1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio.h> 36 37 uint64_t metaslab_aliquot = 512ULL << 10; 38 39 /* 40 * ========================================================================== 41 * Metaslab classes 42 * ========================================================================== 43 */ 44 metaslab_class_t * 45 metaslab_class_create(void) 46 { 47 metaslab_class_t *mc; 48 49 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); 50 51 mc->mc_rotor = NULL; 52 53 return (mc); 54 } 55 56 void 57 metaslab_class_destroy(metaslab_class_t *mc) 58 { 59 metaslab_group_t *mg; 60 61 while ((mg = mc->mc_rotor) != NULL) { 62 metaslab_class_remove(mc, mg); 63 metaslab_group_destroy(mg); 64 } 65 66 kmem_free(mc, sizeof (metaslab_class_t)); 67 } 68 69 void 70 metaslab_class_add(metaslab_class_t *mc, metaslab_group_t *mg) 71 { 72 metaslab_group_t *mgprev, *mgnext; 73 74 ASSERT(mg->mg_class == NULL); 75 76 if ((mgprev = mc->mc_rotor) == NULL) { 77 mg->mg_prev = mg; 78 mg->mg_next = mg; 79 } else { 80 mgnext = mgprev->mg_next; 81 mg->mg_prev = mgprev; 82 mg->mg_next = mgnext; 83 mgprev->mg_next = mg; 84 mgnext->mg_prev = mg; 85 } 86 mc->mc_rotor = mg; 87 mg->mg_class = mc; 88 } 89 90 void 91 metaslab_class_remove(metaslab_class_t *mc, metaslab_group_t *mg) 92 { 93 metaslab_group_t *mgprev, *mgnext; 94 95 ASSERT(mg->mg_class == mc); 96 97 mgprev = mg->mg_prev; 98 mgnext = mg->mg_next; 99 100 if (mg == mgnext) { 101 mc->mc_rotor = NULL; 102 } else { 103 mc->mc_rotor = mgnext; 104 mgprev->mg_next = mgnext; 105 mgnext->mg_prev = mgprev; 106 } 107 108 mg->mg_prev = NULL; 109 mg->mg_next = NULL; 110 mg->mg_class = NULL; 111 } 112 113 /* 114 * ========================================================================== 115 * Metaslab groups 116 * ========================================================================== 117 */ 118 static int 119 metaslab_compare(const void *x1, const void *x2) 120 { 121 const metaslab_t *m1 = x1; 122 const metaslab_t *m2 = x2; 123 124 if (m1->ms_weight < m2->ms_weight) 125 return (1); 126 if (m1->ms_weight > m2->ms_weight) 127 return (-1); 128 129 /* 130 * If the weights are identical, use the offset to force uniqueness. 131 */ 132 if (m1->ms_map.sm_start < m2->ms_map.sm_start) 133 return (-1); 134 if (m1->ms_map.sm_start > m2->ms_map.sm_start) 135 return (1); 136 137 ASSERT3P(m1, ==, m2); 138 139 return (0); 140 } 141 142 metaslab_group_t * 143 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) 144 { 145 metaslab_group_t *mg; 146 147 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); 148 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 149 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 150 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node)); 151 mg->mg_aliquot = metaslab_aliquot * MAX(1, vd->vdev_children); 152 mg->mg_vd = vd; 153 metaslab_class_add(mc, mg); 154 155 return (mg); 156 } 157 158 void 159 metaslab_group_destroy(metaslab_group_t *mg) 160 { 161 avl_destroy(&mg->mg_metaslab_tree); 162 mutex_destroy(&mg->mg_lock); 163 kmem_free(mg, sizeof (metaslab_group_t)); 164 } 165 166 static void 167 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 168 { 169 mutex_enter(&mg->mg_lock); 170 ASSERT(msp->ms_group == NULL); 171 msp->ms_group = mg; 172 msp->ms_weight = 0; 173 avl_add(&mg->mg_metaslab_tree, msp); 174 mutex_exit(&mg->mg_lock); 175 } 176 177 static void 178 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 179 { 180 mutex_enter(&mg->mg_lock); 181 ASSERT(msp->ms_group == mg); 182 avl_remove(&mg->mg_metaslab_tree, msp); 183 msp->ms_group = NULL; 184 mutex_exit(&mg->mg_lock); 185 } 186 187 static void 188 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 189 { 190 ASSERT(MUTEX_HELD(&msp->ms_lock)); 191 192 mutex_enter(&mg->mg_lock); 193 ASSERT(msp->ms_group == mg); 194 avl_remove(&mg->mg_metaslab_tree, msp); 195 msp->ms_weight = weight; 196 avl_add(&mg->mg_metaslab_tree, msp); 197 mutex_exit(&mg->mg_lock); 198 } 199 200 /* 201 * ========================================================================== 202 * The first-fit block allocator 203 * ========================================================================== 204 */ 205 static void 206 metaslab_ff_load(space_map_t *sm) 207 { 208 ASSERT(sm->sm_ppd == NULL); 209 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP); 210 } 211 212 static void 213 metaslab_ff_unload(space_map_t *sm) 214 { 215 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t)); 216 sm->sm_ppd = NULL; 217 } 218 219 static uint64_t 220 metaslab_ff_alloc(space_map_t *sm, uint64_t size) 221 { 222 avl_tree_t *t = &sm->sm_root; 223 uint64_t align = size & -size; 224 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1; 225 space_seg_t *ss, ssearch; 226 avl_index_t where; 227 228 ssearch.ss_start = *cursor; 229 ssearch.ss_end = *cursor + size; 230 231 ss = avl_find(t, &ssearch, &where); 232 if (ss == NULL) 233 ss = avl_nearest(t, where, AVL_AFTER); 234 235 while (ss != NULL) { 236 uint64_t offset = P2ROUNDUP(ss->ss_start, align); 237 238 if (offset + size <= ss->ss_end) { 239 *cursor = offset + size; 240 return (offset); 241 } 242 ss = AVL_NEXT(t, ss); 243 } 244 245 /* 246 * If we know we've searched the whole map (*cursor == 0), give up. 247 * Otherwise, reset the cursor to the beginning and try again. 248 */ 249 if (*cursor == 0) 250 return (-1ULL); 251 252 *cursor = 0; 253 return (metaslab_ff_alloc(sm, size)); 254 } 255 256 /* ARGSUSED */ 257 static void 258 metaslab_ff_claim(space_map_t *sm, uint64_t start, uint64_t size) 259 { 260 /* No need to update cursor */ 261 } 262 263 /* ARGSUSED */ 264 static void 265 metaslab_ff_free(space_map_t *sm, uint64_t start, uint64_t size) 266 { 267 /* No need to update cursor */ 268 } 269 270 static space_map_ops_t metaslab_ff_ops = { 271 metaslab_ff_load, 272 metaslab_ff_unload, 273 metaslab_ff_alloc, 274 metaslab_ff_claim, 275 metaslab_ff_free 276 }; 277 278 /* 279 * ========================================================================== 280 * Metaslabs 281 * ========================================================================== 282 */ 283 metaslab_t * 284 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo, 285 uint64_t start, uint64_t size, uint64_t txg) 286 { 287 vdev_t *vd = mg->mg_vd; 288 metaslab_t *msp; 289 290 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 291 292 msp->ms_smo_syncing = *smo; 293 294 /* 295 * We create the main space map here, but we don't create the 296 * allocmaps and freemaps until metaslab_sync_done(). This serves 297 * two purposes: it allows metaslab_sync_done() to detect the 298 * addition of new space; and for debugging, it ensures that we'd 299 * data fault on any attempt to use this metaslab before it's ready. 300 */ 301 space_map_create(&msp->ms_map, start, size, 302 vd->vdev_ashift, &msp->ms_lock); 303 304 metaslab_group_add(mg, msp); 305 306 /* 307 * If we're opening an existing pool (txg == 0) or creating 308 * a new one (txg == TXG_INITIAL), all space is available now. 309 * If we're adding space to an existing pool, the new space 310 * does not become available until after this txg has synced. 311 */ 312 if (txg <= TXG_INITIAL) 313 metaslab_sync_done(msp, 0); 314 315 if (txg != 0) { 316 /* 317 * The vdev is dirty, but the metaslab isn't -- it just needs 318 * to have metaslab_sync_done() invoked from vdev_sync_done(). 319 * [We could just dirty the metaslab, but that would cause us 320 * to allocate a space map object for it, which is wasteful 321 * and would mess up the locality logic in metaslab_weight().] 