1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/dmu.h> 29 #include <sys/dmu_tx.h> 30 #include <sys/space_map.h> 31 #include <sys/metaslab_impl.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/zio.h> 34 #include <sys/spa_impl.h> 35 #include <sys/zfeature.h> 36 37 /* 38 * Allow allocations to switch to gang blocks quickly. We do this to 39 * avoid having to load lots of space_maps in a given txg. There are, 40 * however, some cases where we want to avoid "fast" ganging and instead 41 * we want to do an exhaustive search of all metaslabs on this device. 42 * Currently we don't allow any gang, slog, or dump device related allocations 43 * to "fast" gang. 44 */ 45 #define CAN_FASTGANG(flags) \ 46 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \ 47 METASLAB_GANG_AVOID))) 48 49 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63) 50 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62) 51 #define METASLAB_ACTIVE_MASK \ 52 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY) 53 54 uint64_t metaslab_aliquot = 512ULL << 10; 55 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */ 56 57 /* 58 * The in-core space map representation is more compact than its on-disk form. 59 * The zfs_condense_pct determines how much more compact the in-core 60 * space_map representation must be before we compact it on-disk. 61 * Values should be greater than or equal to 100. 62 */ 63 int zfs_condense_pct = 200; 64 65 /* 66 * Condensing a metaslab is not guaranteed to actually reduce the amount of 67 * space used on disk. In particular, a space map uses data in increments of 68 * MAX(1 << ashift, SPACE_MAP_INITIAL_BLOCKSIZE), so a metaslab might use the 69 * same number of blocks after condensing. Since the goal of condensing is to 70 * reduce the number of IOPs required to read the space map, we only want to 71 * condense when we can be sure we will reduce the number of blocks used by the 72 * space map. Unfortunately, we cannot precisely compute whether or not this is 73 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 74 * we apply the following heuristic: do not condense a spacemap unless the 75 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 76 * blocks. 77 */ 78 int zfs_metaslab_condense_block_threshold = 4; 79 80 /* 81 * The zfs_mg_noalloc_threshold defines which metaslab groups should 82 * be eligible for allocation. The value is defined as a percentage of 83 * free space. Metaslab groups that have more free space than 84 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 85 * a metaslab group's free space is less than or equal to the 86 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 87 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 88 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 89 * groups are allowed to accept allocations. Gang blocks are always 90 * eligible to allocate on any metaslab group. The default value of 0 means 91 * no metaslab group will be excluded based on this criterion. 92 */ 93 int zfs_mg_noalloc_threshold = 0; 94 95 /* 96 * Metaslab groups are considered eligible for allocations if their 97 * fragmenation metric (measured as a percentage) is less than or equal to 98 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold 99 * then it will be skipped unless all metaslab groups within the metaslab 100 * class have also crossed this threshold. 101 */ 102 int zfs_mg_fragmentation_threshold = 85; 103 104 /* 105 * Allow metaslabs to keep their active state as long as their fragmentation 106 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 107 * active metaslab that exceeds this threshold will no longer keep its active 108 * status allowing better metaslabs to be selected. 109 */ 110 int zfs_metaslab_fragmentation_threshold = 70; 111 112 /* 113 * When set will load all metaslabs when pool is first opened. 114 */ 115 int metaslab_debug_load = 0; 116 117 /* 118 * When set will prevent metaslabs from being unloaded. 119 */ 120 int metaslab_debug_unload = 0; 121 122 /* 123 * Minimum size which forces the dynamic allocator to change 124 * it's allocation strategy. Once the space map cannot satisfy 125 * an allocation of this size then it switches to using more 126 * aggressive strategy (i.e search by size rather than offset). 127 */ 128 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE; 129 130 /* 131 * The minimum free space, in percent, which must be available 132 * in a space map to continue allocations in a first-fit fashion. 133 * Once the space_map's free space drops below this level we dynamically 134 * switch to using best-fit allocations. 135 */ 136 int metaslab_df_free_pct = 4; 137 138 /* 139 * A metaslab is considered "free" if it contains a contiguous 140 * segment which is greater than metaslab_min_alloc_size. 141 */ 142 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS; 143 144 /* 145 * Percentage of all cpus that can be used by the metaslab taskq. 146 */ 147 int metaslab_load_pct = 50; 148 149 /* 150 * Determines how many txgs a metaslab may remain loaded without having any 151 * allocations from it. As long as a metaslab continues to be used we will 152 * keep it loaded. 153 */ 154 int metaslab_unload_delay = TXG_SIZE * 2; 155 156 /* 157 * Max number of metaslabs per group to preload. 158 */ 159 int metaslab_preload_limit = SPA_DVAS_PER_BP; 160 161 /* 162 * Enable/disable preloading of metaslab. 163 */ 164 boolean_t metaslab_preload_enabled = B_TRUE; 165 166 /* 167 * Enable/disable fragmentation weighting on metaslabs. 168 */ 169 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE; 170 171 /* 172 * Enable/disable lba weighting (i.e. outer tracks are given preference). 173 */ 174 boolean_t metaslab_lba_weighting_enabled = B_TRUE; 175 176 /* 177 * Enable/disable metaslab group biasing. 178 */ 179 boolean_t metaslab_bias_enabled = B_TRUE; 180 181 static uint64_t metaslab_fragmentation(metaslab_t *); 182 183 /* 184 * ========================================================================== 185 * Metaslab classes 186 * ========================================================================== 187 */ 188 metaslab_class_t * 189 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops) 190 { 191 metaslab_class_t *mc; 192 193 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); 194 195 mc->mc_spa = spa; 196 mc->mc_rotor = NULL; 197 mc->mc_ops = ops; 198 199 return (mc); 200 } 201 202 void 203 metaslab_class_destroy(metaslab_class_t *mc) 204 { 205 ASSERT(mc->mc_rotor == NULL); 206 ASSERT(mc->mc_alloc == 0); 207 ASSERT(mc->mc_deferred == 0); 208 ASSERT(mc->mc_space == 0); 209 ASSERT(mc->mc_dspace == 0); 210 211 kmem_free(mc, sizeof (metaslab_class_t)); 212 } 213 214 int 215 metaslab_class_validate(metaslab_class_t *mc) 216 { 217 metaslab_group_t *mg; 218 vdev_t *vd; 219 220 /* 221 * Must hold one of the spa_config locks. 222 */ 223 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 224 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 225 226 if ((mg = mc->mc_rotor) == NULL) 227 return (0); 228 229 do { 230 vd = mg->mg_vd; 231 ASSERT(vd->vdev_mg != NULL); 232 ASSERT3P(vd->vdev_top, ==, vd); 233 ASSERT3P(mg->mg_class, ==, mc); 234 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 235 } while ((mg = mg->mg_next) != mc->mc_rotor); 236 237 return (0); 238 } 239 240 void 241 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 242 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 243 { 244 atomic_add_64(&mc->mc_alloc, alloc_delta); 245 atomic_add_64(&mc->mc_deferred, defer_delta); 246 atomic_add_64(&mc->mc_space, space_delta); 247 atomic_add_64(&mc->mc_dspace, dspace_delta); 248 } 249 250 uint64_t 251 metaslab_class_get_alloc(metaslab_class_t *mc) 252 { 253 return (mc->mc_alloc); 254 } 255 256 uint64_t 257 metaslab_class_get_deferred(metaslab_class_t *mc) 258 { 259 return (mc->mc_deferred); 260 } 261 262 uint64_t 263 metaslab_class_get_space(metaslab_class_t *mc) 264 { 265 return (mc->mc_space); 266 } 267 268 uint64_t 269 metaslab_class_get_dspace(metaslab_class_t *mc) 270 { 271 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 272 } 273 274 void 275 metaslab_class_histogram_verify(metaslab_class_t *mc) 276 { 277 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 278 uint64_t *mc_hist; 279 int i; 280 281 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 282 return; 283 284 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 285 KM_SLEEP); 286 287 for (int c = 0; c < rvd->vdev_children; c++) { 288 vdev_t *tvd = rvd->vdev_child[c]; 289 metaslab_group_t *mg = tvd->vdev_mg; 290 291 /* 292 * Skip any holes, uninitialized top-levels, or 293 * vdevs that are not in this metalab class. 294 */ 295 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 || 296 mg->mg_class != mc) { 297 continue; 298 } 299 300 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 301 mc_hist[i] += mg->mg_histogram[i]; 302 } 303 304 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 305 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 306 307 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 308 } 309 310 /* 311 * Calculate the metaslab class's fragmentation metric. The metric 312 * is weighted based on the space contribution of each metaslab group. 313 * The return value will be a number between 0 and 100 (inclusive), or 314 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 315 * zfs_frag_table for more information about the metric. 316 */ 317 uint64_t 318 metaslab_class_fragmentation(metaslab_class_t *mc) 319 { 320 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 321 uint64_t fragmentation = 0; 322 323 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 324 325 for (int c = 0; c < rvd->vdev_children; c++) { 326 vdev_t *tvd = rvd->vdev_child[c]; 327 metaslab_group_t *mg = tvd->vdev_mg; 328 329 /* 330 * Skip any holes, uninitialized top-levels, or 331 * vdevs that are not in this metalab class. 