1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio.h> 36 37 /* 38 * ========================================================================== 39 * Metaslab classes 40 * ========================================================================== 41 */ 42 metaslab_class_t * 43 metaslab_class_create(void) 44 { 45 metaslab_class_t *mc; 46 47 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); 48 49 mc->mc_rotor = NULL; 50 51 return (mc); 52 } 53 54 void 55 metaslab_class_destroy(metaslab_class_t *mc) 56 { 57 metaslab_group_t *mg; 58 59 while ((mg = mc->mc_rotor) != NULL) { 60 metaslab_class_remove(mc, mg); 61 metaslab_group_destroy(mg); 62 } 63 64 kmem_free(mc, sizeof (metaslab_class_t)); 65 } 66 67 void 68 metaslab_class_add(metaslab_class_t *mc, metaslab_group_t *mg) 69 { 70 metaslab_group_t *mgprev, *mgnext; 71 72 ASSERT(mg->mg_class == NULL); 73 74 if ((mgprev = mc->mc_rotor) == NULL) { 75 mg->mg_prev = mg; 76 mg->mg_next = mg; 77 } else { 78 mgnext = mgprev->mg_next; 79 mg->mg_prev = mgprev; 80 mg->mg_next = mgnext; 81 mgprev->mg_next = mg; 82 mgnext->mg_prev = mg; 83 } 84 mc->mc_rotor = mg; 85 mg->mg_class = mc; 86 } 87 88 void 89 metaslab_class_remove(metaslab_class_t *mc, metaslab_group_t *mg) 90 { 91 metaslab_group_t *mgprev, *mgnext; 92 93 ASSERT(mg->mg_class == mc); 94 95 mgprev = mg->mg_prev; 96 mgnext = mg->mg_next; 97 98 if (mg == mgnext) { 99 mc->mc_rotor = NULL; 100 } else { 101 mc->mc_rotor = mgnext; 102 mgprev->mg_next = mgnext; 103 mgnext->mg_prev = mgprev; 104 } 105 106 mg->mg_prev = NULL; 107 mg->mg_next = NULL; 108 mg->mg_class = NULL; 109 } 110 111 /* 112 * ========================================================================== 113 * Metaslab groups 114 * ========================================================================== 115 */ 116 static int 117 metaslab_compare(const void *x1, const void *x2) 118 { 119 const metaslab_t *m1 = x1; 120 const metaslab_t *m2 = x2; 121 122 if (m1->ms_weight < m2->ms_weight) 123 return (1); 124 if (m1->ms_weight > m2->ms_weight) 125 return (-1); 126 127 /* 128 * If the weights are identical, use the offset to force uniqueness. 129 */ 130 if (m1->ms_map.sm_start < m2->ms_map.sm_start) 131 return (-1); 132 if (m1->ms_map.sm_start > m2->ms_map.sm_start) 133 return (1); 134 135 ASSERT3P(m1, ==, m2); 136 137 return (0); 138 } 139 140 metaslab_group_t * 141 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) 142 { 143 metaslab_group_t *mg; 144 145 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); 146 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 147 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 148 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node)); 149 mg->mg_aliquot = 2ULL << 20; /* XXX -- tweak me */ 150 mg->mg_vd = vd; 151 metaslab_class_add(mc, mg); 152 153 return (mg); 154 } 155 156 void 157 metaslab_group_destroy(metaslab_group_t *mg) 158 { 159 avl_destroy(&mg->mg_metaslab_tree); 160 mutex_destroy(&mg->mg_lock); 161 kmem_free(mg, sizeof (metaslab_group_t)); 162 } 163 164 static void 165 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 166 { 167 mutex_enter(&mg->mg_lock); 168 ASSERT(msp->ms_group == NULL); 169 msp->ms_group = mg; 170 msp->ms_weight = 0; 171 avl_add(&mg->mg_metaslab_tree, msp); 172 mutex_exit(&mg->mg_lock); 173 } 174 175 static void 176 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 177 { 178 mutex_enter(&mg->mg_lock); 179 ASSERT(msp->ms_group == mg); 180 avl_remove(&mg->mg_metaslab_tree, msp); 181 msp->ms_group = NULL; 182 mutex_exit(&mg->mg_lock); 183 } 184 185 static void 186 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 187 { 188 ASSERT(MUTEX_HELD(&msp->ms_lock)); 189 190 mutex_enter(&mg->mg_lock); 191 ASSERT(msp->ms_group == mg); 192 avl_remove(&mg->mg_metaslab_tree, msp); 