 4357 4358 if (guid == target_guid) 4359 return (nvpp[i]); 4360 } 4361 4362 return (NULL); 4363 } 4364 4365 static void 4366 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4367 nvlist_t *dev_to_remove) 4368 { 4369 nvlist_t **newdev = NULL; 4370 4371 if (count > 1) 4372 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4373 4374 for (int i = 0, j = 0; i < count; i++) { 4375 if (dev[i] == dev_to_remove) 4376 continue; 4377 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4378 } 4379 4380 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4381 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4382 4383 for (int i = 0; i < count - 1; i++) 4384 nvlist_free(newdev[i]); 4385 4386 if (count > 1) 4387 kmem_free(newdev, (count - 1) * sizeof (void *)); 4388 } 4389 4390 /* 4391 * Evacuate the device. 4392 */ 4393 static int 4394 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 4395 { 4396 uint64_t txg; 4397 int error = 0; 4398 4399 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4400 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4401 ASSERT(vd == vd->vdev_top); 4402 4403 /* 4404 * Evacuate the device. We don't hold the config lock as writer 4405 * since we need to do I/O but we do keep the 4406 * spa_namespace_lock held. Once this completes the device 4407 * should no longer have any blocks allocated on it. 4408 */ 4409 if (vd->vdev_islog) { 4410 if (vd->vdev_stat.vs_alloc != 0) 4411 error = spa_offline_log(spa); 4412 } else { 4413 error = ENOTSUP; 4414 } 4415 4416 if (error) 4417 return (error); 4418 4419 /* 4420 * The evacuation succeeded. Remove any remaining MOS metadata 4421 * associated with this vdev, and wait for these changes to sync. 4422 */ 4423 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 4424 txg = spa_vdev_config_enter(spa); 4425 vd->vdev_removing = B_TRUE; 4426 vdev_dirty(vd, 0, NULL, txg); 4427 vdev_config_dirty(vd); 4428 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4429 4430 return (0); 4431 } 4432 4433 /* 4434 * Complete the removal by cleaning up the namespace. 4435 */ 4436 static void 4437 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 4438 { 4439 vdev_t *rvd = spa->spa_root_vdev; 4440 uint64_t id = vd->vdev_id; 4441 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 4442 4443 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4444 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4445 ASSERT(vd == vd->vdev_top); 4446 4447 /* 4448 * Only remove any devices which are empty. 4449 */ 4450 if (vd->vdev_stat.vs_alloc != 0) 4451 return; 4452 4453 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4454 4455 if (list_link_active(&vd->vdev_state_dirty_node)) 4456 vdev_state_clean(vd); 4457 if (list_link_active(&vd->vdev_config_dirty_node)) 4458 vdev_config_clean(vd); 4459 4460 vdev_free(vd); 4461 4462 if (last_vdev) { 4463 vdev_compact_children(rvd); 4464 } else { 4465 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 4466 vdev_add_child(rvd, vd); 4467 } 4468 vdev_config_dirty(rvd); 4469 4470 /* 4471 * Reassess the health of our root vdev. 4472 */ 4473 vdev_reopen(rvd); 4474 } 4475 4476 /* 4477 * Remove a device from the pool - 4478 * 4479 * Removing a device from the vdev namespace requires several steps 4480 * and can take a significant amount of time. As a result we use 4481 * the spa_vdev_config_[enter/exit] functions which allow us to 4482 * grab and release the spa_config_lock while still holding the namespace 4483 * lock. During each step the configuration is synced out. 4484 */ 4485 4486 /* 4487 * Remove a device from the pool. Currently, this supports removing only hot 4488 * spares, slogs, and level 2 ARC devices. 4489 */ 4490 int 4491 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 4492 { 4493 vdev_t *vd; 4494 metaslab_group_t *mg; 4495 nvlist_t **spares, **l2cache, *nv; 4496 uint64_t txg = 0; 4497 uint_t nspares, nl2cache; 4498 int error = 0; 4499 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 4500 4501 if (!locked) 4502 txg = spa_vdev_enter(spa); 4503 4504 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4505 4506 if (spa->spa_spares.sav_vdevs != NULL && 4507 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4508 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 4509 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 4510 /* 4511 * Only remove the hot spare if it's not currently in use 4512 * in this pool. 4513 */ 4514 if (vd == NULL || unspare) { 4515 spa_vdev_remove_aux(spa->spa_spares.sav_config, 4516 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 4517 spa_load_spares(spa); 4518 spa->spa_spares.sav_sync = B_TRUE; 4519 } else { 4520 error = EBUSY; 4521 } 4522 } else if (spa->spa_l2cache.sav_vdevs != NULL && 4523 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4524 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 4525 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 4526 /* 4527 * Cache devices can always be removed. 