332 */ 333 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 || 334 mg->mg_class != mc) { 335 continue; 336 } 337 338 /* 339 * If a metaslab group does not contain a fragmentation 340 * metric then just bail out. 341 */ 342 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 343 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 344 return (ZFS_FRAG_INVALID); 345 } 346 347 /* 348 * Determine how much this metaslab_group is contributing 349 * to the overall pool fragmentation metric. 350 */ 351 fragmentation += mg->mg_fragmentation * 352 metaslab_group_get_space(mg); 353 } 354 fragmentation /= metaslab_class_get_space(mc); 355 356 ASSERT3U(fragmentation, <=, 100); 357 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 358 return (fragmentation); 359 } 360 361 /* 362 * Calculate the amount of expandable space that is available in 363 * this metaslab class. If a device is expanded then its expandable 364 * space will be the amount of allocatable space that is currently not 365 * part of this metaslab class. 366 */ 367 uint64_t 368 metaslab_class_expandable_space(metaslab_class_t *mc) 369 { 370 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 371 uint64_t space = 0; 372 373 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 374 for (int c = 0; c < rvd->vdev_children; c++) { 375 vdev_t *tvd = rvd->vdev_child[c]; 376 metaslab_group_t *mg = tvd->vdev_mg; 377 378 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 || 379 mg->mg_class != mc) { 380 continue; 381 } 382 383 space += tvd->vdev_max_asize - tvd->vdev_asize; 384 } 385 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 386 return (space); 387 } 388 389 /* 390 * ========================================================================== 391 * Metaslab groups 392 * ========================================================================== 393 */ 394 static int 395 metaslab_compare(const void *x1, const void *x2) 396 { 397 const metaslab_t *m1 = x1; 398 const metaslab_t *m2 = x2; 399 400 if (m1->ms_weight < m2->ms_weight) 401 return (1); 402 if (m1->ms_weight > m2->ms_weight) 403 return (-1); 404 405 /* 406 * If the weights are identical, use the offset to force uniqueness. 407 */ 408 if (m1->ms_start < m2->ms_start) 409 return (-1); 410 if (m1->ms_start > m2->ms_start) 411 return (1); 412 413 ASSERT3P(m1, ==, m2); 414 415 return (0); 416 } 417 418 /* 419 * Update the allocatable flag and the metaslab group's capacity. 420 * The allocatable flag is set to true if the capacity is below 421 * the zfs_mg_noalloc_threshold. If a metaslab group transitions 422 * from allocatable to non-allocatable or vice versa then the metaslab 423 * group's class is updated to reflect the transition. 424 */ 425 static void 426 metaslab_group_alloc_update(metaslab_group_t *mg) 427 { 428 vdev_t *vd = mg->mg_vd; 429 metaslab_class_t *mc = mg->mg_class; 430 vdev_stat_t *vs = &vd->vdev_stat; 431 boolean_t was_allocatable; 432 433 ASSERT(vd == vd->vdev_top); 434 435 mutex_enter(&mg->mg_lock); 436 was_allocatable = mg->mg_allocatable; 437 438 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 439 (vs->vs_space + 1); 440 441 /* 442 * A metaslab group is considered allocatable if it has plenty 443 * of free space or is not heavily fragmented. We only take 444 * fragmentation into account if the metaslab group has a valid 445 * fragmentation metric (i.e. a value between 0 and 100). 446 */ 447 mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold && 448 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 449 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 450 451 /* 452 * The mc_alloc_groups maintains a count of the number of 453 * groups in this metaslab class that are still above the 454 * zfs_mg_noalloc_threshold. This is used by the allocating 455 * threads to determine if they should avoid allocations to 456 * a given group. The allocator will avoid allocations to a group 457 * if that group has reached or is below the zfs_mg_noalloc_threshold 458 * and there are still other groups that are above the threshold. 459 * When a group transitions from allocatable to non-allocatable or 460 * vice versa we update the metaslab class to reflect that change. 461 * When the mc_alloc_groups value drops to 0 that means that all 462 * groups have reached the zfs_mg_noalloc_threshold making all groups 463 * eligible for allocations. This effectively means that all devices 464 * are balanced again. 465 */ 466 if (was_allocatable && !mg->mg_allocatable) 467 mc->mc_alloc_groups--; 468 else if (!was_allocatable && mg->mg_allocatable) 469 mc->mc_alloc_groups++; 470 471 mutex_exit(&mg->mg_lock); 472 } 473 474 metaslab_group_t * 475 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) 476 { 477 metaslab_group_t *mg; 478 479 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); 480 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 481 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 482 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node)); 483 mg->mg_vd = vd; 484 mg->mg_class = mc; 485 mg->mg_activation_count = 0; 486 487 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 488 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT); 489 490 return (mg); 491 } 492 493 void 494 metaslab_group_destroy(metaslab_group_t *mg) 495 { 496 ASSERT(mg->mg_prev == NULL); 497 ASSERT(mg->mg_next == NULL); 498 /* 499 * We may have gone below zero with the activation count 500 * either because we never activated in the first place or 501 * because we're done, and possibly removing the vdev. 502 */ 503 ASSERT(mg->mg_activation_count <= 0); 504 505 taskq_destroy(mg->mg_taskq); 506 avl_destroy(&mg->mg_metaslab_tree); 507 mutex_destroy(&mg->mg_lock); 508 kmem_free(mg, sizeof (metaslab_group_t)); 509 } 510 511 void 512 metaslab_group_activate(metaslab_group_t *mg) 513 { 514 metaslab_class_t *mc = mg->mg_class; 515 metaslab_group_t *mgprev, *mgnext; 516 517 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER)); 518 519 ASSERT(mc->mc_rotor != mg); 520 ASSERT(mg->mg_prev == NULL); 521 ASSERT(mg->mg_next == NULL); 522 ASSERT(mg->mg_activation_count <= 0); 523 524 if (++mg->mg_activation_count <= 0) 525 return; 526 527 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); 528 metaslab_group_alloc_update(mg); 529 530 if ((mgprev = mc->mc_rotor) == NULL) { 531 mg->mg_prev = mg; 532 mg->mg_next = mg; 533 } else { 534 mgnext = mgprev->mg_next; 535 mg->mg_prev = mgprev; 536 mg->mg_next = mgnext; 537 mgprev->mg_next = mg; 538 mgnext->mg_prev = mg; 539 } 540 mc->mc_rotor = mg; 541 } 542 543 void 544 metaslab_group_passivate(metaslab_group_t *mg) 545 { 546 metaslab_class_t *mc = mg->mg_class; 547 metaslab_group_t *mgprev, *mgnext; 548 549 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER)); 550 551 if (--mg->mg_activation_count != 0) { 552 ASSERT(mc->mc_rotor != mg); 553 ASSERT(mg->mg_prev == NULL); 554 ASSERT(mg->mg_next == NULL); 555 ASSERT(mg->mg_activation_count < 0); 556 return; 557 } 558 559 taskq_wait(mg->mg_taskq); 560 metaslab_group_alloc_update(mg); 561 562 mgprev = mg->mg_prev; 563 mgnext = mg->mg_next; 564 565 if (mg == mgnext) { 566 mc->mc_rotor = NULL; 567 } else { 568 mc->mc_rotor = mgnext; 569 mgprev->mg_next = mgnext; 570 mgnext->mg_prev = mgprev; 571 } 572 573 mg->mg_prev = NULL; 574 mg->mg_next = NULL; 575 } 576 577 uint64_t 578 metaslab_group_get_space(metaslab_group_t *mg) 579 { 580 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count); 581 } 582 583 void 584 metaslab_group_histogram_verify(metaslab_group_t *mg) 585 { 586 uint64_t *mg_hist; 587 vdev_t *vd = mg->mg_vd; 588 uint64_t ashift = vd->vdev_ashift; 589 int i; 590 591 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 592 return; 593 594 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 595 KM_SLEEP); 596 597 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 598 SPACE_MAP_HISTOGRAM_SIZE + ashift); 599 600 for (int m = 0; m < vd->vdev_ms_count; m++) { 601 metaslab_t *msp = vd->vdev_ms[m]; 602 603 if (msp->ms_sm == NULL) 604 continue; 605 606 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 607 mg_hist[i + ashift] += 608 msp->ms_sm->sm_phys->smp_histogram[i]; 609 } 610 611 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 612 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 613 614 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 615 } 616 617 static void 618 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 619 { 620 metaslab_class_t *mc = mg->mg_class; 621 uint64_t ashift = mg->mg_vd->vdev_ashift; 622 623 ASSERT(MUTEX_HELD(&msp->ms_lock)); 624 if (msp->ms_sm == NULL) 625 return; 626 627 mutex_enter(&mg->mg_lock); 628 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 629 mg->mg_histogram[i + ashift] += 630 msp->ms_sm->sm_phys->smp_histogram[i]; 631 mc->mc_histogram[i + ashift] += 632 msp->ms_sm->sm_phys->smp_histogram[i]; 633 } 634 mutex_exit(&mg->mg_lock); 635 } 636 637 void 638 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 639 { 640 metaslab_class_t *mc = mg->mg_class; 641 uint64_t ashift = mg->mg_vd->vdev_ashift; 642 643 ASSERT(MUTEX_HELD(&msp->ms_lock)); 644 if (msp->ms_sm == NULL) 645 return; 646 647 mutex_enter(&mg->mg_lock); 648 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 649 ASSERT3U(mg->mg_histogram[i + ashift], >=, 650 msp->ms_sm->sm_phys->smp_histogram[i]); 651 ASSERT3U(mc->mc_histogram[i + ashift], >=, 652 msp->ms_sm->sm_phys->smp_histogram[i]); 653 654 mg->mg_histogram[i + ashift] -= 655 msp->ms_sm->sm_phys->smp_histogram[i]; 656 mc->mc_histogram[i + ashift] -= 657 msp->ms_sm->sm_phys->smp_histogram[i]; 658 } 659 mutex_exit(&mg->mg_lock); 660 } 661 662 static void 663 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 664 { 665 ASSERT(msp->ms_group == NULL); 666 mutex_enter(&mg->mg_lock); 667 msp->ms_group = mg; 668 msp->ms_weight = 0; 669 avl_add(&mg->mg_metaslab_tree, msp); 670 mutex_exit(&mg->mg_lock); 671 672 mutex_enter(&msp->ms_lock); 673 metaslab_group_histogram_add(mg, msp); 674 mutex_exit(&msp->ms_lock); 675 } 676 677 static void 678 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 679 { 680 mutex_enter(&msp->ms_lock); 681 metaslab_group_histogram_remove(mg, msp); 682 mutex_exit(&msp->ms_lock); 683 684 mutex_enter(&mg->mg_lock); 685 ASSERT(msp->ms_group == mg); 686 avl_remove(&mg->mg_metaslab_tree, msp); 687 msp->ms_group = NULL; 688 mutex_exit(&mg->mg_lock); 689 } 690 691 static void 692 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 693 { 694 /* 695 * Although in principle the weight can be any value, in 696 * practice we do not use values in the range [1, 511]. 