193 msp->ms_weight = weight; 194 avl_add(&mg->mg_metaslab_tree, msp); 195 mutex_exit(&mg->mg_lock); 196 } 197 198 /* 199 * ========================================================================== 200 * The first-fit block allocator 201 * ========================================================================== 202 */ 203 static void 204 metaslab_ff_load(space_map_t *sm) 205 { 206 ASSERT(sm->sm_ppd == NULL); 207 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP); 208 } 209 210 static void 211 metaslab_ff_unload(space_map_t *sm) 212 { 213 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t)); 214 sm->sm_ppd = NULL; 215 } 216 217 static uint64_t 218 metaslab_ff_alloc(space_map_t *sm, uint64_t size) 219 { 220 avl_tree_t *t = &sm->sm_root; 221 uint64_t align = size & -size; 222 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1; 223 space_seg_t *ss, ssearch; 224 avl_index_t where; 225 226 ssearch.ss_start = *cursor; 227 ssearch.ss_end = *cursor + size; 228 229 ss = avl_find(t, &ssearch, &where); 230 if (ss == NULL) 231 ss = avl_nearest(t, where, AVL_AFTER); 232 233 while (ss != NULL) { 234 uint64_t offset = P2ROUNDUP(ss->ss_start, align); 235 236 if (offset + size <= ss->ss_end) { 237 *cursor = offset + size; 238 return (offset); 239 } 240 ss = AVL_NEXT(t, ss); 241 } 242 243 /* 244 * If we know we've searched the whole map (*cursor == 0), give up. 245 * Otherwise, reset the cursor to the beginning and try again. 246 */ 247 if (*cursor == 0) 248 return (-1ULL); 249 250 *cursor = 0; 251 return (metaslab_ff_alloc(sm, size)); 252 } 253 254 /* ARGSUSED */ 255 static void 256 metaslab_ff_claim(space_map_t *sm, uint64_t start, uint64_t size) 257 { 258 /* No need to update cursor */ 259 } 260 261 /* ARGSUSED */ 262 static void 263 metaslab_ff_free(space_map_t *sm, uint64_t start, uint64_t size) 264 { 265 /* No need to update cursor */ 266 } 267 268 static space_map_ops_t metaslab_ff_ops = { 269 metaslab_ff_load, 270 metaslab_ff_unload, 271 metaslab_ff_alloc, 272 metaslab_ff_claim, 273 metaslab_ff_free 274 }; 275 276 /* 277 * ========================================================================== 278 * Metaslabs 279 * ========================================================================== 280 */ 281 metaslab_t * 282 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo, 283 uint64_t start, uint64_t size, uint64_t txg) 284 { 285 vdev_t *vd = mg->mg_vd; 286 metaslab_t *msp; 287 288 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 289 290 msp->ms_smo_syncing = *smo; 291 292 /* 293 * We create the main space map here, but we don't create the 294 * allocmaps and freemaps until metaslab_sync_done(). This serves 295 * two purposes: it allows metaslab_sync_done() to detect the 296 * addition of new space; and for debugging, it ensures that we'd 297 * data fault on any attempt to use this metaslab before it's ready. 298 */ 299 space_map_create(&msp->ms_map, start, size, 300 vd->vdev_ashift, &msp->ms_lock); 301 302 metaslab_group_add(mg, msp); 303 304 /* 305 * If we're opening an existing pool (txg == 0) or creating 306 * a new one (txg == TXG_INITIAL), all space is available now. 307 * If we're adding space to an existing pool, the new space 308 * does not become available until after this txg has synced. 309 */ 310 if (txg <= TXG_INITIAL) 311 metaslab_sync_done(msp, 0); 312 313 if (txg != 0) { 314 /* 315 * The vdev is dirty, but the metaslab isn't -- it just needs 316 * to have metaslab_sync_done() invoked from vdev_sync_done(). 317 * [We could just dirty the metaslab, but that would cause us 318 * to allocate a space map object for it, which is wasteful 319 * and would mess up the locality logic in metaslab_weight().] 