1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio.h> 36 37 uint64_t metaslab_aliquot = 512ULL << 10; 38 39 /* 40 * ========================================================================== 41 * Metaslab classes 42 * ========================================================================== 43 */ 44 metaslab_class_t * 45 metaslab_class_create(void) 46 { 47 metaslab_class_t *mc; 48 49 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); 50 51 mc->mc_rotor = NULL; 52 53 return (mc); 54 } 55 56 void 57 metaslab_class_destroy(metaslab_class_t *mc) 58 { 59 metaslab_group_t *mg; 60 61 while ((mg = mc->mc_rotor) != NULL) { 62 metaslab_class_remove(mc, mg); 63 metaslab_group_destroy(mg); 64 } 65 66 kmem_free(mc, sizeof (metaslab_class_t)); 67 } 68 69 void 70 metaslab_class_add(metaslab_class_t *mc, metaslab_group_t *mg) 71 { 72 metaslab_group_t *mgprev, *mgnext; 73 74 ASSERT(mg->mg_class == NULL); 75 76 if ((mgprev = mc->mc_rotor) == NULL) { 77 mg->mg_prev = mg; 78 mg->mg_next = mg; 79 } else { 80 mgnext = mgprev->mg_next; 81 mg->mg_prev = mgprev; 82 mg->mg_next = mgnext; 83 mgprev->mg_next = mg; 84 mgnext->mg_prev = mg; 85 } 86 mc->mc_rotor = mg; 87 mg->mg_class = mc; 88 } 89 90 void 91 metaslab_class_remove(metaslab_class_t *mc, metaslab_group_t *mg) 92 { 93 metaslab_group_t *mgprev, *mgnext; 94 95 ASSERT(mg->mg_class == mc); 96 97 mgprev = mg->mg_prev; 98 mgnext = mg->mg_next; 99 100 if (mg == mgnext) { 101 mc->mc_rotor = NULL; 102 } else { 103 mc->mc_rotor = mgnext; 104 mgprev->mg_next = mgnext; 105 mgnext->mg_prev = mgprev; 106 } 107 108 mg->mg_prev = NULL; 109 mg->mg_next = NULL; 110 mg->mg_class = NULL; 111 } 112 113 /* 114 * ========================================================================== 115 * Metaslab groups 116 * ========================================================================== 117 */ 118 static int 119 metaslab_compare(const void *x1, const void *x2) 120 { 121 const metaslab_t *m1 = x1; 122 const metaslab_t *m2 = x2; 123 124 if (m1->ms_weight < m2->ms_weight) 125 return (1); 126 if (m1->ms_weight > m2->ms_weight) 127 return (-1); 128 129 /* 130 * If the weights are identical, use the offset to force uniqueness. 131 */ 132 if (m1->ms_map.sm_start < m2->ms_map.sm_start) 133 return (-1); 134 if (m1->ms_map.sm_start > m2->ms_map.sm_start) 135 return (1); 136 137 ASSERT3P(m1, ==, m2); 138 139 return (0); 140 } 141 142 metaslab_group_t * 143 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) 144 { 145 metaslab_group_t *mg; 146 147 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); 148 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 149 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 150 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node)); 151 mg->mg_aliquot = metaslab_aliquot * MAX(1, vd->vdev_children); 152 mg->mg_vd = vd; 153 metaslab_class_add(mc, mg); 154 155 return (mg); 156 } 157 158 void 159 metaslab_group_destroy(metaslab_group_t *mg) 160 { 161 avl_destroy(&mg->mg_metaslab_tree); 162 mutex_destroy(&mg->mg_lock); 163 kmem_free(mg, sizeof (metaslab_group_t)); 164 } 165 166 static void 167 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 168 { 169 mutex_enter(&mg->mg_lock); 170 ASSERT(msp->ms_group == NULL); 171 msp->ms_group = mg; 172 msp->ms_weight = 0; 173 avl_add(&mg->mg_metaslab_tree, msp); 174 mutex_exit(&mg->mg_lock); 175 } 176 177 static void 178 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 179 { 180 mutex_enter(&mg->mg_lock); 181 ASSERT(msp->ms_group == mg); 182 avl_remove(&mg->mg_metaslab_tree, msp); 183 msp->ms_group = NULL; 184 mutex_exit(&mg->mg_lock); 185 } 186 187 static void 188 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 189 { 190 /* 191 * Although in principle the weight can be any value, in 192 * practice we do not use values in the range [1, 510]. 