322 */ 323 ASSERT(TXG_CLEAN(txg) == spa_last_synced_txg(vd->vdev_spa)); 324 vdev_dirty(vd, 0, NULL, txg); 325 vdev_dirty(vd, VDD_METASLAB, msp, TXG_CLEAN(txg)); 326 } 327 328 return (msp); 329 } 330 331 void 332 metaslab_fini(metaslab_t *msp) 333 { 334 metaslab_group_t *mg = msp->ms_group; 335 int t; 336 337 vdev_space_update(mg->mg_vd, -msp->ms_map.sm_size, 338 -msp->ms_smo.smo_alloc); 339 340 metaslab_group_remove(mg, msp); 341 342 mutex_enter(&msp->ms_lock); 343 344 space_map_unload(&msp->ms_map); 345 space_map_destroy(&msp->ms_map); 346 347 for (t = 0; t < TXG_SIZE; t++) { 348 space_map_destroy(&msp->ms_allocmap[t]); 349 space_map_destroy(&msp->ms_freemap[t]); 350 } 351 352 mutex_exit(&msp->ms_lock); 353 354 kmem_free(msp, sizeof (metaslab_t)); 355 } 356 357 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63) 358 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62) 359 #define METASLAB_ACTIVE_MASK \ 360 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY) 361 #define METASLAB_SMO_BONUS_MULTIPLIER 2 362 363 static uint64_t 364 metaslab_weight(metaslab_t *msp) 365 { 366 metaslab_group_t *mg = msp->ms_group; 367 space_map_t *sm = &msp->ms_map; 368 space_map_obj_t *smo = &msp->ms_smo; 369 vdev_t *vd = mg->mg_vd; 370 uint64_t weight, space; 371 372 ASSERT(MUTEX_HELD(&msp->ms_lock)); 373 374 /* 375 * The baseline weight is the metaslab's free space. 376 */ 377 space = sm->sm_size - smo->smo_alloc; 378 weight = space; 379 380 /* 381 * Modern disks have uniform bit density and constant angular velocity. 382 * Therefore, the outer recording zones are faster (higher bandwidth) 383 * than the inner zones by the ratio of outer to inner track diameter, 384 * which is typically around 2:1. We account for this by assigning 385 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 386 * In effect, this means that we'll select the metaslab with the most 387 * free bandwidth rather than simply the one with the most free space. 388 */ 389 weight = 2 * weight - 390 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count; 391 ASSERT(weight >= space && weight <= 2 * space); 392 393 /* 394 * For locality, assign higher weight to metaslabs we've used before. 395 */ 396 if (smo->smo_object != 0) 397 weight *= METASLAB_SMO_BONUS_MULTIPLIER; 398 ASSERT(weight >= space && 399 weight <= 2 * METASLAB_SMO_BONUS_MULTIPLIER * space); 400 401 /* 402 * If this metaslab is one we're actively using, adjust its weight to 403 * make it preferable to any inactive metaslab so we'll polish it off. 404 */ 405 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 406 407 return (weight); 408 } 409 410 static int 411 metaslab_activate(metaslab_t *msp, uint64_t activation_weight) 412 { 413 space_map_t *sm = &msp->ms_map; 414 415 ASSERT(MUTEX_HELD(&msp->ms_lock)); 416 417 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 418 int error = space_map_load(sm, &metaslab_ff_ops, 419 SM_FREE, &msp->ms_smo, 420 msp->ms_group->mg_vd->vdev_spa->spa_meta_objset); 421 if (error) { 422 metaslab_group_sort(msp->ms_group, msp, 0); 423 return (error); 424 } 425 metaslab_group_sort(msp->ms_group, msp, 426 msp->ms_weight | activation_weight); 427 } 428 ASSERT(sm->sm_loaded); 429 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 430 431 return (0); 432 } 433 434 static void 435 metaslab_passivate(metaslab_t *msp, uint64_t size) 436 { 437 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size)); 438 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); 439 } 440 441 /* 442 * Write a metaslab to disk in the context of the specified transaction group. 