320 */ 321 ASSERT(TXG_CLEAN(txg) == spa_last_synced_txg(vd->vdev_spa)); 322 vdev_dirty(vd, 0, NULL, txg); 323 vdev_dirty(vd, VDD_METASLAB, msp, TXG_CLEAN(txg)); 324 } 325 326 return (msp); 327 } 328 329 void 330 metaslab_fini(metaslab_t *msp) 331 { 332 metaslab_group_t *mg = msp->ms_group; 333 int t; 334 335 vdev_space_update(mg->mg_vd, -msp->ms_map.sm_size, 336 -msp->ms_smo.smo_alloc); 337 338 metaslab_group_remove(mg, msp); 339 340 mutex_enter(&msp->ms_lock); 341 342 space_map_unload(&msp->ms_map); 343 space_map_destroy(&msp->ms_map); 344 345 for (t = 0; t < TXG_SIZE; t++) { 346 space_map_destroy(&msp->ms_allocmap[t]); 347 space_map_destroy(&msp->ms_freemap[t]); 348 } 349 350 mutex_exit(&msp->ms_lock); 351 352 kmem_free(msp, sizeof (metaslab_t)); 353 } 354 355 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63) 356 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62) 357 #define METASLAB_ACTIVE_MASK \ 358 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY) 359 #define METASLAB_SMO_BONUS_MULTIPLIER 2 360 361 static uint64_t 362 metaslab_weight(metaslab_t *msp) 363 { 364 metaslab_group_t *mg = msp->ms_group; 365 space_map_t *sm = &msp->ms_map; 366 space_map_obj_t *smo = &msp->ms_smo; 367 vdev_t *vd = mg->mg_vd; 368 uint64_t weight, space; 369 370 ASSERT(MUTEX_HELD(&msp->ms_lock)); 371 372 /* 373 * The baseline weight is the metaslab's free space. 374 */ 375 space = sm->sm_size - smo->smo_alloc; 376 weight = space; 377 378 /* 379 * Modern disks have uniform bit density and constant angular velocity. 380 * Therefore, the outer recording zones are faster (higher bandwidth) 381 * than the inner zones by the ratio of outer to inner track diameter, 382 * which is typically around 2:1. We account for this by assigning 383 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 384 * In effect, this means that we'll select the metaslab with the most 385 * free bandwidth rather than simply the one with the most free space. 386 */ 387 weight = 2 * weight - 388 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count; 389 ASSERT(weight >= space && weight <= 2 * space); 390 391 /* 392 * For locality, assign higher weight to metaslabs we've used before. 393 */ 394 if (smo->smo_object != 0) 395 weight *= METASLAB_SMO_BONUS_MULTIPLIER; 396 ASSERT(weight >= space && 397 weight <= 2 * METASLAB_SMO_BONUS_MULTIPLIER * space); 398 399 /* 400 * If this metaslab is one we're actively using, adjust its weight to 401 * make it preferable to any inactive metaslab so we'll polish it off. 402 */ 403 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 404 405 return (weight); 406 } 407 408 static int 409 metaslab_activate(metaslab_t *msp, uint64_t activation_weight) 410 { 411 space_map_t *sm = &msp->ms_map; 412 413 ASSERT(MUTEX_HELD(&msp->ms_lock)); 414 415 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 416 int error = space_map_load(sm, &metaslab_ff_ops, 417 SM_FREE, &msp->ms_smo, 418 msp->ms_group->mg_vd->vdev_spa->spa_meta_objset); 419 if (error) { 420 metaslab_group_sort(msp->ms_group, msp, 0); 421 return (error); 422 } 423 metaslab_group_sort(msp->ms_group, msp, 424 msp->ms_weight | activation_weight); 425 } 426 ASSERT(sm->sm_loaded); 427 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 428 429 return (0); 430 } 431 432 static void 433 metaslab_passivate(metaslab_t *msp, uint64_t size) 434 { 435 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size)); 436 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); 437 } 438 439 /* 440 * Write a metaslab to disk in the context of the specified transaction group. 