193 */ 194 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0); 195 ASSERT(MUTEX_HELD(&msp->ms_lock)); 196 197 mutex_enter(&mg->mg_lock); 198 ASSERT(msp->ms_group == mg); 199 avl_remove(&mg->mg_metaslab_tree, msp); 200 msp->ms_weight = weight; 201 avl_add(&mg->mg_metaslab_tree, msp); 202 mutex_exit(&mg->mg_lock); 203 } 204 205 /* 206 * ========================================================================== 207 * The first-fit block allocator 208 * ========================================================================== 209 */ 210 static void 211 metaslab_ff_load(space_map_t *sm) 212 { 213 ASSERT(sm->sm_ppd == NULL); 214 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP); 215 } 216 217 static void 218 metaslab_ff_unload(space_map_t *sm) 219 { 220 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t)); 221 sm->sm_ppd = NULL; 222 } 223 224 static uint64_t 225 metaslab_ff_alloc(space_map_t *sm, uint64_t size) 226 { 227 avl_tree_t *t = &sm->sm_root; 228 uint64_t align = size & -size; 229 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1; 230 space_seg_t *ss, ssearch; 231 avl_index_t where; 232 233 ssearch.ss_start = *cursor; 234 ssearch.ss_end = *cursor + size; 235 236 ss = avl_find(t, &ssearch, &where); 237 if (ss == NULL) 238 ss = avl_nearest(t, where, AVL_AFTER); 239 240 while (ss != NULL) { 241 uint64_t offset = P2ROUNDUP(ss->ss_start, align); 242 243 if (offset + size <= ss->ss_end) { 244 *cursor = offset + size; 245 return (offset); 246 } 247 ss = AVL_NEXT(t, ss); 248 } 249 250 /* 251 * If we know we've searched the whole map (*cursor == 0), give up. 252 * Otherwise, reset the cursor to the beginning and try again. 253 */ 254 if (*cursor == 0) 255 return (-1ULL); 256 257 *cursor = 0; 258 return (metaslab_ff_alloc(sm, size)); 259 } 260 261 /* ARGSUSED */ 262 static void 263 metaslab_ff_claim(space_map_t *sm, uint64_t start, uint64_t size) 264 { 265 /* No need to update cursor */ 266 } 267 268 /* ARGSUSED */ 269 static void 270 metaslab_ff_free(space_map_t *sm, uint64_t start, uint64_t size) 271 { 272 /* No need to update cursor */ 273 } 274 275 static space_map_ops_t metaslab_ff_ops = { 276 metaslab_ff_load, 277 metaslab_ff_unload, 278 metaslab_ff_alloc, 279 metaslab_ff_claim, 280 metaslab_ff_free 281 }; 282 283 /* 284 * ========================================================================== 285 * Metaslabs 286 * ========================================================================== 287 */ 288 metaslab_t * 289 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo, 290 uint64_t start, uint64_t size, uint64_t txg) 291 { 292 vdev_t *vd = mg->mg_vd; 293 metaslab_t *msp; 294 295 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 296 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL); 297 298 msp->ms_smo_syncing = *smo; 299 300 /* 301 * We create the main space map here, but we don't create the 302 * allocmaps and freemaps until metaslab_sync_done(). This serves 303 * two purposes: it allows metaslab_sync_done() to detect the 304 * addition of new space; and for debugging, it ensures that we'd 305 * data fault on any attempt to use this metaslab before it's ready. 306 */ 307 space_map_create(&msp->ms_map, start, size, 308 vd->vdev_ashift, &msp->ms_lock); 309 310 metaslab_group_add(mg, msp); 311 312 /* 313 * If we're opening an existing pool (txg == 0) or creating 314 * a new one (txg == TXG_INITIAL), all space is available now. 315 * If we're adding space to an existing pool, the new space 316 * does not become available until after this txg has synced. 317 */ 318 if (txg <= TXG_INITIAL) 319 metaslab_sync_done(msp, 0); 320 321 if (txg != 0) { 322 /* 323 * The vdev is dirty, but the metaslab isn't -- it just needs 324 * to have metaslab_sync_done() invoked from vdev_sync_done(). 325 * [We could just dirty the metaslab, but that would cause us 326 * to allocate a space map object for it, which is wasteful 327 * and would mess up the locality logic in metaslab_weight().] 