443 */ 444 void 445 metaslab_sync(metaslab_t *msp, uint64_t txg) 446 { 447 vdev_t *vd = msp->ms_group->mg_vd; 448 spa_t *spa = vd->vdev_spa; 449 objset_t *mos = spa->spa_meta_objset; 450 space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK]; 451 space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK]; 452 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 453 space_map_t *sm = &msp->ms_map; 454 space_map_obj_t *smo = &msp->ms_smo_syncing; 455 dmu_buf_t *db; 456 dmu_tx_t *tx; 457 int t; 458 459 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 460 461 /* 462 * The only state that can actually be changing concurrently with 463 * metaslab_sync() is the metaslab's ms_map. No other thread can 464 * be modifying this txg's allocmap, freemap, freed_map, or smo. 465 * Therefore, we only hold ms_lock to satify space_map ASSERTs. 466 * We drop it whenever we call into the DMU, because the DMU 467 * can call down to us (e.g. via zio_free()) at any time. 468 */ 469 mutex_enter(&msp->ms_lock); 470 471 if (smo->smo_object == 0) { 472 ASSERT(smo->smo_objsize == 0); 473 ASSERT(smo->smo_alloc == 0); 474 mutex_exit(&msp->ms_lock); 475 smo->smo_object = dmu_object_alloc(mos, 476 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 477 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 478 ASSERT(smo->smo_object != 0); 479 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 480 (sm->sm_start >> vd->vdev_ms_shift), 481 sizeof (uint64_t), &smo->smo_object, tx); 482 mutex_enter(&msp->ms_lock); 483 } 484 485 space_map_walk(freemap, space_map_add, freed_map); 486 487 if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >= 488 2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) { 489 /* 490 * The in-core space map representation is twice as compact 491 * as the on-disk one, so it's time to condense the latter 492 * by generating a pure allocmap from first principles. 493 * 494 * This metaslab is 100% allocated, 495 * minus the content of the in-core map (sm), 496 * minus what's been freed this txg (freed_map), 497 * minus allocations from txgs in the future 498 * (because they haven't been committed yet). 499 */ 500 space_map_vacate(allocmap, NULL, NULL); 501 space_map_vacate(freemap, NULL, NULL); 502 503 space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size); 504 505 space_map_walk(sm, space_map_remove, allocmap); 506 space_map_walk(freed_map, space_map_remove, allocmap); 507 508 for (t = 1; t < TXG_CONCURRENT_STATES; t++) 509 space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK], 510 space_map_remove, allocmap); 511 512 mutex_exit(&msp->ms_lock); 513 space_map_truncate(smo, mos, tx); 514 mutex_enter(&msp->ms_lock); 515 } 516 517 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx); 518 space_map_sync(freemap, SM_FREE, smo, mos, tx); 519 520 mutex_exit(&msp->ms_lock); 521 522 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 523 dmu_buf_will_dirty(db, tx); 524 ASSERT3U(db->db_size, ==, sizeof (*smo)); 525 bcopy(smo, db->db_data, db->db_size); 526 dmu_buf_rele(db, FTAG); 527 528 dmu_tx_commit(tx); 529 } 530 531 /* 532 * Called after a transaction group has completely synced to mark 533 * all of the metaslab's free space as usable. 534 */ 535 void 536 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 537 { 538 space_map_obj_t *smo = &msp->ms_smo; 539 space_map_obj_t *smosync = &msp->ms_smo_syncing; 540 space_map_t *sm = &msp->ms_map; 541 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 542 metaslab_group_t *mg = msp->ms_group; 543 vdev_t *vd = mg->mg_vd; 544 int t; 545 546 mutex_enter(&msp->ms_lock); 547 548 /* 549 * If this metaslab is just becoming available, initialize its 550 * allocmaps and freemaps and add its capacity to the vdev. 551 */ 552 if (freed_map->sm_size == 0) { 553 for (t = 0; t < TXG_SIZE; t++) { 554 space_map_create(&msp->ms_allocmap[t], sm->sm_start, 555 sm->sm_size, sm->sm_shift, sm->sm_lock); 556 space_map_create(&msp->ms_freemap[t], sm->sm_start, 557 sm->sm_size, sm->sm_shift, sm->sm_lock); 