4528 */ 4529 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 4530 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 4531 spa_load_l2cache(spa); 4532 spa->spa_l2cache.sav_sync = B_TRUE; 4533 } else if (vd != NULL && vd->vdev_islog) { 4534 ASSERT(!locked); 4535 ASSERT(vd == vd->vdev_top); 4536 4537 /* 4538 * XXX - Once we have bp-rewrite this should 4539 * become the common case. 4540 */ 4541 4542 mg = vd->vdev_mg; 4543 4544 /* 4545 * Stop allocating from this vdev. 4546 */ 4547 metaslab_group_passivate(mg); 4548 4549 /* 4550 * Wait for the youngest allocations and frees to sync, 4551 * and then wait for the deferral of those frees to finish. 4552 */ 4553 spa_vdev_config_exit(spa, NULL, 4554 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 4555 4556 /* 4557 * Attempt to evacuate the vdev. 4558 */ 4559 error = spa_vdev_remove_evacuate(spa, vd); 4560 4561 txg = spa_vdev_config_enter(spa); 4562 4563 /* 4564 * If we couldn't evacuate the vdev, unwind. 4565 */ 4566 if (error) { 4567 metaslab_group_activate(mg); 4568 return (spa_vdev_exit(spa, NULL, txg, error)); 4569 } 4570 4571 /* 4572 * Clean up the vdev namespace. 4573 */ 4574 spa_vdev_remove_from_namespace(spa, vd); 4575 4576 } else if (vd != NULL) { 4577 /* 4578 * Normal vdevs cannot be removed (yet). 4579 */ 4580 error = ENOTSUP; 4581 } else { 4582 /* 4583 * There is no vdev of any kind with the specified guid. 4584 */ 4585 error = ENOENT; 4586 } 4587 4588 if (!locked) 4589 return (spa_vdev_exit(spa, NULL, txg, error)); 4590 4591 return (error); 4592 } 4593 4594 /* 4595 * Find any device that's done replacing, or a vdev marked 'unspare' that's 4596 * current spared, so we can detach it. 4597 */ 4598 static vdev_t * 4599 spa_vdev_resilver_done_hunt(vdev_t *vd) 4600 { 4601 vdev_t *newvd, *oldvd; 4602 4603 for (int c = 0; c < vd->vdev_children; c++) { 4604 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 4605 if (oldvd != NULL) 4606 return (oldvd); 4607 } 4608 4609 /* 4610 * Check for a completed replacement. 4611 */ 4612 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 4613 oldvd = vd->vdev_child[0]; 4614 newvd = vd->vdev_child[1]; 4615 4616 if (vdev_dtl_empty(newvd, DTL_MISSING) && 4617 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4618 !vdev_dtl_required(oldvd)) 4619 return (oldvd); 4620 } 4621 4622 /* 4623 * Check for a completed resilver with the 'unspare' flag set. 4624 */ 4625 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 4626 newvd = vd->vdev_child[0]; 4627 oldvd = vd->vdev_child[1]; 4628 4629 if (newvd->vdev_unspare && 4630 vdev_dtl_empty(newvd, DTL_MISSING) && 4631 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4632 !vdev_dtl_required(oldvd)) { 4633 newvd->vdev_unspare = 0; 4634 return (oldvd); 4635 } 4636 } 4637 4638 return (NULL); 4639 } 4640 4641 static void 4642 spa_vdev_resilver_done(spa_t *spa) 4643 { 4644 vdev_t *vd, *pvd, *ppvd; 4645 uint64_t guid, sguid, pguid, ppguid; 4646 4647 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4648 4649 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 4650 pvd = vd->vdev_parent; 4651 ppvd = pvd->vdev_parent; 4652 guid = vd->vdev_guid; 4653 pguid = pvd->vdev_guid; 4654 ppguid = ppvd->vdev_guid; 4655 sguid = 0; 4656 /* 4657 * If we have just finished replacing a hot spared device, then 4658 * we need to detach the parent's first child (the original hot 4659 * spare) as well. 4660 */ 4661 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 4662 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 4663 ASSERT(ppvd->vdev_children == 2); 4664 sguid = ppvd->vdev_child[1]->vdev_guid; 4665 } 4666 spa_config_exit(spa, SCL_ALL, FTAG); 4667 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 4668 return; 4669 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 4670 return; 4671 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4672 } 4673 4674 spa_config_exit(spa, SCL_ALL, FTAG); 4675 } 4676 4677 /* 4678 * Update the stored path or FRU for this vdev. 4679 */ 4680 int 4681 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 4682 boolean_t ispath) 4683 { 4684 vdev_t *vd; 4685 boolean_t sync = B_FALSE; 4686 4687 spa_vdev_state_enter(spa, SCL_ALL); 4688 4689 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4690 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 4691 4692 if (!vd->vdev_ops->vdev_op_leaf) 4693 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4694 4695 if (ispath) { 4696 if (strcmp(value, vd->vdev_path) != 0) { 4697 spa_strfree(vd->vdev_path); 4698 vd->vdev_path = spa_strdup(value); 4699 