697 */ 698 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 699 ASSERT(MUTEX_HELD(&msp->ms_lock)); 700 701 mutex_enter(&mg->mg_lock); 702 ASSERT(msp->ms_group == mg); 703 avl_remove(&mg->mg_metaslab_tree, msp); 704 msp->ms_weight = weight; 705 avl_add(&mg->mg_metaslab_tree, msp); 706 mutex_exit(&mg->mg_lock); 707 } 708 709 /* 710 * Calculate the fragmentation for a given metaslab group. We can use 711 * a simple average here since all metaslabs within the group must have 712 * the same size. The return value will be a value between 0 and 100 713 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 714 * group have a fragmentation metric. 715 */ 716 uint64_t 717 metaslab_group_fragmentation(metaslab_group_t *mg) 718 { 719 vdev_t *vd = mg->mg_vd; 720 uint64_t fragmentation = 0; 721 uint64_t valid_ms = 0; 722 723 for (int m = 0; m < vd->vdev_ms_count; m++) { 724 metaslab_t *msp = vd->vdev_ms[m]; 725 726 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 727 continue; 728 729 valid_ms++; 730 fragmentation += msp->ms_fragmentation; 731 } 732 733 if (valid_ms <= vd->vdev_ms_count / 2) 734 return (ZFS_FRAG_INVALID); 735 736 fragmentation /= valid_ms; 737 ASSERT3U(fragmentation, <=, 100); 738 return (fragmentation); 739 } 740 741 /* 742 * Determine if a given metaslab group should skip allocations. A metaslab 743 * group should avoid allocations if its free capacity is less than the 744 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 745 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 746 * that can still handle allocations. 747 */ 748 static boolean_t 749 metaslab_group_allocatable(metaslab_group_t *mg) 750 { 751 vdev_t *vd = mg->mg_vd; 752 spa_t *spa = vd->vdev_spa; 753 metaslab_class_t *mc = mg->mg_class; 754 755 /* 756 * We use two key metrics to determine if a metaslab group is 757 * considered allocatable -- free space and fragmentation. If 758 * the free space is greater than the free space threshold and 759 * the fragmentation is less than the fragmentation threshold then 760 * consider the group allocatable. There are two case when we will 761 * not consider these key metrics. The first is if the group is 762 * associated with a slog device and the second is if all groups 763 * in this metaslab class have already been consider ineligible 764 * for allocations. 765 */ 766 return ((mg->mg_free_capacity > zfs_mg_noalloc_threshold && 767 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 768 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)) || 769 mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0); 770 } 771 772 /* 773 * ========================================================================== 774 * Range tree callbacks 775 * ========================================================================== 776 */ 777 778 /* 779 * Comparison function for the private size-ordered tree. Tree is sorted 780 * by size, larger sizes at the end of the tree. 781 */ 782 static int 783 metaslab_rangesize_compare(const void *x1, const void *x2) 784 { 785 const range_seg_t *r1 = x1; 786 const range_seg_t *r2 = x2; 787 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 788 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 789 790 if (rs_size1 < rs_size2) 791 return (-1); 792 if (rs_size1 > rs_size2) 793 return (1); 794 795 if (r1->rs_start < r2->rs_start) 796 return (-1); 797 798 if (r1->rs_start > r2->rs_start) 799 return (1); 800 801 return (0); 802 } 803 804 /* 805 * Create any block allocator specific components. The current allocators 806 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 807 */ 808 static void 809 metaslab_rt_create(range_tree_t *rt, void *arg) 810 { 811 metaslab_t *msp = arg; 812 813 ASSERT3P(rt->rt_arg, ==, msp); 814 ASSERT(msp->ms_tree == NULL); 815 816 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare, 817 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); 818 } 819 820 /* 821 * Destroy the block allocator specific components. 822 */ 823 static void 824 metaslab_rt_destroy(range_tree_t *rt, void *arg) 825 { 826 metaslab_t *msp = arg; 827 828 ASSERT3P(rt->rt_arg, ==, msp); 829 ASSERT3P(msp->ms_tree, ==, rt); 830 ASSERT0(avl_numnodes(&msp->ms_size_tree)); 831 832 avl_destroy(&msp->ms_size_tree); 833 } 834 835 static void 836 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 837 { 838 metaslab_t *msp = arg; 839 840 ASSERT3P(rt->rt_arg, ==, msp); 841 ASSERT3P(msp->ms_tree, ==, rt); 842 VERIFY(!msp->ms_condensing); 843 avl_add(&msp->ms_size_tree, rs); 844 } 845 846 static void 847 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 848 { 849 metaslab_t *msp = arg; 850 851 ASSERT3P(rt->rt_arg, ==, msp); 852 ASSERT3P(msp->ms_tree, ==, rt); 853 VERIFY(!msp->ms_condensing); 854 avl_remove(&msp->ms_size_tree, rs); 855 } 856 857 static void 858 metaslab_rt_vacate(range_tree_t *rt, void *arg) 859 { 860 metaslab_t *msp = arg; 861 862 ASSERT3P(rt->rt_arg, ==, msp); 863 ASSERT3P(msp->ms_tree, ==, rt); 864 865 /* 866 * Normally one would walk the tree freeing nodes along the way. 867 * Since the nodes are shared with the range trees we can avoid 868 * walking all nodes and just reinitialize the avl tree. The nodes 869 * will be freed by the range tree, so we don't want to free them here. 870 */ 871 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare, 872 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); 873 } 874 875 static range_tree_ops_t metaslab_rt_ops = { 876 metaslab_rt_create, 877 metaslab_rt_destroy, 878 metaslab_rt_add, 879 metaslab_rt_remove, 880 metaslab_rt_vacate 881 }; 882 883 /* 884 * ========================================================================== 885 * Metaslab block operations 886 * ========================================================================== 887 */ 888 889 /* 890 * Return the maximum contiguous segment within the metaslab. 891 */ 892 uint64_t 893 metaslab_block_maxsize(metaslab_t *msp) 894 { 895 avl_tree_t *t = &msp->ms_size_tree; 896 range_seg_t *rs; 897 898 if (t == NULL || (rs = avl_last(t)) == NULL) 899 return (0ULL); 900 901 return (rs->rs_end - rs->rs_start); 902 } 903 904 uint64_t 905 metaslab_block_alloc(metaslab_t *msp, uint64_t size) 906 { 907 uint64_t start; 908 range_tree_t *rt = msp->ms_tree; 909 910 VERIFY(!msp->ms_condensing); 911 912 start = msp->ms_ops->msop_alloc(msp, size); 913 if (start != -1ULL) { 914 vdev_t *vd = msp->ms_group->mg_vd; 915 916 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 917 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 918 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 919 range_tree_remove(rt, start, size); 920 } 921 return (start); 922 } 923 924 /* 925 * ========================================================================== 926 * Common allocator routines 927 * ========================================================================== 928 */ 929 930 /* 931 * This is a helper function that can be used by the allocator to find 932 * a suitable block to allocate. This will search the specified AVL 933 * tree looking for a block that matches the specified criteria. 934 */ 935 static uint64_t 936 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size, 937 uint64_t align) 938 { 939 range_seg_t *rs, rsearch; 940 avl_index_t where; 941 942 rsearch.rs_start = *cursor; 943 rsearch.rs_end = *cursor + size; 944 945 rs = avl_find(t, &rsearch, &where); 946 if (rs == NULL) 947 rs = avl_nearest(t, where, AVL_AFTER); 948 949 while (rs != NULL) { 950 uint64_t offset = P2ROUNDUP(rs->rs_start, align); 951 952 if (offset + size <= rs->rs_end) { 953 *cursor = offset + size; 954 return (offset); 955 } 956 rs = AVL_NEXT(t, rs); 957 } 958 959 /* 960 * If we know we've searched the whole map (*cursor == 0), give up. 961 * Otherwise, reset the cursor to the beginning and try again. 962 */ 963 if (*cursor == 0) 964 return (-1ULL); 965 966 *cursor = 0; 967 return (metaslab_block_picker(t, cursor, size, align)); 968 } 969 970 /* 971 * ========================================================================== 972 * The first-fit block allocator 973 * ========================================================================== 974 */ 975 static uint64_t 976 metaslab_ff_alloc(metaslab_t *msp, uint64_t size) 977 { 978 /* 979 * Find the largest power of 2 block size that evenly divides the 980 * requested size. This is used to try to allocate blocks with similar 981 * alignment from the same area of the metaslab (i.e. same cursor 982 * bucket) but it does not guarantee that other allocations sizes 983 * may exist in the same region. 984 */ 985 uint64_t align = size & -size; 986 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 987 avl_tree_t *t = &msp->ms_tree->rt_root; 988 989 return (metaslab_block_picker(t, cursor, size, align)); 990 } 991 992 static metaslab_ops_t metaslab_ff_ops = { 993 metaslab_ff_alloc 994 }; 995 996 /* 997 * ========================================================================== 998 * Dynamic block allocator - 999 * Uses the first fit allocation scheme until space get low and then 1000 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold 1001 * and metaslab_df_free_pct to determine when to switch the allocation scheme. 1002 * ========================================================================== 1003 */ 1004 static uint64_t 1005 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1006 { 1007 /* 1008 * Find the largest power of 2 block size that evenly divides the 1009 * requested size. This is used to try to allocate blocks with similar 1010 * alignment from the same area of the metaslab (i.e. same cursor 1011 * bucket) but it does not guarantee that other allocations sizes 1012 * may exist in the same region. 