441 */ 442 void 443 metaslab_sync(metaslab_t *msp, uint64_t txg) 444 { 445 vdev_t *vd = msp->ms_group->mg_vd; 446 spa_t *spa = vd->vdev_spa; 447 objset_t *mos = spa->spa_meta_objset; 448 space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK]; 449 space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK]; 450 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 451 space_map_t *sm = &msp->ms_map; 452 space_map_obj_t *smo = &msp->ms_smo_syncing; 453 dmu_buf_t *db; 454 dmu_tx_t *tx; 455 int t; 456 457 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 458 459 /* 460 * The only state that can actually be changing concurrently with 461 * metaslab_sync() is the metaslab's ms_map. No other thread can 462 * be modifying this txg's allocmap, freemap, freed_map, or smo. 463 * Therefore, we only hold ms_lock to satify space_map ASSERTs. 464 * We drop it whenever we call into the DMU, because the DMU 465 * can call down to us (e.g. via zio_free()) at any time. 466 */ 467 mutex_enter(&msp->ms_lock); 468 469 if (smo->smo_object == 0) { 470 ASSERT(smo->smo_objsize == 0); 471 ASSERT(smo->smo_alloc == 0); 472 mutex_exit(&msp->ms_lock); 473 smo->smo_object = dmu_object_alloc(mos, 474 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 475 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 476 ASSERT(smo->smo_object != 0); 477 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 478 (sm->sm_start >> vd->vdev_ms_shift), 479 sizeof (uint64_t), &smo->smo_object, tx); 480 mutex_enter(&msp->ms_lock); 481 } 482 483 space_map_walk(freemap, space_map_add, freed_map); 484 485 if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >= 486 2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) { 487 /* 488 * The in-core space map representation is twice as compact 489 * as the on-disk one, so it's time to condense the latter 490 * by generating a pure allocmap from first principles. 491 * 492 * This metaslab is 100% allocated, 493 * minus the content of the in-core map (sm), 494 * minus what's been freed this txg (freed_map), 495 * minus allocations from txgs in the future 496 * (because they haven't been committed yet). 497 */ 498 space_map_vacate(allocmap, NULL, NULL); 499 space_map_vacate(freemap, NULL, NULL); 500 501 space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size); 502 503 space_map_walk(sm, space_map_remove, allocmap); 504 space_map_walk(freed_map, space_map_remove, allocmap); 505 506 for (t = 1; t < TXG_CONCURRENT_STATES; t++) 507 space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK], 508 space_map_remove, allocmap); 509 510 mutex_exit(&msp->ms_lock); 511 space_map_truncate(smo, mos, tx); 512 mutex_enter(&msp->ms_lock); 513 } 514 515 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx); 516 space_map_sync(freemap, SM_FREE, smo, mos, tx); 517 518 mutex_exit(&msp->ms_lock); 519 520 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 521 dmu_buf_will_dirty(db, tx); 522 ASSERT3U(db->db_size, ==, sizeof (*smo)); 523 bcopy(smo, db->db_data, db->db_size); 524 dmu_buf_rele(db, FTAG); 525 526 dmu_tx_commit(tx); 527 } 528 529 /* 530 * Called after a transaction group has completely synced to mark 531 * all of the metaslab's free space as usable. 532 */ 533 void 534 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 535 { 536 space_map_obj_t *smo = &msp->ms_smo; 537 space_map_obj_t *smosync = &msp->ms_smo_syncing; 538 space_map_t *sm = &msp->ms_map; 539 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 540 metaslab_group_t *mg = msp->ms_group; 541 vdev_t *vd = mg->mg_vd; 542 int t; 543 544 mutex_enter(&msp->ms_lock); 545 546 /* 547 * If this metaslab is just becoming available, initialize its 548 * allocmaps and freemaps and add its capacity to the vdev. 549 */ 550 if (freed_map->sm_size == 0) { 551 for (t = 0; t < TXG_SIZE; t++) { 552 space_map_create(&msp->ms_allocmap[t], sm->sm_start, 553 sm->sm_size, sm->sm_shift, sm->sm_lock); 554 space_map_create(&msp->ms_freemap[t], sm->sm_start, 555 sm->sm_size, sm->sm_shift, sm->sm_lock); 556 } 557 