328 */ 329 ASSERT(TXG_CLEAN(txg) == spa_last_synced_txg(vd->vdev_spa)); 330 vdev_dirty(vd, 0, NULL, txg); 331 vdev_dirty(vd, VDD_METASLAB, msp, TXG_CLEAN(txg)); 332 } 333 334 return (msp); 335 } 336 337 void 338 metaslab_fini(metaslab_t *msp) 339 { 340 metaslab_group_t *mg = msp->ms_group; 341 int t; 342 343 vdev_space_update(mg->mg_vd, -msp->ms_map.sm_size, 344 -msp->ms_smo.smo_alloc); 345 346 metaslab_group_remove(mg, msp); 347 348 mutex_enter(&msp->ms_lock); 349 350 space_map_unload(&msp->ms_map); 351 space_map_destroy(&msp->ms_map); 352 353 for (t = 0; t < TXG_SIZE; t++) { 354 space_map_destroy(&msp->ms_allocmap[t]); 355 space_map_destroy(&msp->ms_freemap[t]); 356 } 357 358 mutex_exit(&msp->ms_lock); 359 mutex_destroy(&msp->ms_lock); 360 361 kmem_free(msp, sizeof (metaslab_t)); 362 } 363 364 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63) 365 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62) 366 #define METASLAB_ACTIVE_MASK \ 367 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY) 368 #define METASLAB_SMO_BONUS_MULTIPLIER 2 369 370 static uint64_t 371 metaslab_weight(metaslab_t *msp) 372 { 373 metaslab_group_t *mg = msp->ms_group; 374 space_map_t *sm = &msp->ms_map; 375 space_map_obj_t *smo = &msp->ms_smo; 376 vdev_t *vd = mg->mg_vd; 377 uint64_t weight, space; 378 379 ASSERT(MUTEX_HELD(&msp->ms_lock)); 380 381 /* 382 * The baseline weight is the metaslab's free space. 383 */ 384 space = sm->sm_size - smo->smo_alloc; 385 weight = space; 386 387 /* 388 * Modern disks have uniform bit density and constant angular velocity. 389 * Therefore, the outer recording zones are faster (higher bandwidth) 390 * than the inner zones by the ratio of outer to inner track diameter, 391 * which is typically around 2:1. We account for this by assigning 392 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 393 * In effect, this means that we'll select the metaslab with the most 394 * free bandwidth rather than simply the one with the most free space. 395 */ 396 weight = 2 * weight - 397 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count; 398 ASSERT(weight >= space && weight <= 2 * space); 399 400 /* 401 * For locality, assign higher weight to metaslabs we've used before. 402 */ 403 if (smo->smo_object != 0) 404 weight *= METASLAB_SMO_BONUS_MULTIPLIER; 405 ASSERT(weight >= space && 406 weight <= 2 * METASLAB_SMO_BONUS_MULTIPLIER * space); 407 408 /* 409 * If this metaslab is one we're actively using, adjust its weight to 410 * make it preferable to any inactive metaslab so we'll polish it off. 411 */ 412 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 413 414 return (weight); 415 } 416 417 static int 418 metaslab_activate(metaslab_t *msp, uint64_t activation_weight) 419 { 420 space_map_t *sm = &msp->ms_map; 421 422 ASSERT(MUTEX_HELD(&msp->ms_lock)); 423 424 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 425 int error = space_map_load(sm, &metaslab_ff_ops, 426 SM_FREE, &msp->ms_smo, 427 msp->ms_group->mg_vd->vdev_spa->spa_meta_objset); 428 if (error) { 429 metaslab_group_sort(msp->ms_group, msp, 0); 430 return (error); 431 } 432 metaslab_group_sort(msp->ms_group, msp, 433 msp->ms_weight | activation_weight); 434 } 435 ASSERT(sm->sm_loaded); 436 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 437 438 return (0); 439 } 440 441 static void 442 metaslab_passivate(metaslab_t *msp, uint64_t size) 443 { 444 /* 445 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 446 * this metaslab again. In that case, it had better be empty, 447 * or we would be leaving space on the table. 448 */ 449 ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0); 450 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size)); 451 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); 452 } 453 454 /* 455 * Write a metaslab to disk in the context of the specified transaction group. 