1013 */ 1014 uint64_t align = size & -size; 1015 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1016 range_tree_t *rt = msp->ms_tree; 1017 avl_tree_t *t = &rt->rt_root; 1018 uint64_t max_size = metaslab_block_maxsize(msp); 1019 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1020 1021 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1022 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree)); 1023 1024 if (max_size < size) 1025 return (-1ULL); 1026 1027 /* 1028 * If we're running low on space switch to using the size 1029 * sorted AVL tree (best-fit). 1030 */ 1031 if (max_size < metaslab_df_alloc_threshold || 1032 free_pct < metaslab_df_free_pct) { 1033 t = &msp->ms_size_tree; 1034 *cursor = 0; 1035 } 1036 1037 return (metaslab_block_picker(t, cursor, size, 1ULL)); 1038 } 1039 1040 static metaslab_ops_t metaslab_df_ops = { 1041 metaslab_df_alloc 1042 }; 1043 1044 /* 1045 * ========================================================================== 1046 * Cursor fit block allocator - 1047 * Select the largest region in the metaslab, set the cursor to the beginning 1048 * of the range and the cursor_end to the end of the range. As allocations 1049 * are made advance the cursor. Continue allocating from the cursor until 1050 * the range is exhausted and then find a new range. 1051 * ========================================================================== 1052 */ 1053 static uint64_t 1054 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1055 { 1056 range_tree_t *rt = msp->ms_tree; 1057 avl_tree_t *t = &msp->ms_size_tree; 1058 uint64_t *cursor = &msp->ms_lbas[0]; 1059 uint64_t *cursor_end = &msp->ms_lbas[1]; 1060 uint64_t offset = 0; 1061 1062 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1063 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root)); 1064 1065 ASSERT3U(*cursor_end, >=, *cursor); 1066 1067 if ((*cursor + size) > *cursor_end) { 1068 range_seg_t *rs; 1069 1070 rs = avl_last(&msp->ms_size_tree); 1071 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) 1072 return (-1ULL); 1073 1074 *cursor = rs->rs_start; 1075 *cursor_end = rs->rs_end; 1076 } 1077 1078 offset = *cursor; 1079 *cursor += size; 1080 1081 return (offset); 1082 } 1083 1084 static metaslab_ops_t metaslab_cf_ops = { 1085 metaslab_cf_alloc 1086 }; 1087 1088 /* 1089 * ========================================================================== 1090 * New dynamic fit allocator - 1091 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1092 * contiguous blocks. If no region is found then just use the largest segment 1093 * that remains. 1094 * ========================================================================== 1095 */ 1096 1097 /* 1098 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1099 * to request from the allocator. 1100 */ 1101 uint64_t metaslab_ndf_clump_shift = 4; 1102 1103 static uint64_t 1104 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1105 { 1106 avl_tree_t *t = &msp->ms_tree->rt_root; 1107 avl_index_t where; 1108 range_seg_t *rs, rsearch; 1109 uint64_t hbit = highbit64(size); 1110 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1111 uint64_t max_size = metaslab_block_maxsize(msp); 1112 1113 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1114 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree)); 1115 1116 if (max_size < size) 1117 return (-1ULL); 1118 1119 rsearch.rs_start = *cursor; 1120 rsearch.rs_end = *cursor + size; 1121 1122 rs = avl_find(t, &rsearch, &where); 1123 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) { 1124 t = &msp->ms_size_tree; 1125 1126 rsearch.rs_start = 0; 1127 rsearch.rs_end = MIN(max_size, 1128 1ULL << (hbit + metaslab_ndf_clump_shift)); 1129 rs = avl_find(t, &rsearch, &where); 1130 if (rs == NULL) 1131 rs = avl_nearest(t, where, AVL_AFTER); 1132 ASSERT(rs != NULL); 1133 } 1134 1135 if ((rs->rs_end - rs->rs_start) >= size) { 1136 *cursor = rs->rs_start + size; 1137 return (rs->rs_start); 1138 } 1139 return (-1ULL); 1140 } 1141 1142 static metaslab_ops_t metaslab_ndf_ops = { 1143 metaslab_ndf_alloc 1144 }; 1145 1146 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops; 1147 1148 /* 1149 * ========================================================================== 1150 * Metaslabs 1151 * ========================================================================== 1152 */ 1153 1154 /* 1155 * Wait for any in-progress metaslab loads to complete. 1156 */ 1157 void 1158 metaslab_load_wait(metaslab_t *msp) 1159 { 1160 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1161 1162 while (msp->ms_loading) { 1163 ASSERT(!msp->ms_loaded); 1164 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1165 } 1166 } 1167 1168 int 1169 metaslab_load(metaslab_t *msp) 1170 { 1171 int error = 0; 1172 1173 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1174 ASSERT(!msp->ms_loaded); 1175 ASSERT(!msp->ms_loading); 1176 1177 msp->ms_loading = B_TRUE; 1178 1179 /* 1180 * If the space map has not been allocated yet, then treat 1181 * all the space in the metaslab as free and add it to the 1182 * ms_tree. 1183 */ 1184 if (msp->ms_sm != NULL) 1185 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE); 1186 else 1187 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size); 1188 1189 msp->ms_loaded = (error == 0); 1190 msp->ms_loading = B_FALSE; 1191 1192 if (msp->ms_loaded) { 1193 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1194 range_tree_walk(msp->ms_defertree[t], 1195 range_tree_remove, msp->ms_tree); 1196 } 1197 } 1198 cv_broadcast(&msp->ms_load_cv); 1199 return (error); 1200 } 1201 1202 void 1203 metaslab_unload(metaslab_t *msp) 1204 { 1205 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1206 range_tree_vacate(msp->ms_tree, NULL, NULL); 1207 msp->ms_loaded = B_FALSE; 1208 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 1209 } 1210 1211 metaslab_t * 1212 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg) 1213 { 1214 vdev_t *vd = mg->mg_vd; 1215 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1216 metaslab_t *msp; 1217 1218 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 1219 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL); 1220 cv_init(&msp->ms_load_cv, NULL, CV_DEFAULT, NULL); 1221 msp->ms_id = id; 1222 msp->ms_start = id << vd->vdev_ms_shift; 1223 msp->ms_size = 1ULL << vd->vdev_ms_shift; 1224 1225 /* 1226 * We only open space map objects that already exist. All others 1227 * will be opened when we finally allocate an object for it. 1228 */ 1229 if (object != 0) { 1230 VERIFY0(space_map_open(&msp->ms_sm, mos, object, msp->ms_start, 1231 msp->ms_size, vd->vdev_ashift, &msp->ms_lock)); 1232 ASSERT(msp->ms_sm != NULL); 1233 } 1234 1235 /* 1236 * We create the main range tree here, but we don't create the 1237 * alloctree and freetree until metaslab_sync_done(). This serves 1238 * two purposes: it allows metaslab_sync_done() to detect the 1239 * addition of new space; and for debugging, it ensures that we'd 1240 * data fault on any attempt to use this metaslab before it's ready. 1241 */ 1242 msp->ms_tree = range_tree_create(&metaslab_rt_ops, msp, &msp->ms_lock); 1243 metaslab_group_add(mg, msp); 1244 1245 msp->ms_fragmentation = metaslab_fragmentation(msp); 1246 msp->ms_ops = mg->mg_class->mc_ops; 1247 1248 /* 1249 * If we're opening an existing pool (txg == 0) or creating 1250 * a new one (txg == TXG_INITIAL), all space is available now. 1251 * If we're adding space to an existing pool, the new space 1252 * does not become available until after this txg has synced. 1253 */ 1254 if (txg <= TXG_INITIAL) 1255 metaslab_sync_done(msp, 0); 1256 1257 /* 1258 * If metaslab_debug_load is set and we're initializing a metaslab 1259 * that has an allocated space_map object then load the its space 1260 * map so that can verify frees. 1261 */ 1262 if (metaslab_debug_load && msp->ms_sm != NULL) { 1263 mutex_enter(&msp->ms_lock); 1264 VERIFY0(metaslab_load(msp)); 1265 mutex_exit(&msp->ms_lock); 1266 } 1267 1268 if (txg != 0) { 1269 vdev_dirty(vd, 0, NULL, txg); 1270 vdev_dirty(vd, VDD_METASLAB, msp, txg); 1271 } 1272 1273 return (msp); 1274 } 1275 1276 void 1277 metaslab_fini(metaslab_t *msp) 1278 { 1279 metaslab_group_t *mg = msp->ms_group; 1280 1281 metaslab_group_remove(mg, msp); 1282 1283 mutex_enter(&msp->ms_lock); 1284 1285 VERIFY(msp->ms_group == NULL); 1286 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm), 1287 0, -msp->ms_size); 1288 space_map_close(msp->ms_sm); 1289 1290 metaslab_unload(msp); 1291 range_tree_destroy(msp->ms_tree); 1292 1293 for (int t = 0; t < TXG_SIZE; t++) { 1294 range_tree_destroy(msp->ms_alloctree[t]); 1295 range_tree_destroy(msp->ms_freetree[t]); 1296 } 1297 1298 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1299 range_tree_destroy(msp->ms_defertree[t]); 1300 } 1301 1302 ASSERT0(msp->ms_deferspace); 1303 1304 mutex_exit(&msp->ms_lock); 1305 cv_destroy(&msp->ms_load_cv); 1306 mutex_destroy(&msp->ms_lock); 1307 1308 kmem_free(msp, sizeof (metaslab_t)); 1309 } 1310 1311 #define FRAGMENTATION_TABLE_SIZE 17 1312 1313 /* 1314 * This table defines a segment size based fragmentation metric that will 1315 * allow each metaslab to derive its own fragmentation value. This is done 1316 * by calculating the space in each bucket of the spacemap histogram and 1317 * multiplying that by the fragmetation metric in this table. Doing 1318 * this for all buckets and dividing it by the total amount of free 1319 * space in this metaslab (i.e. the total free space in all buckets) gives 1320 * us the fragmentation metric. This means that a high fragmentation metric 1321 * equates to most of the free space being comprised of small segments. 1322 * Conversely, if the metric is low, then most of the free space is in 1323 * large segments. A 10% change in fragmentation equates to approximately 1324 * double the number of segments. 1325 * 1326 * This table defines 0% fragmented space using 16MB segments. Testing has 1327 * shown that segments that are greater than or equal to 16MB do not suffer 1328 * from drastic performance problems. Using this value, we derive the rest 1329 * of the table. Since the fragmentation value is never stored on disk, it 1330 * is possible to change these calculations in the future. 