558 } 559 vdev_space_update(vd, sm->sm_size, 0); 560 } 561 562 vdev_space_update(vd, 0, smosync->smo_alloc - smo->smo_alloc); 563 564 ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0); 565 ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0); 566 567 /* 568 * If there's a space_map_load() in progress, wait for it to complete 569 * so that we have a consistent view of the in-core space map. 570 * Then, add everything we freed in this txg to the map. 571 */ 572 space_map_load_wait(sm); 573 space_map_vacate(freed_map, sm->sm_loaded ? space_map_free : NULL, sm); 574 575 *smo = *smosync; 576 577 /* 578 * If the map is loaded but no longer active, evict it as soon as all 579 * future allocations have synced. (If we unloaded it now and then 580 * loaded a moment later, the map wouldn't reflect those allocations.) 581 */ 582 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 583 int evictable = 1; 584 585 for (t = 1; t < TXG_CONCURRENT_STATES; t++) 586 if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space) 587 evictable = 0; 588 589 if (evictable) 590 space_map_unload(sm); 591 } 592 593 metaslab_group_sort(mg, msp, metaslab_weight(msp)); 594 595 mutex_exit(&msp->ms_lock); 596 } 597 598 static uint64_t 599 metaslab_distance(metaslab_t *msp, dva_t *dva) 600 { 601 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; 602 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; 603 uint64_t start = msp->ms_map.sm_start >> ms_shift; 604 605 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 606 return (1ULL << 63); 607 608 if (offset < start) 609 return ((start - offset) << ms_shift); 610 if (offset > start) 611 return ((offset - start) << ms_shift); 612 return (0); 613 } 614 615 static uint64_t 616 metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg, 617 uint64_t min_distance, dva_t *dva, int d) 618 { 619 metaslab_t *msp = NULL; 620 uint64_t offset = -1ULL; 621 avl_tree_t *t = &mg->mg_metaslab_tree; 622 uint64_t activation_weight; 623 uint64_t target_distance; 624 int i; 625 626 activation_weight = METASLAB_WEIGHT_PRIMARY; 627 for (i = 0; i < d; i++) 628 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) 629 activation_weight = METASLAB_WEIGHT_SECONDARY; 630 631 for (;;) { 632 mutex_enter(&mg->mg_lock); 633 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) { 634 if (msp->ms_weight < size) { 635 mutex_exit(&mg->mg_lock); 636 return (-1ULL); 637 } 638 639 if (activation_weight == METASLAB_WEIGHT_PRIMARY) 640 break; 641 642 target_distance = min_distance + 643 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1); 644 645 for (i = 0; i < d; i++) 646 if (metaslab_distance(msp, &dva[i]) < 647 target_distance) 648 break; 649 if (i == d) 650 break; 651 } 652 mutex_exit(&mg->mg_lock); 653 if (msp == NULL) 654 return (-1ULL); 655 656 mutex_enter(&msp->ms_lock); 657 658 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) && 659 activation_weight == METASLAB_WEIGHT_PRIMARY) { 660 metaslab_passivate(msp, 661 (msp->ms_weight & ~METASLAB_ACTIVE_MASK) / 662 METASLAB_SMO_BONUS_MULTIPLIER); 663 mutex_exit(&msp->ms_lock); 664 continue; 665 } 666 667 if (metaslab_activate(msp, activation_weight) != 0) { 668 mutex_exit(&msp->ms_lock); 669 continue; 670 } 671 672 if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL) 673 break; 674 675 metaslab_passivate(msp, size - 1); 676 677 mutex_exit(&msp->ms_lock); 678 } 679 680 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0) 681 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 682 683 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size); 684 685 mutex_exit(&msp->ms_lock); 686 687 return (offset); 688 } 689 690 /* 691 * Allocate a block for the specified i/o. 692 */ 693 static int 694 metaslab_alloc_dva(spa_t *spa, uint64_t psize, dva_t *dva, int d, 695 dva_t *hintdva, uint64_t txg) 696 { 697 metaslab_group_t *mg, *rotor; 698 metaslab_class_t *mc; 699 vdev_t *vd; 700 int dshift = 3; 701 int all_zero; 702 uint64_t offset = -1ULL; 703 uint64_t asize; 704 uint64_t distance; 705 706 ASSERT(!DVA_IS_VALID(&dva[d])); 707 708 mc = spa_metaslab_class_select(spa); 709 710 /* 711 * Start at the rotor and loop through all mgs until we find something. 