vdev_space_update(vd, sm->sm_size, 0); 558 } 559 560 vdev_space_update(vd, 0, smosync->smo_alloc - smo->smo_alloc); 561 562 ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0); 563 ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0); 564 565 /* 566 * If there's a space_map_load() in progress, wait for it to complete 567 * so that we have a consistent view of the in-core space map. 568 * Then, add everything we freed in this txg to the map. 569 */ 570 space_map_load_wait(sm); 571 space_map_vacate(freed_map, sm->sm_loaded ? space_map_free : NULL, sm); 572 573 *smo = *smosync; 574 575 /* 576 * If the map is loaded but no longer active, evict it as soon as all 577 * future allocations have synced. (If we unloaded it now and then 578 * loaded a moment later, the map wouldn't reflect those allocations.) 579 */ 580 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 581 int evictable = 1; 582 583 for (t = 1; t < TXG_CONCURRENT_STATES; t++) 584 if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space) 585 evictable = 0; 586 587 if (evictable) 588 space_map_unload(sm); 589 } 590 591 metaslab_group_sort(mg, msp, metaslab_weight(msp)); 592 593 mutex_exit(&msp->ms_lock); 594 } 595 596 static uint64_t 597 metaslab_distance(metaslab_t *msp, dva_t *dva) 598 { 599 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; 600 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; 601 uint64_t start = msp->ms_map.sm_start >> ms_shift; 602 603 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 604 return (1ULL << 63); 605 606 if (offset < start) 607 return ((start - offset) << ms_shift); 608 if (offset > start) 609 return ((offset - start) << ms_shift); 610 return (0); 611 } 612 613 static uint64_t 614 metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg, 615 uint64_t min_distance, dva_t *dva, int d) 616 { 617 metaslab_t *msp = NULL; 618 uint64_t offset = -1ULL; 619 avl_tree_t *t = &mg->mg_metaslab_tree; 620 uint64_t activation_weight; 621 uint64_t target_distance; 622 int i; 623 624 activation_weight = METASLAB_WEIGHT_PRIMARY; 625 for (i = 0; i < d; i++) 626 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) 627 activation_weight = METASLAB_WEIGHT_SECONDARY; 628 629 for (;;) { 630 mutex_enter(&mg->mg_lock); 631 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) { 632 if (msp->ms_weight < size) { 633 mutex_exit(&mg->mg_lock); 634 return (-1ULL); 635 } 636 637 if (activation_weight == METASLAB_WEIGHT_PRIMARY) 638 break; 639 640 target_distance = min_distance + 641 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1); 642 643 for (i = 0; i < d; i++) 644 if (metaslab_distance(msp, &dva[i]) < 645 target_distance) 646 break; 647 if (i == d) 648 break; 649 } 650 mutex_exit(&mg->mg_lock); 651 if (msp == NULL) 652 return (-1ULL); 653 654 mutex_enter(&msp->ms_lock); 655 656 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) && 657 activation_weight == METASLAB_WEIGHT_PRIMARY) { 658 metaslab_passivate(msp, 659 (msp->ms_weight & ~METASLAB_ACTIVE_MASK) / 660 METASLAB_SMO_BONUS_MULTIPLIER); 661 mutex_exit(&msp->ms_lock); 662 continue; 663 } 664 665 if (metaslab_activate(msp, activation_weight) != 0) { 666 mutex_exit(&msp->ms_lock); 667 continue; 668 } 669 670 if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL) 671 break; 672 673 metaslab_passivate(msp, size - 1); 674 675 mutex_exit(&msp->ms_lock); 676 } 677 678 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0) 679 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 680 681 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size); 682 683 mutex_exit(&msp->ms_lock); 684 685 return (offset); 686 } 687 688 /* 689 * Allocate a block for the specified i/o. 690 */ 691 static int 692 metaslab_alloc_dva(spa_t *spa, uint64_t psize, dva_t *dva, int d, 693 dva_t *hintdva, uint64_t txg) 694 { 695 metaslab_group_t *mg, *rotor; 696 metaslab_class_t *mc; 697 vdev_t *vd; 698 int dshift = 3; 699 int all_zero; 700 uint64_t offset = -1ULL; 701 uint64_t asize; 702 uint64_t distance; 703 704 ASSERT(!DVA_IS_VALID(&dva[d])); 705 706 mc = spa_metaslab_class_select(spa); 707 708 /* 709 * Start at the rotor and loop through all mgs until we find something. 