sync = B_TRUE; 4700 } 4701 } else { 4702 if (vd->vdev_fru == NULL) { 4703 vd->vdev_fru = spa_strdup(value); 4704 sync = B_TRUE; 4705 } else if (strcmp(value, vd->vdev_fru) != 0) { 4706 spa_strfree(vd->vdev_fru); 4707 vd->vdev_fru = spa_strdup(value); 4708 sync = B_TRUE; 4709 } 4710 } 4711 4712 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 4713 } 4714 4715 int 4716 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 4717 { 4718 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 4719 } 4720 4721 int 4722 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 4723 { 4724 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 4725 } 4726 4727 /* 4728 * ========================================================================== 4729 * SPA Scanning 4730 * ========================================================================== 4731 */ 4732 4733 int 4734 spa_scan_stop(spa_t *spa) 4735 { 4736 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4737 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 4738 return (EBUSY); 4739 return (dsl_scan_cancel(spa->spa_dsl_pool)); 4740 } 4741 4742 int 4743 spa_scan(spa_t *spa, pool_scan_func_t func) 4744 { 4745 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4746 4747 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 4748 return (ENOTSUP); 4749 4750 /* 4751 * If a resilver was requested, but there is no DTL on a 4752 * writeable leaf device, we have nothing to do. 4753 */ 4754 if (func == POOL_SCAN_RESILVER && 4755 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4756 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4757 return (0); 4758 } 4759 4760 return (dsl_scan(spa->spa_dsl_pool, func)); 4761 } 4762 4763 /* 4764 * ========================================================================== 4765 * SPA async task processing 4766 * ========================================================================== 4767 */ 4768 4769 static void 4770 spa_async_remove(spa_t *spa, vdev_t *vd) 4771 { 4772 if (vd->vdev_remove_wanted) { 4773 vd->vdev_remove_wanted = B_FALSE; 4774 vd->vdev_delayed_close = B_FALSE; 4775 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 4776 4777 /* 4778 * We want to clear the stats, but we don't want to do a full 4779 * vdev_clear() as that will cause us to throw away 4780 * degraded/faulted state as well as attempt to reopen the 4781 * device, all of which is a waste. 4782 */ 4783 vd->vdev_stat.vs_read_errors = 0; 4784 vd->vdev_stat.vs_write_errors = 0; 4785 vd->vdev_stat.vs_checksum_errors = 0; 4786 4787 vdev_state_dirty(vd->vdev_top); 4788 } 4789 4790 for (int c = 0; c < vd->vdev_children; c++) 4791 spa_async_remove(spa, vd->vdev_child[c]); 4792 } 4793 4794 static void 4795 spa_async_probe(spa_t *spa, vdev_t *vd) 4796 { 4797 if (vd->vdev_probe_wanted) { 4798 vd->vdev_probe_wanted = B_FALSE; 4799 vdev_reopen(vd); /* vdev_open() does the actual probe */ 4800 } 4801 4802 for (int c = 0; c < vd->vdev_children; c++) 4803 spa_async_probe(spa, vd->vdev_child[c]); 4804 } 4805 4806 static void 4807 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 4808 { 4809 sysevent_id_t eid; 4810 nvlist_t *attr; 4811 char *physpath; 4812 4813 if (!spa->spa_autoexpand) 4814 return; 4815 4816 for (int c = 0; c < vd->vdev_children; c++) { 4817 vdev_t *cvd = vd->vdev_child[c]; 4818 spa_async_autoexpand(spa, cvd); 4819 } 4820 4821 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 4822 return; 4823 4824 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4825 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 4826 4827 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4828 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 4829 4830 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 4831 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 4832 4833 nvlist_free(attr); 4834 kmem_free(physpath, MAXPATHLEN); 4835 } 4836 4837 static void 4838 spa_async_thread(spa_t *spa) 4839 { 4840 int tasks; 4841 4842 ASSERT(spa->spa_sync_on); 4843 4844 mutex_enter(&spa->spa_async_lock); 4845 tasks = spa->spa_async_tasks; 4846 spa->spa_async_tasks = 0; 4847 mutex_exit(&spa->spa_async_lock); 4848 4849 /* 4850 * See if the config needs to be updated. 4851 */ 4852 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 4853 uint64_t old_space, new_space; 4854 4855 mutex_enter(&spa_namespace_lock); 4856 old_space = metaslab_class_get_space(spa_normal_class(spa)); 4857 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4858 new_space = metaslab_class_get_space(spa_normal_class(spa)); 4859 mutex_exit(&spa_namespace_lock); 4860 4861 /* 4862 * If the pool grew as a result of the config update, 4863 * then log an internal history event. 