1331 */ 1332 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 1333 100, /* 512B */ 1334 100, /* 1K */ 1335 98, /* 2K */ 1336 95, /* 4K */ 1337 90, /* 8K */ 1338 80, /* 16K */ 1339 70, /* 32K */ 1340 60, /* 64K */ 1341 50, /* 128K */ 1342 40, /* 256K */ 1343 30, /* 512K */ 1344 20, /* 1M */ 1345 15, /* 2M */ 1346 10, /* 4M */ 1347 5, /* 8M */ 1348 0 /* 16M */ 1349 }; 1350 1351 /* 1352 * Calclate the metaslab's fragmentation metric. A return value 1353 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does 1354 * not support this metric. Otherwise, the return value should be in the 1355 * range [0, 100]. 1356 */ 1357 static uint64_t 1358 metaslab_fragmentation(metaslab_t *msp) 1359 { 1360 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1361 uint64_t fragmentation = 0; 1362 uint64_t total = 0; 1363 boolean_t feature_enabled = spa_feature_is_enabled(spa, 1364 SPA_FEATURE_SPACEMAP_HISTOGRAM); 1365 1366 if (!feature_enabled) 1367 return (ZFS_FRAG_INVALID); 1368 1369 /* 1370 * A null space map means that the entire metaslab is free 1371 * and thus is not fragmented. 1372 */ 1373 if (msp->ms_sm == NULL) 1374 return (0); 1375 1376 /* 1377 * If this metaslab's space_map has not been upgraded, flag it 1378 * so that we upgrade next time we encounter it. 1379 */ 1380 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 1381 uint64_t txg = spa_syncing_txg(spa); 1382 vdev_t *vd = msp->ms_group->mg_vd; 1383 1384 msp->ms_condense_wanted = B_TRUE; 1385 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 1386 spa_dbgmsg(spa, "txg %llu, requesting force condense: " 1387 "msp %p, vd %p", txg, msp, vd); 1388 return (ZFS_FRAG_INVALID); 1389 } 1390 1391 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1392 uint64_t space = 0; 1393 uint8_t shift = msp->ms_sm->sm_shift; 1394 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 1395 FRAGMENTATION_TABLE_SIZE - 1); 1396 1397 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 1398 continue; 1399 1400 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 1401 total += space; 1402 1403 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 1404 fragmentation += space * zfs_frag_table[idx]; 1405 } 1406 1407 if (total > 0) 1408 fragmentation /= total; 1409 ASSERT3U(fragmentation, <=, 100); 1410 return (fragmentation); 1411 } 1412 1413 /* 1414 * Compute a weight -- a selection preference value -- for the given metaslab. 1415 * This is based on the amount of free space, the level of fragmentation, 1416 * the LBA range, and whether the metaslab is loaded. 1417 */ 1418 static uint64_t 1419 metaslab_weight(metaslab_t *msp) 1420 { 1421 metaslab_group_t *mg = msp->ms_group; 1422 vdev_t *vd = mg->mg_vd; 1423 uint64_t weight, space; 1424 1425 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1426 1427 /* 1428 * This vdev is in the process of being removed so there is nothing 1429 * for us to do here. 1430 */ 1431 if (vd->vdev_removing) { 1432 ASSERT0(space_map_allocated(msp->ms_sm)); 1433 ASSERT0(vd->vdev_ms_shift); 1434 return (0); 1435 } 1436 1437 /* 1438 * The baseline weight is the metaslab's free space. 1439 */ 1440 space = msp->ms_size - space_map_allocated(msp->ms_sm); 1441 1442 msp->ms_fragmentation = metaslab_fragmentation(msp); 1443 if (metaslab_fragmentation_factor_enabled && 1444 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 1445 /* 1446 * Use the fragmentation information to inversely scale 1447 * down the baseline weight. We need to ensure that we 1448 * don't exclude this metaslab completely when it's 100% 1449 * fragmented. To avoid this we reduce the fragmented value 1450 * by 1. 1451 */ 1452 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 1453 1454 /* 1455 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 1456 * this metaslab again. The fragmentation metric may have 1457 * decreased the space to something smaller than 1458 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 1459 * so that we can consume any remaining space. 1460 */ 1461 if (space > 0 && space < SPA_MINBLOCKSIZE) 1462 space = SPA_MINBLOCKSIZE; 1463 } 1464 weight = space; 1465 1466 /* 1467 * Modern disks have uniform bit density and constant angular velocity. 1468 * Therefore, the outer recording zones are faster (higher bandwidth) 1469 * than the inner zones by the ratio of outer to inner track diameter, 1470 * which is typically around 2:1. We account for this by assigning 1471 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 1472 * In effect, this means that we'll select the metaslab with the most 1473 * free bandwidth rather than simply the one with the most free space. 1474 */ 1475 if (metaslab_lba_weighting_enabled) { 1476 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 1477 ASSERT(weight >= space && weight <= 2 * space); 1478 } 1479 1480 /* 1481 * If this metaslab is one we're actively using, adjust its 1482 * weight to make it preferable to any inactive metaslab so 1483 * we'll polish it off. If the fragmentation on this metaslab 1484 * has exceed our threshold, then don't mark it active. 1485 */ 1486 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 1487 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 1488 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 1489 } 1490 1491 return (weight); 1492 } 1493 1494 static int 1495 metaslab_activate(metaslab_t *msp, uint64_t activation_weight) 1496 { 1497 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1498 1499 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 1500 metaslab_load_wait(msp); 1501 if (!msp->ms_loaded) { 1502 int error = metaslab_load(msp); 1503 if (error) { 1504 metaslab_group_sort(msp->ms_group, msp, 0); 1505 return (error); 1506 } 1507 } 1508 1509 metaslab_group_sort(msp->ms_group, msp, 1510 msp->ms_weight | activation_weight); 1511 } 1512 ASSERT(msp->ms_loaded); 1513 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 1514 1515 return (0); 1516 } 1517 1518 static void 1519 metaslab_passivate(metaslab_t *msp, uint64_t size) 1520 { 1521 /* 1522 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 1523 * this metaslab again. In that case, it had better be empty, 1524 * or we would be leaving space on the table. 1525 */ 1526 ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0); 1527 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size)); 1528 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); 1529 } 1530 1531 static void 1532 metaslab_preload(void *arg) 1533 { 1534 metaslab_t *msp = arg; 1535 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1536 1537 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 1538 1539 mutex_enter(&msp->ms_lock); 1540 metaslab_load_wait(msp); 1541 if (!msp->ms_loaded) 1542 (void) metaslab_load(msp); 1543 1544 /* 1545 * Set the ms_access_txg value so that we don't unload it right away. 1546 */ 1547 msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1; 1548 mutex_exit(&msp->ms_lock); 1549 } 1550 1551 static void 1552 metaslab_group_preload(metaslab_group_t *mg) 1553 { 1554 spa_t *spa = mg->mg_vd->vdev_spa; 1555 metaslab_t *msp; 1556 avl_tree_t *t = &mg->mg_metaslab_tree; 1557 int m = 0; 1558 1559 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 1560 taskq_wait(mg->mg_taskq); 1561 return; 1562 } 1563 1564 mutex_enter(&mg->mg_lock); 1565 /* 1566 * Load the next potential metaslabs 1567 */ 1568 msp = avl_first(t); 1569 while (msp != NULL) { 1570 metaslab_t *msp_next = AVL_NEXT(t, msp); 1571 1572 /* 1573 * We preload only the maximum number of metaslabs specified 1574 * by metaslab_preload_limit. If a metaslab is being forced 1575 * to condense then we preload it too. This will ensure 1576 * that force condensing happens in the next txg. 1577 */ 1578 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 1579 msp = msp_next; 1580 continue; 1581 } 1582 1583 /* 1584 * We must drop the metaslab group lock here to preserve 1585 * lock ordering with the ms_lock (when grabbing both 1586 * the mg_lock and the ms_lock, the ms_lock must be taken 1587 * first). As a result, it is possible that the ordering 1588 * of the metaslabs within the avl tree may change before 1589 * we reacquire the lock. The metaslab cannot be removed from 1590 * the tree while we're in syncing context so it is safe to 1591 * drop the mg_lock here. If the metaslabs are reordered 1592 * nothing will break -- we just may end up loading a 1593 * less than optimal one. 1594 */ 1595 mutex_exit(&mg->mg_lock); 1596 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 1597 msp, TQ_SLEEP) != NULL); 1598 mutex_enter(&mg->mg_lock); 1599 msp = msp_next; 1600 } 1601 mutex_exit(&mg->mg_lock); 1602 } 1603 1604 /* 1605 * Determine if the space map's on-disk footprint is past our tolerance 1606 * for inefficiency. We would like to use the following criteria to make 1607 * our decision: 1608 * 1609 * 1. The size of the space map object should not dramatically increase as a 1610 * result of writing out the free space range tree. 1611 * 1612 * 2. The minimal on-disk space map representation is zfs_condense_pct/100 1613 * times the size than the free space range tree representation 1614 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB). 1615 * 1616 * 3. The on-disk size of the space map should actually decrease. 1617 * 1618 * Checking the first condition is tricky since we don't want to walk 1619 * the entire AVL tree calculating the estimated on-disk size. Instead we 1620 * use the size-ordered range tree in the metaslab and calculate the 1621 * size required to write out the largest segment in our free tree. If the 1622 * size required to represent that segment on disk is larger than the space 1623 * map object then we avoid condensing this map. 1624 * 1625 * To determine the second criterion we use a best-case estimate and assume 1626 * each segment can be represented on-disk as a single 64-bit entry. We refer 1627 * to this best-case estimate as the space map's minimal form. 1628 * 1629 * Unfortunately, we cannot compute the on-disk size of the space map in this 1630 * context because we cannot accurately compute the effects of compression, etc. 1631 * Instead, we apply the heuristic described in the block comment for 1632 * zfs_metaslab_condense_block_threshold - we only condense if the space used 1633 * is greater than a threshold number of blocks. 