712 * Note that there's no locking on mc_rotor or mc_allocated because 713 * nothing actually breaks if we miss a few updates -- we just won't 714 * allocate quite as evenly. It all balances out over time. 715 * 716 * If we are doing ditto blocks, try to spread them across consecutive 717 * vdevs. If we're forced to reuse a vdev before we've allocated 718 * all of our ditto blocks, then try and spread them out on that 719 * vdev as much as possible. If it turns out to not be possible, 720 * gradually lower our standards until anything becomes acceptable. 721 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 722 * gives us hope of containing our fault domains to something we're 723 * able to reason about. Otherwise, any two top-level vdev failures 724 * will guarantee the loss of data. With consecutive allocation, 725 * only two adjacent top-level vdev failures will result in data loss. 726 * 727 * If we are doing gang blocks (hintdva is non-NULL), try to keep 728 * ourselves on the same vdev as our gang block header. That 729 * way, we can hope for locality in vdev_cache, plus it makes our 730 * fault domains something tractable. 731 */ 732 if (hintdva) { 733 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 734 mg = vd->vdev_mg; 735 } else if (d != 0) { 736 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 737 mg = vd->vdev_mg->mg_next; 738 } else { 739 mg = mc->mc_rotor; 740 } 741 rotor = mg; 742 743 top: 744 all_zero = B_TRUE; 745 do { 746 vd = mg->mg_vd; 747 748 distance = vd->vdev_asize >> dshift; 749 if (distance <= (1ULL << vd->vdev_ms_shift)) 750 distance = 0; 751 else 752 all_zero = B_FALSE; 753 754 asize = vdev_psize_to_asize(vd, psize); 755 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 756 757 offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d); 758 if (offset != -1ULL) { 759 /* 760 * If we've just selected this metaslab group, 761 * figure out whether the corresponding vdev is 762 * over- or under-used relative to the pool, 763 * and set an allocation bias to even it out. 764 */ 765 if (mc->mc_allocated == 0) { 766 vdev_stat_t *vs = &vd->vdev_stat; 767 uint64_t alloc, space; 768 int64_t vu, su; 769 770 alloc = spa_get_alloc(spa); 771 space = spa_get_space(spa); 772 773 /* 774 * Determine percent used in units of 0..1024. 775 * (This is just to avoid floating point.) 776 */ 777 vu = (vs->vs_alloc << 10) / (vs->vs_space + 1); 778 su = (alloc << 10) / (space + 1); 779 780 /* 781 * Bias by at most +/- 25% of the aliquot. 782 */ 783 mg->mg_bias = ((su - vu) * 784 (int64_t)mg->mg_aliquot) / (1024 * 4); 785 } 786 787 if (atomic_add_64_nv(&mc->mc_allocated, asize) >= 788 mg->mg_aliquot + mg->mg_bias) { 789 mc->mc_rotor = mg->mg_next; 790 mc->mc_allocated = 0; 791 } 792 793 DVA_SET_VDEV(&dva[d], vd->vdev_id); 794 DVA_SET_OFFSET(&dva[d], offset); 795 DVA_SET_GANG(&dva[d], 0); 796 DVA_SET_ASIZE(&dva[d], asize); 797 798 return (0); 799 } 800 mc->mc_rotor = mg->mg_next; 801 mc->mc_allocated = 0; 802 } while ((mg = mg->mg_next) != rotor); 803 804 if (!all_zero) { 805 dshift++; 806 ASSERT(dshift < 64); 807 goto top; 808 } 809 810 bzero(&dva[d], sizeof (dva_t)); 811 812 return (ENOSPC); 813 } 814 815 /* 816 * Free the block represented by DVA in the context of the specified 817 * transaction group. 