4864 */ 4865 if (new_space != old_space) { 4866 spa_history_log_internal(LOG_POOL_VDEV_ONLINE, 4867 spa, NULL, 4868 "pool '%s' size: %llu(+%llu)", 4869 spa_name(spa), new_space, new_space - old_space); 4870 } 4871 } 4872 4873 /* 4874 * See if any devices need to be marked REMOVED. 4875 */ 4876 if (tasks & SPA_ASYNC_REMOVE) { 4877 spa_vdev_state_enter(spa, SCL_NONE); 4878 spa_async_remove(spa, spa->spa_root_vdev); 4879 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 4880 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 4881 for (int i = 0; i < spa->spa_spares.sav_count; i++) 4882 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 4883 (void) spa_vdev_state_exit(spa, NULL, 0); 4884 } 4885 4886 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 4887 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4888 spa_async_autoexpand(spa, spa->spa_root_vdev); 4889 spa_config_exit(spa, SCL_CONFIG, FTAG); 4890 } 4891 4892 /* 4893 * See if any devices need to be probed. 4894 */ 4895 if (tasks & SPA_ASYNC_PROBE) { 4896 spa_vdev_state_enter(spa, SCL_NONE); 4897 spa_async_probe(spa, spa->spa_root_vdev); 4898 (void) spa_vdev_state_exit(spa, NULL, 0); 4899 } 4900 4901 /* 4902 * If any devices are done replacing, detach them. 4903 */ 4904 if (tasks & SPA_ASYNC_RESILVER_DONE) 4905 spa_vdev_resilver_done(spa); 4906 4907 /* 4908 * Kick off a resilver. 4909 */ 4910 if (tasks & SPA_ASYNC_RESILVER) 4911 dsl_resilver_restart(spa->spa_dsl_pool, 0); 4912 4913 /* 4914 * Let the world know that we're done. 4915 */ 4916 mutex_enter(&spa->spa_async_lock); 4917 spa->spa_async_thread = NULL; 4918 cv_broadcast(&spa->spa_async_cv); 4919 mutex_exit(&spa->spa_async_lock); 4920 thread_exit(); 4921 } 4922 4923 void 4924 spa_async_suspend(spa_t *spa) 4925 { 4926 mutex_enter(&spa->spa_async_lock); 4927 spa->spa_async_suspended++; 4928 while (spa->spa_async_thread != NULL) 4929 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 4930 mutex_exit(&spa->spa_async_lock); 4931 } 4932 4933 void 4934 spa_async_resume(spa_t *spa) 4935 { 4936 mutex_enter(&spa->spa_async_lock); 4937 ASSERT(spa->spa_async_suspended != 0); 4938 spa->spa_async_suspended--; 4939 mutex_exit(&spa->spa_async_lock); 4940 } 4941 4942 static void 4943 spa_async_dispatch(spa_t *spa) 4944 { 4945 mutex_enter(&spa->spa_async_lock); 4946 if (spa->spa_async_tasks && !spa->spa_async_suspended && 4947 spa->spa_async_thread == NULL && 4948 rootdir != NULL && !vn_is_readonly(rootdir)) 4949 spa->spa_async_thread = thread_create(NULL, 0, 4950 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 4951 mutex_exit(&spa->spa_async_lock); 4952 } 4953 4954 void 4955 spa_async_request(spa_t *spa, int task) 4956 { 4957 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 4958 mutex_enter(&spa->spa_async_lock); 4959 spa->spa_async_tasks |= task; 4960 mutex_exit(&spa->spa_async_lock); 4961 } 4962 4963 /* 4964 * ========================================================================== 4965 * SPA syncing routines 4966 * ========================================================================== 4967 */ 4968 4969 static int 4970 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 4971 { 4972 bpobj_t *bpo = arg; 4973 bpobj_enqueue(bpo, bp, tx); 4974 return (0); 4975 } 4976 4977 static int 4978 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 4979 { 4980 zio_t *zio = arg; 4981 4982 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 4983 zio->io_flags)); 4984 return (0); 4985 } 4986 4987 static void 4988 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 4989 { 4990 char *packed = NULL; 4991 size_t bufsize; 4992 size_t nvsize = 0; 4993 dmu_buf_t *db; 4994 4995 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 4996 4997 /* 4998 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 4999 * information. This avoids the dbuf_will_dirty() path and 5000 * saves us a pre-read to get data we don't actually care about. 5001 */ 5002 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 5003 packed = kmem_alloc(bufsize, KM_SLEEP); 5004 5005 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5006 KM_SLEEP) == 0); 5007 bzero(packed + nvsize, bufsize - nvsize); 5008 5009 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5010 5011 kmem_free(packed, bufsize); 5012 5013 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5014 dmu_buf_will_dirty(db, tx); 5015 *(uint64_t *)db->db_data = nvsize; 5016 dmu_buf_rele(db, FTAG); 5017 } 5018 5019 static void 5020 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5021 const char *config, const char *entry) 5022 { 5023 nvlist_t *nvroot; 5024 nvlist_t **list; 5025 int i; 5026 5027 if (!sav->sav_sync) 5028 return; 5029 5030 /* 5031 * Update the MOS nvlist describing the list of available devices. 5032 * spa_validate_aux() will have already made sure this nvlist is 5033 * valid and the vdevs are labeled appropriately. 