1634 */ 1635 static boolean_t 1636 metaslab_should_condense(metaslab_t *msp) 1637 { 1638 space_map_t *sm = msp->ms_sm; 1639 range_seg_t *rs; 1640 uint64_t size, entries, segsz, object_size, optimal_size, record_size; 1641 dmu_object_info_t doi; 1642 uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift; 1643 1644 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1645 ASSERT(msp->ms_loaded); 1646 1647 /* 1648 * Use the ms_size_tree range tree, which is ordered by size, to 1649 * obtain the largest segment in the free tree. We always condense 1650 * metaslabs that are empty and metaslabs for which a condense 1651 * request has been made. 1652 */ 1653 rs = avl_last(&msp->ms_size_tree); 1654 if (rs == NULL || msp->ms_condense_wanted) 1655 return (B_TRUE); 1656 1657 /* 1658 * Calculate the number of 64-bit entries this segment would 1659 * require when written to disk. If this single segment would be 1660 * larger on-disk than the entire current on-disk structure, then 1661 * clearly condensing will increase the on-disk structure size. 1662 */ 1663 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift; 1664 entries = size / (MIN(size, SM_RUN_MAX)); 1665 segsz = entries * sizeof (uint64_t); 1666 1667 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root); 1668 object_size = space_map_length(msp->ms_sm); 1669 1670 dmu_object_info_from_db(sm->sm_dbuf, &doi); 1671 record_size = MAX(doi.doi_data_block_size, vdev_blocksize); 1672 1673 return (segsz <= object_size && 1674 object_size >= (optimal_size * zfs_condense_pct / 100) && 1675 object_size > zfs_metaslab_condense_block_threshold * record_size); 1676 } 1677 1678 /* 1679 * Condense the on-disk space map representation to its minimized form. 1680 * The minimized form consists of a small number of allocations followed by 1681 * the entries of the free range tree. 1682 */ 1683 static void 1684 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx) 1685 { 1686 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1687 range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK]; 1688 range_tree_t *condense_tree; 1689 space_map_t *sm = msp->ms_sm; 1690 1691 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1692 ASSERT3U(spa_sync_pass(spa), ==, 1); 1693 ASSERT(msp->ms_loaded); 1694 1695 1696 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, " 1697 "smp size %llu, segments %lu, forcing condense=%s", txg, 1698 msp->ms_id, msp, space_map_length(msp->ms_sm), 1699 avl_numnodes(&msp->ms_tree->rt_root), 1700 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 1701 1702 msp->ms_condense_wanted = B_FALSE; 1703 1704 /* 1705 * Create an range tree that is 100% allocated. We remove segments 1706 * that have been freed in this txg, any deferred frees that exist, 1707 * and any allocation in the future. Removing segments should be 1708 * a relatively inexpensive operation since we expect these trees to 1709 * have a small number of nodes. 1710 */ 1711 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock); 1712 range_tree_add(condense_tree, msp->ms_start, msp->ms_size); 1713 1714 /* 1715 * Remove what's been freed in this txg from the condense_tree. 1716 * Since we're in sync_pass 1, we know that all the frees from 1717 * this txg are in the freetree. 1718 */ 1719 range_tree_walk(freetree, range_tree_remove, condense_tree); 1720 1721 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1722 range_tree_walk(msp->ms_defertree[t], 1723 range_tree_remove, condense_tree); 1724 } 1725 1726 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 1727 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK], 1728 range_tree_remove, condense_tree); 1729 } 1730 1731 /* 1732 * We're about to drop the metaslab's lock thus allowing 1733 * other consumers to change it's content. Set the 1734 * metaslab's ms_condensing flag to ensure that 1735 * allocations on this metaslab do not occur while we're 1736 * in the middle of committing it to disk. This is only critical 1737 * for the ms_tree as all other range trees use per txg 1738 * views of their content. 1739 */ 1740 msp->ms_condensing = B_TRUE; 1741 1742 mutex_exit(&msp->ms_lock); 1743 space_map_truncate(sm, tx); 1744 mutex_enter(&msp->ms_lock); 1745 1746 /* 1747 * While we would ideally like to create a space_map representation 1748 * that consists only of allocation records, doing so can be 1749 * prohibitively expensive because the in-core free tree can be 1750 * large, and therefore computationally expensive to subtract 1751 * from the condense_tree. Instead we sync out two trees, a cheap 1752 * allocation only tree followed by the in-core free tree. While not 1753 * optimal, this is typically close to optimal, and much cheaper to 1754 * compute. 1755 */ 1756 space_map_write(sm, condense_tree, SM_ALLOC, tx); 1757 range_tree_vacate(condense_tree, NULL, NULL); 1758 range_tree_destroy(condense_tree); 1759 1760 space_map_write(sm, msp->ms_tree, SM_FREE, tx); 1761 msp->ms_condensing = B_FALSE; 1762 } 1763 1764 /* 1765 * Write a metaslab to disk in the context of the specified transaction group. 1766 */ 1767 void 1768 metaslab_sync(metaslab_t *msp, uint64_t txg) 1769 { 1770 metaslab_group_t *mg = msp->ms_group; 1771 vdev_t *vd = mg->mg_vd; 1772 spa_t *spa = vd->vdev_spa; 1773 objset_t *mos = spa_meta_objset(spa); 1774 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK]; 1775 range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK]; 1776 range_tree_t **freed_tree = 1777 &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK]; 1778 dmu_tx_t *tx; 1779 uint64_t object = space_map_object(msp->ms_sm); 1780 1781 ASSERT(!vd->vdev_ishole); 1782 1783 /* 1784 * This metaslab has just been added so there's no work to do now. 1785 */ 1786 if (*freetree == NULL) { 1787 ASSERT3P(alloctree, ==, NULL); 1788 return; 1789 } 1790 1791 ASSERT3P(alloctree, !=, NULL); 1792 ASSERT3P(*freetree, !=, NULL); 1793 ASSERT3P(*freed_tree, !=, NULL); 1794 1795 /* 1796 * Normally, we don't want to process a metaslab if there 1797 * are no allocations or frees to perform. However, if the metaslab 1798 * is being forced to condense we need to let it through. 1799 */ 1800 if (range_tree_space(alloctree) == 0 && 1801 range_tree_space(*freetree) == 0 && 1802 !msp->ms_condense_wanted) 1803 return; 1804 1805 /* 1806 * The only state that can actually be changing concurrently with 1807 * metaslab_sync() is the metaslab's ms_tree. No other thread can 1808 * be modifying this txg's alloctree, freetree, freed_tree, or 1809 * space_map_phys_t. Therefore, we only hold ms_lock to satify 1810 * space_map ASSERTs. We drop it whenever we call into the DMU, 1811 * because the DMU can call down to us (e.g. via zio_free()) at 1812 * any time. 1813 */ 1814 1815 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 1816 1817 if (msp->ms_sm == NULL) { 1818 uint64_t new_object; 1819 1820 new_object = space_map_alloc(mos, tx); 1821 VERIFY3U(new_object, !=, 0); 1822 1823 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 1824 msp->ms_start, msp->ms_size, vd->vdev_ashift, 1825 &msp->ms_lock)); 1826 ASSERT(msp->ms_sm != NULL); 1827 } 1828 1829 mutex_enter(&msp->ms_lock); 1830 1831 if (msp->ms_loaded && spa_sync_pass(spa) == 1 && 1832 metaslab_should_condense(msp)) { 1833 metaslab_condense(msp, txg, tx); 1834 } else { 1835 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx); 1836 space_map_write(msp->ms_sm, *freetree, SM_FREE, tx); 1837 } 1838 1839 metaslab_group_histogram_verify(mg); 1840 metaslab_class_histogram_verify(mg->mg_class); 1841 metaslab_group_histogram_remove(mg, msp); 1842 if (msp->ms_loaded) { 1843 /* 1844 * When the space map is loaded, we have an accruate 1845 * histogram in the range tree. This gives us an opportunity 1846 * to bring the space map's histogram up-to-date so we clear 1847 * it first before updating it. 1848 */ 1849 space_map_histogram_clear(msp->ms_sm); 1850 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx); 1851 } else { 1852 /* 1853 * Since the space map is not loaded we simply update the 1854 * exisiting histogram with what was freed in this txg. This 1855 * means that the on-disk histogram may not have an accurate 1856 * view of the free space but it's close enough to allow 1857 * us to make allocation decisions. 1858 */ 1859 space_map_histogram_add(msp->ms_sm, *freetree, tx); 1860 } 1861 metaslab_group_histogram_add(mg, msp); 1862 metaslab_group_histogram_verify(mg); 1863 metaslab_class_histogram_verify(mg->mg_class); 1864 1865 /* 1866 * For sync pass 1, we avoid traversing this txg's free range tree 1867 * and instead will just swap the pointers for freetree and 1868 * freed_tree. We can safely do this since the freed_tree is 1869 * guaranteed to be empty on the initial pass. 1870 */ 1871 if (spa_sync_pass(spa) == 1) { 1872 range_tree_swap(freetree, freed_tree); 1873 } else { 1874 range_tree_vacate(*freetree, range_tree_add, *freed_tree); 1875 } 1876 range_tree_vacate(alloctree, NULL, NULL); 1877 1878 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK])); 1879 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK])); 1880 1881 mutex_exit(&msp->ms_lock); 1882 1883 if (object != space_map_object(msp->ms_sm)) { 1884 object = space_map_object(msp->ms_sm); 1885 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 1886 msp->ms_id, sizeof (uint64_t), &object, tx); 1887 } 1888 dmu_tx_commit(tx); 1889 } 1890 1891 /* 1892 * Called after a transaction group has completely synced to mark 1893 * all of the metaslab's free space as usable. 