818 */ 819 static void 820 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now) 821 { 822 uint64_t vdev = DVA_GET_VDEV(dva); 823 uint64_t offset = DVA_GET_OFFSET(dva); 824 uint64_t size = DVA_GET_ASIZE(dva); 825 vdev_t *vd; 826 metaslab_t *msp; 827 828 ASSERT(DVA_IS_VALID(dva)); 829 830 if (txg > spa_freeze_txg(spa)) 831 return; 832 833 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 834 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 835 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu", 836 (u_longlong_t)vdev, (u_longlong_t)offset); 837 ASSERT(0); 838 return; 839 } 840 841 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 842 843 if (DVA_GET_GANG(dva)) 844 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 845 846 mutex_enter(&msp->ms_lock); 847 848 if (now) { 849 space_map_remove(&msp->ms_allocmap[txg & TXG_MASK], 850 offset, size); 851 space_map_free(&msp->ms_map, offset, size); 852 } else { 853 if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0) 854 vdev_dirty(vd, VDD_METASLAB, msp, txg); 855 space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size); 856 } 857 858 mutex_exit(&msp->ms_lock); 859 } 860 861 /* 862 * Intent log support: upon opening the pool after a crash, notify the SPA 863 * of blocks that the intent log has allocated for immediate write, but 864 * which are still considered free by the SPA because the last transaction 865 * group didn't commit yet. 866 */ 867 static int 868 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 869 { 870 uint64_t vdev = DVA_GET_VDEV(dva); 871 uint64_t offset = DVA_GET_OFFSET(dva); 872 uint64_t size = DVA_GET_ASIZE(dva); 873 vdev_t *vd; 874 metaslab_t *msp; 875 int error; 876 877 ASSERT(DVA_IS_VALID(dva)); 878 879 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 880 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) 881 return (ENXIO); 882 883 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 884 885 if (DVA_GET_GANG(dva)) 886 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 887 888 mutex_enter(&msp->ms_lock); 889 890 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY); 891 if (error) { 892 mutex_exit(&msp->ms_lock); 893 return (error); 894 } 895 896 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0) 897 vdev_dirty(vd, VDD_METASLAB, msp, txg); 898 899 space_map_claim(&msp->ms_map, offset, size); 900 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size); 901 902 mutex_exit(&msp->ms_lock); 903 904 return (0); 905 } 906 907 int 908 metaslab_alloc(spa_t *spa, uint64_t psize, blkptr_t *bp, int ndvas, 909 uint64_t txg, blkptr_t *hintbp) 910 { 911 dva_t *dva = bp->blk_dva; 912 dva_t *hintdva = hintbp->blk_dva; 913 int d; 914 int error = 0; 915 916 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 917 ASSERT(BP_GET_NDVAS(bp) == 0); 918 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 919 920 for (d = 0; d < ndvas; d++) { 921 error = metaslab_alloc_dva(spa, psize, dva, d, hintdva, txg); 922 if (error) { 923 for (d--; d >= 0; d--) { 924 metaslab_free_dva(spa, &dva[d], txg, B_TRUE); 925 bzero(&dva[d], sizeof (dva_t)); 926 } 927 return (error); 928 } 929 } 930 ASSERT(error == 0); 931 ASSERT(BP_GET_NDVAS(bp) == ndvas); 932 933 return (0); 934 } 935 936 void 937 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 938 { 939 const dva_t *dva = bp->blk_dva; 940 int ndvas = BP_GET_NDVAS(bp); 941 int d; 942 943 ASSERT(!BP_IS_HOLE(bp)); 944 945 for (d = 0; d < ndvas; d++) 946 metaslab_free_dva(spa, &dva[d], txg, now); 947 } 948 949 int 950 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 951 { 952 const dva_t *dva = bp->blk_dva; 953 int ndvas = BP_GET_NDVAS(bp); 954 int d, error; 955 int last_error = 0; 956 957 ASSERT(!BP_IS_HOLE(bp)); 958 959 for (d = 0; d < ndvas; d++) 960 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0) 961 last_error = error; 962 963 return (last_error); 964 } 965