710 * Note that there's no locking on mc_rotor or mc_allocated because 711 * nothing actually breaks if we miss a few updates -- we just won't 712 * allocate quite as evenly. It all balances out over time. 713 * 714 * If we are doing ditto blocks, try to spread them across consecutive 715 * vdevs. If we're forced to reuse a vdev before we've allocated 716 * all of our ditto blocks, then try and spread them out on that 717 * vdev as much as possible. If it turns out to not be possible, 718 * gradually lower our standards until anything becomes acceptable. 719 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 720 * gives us hope of containing our fault domains to something we're 721 * able to reason about. Otherwise, any two top-level vdev failures 722 * will guarantee the loss of data. With consecutive allocation, 723 * only two adjacent top-level vdev failures will result in data loss. 724 * 725 * If we are doing gang blocks (hintdva is non-NULL), try to keep 726 * ourselves on the same vdev as our gang block header. That 727 * way, we can hope for locality in vdev_cache, plus it makes our 728 * fault domains something tractable. 729 */ 730 if (hintdva) { 731 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 732 mg = vd->vdev_mg; 733 } else if (d != 0) { 734 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 735 mg = vd->vdev_mg->mg_next; 736 } else { 737 mg = mc->mc_rotor; 738 } 739 rotor = mg; 740 741 top: 742 all_zero = B_TRUE; 743 do { 744 vd = mg->mg_vd; 745 746 distance = vd->vdev_asize >> dshift; 747 if (distance <= (1ULL << vd->vdev_ms_shift)) 748 distance = 0; 749 else 750 all_zero = B_FALSE; 751 752 asize = vdev_psize_to_asize(vd, psize); 753 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 754 755 offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d); 756 if (offset != -1ULL) { 757 /* 758 * If we've just selected this metaslab group, 759 * figure out whether the corresponding vdev is 760 * over- or under-used relative to the pool, 761 * and set an allocation bias to even it out. 762 */ 763 if (mc->mc_allocated == 0) { 764 vdev_stat_t *vs = &vd->vdev_stat; 765 uint64_t alloc, space; 766 int64_t vu, su; 767 768 alloc = spa_get_alloc(spa); 769 space = spa_get_space(spa); 770 771 /* 772 * Determine percent used in units of 0..1024. 773 * (This is just to avoid floating point.) 774 */ 775 vu = (vs->vs_alloc << 10) / (vs->vs_space + 1); 776 su = (alloc << 10) / (space + 1); 777 778 /* 779 * Bias by at most +/- 25% of the aliquot. 780 */ 781 mg->mg_bias = ((su - vu) * 782 (int64_t)mg->mg_aliquot) / (1024 * 4); 783 } 784 785 if (atomic_add_64_nv(&mc->mc_allocated, asize) >= 786 mg->mg_aliquot + mg->mg_bias) { 787 mc->mc_rotor = mg->mg_next; 788 mc->mc_allocated = 0; 789 } 790 791 DVA_SET_VDEV(&dva[d], vd->vdev_id); 792 DVA_SET_OFFSET(&dva[d], offset); 793 DVA_SET_GANG(&dva[d], 0); 794 DVA_SET_ASIZE(&dva[d], asize); 795 796 return (0); 797 } 798 mc->mc_rotor = mg->mg_next; 799 mc->mc_allocated = 0; 800 } while ((mg = mg->mg_next) != rotor); 801 802 if (!all_zero) { 803 dshift++; 804 ASSERT(dshift < 64); 805 goto top; 806 } 807 808 bzero(&dva[d], sizeof (dva_t)); 809 810 return (ENOSPC); 811 } 812 813 /* 814 * Free the block represented by DVA in the context of the specified 815 * transaction group. 