1894 */ 1895 void 1896 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 1897 { 1898 metaslab_group_t *mg = msp->ms_group; 1899 vdev_t *vd = mg->mg_vd; 1900 range_tree_t **freed_tree; 1901 range_tree_t **defer_tree; 1902 int64_t alloc_delta, defer_delta; 1903 1904 ASSERT(!vd->vdev_ishole); 1905 1906 mutex_enter(&msp->ms_lock); 1907 1908 /* 1909 * If this metaslab is just becoming available, initialize its 1910 * alloctrees, freetrees, and defertree and add its capacity to 1911 * the vdev. 1912 */ 1913 if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) { 1914 for (int t = 0; t < TXG_SIZE; t++) { 1915 ASSERT(msp->ms_alloctree[t] == NULL); 1916 ASSERT(msp->ms_freetree[t] == NULL); 1917 1918 msp->ms_alloctree[t] = range_tree_create(NULL, msp, 1919 &msp->ms_lock); 1920 msp->ms_freetree[t] = range_tree_create(NULL, msp, 1921 &msp->ms_lock); 1922 } 1923 1924 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1925 ASSERT(msp->ms_defertree[t] == NULL); 1926 1927 msp->ms_defertree[t] = range_tree_create(NULL, msp, 1928 &msp->ms_lock); 1929 } 1930 1931 vdev_space_update(vd, 0, 0, msp->ms_size); 1932 } 1933 1934 freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK]; 1935 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE]; 1936 1937 alloc_delta = space_map_alloc_delta(msp->ms_sm); 1938 defer_delta = range_tree_space(*freed_tree) - 1939 range_tree_space(*defer_tree); 1940 1941 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0); 1942 1943 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK])); 1944 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK])); 1945 1946 /* 1947 * If there's a metaslab_load() in progress, wait for it to complete 1948 * so that we have a consistent view of the in-core space map. 1949 */ 1950 metaslab_load_wait(msp); 1951 1952 /* 1953 * Move the frees from the defer_tree back to the free 1954 * range tree (if it's loaded). Swap the freed_tree and the 1955 * defer_tree -- this is safe to do because we've just emptied out 1956 * the defer_tree. 1957 */ 1958 range_tree_vacate(*defer_tree, 1959 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree); 1960 range_tree_swap(freed_tree, defer_tree); 1961 1962 space_map_update(msp->ms_sm); 1963 1964 msp->ms_deferspace += defer_delta; 1965 ASSERT3S(msp->ms_deferspace, >=, 0); 1966 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 1967 if (msp->ms_deferspace != 0) { 1968 /* 1969 * Keep syncing this metaslab until all deferred frees 1970 * are back in circulation. 1971 */ 1972 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 1973 } 1974 1975 if (msp->ms_loaded && msp->ms_access_txg < txg) { 1976 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 1977 VERIFY0(range_tree_space( 1978 msp->ms_alloctree[(txg + t) & TXG_MASK])); 1979 } 1980 1981 if (!metaslab_debug_unload) 1982 metaslab_unload(msp); 1983 } 1984 1985 metaslab_group_sort(mg, msp, metaslab_weight(msp)); 1986 mutex_exit(&msp->ms_lock); 1987 } 1988 1989 void 1990 metaslab_sync_reassess(metaslab_group_t *mg) 1991 { 1992 metaslab_group_alloc_update(mg); 1993 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1994 1995 /* 1996 * Preload the next potential metaslabs 1997 */ 1998 metaslab_group_preload(mg); 1999 } 2000 2001 static uint64_t 2002 metaslab_distance(metaslab_t *msp, dva_t *dva) 2003 { 2004 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; 2005 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; 2006 uint64_t start = msp->ms_id; 2007 2008 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 2009 return (1ULL << 63); 2010 2011 if (offset < start) 2012 return ((start - offset) << ms_shift); 2013 if (offset > start) 2014 return ((offset - start) << ms_shift); 2015 return (0); 2016 } 2017 2018 static uint64_t 2019 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize, 2020 uint64_t txg, uint64_t min_distance, dva_t *dva, int d) 2021 { 2022 spa_t *spa = mg->mg_vd->vdev_spa; 2023 metaslab_t *msp = NULL; 2024 uint64_t offset = -1ULL; 2025 avl_tree_t *t = &mg->mg_metaslab_tree; 2026 uint64_t activation_weight; 2027 uint64_t target_distance; 2028 int i; 2029 2030 activation_weight = METASLAB_WEIGHT_PRIMARY; 2031 for (i = 0; i < d; i++) { 2032 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 2033 activation_weight = METASLAB_WEIGHT_SECONDARY; 2034 break; 2035 } 2036 } 2037 2038 for (;;) { 2039 boolean_t was_active; 2040 2041 mutex_enter(&mg->mg_lock); 2042 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) { 2043 if (msp->ms_weight < asize) { 2044 spa_dbgmsg(spa, "%s: failed to meet weight " 2045 "requirement: vdev %llu, txg %llu, mg %p, " 2046 "msp %p, psize %llu, asize %llu, " 2047 "weight %llu", spa_name(spa), 2048 mg->mg_vd->vdev_id, txg, 2049 mg, msp, psize, asize, msp->ms_weight); 2050 mutex_exit(&mg->mg_lock); 2051 return (-1ULL); 2052 } 2053 2054 /* 2055 * If the selected metaslab is condensing, skip it. 2056 */ 2057 if (msp->ms_condensing) 2058 continue; 2059 2060 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2061 if (activation_weight == METASLAB_WEIGHT_PRIMARY) 2062 break; 2063 2064 target_distance = min_distance + 2065 (space_map_allocated(msp->ms_sm) != 0 ? 0 : 2066 min_distance >> 1); 2067 2068 for (i = 0; i < d; i++) 2069 if (metaslab_distance(msp, &dva[i]) < 2070 target_distance) 2071 break; 2072 if (i == d) 2073 break; 2074 } 2075 mutex_exit(&mg->mg_lock); 2076 if (msp == NULL) 2077 return (-1ULL); 2078 2079 mutex_enter(&msp->ms_lock); 2080 2081 /* 2082 * Ensure that the metaslab we have selected is still 2083 * capable of handling our request. It's possible that 2084 * another thread may have changed the weight while we 2085 * were blocked on the metaslab lock. 2086 */ 2087 if (msp->ms_weight < asize || (was_active && 2088 !(msp->ms_weight & METASLAB_ACTIVE_MASK) && 2089 activation_weight == METASLAB_WEIGHT_PRIMARY)) { 2090 mutex_exit(&msp->ms_lock); 2091 continue; 2092 } 2093 2094 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) && 2095 activation_weight == METASLAB_WEIGHT_PRIMARY) { 2096 metaslab_passivate(msp, 2097 msp->ms_weight & ~METASLAB_ACTIVE_MASK); 2098 mutex_exit(&msp->ms_lock); 2099 continue; 2100 } 2101 2102 if (metaslab_activate(msp, activation_weight) != 0) { 2103 mutex_exit(&msp->ms_lock); 2104 continue; 2105 } 2106 2107 /* 2108 * If this metaslab is currently condensing then pick again as 2109 * we can't manipulate this metaslab until it's committed 2110 * to disk. 2111 */ 2112 if (msp->ms_condensing) { 2113 mutex_exit(&msp->ms_lock); 2114 continue; 2115 } 2116 2117 if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL) 2118 break; 2119 2120 metaslab_passivate(msp, metaslab_block_maxsize(msp)); 2121 mutex_exit(&msp->ms_lock); 2122 } 2123 2124 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0) 2125 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 2126 2127 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize); 2128 msp->ms_access_txg = txg + metaslab_unload_delay; 2129 2130 mutex_exit(&msp->ms_lock); 2131 2132 return (offset); 2133 } 2134 2135 /* 2136 * Allocate a block for the specified i/o. 2137 */ 2138 static int 2139 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 2140 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags) 2141 { 2142 metaslab_group_t *mg, *rotor; 2143 vdev_t *vd; 2144 int dshift = 3; 2145 int all_zero; 2146 int zio_lock = B_FALSE; 2147 boolean_t allocatable; 2148 uint64_t offset = -1ULL; 2149 uint64_t asize; 2150 uint64_t distance; 2151 2152 ASSERT(!DVA_IS_VALID(&dva[d])); 2153 2154 /* 2155 * For testing, make some blocks above a certain size be gang blocks. 2156 */ 2157 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0) 2158 return (SET_ERROR(ENOSPC)); 2159 2160 /* 2161 * Start at the rotor and loop through all mgs until we find something. 2162 * Note that there's no locking on mc_rotor or mc_aliquot because 2163 * nothing actually breaks if we miss a few updates -- we just won't 2164 * allocate quite as evenly. It all balances out over time. 2165 * 2166 * If we are doing ditto or log blocks, try to spread them across 2167 * consecutive vdevs. If we're forced to reuse a vdev before we've 2168 * allocated all of our ditto blocks, then try and spread them out on 2169 * that vdev as much as possible. If it turns out to not be possible, 2170 * gradually lower our standards until anything becomes acceptable. 2171 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 2172 * gives us hope of containing our fault domains to something we're 2173 * able to reason about. Otherwise, any two top-level vdev failures 2174 * will guarantee the loss of data. With consecutive allocation, 2175 * only two adjacent top-level vdev failures will result in data loss. 2176 * 2177 * If we are doing gang blocks (hintdva is non-NULL), try to keep 2178 * ourselves on the same vdev as our gang block header. That 2179 * way, we can hope for locality in vdev_cache, plus it makes our 2180 * fault domains something tractable. 2181 */ 2182 if (hintdva) { 2183 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 2184 2185 /* 2186 * It's possible the vdev we're using as the hint no 2187 * longer exists (i.e. removed). Consult the rotor when 2188 * all else fails. 2189 */ 2190 if (vd != NULL) { 2191 mg = vd->vdev_mg; 2192 2193 if (flags & METASLAB_HINTBP_AVOID && 2194 mg->mg_next != NULL) 2195 mg = mg->mg_next; 2196 } else { 2197 mg = mc->mc_rotor; 2198 } 2199 } else if (d != 0) { 2200 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 2201 mg = vd->vdev_mg->mg_next; 2202 } else { 2203 mg = mc->mc_rotor; 2204 } 2205 2206 /* 2207 * If the hint put us into the wrong metaslab class, or into a 2208 * metaslab group that has been passivated, just follow the rotor. 2209 */ 2210 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 2211 mg = mc->mc_rotor; 2212 2213 rotor = mg; 2214 top: 2215 all_zero = B_TRUE; 2216 do { 2217 ASSERT(mg->mg_activation_count == 1); 2218 2219 vd = mg->mg_vd; 2220 2221 /* 2222 * Don't allocate from faulted devices. 