5034 */ 5035 if (sav->sav_object == 0) { 5036 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5037 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5038 sizeof (uint64_t), tx); 5039 VERIFY(zap_update(spa->spa_meta_objset, 5040 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5041 &sav->sav_object, tx) == 0); 5042 } 5043 5044 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5045 if (sav->sav_count == 0) { 5046 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5047 } else { 5048 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5049 for (i = 0; i < sav->sav_count; i++) 5050 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5051 B_FALSE, VDEV_CONFIG_L2CACHE); 5052 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5053 sav->sav_count) == 0); 5054 for (i = 0; i < sav->sav_count; i++) 5055 nvlist_free(list[i]); 5056 kmem_free(list, sav->sav_count * sizeof (void *)); 5057 } 5058 5059 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5060 nvlist_free(nvroot); 5061 5062 sav->sav_sync = B_FALSE; 5063 } 5064 5065 static void 5066 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5067 { 5068 nvlist_t *config; 5069 5070 if (list_is_empty(&spa->spa_config_dirty_list)) 5071 return; 5072 5073 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5074 5075 config = spa_config_generate(spa, spa->spa_root_vdev, 5076 dmu_tx_get_txg(tx), B_FALSE); 5077 5078 spa_config_exit(spa, SCL_STATE, FTAG); 5079 5080 if (spa->spa_config_syncing) 5081 nvlist_free(spa->spa_config_syncing); 5082 spa->spa_config_syncing = config; 5083 5084 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5085 } 5086 5087 /* 5088 * Set zpool properties. 5089 */ 5090 static void 5091 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx) 5092 { 5093 spa_t *spa = arg1; 5094 objset_t *mos = spa->spa_meta_objset; 5095 nvlist_t *nvp = arg2; 5096 nvpair_t *elem; 5097 uint64_t intval; 5098 char *strval; 5099 zpool_prop_t prop; 5100 const char *propname; 5101 zprop_type_t proptype; 5102 5103 mutex_enter(&spa->spa_props_lock); 5104 5105 elem = NULL; 5106 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5107 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5108 case ZPOOL_PROP_VERSION: 5109 /* 5110 * Only set version for non-zpool-creation cases 5111 * (set/import). spa_create() needs special care 5112 * for version setting. 5113 */ 5114 if (tx->tx_txg != TXG_INITIAL) { 5115 VERIFY(nvpair_value_uint64(elem, 5116 &intval) == 0); 5117 ASSERT(intval <= SPA_VERSION); 5118 ASSERT(intval >= spa_version(spa)); 5119 spa->spa_uberblock.ub_version = intval; 5120 vdev_config_dirty(spa->spa_root_vdev); 5121 } 5122 break; 5123 5124 case ZPOOL_PROP_ALTROOT: 5125 /* 5126 * 'altroot' is a non-persistent property. It should 5127 * have been set temporarily at creation or import time. 5128 */ 5129 ASSERT(spa->spa_root != NULL); 5130 break; 5131 5132 case ZPOOL_PROP_CACHEFILE: 5133 /* 5134 * 'cachefile' is also a non-persisitent property. 5135 */ 5136 break; 5137 default: 5138 /* 5139 * Set pool property values in the poolprops mos object. 5140 */ 5141 if (spa->spa_pool_props_object == 0) { 5142 VERIFY((spa->spa_pool_props_object = 5143 zap_create(mos, DMU_OT_POOL_PROPS, 5144 DMU_OT_NONE, 0, tx)) > 0); 5145 5146 VERIFY(zap_update(mos, 5147 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5148 8, 1, &spa->spa_pool_props_object, tx) 5149 == 0); 5150 } 5151 5152 /* normalize the property name */ 5153 propname = zpool_prop_to_name(prop); 5154 proptype = zpool_prop_get_type(prop); 5155 5156 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5157 ASSERT(proptype == PROP_TYPE_STRING); 5158 VERIFY(nvpair_value_string(elem, &strval) == 0); 5159 VERIFY(zap_update(mos, 5160 spa->spa_pool_props_object, propname, 5161 1, strlen(strval) + 1, strval, tx) == 0); 5162 5163 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5164 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5165 5166 if (proptype == PROP_TYPE_INDEX) { 5167 const char *unused; 5168 VERIFY(zpool_prop_index_to_string( 5169 prop, intval, &unused) == 0); 5170 } 5171 VERIFY(zap_update(mos, 5172 spa->spa_pool_props_object, propname, 5173 8, 1, &intval, tx) == 0); 5174 } else { 5175 ASSERT(0); /* not allowed */ 5176 } 5177 5178 switch (prop) { 5179 case ZPOOL_PROP_DELEGATION: 5180 spa->spa_delegation = intval; 5181 break; 5182 case ZPOOL_PROP_BOOTFS: 5183 spa->spa_bootfs = intval; 5184 break; 5185 case ZPOOL_PROP_FAILUREMODE: 5186 spa->spa_failmode = intval; 5187 break; 5188 case ZPOOL_PROP_AUTOEXPAND: 5189 spa->spa_autoexpand = intval; 5190 if (tx->tx_txg != TXG_INITIAL) 5191 spa_async_request(spa, 5192 SPA_ASYNC_AUTOEXPAND); 5193 break; 5194 case ZPOOL_PROP_DEDUPDITTO: 5195 spa->spa_dedup_ditto = intval; 5196 break; 5197 default: 5198 break; 5199 } 5200 } 5201 5202 /* log internal history if this is not a zpool create */ 5203 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 5204 tx->tx_txg != TXG_INITIAL) { 5205 spa_history_log_internal(LOG_POOL_PROPSET, 5206 spa, tx, "%s %lld %s", 5207 nvpair_name(elem), intval, spa_name(spa)); 5208 } 5209 } 5210 5211 mutex_exit(&spa->spa_props_lock); 5212 } 5213 5214 /* 5215 * Perform one-time upgrade on-disk changes. spa_version() does not 5216 * reflect the new version this txg, so there must be no changes this 5217 * txg to anything that the upgrade code depends on after it executes. 