816 */ 817 static void 818 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now) 819 { 820 uint64_t vdev = DVA_GET_VDEV(dva); 821 uint64_t offset = DVA_GET_OFFSET(dva); 822 uint64_t size = DVA_GET_ASIZE(dva); 823 vdev_t *vd; 824 metaslab_t *msp; 825 826 ASSERT(DVA_IS_VALID(dva)); 827 828 if (txg > spa_freeze_txg(spa)) 829 return; 830 831 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 832 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 833 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu", 834 (u_longlong_t)vdev, (u_longlong_t)offset); 835 ASSERT(0); 836 return; 837 } 838 839 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 840 841 if (DVA_GET_GANG(dva)) 842 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 843 844 mutex_enter(&msp->ms_lock); 845 846 if (now) { 847 space_map_remove(&msp->ms_allocmap[txg & TXG_MASK], 848 offset, size); 849 space_map_free(&msp->ms_map, offset, size); 850 } else { 851 if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0) 852 vdev_dirty(vd, VDD_METASLAB, msp, txg); 853 space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size); 854 } 855 856 mutex_exit(&msp->ms_lock); 857 } 858 859 /* 860 * Intent log support: upon opening the pool after a crash, notify the SPA 861 * of blocks that the intent log has allocated for immediate write, but 862 * which are still considered free by the SPA because the last transaction 863 * group didn't commit yet. 864 */ 865 static int 866 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 867 { 868 uint64_t vdev = DVA_GET_VDEV(dva); 869 uint64_t offset = DVA_GET_OFFSET(dva); 870 uint64_t size = DVA_GET_ASIZE(dva); 871 vdev_t *vd; 872 metaslab_t *msp; 873 int error; 874 875 ASSERT(DVA_IS_VALID(dva)); 876 877 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 878 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) 879 return (ENXIO); 880 881 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 882 883 if (DVA_GET_GANG(dva)) 884 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 885 886 mutex_enter(&msp->ms_lock); 887 888 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY); 889 if (error) { 890 mutex_exit(&msp->ms_lock); 891 return (error); 892 } 893 894 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0) 895 vdev_dirty(vd, VDD_METASLAB, msp, txg); 896 897 space_map_claim(&msp->ms_map, offset, size); 898 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size); 899 900 mutex_exit(&msp->ms_lock); 901 902 return (0); 903 } 904 905 int 906 metaslab_alloc(spa_t *spa, uint64_t psize, blkptr_t *bp, int ndvas, 907 uint64_t txg, blkptr_t *hintbp) 908 { 909 dva_t *dva = bp->blk_dva; 910 dva_t *hintdva = hintbp->blk_dva; 911 int d; 912 int error = 0; 913 914 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 915 ASSERT(BP_GET_NDVAS(bp) == 0); 916 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 917 918 for (d = 0; d < ndvas; d++) { 919 error = metaslab_alloc_dva(spa, psize, dva, d, hintdva, txg); 920 if (error) { 921 for (d--; d >= 0; d--) { 922 metaslab_free_dva(spa, &dva[d], txg, B_TRUE); 923 bzero(&dva[d], sizeof (dva_t)); 924 } 925 return (error); 926 } 927 } 928 ASSERT(error == 0); 929 ASSERT(BP_GET_NDVAS(bp) == ndvas); 930 931 return (0); 932 } 933 934 void 935 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 936 { 937 const dva_t *dva = bp->blk_dva; 938 int ndvas = BP_GET_NDVAS(bp); 939 int d; 940 941 ASSERT(!BP_IS_HOLE(bp)); 942 943 for (d = 0; d < ndvas; d++) 944 metaslab_free_dva(spa, &dva[d], txg, now); 945 } 946 947 int 948 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 949 { 950 const dva_t *dva = bp->blk_dva; 951 int ndvas = BP_GET_NDVAS(bp); 952 int d, error; 953 int last_error = 0; 954 955 ASSERT(!BP_IS_HOLE(bp)); 956 957 for (d = 0; d < ndvas; d++) 958 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0) 959 last_error = error; 960 961 return (last_error); 962 } 963