2223 */ 2224 if (zio_lock) { 2225 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 2226 allocatable = vdev_allocatable(vd); 2227 spa_config_exit(spa, SCL_ZIO, FTAG); 2228 } else { 2229 allocatable = vdev_allocatable(vd); 2230 } 2231 2232 /* 2233 * Determine if the selected metaslab group is eligible 2234 * for allocations. If we're ganging or have requested 2235 * an allocation for the smallest gang block size 2236 * then we don't want to avoid allocating to the this 2237 * metaslab group. If we're in this condition we should 2238 * try to allocate from any device possible so that we 2239 * don't inadvertently return ENOSPC and suspend the pool 2240 * even though space is still available. 2241 */ 2242 if (allocatable && CAN_FASTGANG(flags) && 2243 psize > SPA_GANGBLOCKSIZE) 2244 allocatable = metaslab_group_allocatable(mg); 2245 2246 if (!allocatable) 2247 goto next; 2248 2249 /* 2250 * Avoid writing single-copy data to a failing vdev 2251 * unless the user instructs us that it is okay. 2252 */ 2253 if ((vd->vdev_stat.vs_write_errors > 0 || 2254 vd->vdev_state < VDEV_STATE_HEALTHY) && 2255 d == 0 && dshift == 3 && vd->vdev_children == 0) { 2256 all_zero = B_FALSE; 2257 goto next; 2258 } 2259 2260 ASSERT(mg->mg_class == mc); 2261 2262 distance = vd->vdev_asize >> dshift; 2263 if (distance <= (1ULL << vd->vdev_ms_shift)) 2264 distance = 0; 2265 else 2266 all_zero = B_FALSE; 2267 2268 asize = vdev_psize_to_asize(vd, psize); 2269 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 2270 2271 offset = metaslab_group_alloc(mg, psize, asize, txg, distance, 2272 dva, d); 2273 if (offset != -1ULL) { 2274 /* 2275 * If we've just selected this metaslab group, 2276 * figure out whether the corresponding vdev is 2277 * over- or under-used relative to the pool, 2278 * and set an allocation bias to even it out. 2279 */ 2280 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) { 2281 vdev_stat_t *vs = &vd->vdev_stat; 2282 int64_t vu, cu; 2283 2284 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1); 2285 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1); 2286 2287 /* 2288 * Calculate how much more or less we should 2289 * try to allocate from this device during 2290 * this iteration around the rotor. 2291 * For example, if a device is 80% full 2292 * and the pool is 20% full then we should 2293 * reduce allocations by 60% on this device. 2294 * 2295 * mg_bias = (20 - 80) * 512K / 100 = -307K 2296 * 2297 * This reduces allocations by 307K for this 2298 * iteration. 2299 */ 2300 mg->mg_bias = ((cu - vu) * 2301 (int64_t)mg->mg_aliquot) / 100; 2302 } else if (!metaslab_bias_enabled) { 2303 mg->mg_bias = 0; 2304 } 2305 2306 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >= 2307 mg->mg_aliquot + mg->mg_bias) { 2308 mc->mc_rotor = mg->mg_next; 2309 mc->mc_aliquot = 0; 2310 } 2311 2312 DVA_SET_VDEV(&dva[d], vd->vdev_id); 2313 DVA_SET_OFFSET(&dva[d], offset); 2314 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER)); 2315 DVA_SET_ASIZE(&dva[d], asize); 2316 2317 return (0); 2318 } 2319 next: 2320 mc->mc_rotor = mg->mg_next; 2321 mc->mc_aliquot = 0; 2322 } while ((mg = mg->mg_next) != rotor); 2323 2324 if (!all_zero) { 2325 dshift++; 2326 ASSERT(dshift < 64); 2327 goto top; 2328 } 2329 2330 if (!allocatable && !zio_lock) { 2331 dshift = 3; 2332 zio_lock = B_TRUE; 2333 goto top; 2334 } 2335 2336 bzero(&dva[d], sizeof (dva_t)); 2337 2338 return (SET_ERROR(ENOSPC)); 2339 } 2340 2341 /* 2342 * Free the block represented by DVA in the context of the specified 2343 * transaction group. 2344 */ 2345 static void 2346 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now) 2347 { 2348 uint64_t vdev = DVA_GET_VDEV(dva); 2349 uint64_t offset = DVA_GET_OFFSET(dva); 2350 uint64_t size = DVA_GET_ASIZE(dva); 2351 vdev_t *vd; 2352 metaslab_t *msp; 2353 2354 ASSERT(DVA_IS_VALID(dva)); 2355 2356 if (txg > spa_freeze_txg(spa)) 2357 return; 2358 2359 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 2360 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 2361 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu", 2362 (u_longlong_t)vdev, (u_longlong_t)offset); 2363 ASSERT(0); 2364 return; 2365 } 2366 2367 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 2368 2369 if (DVA_GET_GANG(dva)) 2370 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 2371 2372 mutex_enter(&msp->ms_lock); 2373 2374 if (now) { 2375 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK], 2376 offset, size); 2377 2378 VERIFY(!msp->ms_condensing); 2379 VERIFY3U(offset, >=, msp->ms_start); 2380 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 2381 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=, 2382 msp->ms_size); 2383 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 2384 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 2385 range_tree_add(msp->ms_tree, offset, size); 2386 } else { 2387 if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0) 2388 vdev_dirty(vd, VDD_METASLAB, msp, txg); 2389 range_tree_add(msp->ms_freetree[txg & TXG_MASK], 2390 offset, size); 2391 } 2392 2393 mutex_exit(&msp->ms_lock); 2394 } 2395 2396 /* 2397 * Intent log support: upon opening the pool after a crash, notify the SPA 2398 * of blocks that the intent log has allocated for immediate write, but 2399 * which are still considered free by the SPA because the last transaction 2400 * group didn't commit yet. 2401 */ 2402 static int 2403 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 2404 { 2405 uint64_t vdev = DVA_GET_VDEV(dva); 2406 uint64_t offset = DVA_GET_OFFSET(dva); 2407 uint64_t size = DVA_GET_ASIZE(dva); 2408 vdev_t *vd; 2409 metaslab_t *msp; 2410 int error = 0; 2411 2412 ASSERT(DVA_IS_VALID(dva)); 2413 2414 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 2415 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) 2416 return (SET_ERROR(ENXIO)); 2417 2418 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 2419 2420 if (DVA_GET_GANG(dva)) 2421 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 2422 2423 mutex_enter(&msp->ms_lock); 2424 2425 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) 2426 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY); 2427 2428 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size)) 2429 error = SET_ERROR(ENOENT); 2430 2431 if (error || txg == 0) { /* txg == 0 indicates dry run */ 2432 mutex_exit(&msp->ms_lock); 2433 return (error); 2434 } 2435 2436 VERIFY(!msp->ms_condensing); 2437 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 2438 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 2439 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size); 2440 range_tree_remove(msp->ms_tree, offset, size); 2441 2442 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */ 2443 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0) 2444 vdev_dirty(vd, VDD_METASLAB, msp, txg); 2445 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size); 2446 } 2447 2448 mutex_exit(&msp->ms_lock); 2449 2450 return (0); 2451 } 2452 2453 int 2454 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 2455 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags) 2456 { 2457 dva_t *dva = bp->blk_dva; 2458 dva_t *hintdva = hintbp->blk_dva; 2459 int error = 0; 2460 2461 ASSERT(bp->blk_birth == 0); 2462 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 2463 2464 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 2465 2466 if (mc->mc_rotor == NULL) { /* no vdevs in this class */ 2467 spa_config_exit(spa, SCL_ALLOC, FTAG); 2468 return (SET_ERROR(ENOSPC)); 2469 } 2470 2471 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 2472 ASSERT(BP_GET_NDVAS(bp) == 0); 2473 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 2474 2475 for (int d = 0; d < ndvas; d++) { 2476 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 2477 txg, flags); 2478 if (error != 0) { 2479 for (d--; d >= 0; d--) { 2480 metaslab_free_dva(spa, &dva[d], txg, B_TRUE); 2481 bzero(&dva[d], sizeof (dva_t)); 2482 } 2483 spa_config_exit(spa, SCL_ALLOC, FTAG); 2484 return (error); 2485 } 2486 } 2487 ASSERT(error == 0); 2488 ASSERT(BP_GET_NDVAS(bp) == ndvas); 2489 2490 spa_config_exit(spa, SCL_ALLOC, FTAG); 2491 2492 BP_SET_BIRTH(bp, txg, txg); 2493 2494 return (0); 2495 } 2496 2497 void 2498 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 2499 { 2500 const dva_t *dva = bp->blk_dva; 2501 int ndvas = BP_GET_NDVAS(bp); 2502 2503 ASSERT(!BP_IS_HOLE(bp)); 2504 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 2505 2506 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 2507 2508 for (int d = 0; d < ndvas; d++) 2509 metaslab_free_dva(spa, &dva[d], txg, now); 2510 2511 spa_config_exit(spa, SCL_FREE, FTAG); 2512 } 2513 2514 int 2515 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 2516 { 2517 const dva_t *dva = bp->blk_dva; 2518 int ndvas = BP_GET_NDVAS(bp); 2519 int error = 0; 2520 2521 ASSERT(!BP_IS_HOLE(bp)); 2522 2523 if (txg != 0) { 2524 /* 2525 * First do a dry run to make sure all DVAs are claimable, 2526 * so we don't have to unwind from partial failures below. 2527 */ 2528 if ((error = metaslab_claim(spa, bp, 0)) != 0) 2529 return (error); 2530 } 2531 2532 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 2533 2534 for (int d = 0; d < ndvas; d++) 2535 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0) 2536 break; 2537 2538 spa_config_exit(spa, SCL_ALLOC, FTAG); 2539 2540 ASSERT(error == 0 || txg == 0); 2541 2542 return (error); 2543 } 2544 2545 void 2546 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 2547 { 2548 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 2549 return; 2550 2551 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2552 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 2553 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 2554 vdev_t *vd = vdev_lookup_top(spa, vdev); 2555 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 2556 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 2557 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 2558 2559 if (msp->ms_loaded) 2560 range_tree_verify(msp->ms_tree, offset, size); 2561 2562 for (int j = 0; j < TXG_SIZE; j++) 2563 range_tree_verify(msp->ms_freetree[j], offset, size); 2564 for (int j = 0; j < TXG_DEFER_SIZE; j++) 2565 range_tree_verify(msp->ms_defertree[j], offset, size); 2566 } 2567 spa_config_exit(spa, SCL_VDEV, FTAG); 2568 } 2569