5218 * Therefore this must be called after dsl_pool_sync() does the sync 5219 * tasks. 5220 */ 5221 static void 5222 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 5223 { 5224 dsl_pool_t *dp = spa->spa_dsl_pool; 5225 5226 ASSERT(spa->spa_sync_pass == 1); 5227 5228 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5229 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5230 dsl_pool_create_origin(dp, tx); 5231 5232 /* Keeping the origin open increases spa_minref */ 5233 spa->spa_minref += 3; 5234 } 5235 5236 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5237 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5238 dsl_pool_upgrade_clones(dp, tx); 5239 } 5240 5241 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 5242 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 5243 dsl_pool_upgrade_dir_clones(dp, tx); 5244 5245 /* Keeping the freedir open increases spa_minref */ 5246 spa->spa_minref += 3; 5247 } 5248 } 5249 5250 /* 5251 * Sync the specified transaction group. New blocks may be dirtied as 5252 * part of the process, so we iterate until it converges. 5253 */ 5254 void 5255 spa_sync(spa_t *spa, uint64_t txg) 5256 { 5257 dsl_pool_t *dp = spa->spa_dsl_pool; 5258 objset_t *mos = spa->spa_meta_objset; 5259 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 5260 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5261 vdev_t *rvd = spa->spa_root_vdev; 5262 vdev_t *vd; 5263 dmu_tx_t *tx; 5264 int error; 5265 5266 /* 5267 * Lock out configuration changes. 5268 */ 5269 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5270 5271 spa->spa_syncing_txg = txg; 5272 spa->spa_sync_pass = 0; 5273 5274 /* 5275 * If there are any pending vdev state changes, convert them 5276 * into config changes that go out with this transaction group. 5277 */ 5278 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5279 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5280 /* 5281 * We need the write lock here because, for aux vdevs, 5282 * calling vdev_config_dirty() modifies sav_config. 5283 * This is ugly and will become unnecessary when we 5284 * eliminate the aux vdev wart by integrating all vdevs 5285 * into the root vdev tree. 5286 */ 5287 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5288 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5289 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5290 vdev_state_clean(vd); 5291 vdev_config_dirty(vd); 5292 } 5293 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5294 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5295 } 5296 spa_config_exit(spa, SCL_STATE, FTAG); 5297 5298 tx = dmu_tx_create_assigned(dp, txg); 5299 5300 /* 5301 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5302 * set spa_deflate if we have no raid-z vdevs. 5303 */ 5304 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5305 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5306 int i; 5307 5308 for (i = 0; i < rvd->vdev_children; i++) { 5309 vd = rvd->vdev_child[i]; 5310 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 5311 break; 5312 } 5313 if (i == rvd->vdev_children) { 5314 spa->spa_deflate = TRUE; 5315 VERIFY(0 == zap_add(spa->spa_meta_objset, 5316 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5317 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 5318 } 5319 } 5320 5321 /* 5322 * If anything has changed in this txg, or if someone is waiting 5323 * for this txg to sync (eg, spa_vdev_remove()), push the 5324 * deferred frees from the previous txg. If not, leave them 5325 * alone so that we don't generate work on an otherwise idle 5326 * system. 5327 */ 5328 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 5329 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 5330 !txg_list_empty(&dp->dp_sync_tasks, txg) || 5331 ((dsl_scan_active(dp->dp_scan) || 5332 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 5333 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5334 VERIFY3U(bpobj_iterate(defer_bpo, 5335 spa_free_sync_cb, zio, tx), ==, 0); 5336 VERIFY3U(zio_wait(zio), ==, 0); 5337 } 5338 5339 /* 5340 * Iterate to convergence. 