456 */ 457 void 458 metaslab_sync(metaslab_t *msp, uint64_t txg) 459 { 460 vdev_t *vd = msp->ms_group->mg_vd; 461 spa_t *spa = vd->vdev_spa; 462 objset_t *mos = spa->spa_meta_objset; 463 space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK]; 464 space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK]; 465 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 466 space_map_t *sm = &msp->ms_map; 467 space_map_obj_t *smo = &msp->ms_smo_syncing; 468 dmu_buf_t *db; 469 dmu_tx_t *tx; 470 int t; 471 472 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 473 474 /* 475 * The only state that can actually be changing concurrently with 476 * metaslab_sync() is the metaslab's ms_map. No other thread can 477 * be modifying this txg's allocmap, freemap, freed_map, or smo. 478 * Therefore, we only hold ms_lock to satify space_map ASSERTs. 479 * We drop it whenever we call into the DMU, because the DMU 480 * can call down to us (e.g. via zio_free()) at any time. 481 */ 482 mutex_enter(&msp->ms_lock); 483 484 if (smo->smo_object == 0) { 485 ASSERT(smo->smo_objsize == 0); 486 ASSERT(smo->smo_alloc == 0); 487 mutex_exit(&msp->ms_lock); 488 smo->smo_object = dmu_object_alloc(mos, 489 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 490 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 491 ASSERT(smo->smo_object != 0); 492 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 493 (sm->sm_start >> vd->vdev_ms_shift), 494 sizeof (uint64_t), &smo->smo_object, tx); 495 mutex_enter(&msp->ms_lock); 496 } 497 498 space_map_walk(freemap, space_map_add, freed_map); 499 500 if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >= 501 2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) { 502 /* 503 * The in-core space map representation is twice as compact 504 * as the on-disk one, so it's time to condense the latter 505 * by generating a pure allocmap from first principles. 506 * 507 * This metaslab is 100% allocated, 508 * minus the content of the in-core map (sm), 509 * minus what's been freed this txg (freed_map), 510 * minus allocations from txgs in the future 511 * (because they haven't been committed yet). 512 */ 513 space_map_vacate(allocmap, NULL, NULL); 514 space_map_vacate(freemap, NULL, NULL); 515 516 space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size); 517 518 space_map_walk(sm, space_map_remove, allocmap); 519 space_map_walk(freed_map, space_map_remove, allocmap); 520 521 for (t = 1; t < TXG_CONCURRENT_STATES; t++) 522 space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK], 523 space_map_remove, allocmap); 524 525 mutex_exit(&msp->ms_lock); 526 space_map_truncate(smo, mos, tx); 527 mutex_enter(&msp->ms_lock); 528 } 529 530 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx); 531 space_map_sync(freemap, SM_FREE, smo, mos, tx); 532 533 mutex_exit(&msp->ms_lock); 534 535 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 536 dmu_buf_will_dirty(db, tx); 537 ASSERT3U(db->db_size, ==, sizeof (*smo)); 538 bcopy(smo, db->db_data, db->db_size); 539 dmu_buf_rele(db, FTAG); 540 541 dmu_tx_commit(tx); 542 } 543 544 /* 545 * Called after a transaction group has completely synced to mark 546 * all of the metaslab's free space as usable. 547 */ 548 void 549 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 550 { 551 space_map_obj_t *smo = &msp->ms_smo; 552 space_map_obj_t *smosync = &msp->ms_smo_syncing; 553 space_map_t *sm = &msp->ms_map; 554 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 555 metaslab_group_t *mg = msp->ms_group; 556 vdev_t *vd = mg->mg_vd; 557 int t; 558 559 mutex_enter(&msp->ms_lock); 560 561 /* 562 * If this metaslab is just becoming available, initialize its 563 * allocmaps and freemaps and add its capacity to the vdev. 564 */ 565 if (freed_map->sm_size == 0) { 566 for (t = 0; t < TXG_SIZE; t++) { 567 space_map_create(&msp->ms_allocmap[t], sm->sm_start, 568 sm->sm_size, sm->sm_shift, sm->sm_lock); 569 space_map_create(&msp->ms_freemap[t], sm->sm_start, 570 sm->sm_size, sm->sm_shift, sm->sm_lock); 571 } 572 vdev_space_update(vd, sm->sm_size, 0); 573 } 574 575 vdev_space_update(vd, 0, smosync->smo_alloc - smo->smo_alloc); 576 577 ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0); 578 ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0); 579 580 /* 581 * If there's a space_map_load() in progress, wait for it to complete 582 * so that we have a consistent view of the in-core space map. 583 * Then, add everything we freed in this txg to the map. 584 */ 585 space_map_load_wait(sm); 586 space_map_vacate(freed_map, sm->sm_loaded ? space_map_free : NULL, sm); 587 588 *smo = *smosync; 589 590 /* 591 * If the map is loaded but no longer active, evict it as soon as all 592 * future allocations have synced. (If we unloaded it now and then 593 * loaded a moment later, the map wouldn't reflect those allocations.) 594 */ 595 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 596 int evictable = 1; 597 598 for (t = 1; t < TXG_CONCURRENT_STATES; t++) 599 if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space) 600 evictable = 0; 601 602 if (evictable) 603 space_map_unload(sm); 604 } 605 606 metaslab_group_sort(mg, msp, metaslab_weight(msp)); 607 608 mutex_exit(&msp->ms_lock); 609 } 610 611 static uint64_t 612 metaslab_distance(metaslab_t *msp, dva_t *dva) 613 { 614 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; 615 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; 616 uint64_t start = msp->ms_map.sm_start >> ms_shift; 617 618 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 619 return (1ULL << 63); 620 621 if (offset < start) 622 return ((start - offset) << ms_shift); 623 if (offset > start) 624 return ((offset - start) << ms_shift); 625 return (0); 626 } 627 628 static uint64_t 629 metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg, 630 uint64_t min_distance, dva_t *dva, int d) 631 { 632 metaslab_t *msp = NULL; 633 uint64_t offset = -1ULL; 634 avl_tree_t *t = &mg->mg_metaslab_tree; 635 uint64_t activation_weight; 636 uint64_t target_distance; 637 int i; 638 639 activation_weight = METASLAB_WEIGHT_PRIMARY; 640 for (i = 0; i < d; i++) 641 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) 642 activation_weight = METASLAB_WEIGHT_SECONDARY; 643 644 for (;;) { 645 mutex_enter(&mg->mg_lock); 646 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) { 647 if (msp->ms_weight < size) { 648 mutex_exit(&mg->mg_lock); 649 return (-1ULL); 650 } 651 652 if (activation_weight == METASLAB_WEIGHT_PRIMARY) 653 break; 654 655 target_distance = min_distance + 656 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1); 657 658 for (i = 0; i < d; i++) 659 if (metaslab_distance(msp, &dva[i]) < 660 target_distance) 661 break; 662 if (i == d) 663 break; 664 } 665 mutex_exit(&mg->mg_lock); 666 if (msp == NULL) 667 return (-1ULL); 668 669 mutex_enter(&msp->ms_lock); 670 671 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) && 672 activation_weight == METASLAB_WEIGHT_PRIMARY) { 673 metaslab_passivate(msp, 674 msp->ms_weight & ~METASLAB_ACTIVE_MASK); 675 mutex_exit(&msp->ms_lock); 676 continue; 677 } 678 679 if (metaslab_activate(msp, activation_weight) != 0) { 680 mutex_exit(&msp->ms_lock); 681 continue; 682 } 683 684 if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL) 685 break; 686 687 metaslab_passivate(msp, size - 1); 688 689 mutex_exit(&msp->ms_lock); 690 } 691 692 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0) 693 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 694 695 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size); 696 697 mutex_exit(&msp->ms_lock); 698 699 return (offset); 700 } 701 702 /* 703 * Allocate a block for the specified i/o. 704 */ 705 static int 706 metaslab_alloc_dva(spa_t *spa, uint64_t psize, dva_t *dva, int d, 707 dva_t *hintdva, uint64_t txg, boolean_t hintdva_avoid) 708 { 709 metaslab_group_t *mg, *rotor; 710 metaslab_class_t *mc; 711 vdev_t *vd; 712 int dshift = 3; 713 int all_zero; 714 uint64_t offset = -1ULL; 715 uint64_t asize; 716 uint64_t distance; 717 718 ASSERT(!DVA_IS_VALID(&dva[d])); 719 720 mc = spa_metaslab_class_select(spa); 721 722 /* 723 * Start at the rotor and loop through all mgs until we find something. 