5341 */ 5342 do { 5343 int pass = ++spa->spa_sync_pass; 5344 5345 spa_sync_config_object(spa, tx); 5346 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 5347 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 5348 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 5349 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 5350 spa_errlog_sync(spa, txg); 5351 dsl_pool_sync(dp, txg); 5352 5353 if (pass <= SYNC_PASS_DEFERRED_FREE) { 5354 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5355 bplist_iterate(free_bpl, spa_free_sync_cb, 5356 zio, tx); 5357 VERIFY(zio_wait(zio) == 0); 5358 } else { 5359 bplist_iterate(free_bpl, bpobj_enqueue_cb, 5360 defer_bpo, tx); 5361 } 5362 5363 ddt_sync(spa, txg); 5364 dsl_scan_sync(dp, tx); 5365 5366 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 5367 vdev_sync(vd, txg); 5368 5369 if (pass == 1) 5370 spa_sync_upgrades(spa, tx); 5371 5372 } while (dmu_objset_is_dirty(mos, txg)); 5373 5374 /* 5375 * Rewrite the vdev configuration (which includes the uberblock) 5376 * to commit the transaction group. 5377 * 5378 * If there are no dirty vdevs, we sync the uberblock to a few 5379 * random top-level vdevs that are known to be visible in the 5380 * config cache (see spa_vdev_add() for a complete description). 5381 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 5382 */ 5383 for (;;) { 5384 /* 5385 * We hold SCL_STATE to prevent vdev open/close/etc. 5386 * while we're attempting to write the vdev labels. 5387 */ 5388 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5389 5390 if (list_is_empty(&spa->spa_config_dirty_list)) { 5391 vdev_t *svd[SPA_DVAS_PER_BP]; 5392 int svdcount = 0; 5393 int children = rvd->vdev_children; 5394 int c0 = spa_get_random(children); 5395 5396 for (int c = 0; c < children; c++) { 5397 vd = rvd->vdev_child[(c0 + c) % children]; 5398 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 5399 continue; 5400 svd[svdcount++] = vd; 5401 if (svdcount == SPA_DVAS_PER_BP) 5402 break; 5403 } 5404 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 5405 if (error != 0) 5406 error = vdev_config_sync(svd, svdcount, txg, 5407 B_TRUE); 5408 } else { 5409 error = vdev_config_sync(rvd->vdev_child, 5410 rvd->vdev_children, txg, B_FALSE); 5411 if (error != 0) 5412 error = vdev_config_sync(rvd->vdev_child, 5413 rvd->vdev_children, txg, B_TRUE); 5414 } 5415 5416 spa_config_exit(spa, SCL_STATE, FTAG); 5417 5418 if (error == 0) 5419 break; 5420 zio_suspend(spa, NULL); 5421 zio_resume_wait(spa); 5422 } 5423 dmu_tx_commit(tx); 5424 5425 /* 5426 * Clear the dirty config list. 5427 */ 5428 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 5429 vdev_config_clean(vd); 5430 5431 /* 5432 * Now that the new config has synced transactionally, 5433 * let it become visible to the config cache. 5434 */ 5435 if (spa->spa_config_syncing != NULL) { 5436 spa_config_set(spa, spa->spa_config_syncing); 5437 spa->spa_config_txg = txg; 5438 spa->spa_config_syncing = NULL; 5439 } 5440 5441 spa->spa_ubsync = spa->spa_uberblock; 5442 5443 dsl_pool_sync_done(dp, txg); 5444 5445 /* 5446 * Update usable space statistics. 5447 */ 5448 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 5449 vdev_sync_done(vd, txg); 5450 5451 spa_update_dspace(spa); 5452 5453 /* 5454 * It had better be the case that we didn't dirty anything 5455 * since vdev_config_sync(). 5456 */ 5457 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 5458 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 5459 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 5460 5461 spa->spa_sync_pass = 0; 5462 5463 spa_config_exit(spa, SCL_CONFIG, FTAG); 5464 5465 spa_handle_ignored_writes(spa); 5466 5467 /* 5468 * If any async tasks have been requested, kick them off. 5469 */ 5470 spa_async_dispatch(spa); 5471 } 5472 5473 /* 5474 * Sync all pools. We don't want to hold the namespace lock across these 5475 * operations, so we take a reference on the spa_t and drop the lock during the 5476 * sync. 5477 */ 5478 void 5479 spa_sync_allpools(void) 5480 { 5481 spa_t *spa = NULL; 5482 mutex_enter(&spa_namespace_lock); 5483 while ((spa = spa_next(spa)) != NULL) { 5484 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 5485 continue; 5486 spa_open_ref(spa, FTAG); 5487 mutex_exit(&spa_namespace_lock); 5488 txg_wait_synced(spa_get_dsl(spa), 0); 5489 mutex_enter(&spa_namespace_lock); 5490 spa_close(spa, FTAG); 5491 } 5492 mutex_exit(&spa_namespace_lock); 5493 } 5494 5495 /* 5496 * ========================================================================== 5497 * Miscellaneous routines 5498 * ========================================================================== 5499 */ 5500 5501 /* 5502 * Remove all pools in the system. 