724 * Note that there's no locking on mc_rotor or mc_allocated because 725 * nothing actually breaks if we miss a few updates -- we just won't 726 * allocate quite as evenly. It all balances out over time. 727 * 728 * If we are doing ditto or log blocks, try to spread them across 729 * consecutive vdevs. If we're forced to reuse a vdev before we've 730 * allocated all of our ditto blocks, then try and spread them out on 731 * that vdev as much as possible. If it turns out to not be possible, 732 * gradually lower our standards until anything becomes acceptable. 733 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 734 * gives us hope of containing our fault domains to something we're 735 * able to reason about. Otherwise, any two top-level vdev failures 736 * will guarantee the loss of data. With consecutive allocation, 737 * only two adjacent top-level vdev failures will result in data loss. 738 * 739 * If we are doing gang blocks (hintdva is non-NULL), try to keep 740 * ourselves on the same vdev as our gang block header. That 741 * way, we can hope for locality in vdev_cache, plus it makes our 742 * fault domains something tractable. 743 */ 744 if (hintdva) { 745 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 746 if (hintdva_avoid) 747 mg = vd->vdev_mg->mg_next; 748 else 749 mg = vd->vdev_mg; 750 } else if (d != 0) { 751 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 752 mg = vd->vdev_mg->mg_next; 753 } else { 754 mg = mc->mc_rotor; 755 } 756 rotor = mg; 757 758 top: 759 all_zero = B_TRUE; 760 do { 761 vd = mg->mg_vd; 762 763 distance = vd->vdev_asize >> dshift; 764 if (distance <= (1ULL << vd->vdev_ms_shift)) 765 distance = 0; 766 else 767 all_zero = B_FALSE; 768 769 asize = vdev_psize_to_asize(vd, psize); 770 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 771 772 offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d); 773 if (offset != -1ULL) { 774 /* 775 * If we've just selected this metaslab group, 776 * figure out whether the corresponding vdev is 777 * over- or under-used relative to the pool, 778 * and set an allocation bias to even it out. 779 */ 780 if (mc->mc_allocated == 0) { 781 vdev_stat_t *vs = &vd->vdev_stat; 782 uint64_t alloc, space; 783 int64_t vu, su; 784 785 alloc = spa_get_alloc(spa); 786 space = spa_get_space(spa); 787 788 /* 789 * Determine percent used in units of 0..1024. 790 * (This is just to avoid floating point.) 791 */ 792 vu = (vs->vs_alloc << 10) / (vs->vs_space + 1); 793 su = (alloc << 10) / (space + 1); 794 795 /* 796 * Bias by at most +/- 25% of the aliquot. 797 */ 798 mg->mg_bias = ((su - vu) * 799 (int64_t)mg->mg_aliquot) / (1024 * 4); 800 } 801 802 if (atomic_add_64_nv(&mc->mc_allocated, asize) >= 803 mg->mg_aliquot + mg->mg_bias) { 804 mc->mc_rotor = mg->mg_next; 805 mc->mc_allocated = 0; 806 } 807 808 DVA_SET_VDEV(&dva[d], vd->vdev_id); 809 DVA_SET_OFFSET(&dva[d], offset); 810 DVA_SET_GANG(&dva[d], 0); 811 DVA_SET_ASIZE(&dva[d], asize); 812 813 return (0); 814 } 815 mc->mc_rotor = mg->mg_next; 816 mc->mc_allocated = 0; 817 } while ((mg = mg->mg_next) != rotor); 818 819 if (!all_zero) { 820 dshift++; 821 ASSERT(dshift < 64); 822 goto top; 823 } 824 825 bzero(&dva[d], sizeof (dva_t)); 826 827 return (ENOSPC); 828 } 829 830 /* 831 * Free the block represented by DVA in the context of the specified 832 * transaction group. 833 */ 834 static void 835 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now) 836 { 837 uint64_t vdev = DVA_GET_VDEV(dva); 838 uint64_t offset = DVA_GET_OFFSET(dva); 839 uint64_t size = DVA_GET_ASIZE(dva); 840 vdev_t *vd; 841 metaslab_t *msp; 842 843 ASSERT(DVA_IS_VALID(dva)); 844 845 if (txg > spa_freeze_txg(spa)) 846 return; 847 848 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 849 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 850 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu", 851 (u_longlong_t)vdev, (u_longlong_t)offset); 852 ASSERT(0); 853 return; 854 } 855 856 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 857 858 if (DVA_GET_GANG(dva)) 859 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 860 861 mutex_enter(&msp->ms_lock); 862 863 if (now) { 864 space_map_remove(&msp->ms_allocmap[txg & TXG_MASK], 865 offset, size); 866 space_map_free(&msp->ms_map, offset, size); 867 } else { 868 if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0) 869 vdev_dirty(vd, VDD_METASLAB, msp, txg); 870 space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size); 871 } 872 873 mutex_exit(&msp->ms_lock); 874 } 875 876 /* 877 * Intent log support: upon opening the pool after a crash, notify the SPA 878 * of blocks that the intent log has allocated for immediate write, but 879 * which are still considered free by the SPA because the last transaction 880 * group didn't commit yet. 881 */ 882 static int 883 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 884 { 885 uint64_t vdev = DVA_GET_VDEV(dva); 886 uint64_t offset = DVA_GET_OFFSET(dva); 887 uint64_t size = DVA_GET_ASIZE(dva); 888 vdev_t *vd; 889 metaslab_t *msp; 890 int error; 891 892 ASSERT(DVA_IS_VALID(dva)); 893 894 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 895 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) 896 return (ENXIO); 897 898 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 899 900 if (DVA_GET_GANG(dva)) 901 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 902 903 mutex_enter(&msp->ms_lock); 904 905 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY); 906 if (error) { 907 mutex_exit(&msp->ms_lock); 908 return (error); 909 } 910 911 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0) 912 vdev_dirty(vd, VDD_METASLAB, msp, txg); 913 914 space_map_claim(&msp->ms_map, offset, size); 915 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size); 916 917 mutex_exit(&msp->ms_lock); 918 919 return (0); 920 } 921 922 int 923 metaslab_alloc(spa_t *spa, uint64_t psize, blkptr_t *bp, int ndvas, 924 uint64_t txg, blkptr_t *hintbp, boolean_t hintbp_avoid) 925 { 926 dva_t *dva = bp->blk_dva; 927 dva_t *hintdva = hintbp->blk_dva; 928 int d; 929 int error = 0; 930 931 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 932 ASSERT(BP_GET_NDVAS(bp) == 0); 933 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 934 935 for (d = 0; d < ndvas; d++) { 936 error = metaslab_alloc_dva(spa, psize, dva, d, hintdva, 937 txg, hintbp_avoid); 938 if (error) { 939 for (d--; d >= 0; d--) { 940 metaslab_free_dva(spa, &dva[d], txg, B_TRUE); 941 bzero(&dva[d], sizeof (dva_t)); 942 } 943 return (error); 944 } 945 } 946 ASSERT(error == 0); 947 ASSERT(BP_GET_NDVAS(bp) == ndvas); 948 949 return (0); 950 } 951 952 void 953 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 954 { 955 const dva_t *dva = bp->blk_dva; 956 int ndvas = BP_GET_NDVAS(bp); 957 int d; 958 959 ASSERT(!BP_IS_HOLE(bp)); 960 961 for (d = 0; d < ndvas; d++) 962 metaslab_free_dva(spa, &dva[d], txg, now); 963 } 964 965 int 966 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 967 { 968 const dva_t *dva = bp->blk_dva; 969 int ndvas = BP_GET_NDVAS(bp); 970 int d, error; 971 int last_error = 0; 972 973 ASSERT(!BP_IS_HOLE(bp)); 974 975 for (d = 0; d < ndvas; d++) 976 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0) 977 last_error = error; 978 979 return (last_error); 980 } 981