5503 */ 5504 void 5505 spa_evict_all(void) 5506 { 5507 spa_t *spa; 5508 5509 /* 5510 * Remove all cached state. All pools should be closed now, 5511 * so every spa in the AVL tree should be unreferenced. 5512 */ 5513 mutex_enter(&spa_namespace_lock); 5514 while ((spa = spa_next(NULL)) != NULL) { 5515 /* 5516 * Stop async tasks. The async thread may need to detach 5517 * a device that's been replaced, which requires grabbing 5518 * spa_namespace_lock, so we must drop it here. 5519 */ 5520 spa_open_ref(spa, FTAG); 5521 mutex_exit(&spa_namespace_lock); 5522 spa_async_suspend(spa); 5523 mutex_enter(&spa_namespace_lock); 5524 spa_close(spa, FTAG); 5525 5526 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5527 spa_unload(spa); 5528 spa_deactivate(spa); 5529 } 5530 spa_remove(spa); 5531 } 5532 mutex_exit(&spa_namespace_lock); 5533 } 5534 5535 vdev_t * 5536 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 5537 { 5538 vdev_t *vd; 5539 int i; 5540 5541 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 5542 return (vd); 5543 5544 if (aux) { 5545 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 5546 vd = spa->spa_l2cache.sav_vdevs[i]; 5547 if (vd->vdev_guid == guid) 5548 return (vd); 5549 } 5550 5551 for (i = 0; i < spa->spa_spares.sav_count; i++) { 5552 vd = spa->spa_spares.sav_vdevs[i]; 5553 if (vd->vdev_guid == guid) 5554 return (vd); 5555 } 5556 } 5557 5558 return (NULL); 5559 } 5560 5561 void 5562 spa_upgrade(spa_t *spa, uint64_t version) 5563 { 5564 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5565 5566 /* 5567 * This should only be called for a non-faulted pool, and since a 5568 * future version would result in an unopenable pool, this shouldn't be 5569 * possible. 5570 */ 5571 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 5572 ASSERT(version >= spa->spa_uberblock.ub_version); 5573 5574 spa->spa_uberblock.ub_version = version; 5575 vdev_config_dirty(spa->spa_root_vdev); 5576 5577 spa_config_exit(spa, SCL_ALL, FTAG); 5578 5579 txg_wait_synced(spa_get_dsl(spa), 0); 5580 } 5581 5582 boolean_t 5583 spa_has_spare(spa_t *spa, uint64_t guid) 5584 { 5585 int i; 5586 uint64_t spareguid; 5587 spa_aux_vdev_t *sav = &spa->spa_spares; 5588 5589 for (i = 0; i < sav->sav_count; i++) 5590 if (sav->sav_vdevs[i]->vdev_guid == guid) 5591 return (B_TRUE); 5592 5593 for (i = 0; i < sav->sav_npending; i++) { 5594 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 5595 &spareguid) == 0 && spareguid == guid) 5596 return (B_TRUE); 5597 } 5598 5599 return (B_FALSE); 5600 } 5601 5602 /* 5603 * Check if a pool has an active shared spare device. 5604 * Note: reference count of an active spare is 2, as a spare and as a replace 5605 */ 5606 static boolean_t 5607 spa_has_active_shared_spare(spa_t *spa) 5608 { 5609 int i, refcnt; 5610 uint64_t pool; 5611 spa_aux_vdev_t *sav = &spa->spa_spares; 5612 5613 for (i = 0; i < sav->sav_count; i++) { 5614 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 5615 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 5616 refcnt > 2) 5617 return (B_TRUE); 5618 } 5619 5620 return (B_FALSE); 5621 } 5622 5623 /* 5624 * Post a sysevent corresponding to the given event. The 'name' must be one of 5625 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 5626 * filled in from the spa and (optionally) the vdev. This doesn't do anything 5627 * in the userland libzpool, as we don't want consumers to misinterpret ztest 5628 * or zdb as real changes. 5629 */ 5630 void 5631 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 5632 { 5633 #ifdef _KERNEL 5634 sysevent_t *ev; 5635 sysevent_attr_list_t *attr = NULL; 5636 sysevent_value_t value; 5637 sysevent_id_t eid; 5638 5639 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 5640 SE_SLEEP); 5641 5642 value.value_type = SE_DATA_TYPE_STRING; 5643 value.value.sv_string = spa_name(spa); 5644 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 5645 goto done; 5646 5647 value.value_type = SE_DATA_TYPE_UINT64; 5648 value.value.sv_uint64 = spa_guid(spa); 5649 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 5650 goto done; 5651 5652 if (vd) { 5653 value.value_type = SE_DATA_TYPE_UINT64; 5654 value.value.sv_uint64 = vd->vdev_guid; 5655 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 5656 SE_SLEEP) != 0) 5657 goto done; 5658 5659 if (vd->vdev_path) { 5660 value.value_type = SE_DATA_TYPE_STRING; 5661 value.value.sv_string = vd->vdev_path; 5662 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 5663 &value, SE_SLEEP) != 0) 5664 goto done; 5665 } 5666 } 5667 5668 if (sysevent_attach_attributes(ev, attr) != 0) 5669 goto done; 5670 attr = NULL; 5671 5672 (void) log_sysevent(ev, SE_SLEEP, &eid); 5673 5674 done: 5675 if (attr) 5676 sysevent_free_attr(attr); 5677 sysevent_free(ev); 5678 #endif 5679 } 5680