xref: /titanic_41/usr/src/uts/common/fs/zfs/metaslab.c (revision 48bc00d6814e04ff3edb32cafe7d1bc580baff68)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 
35 uint64_t metaslab_aliquot = 512ULL << 10;
36 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
37 
38 /*
39  * Minimum size which forces the dynamic allocator to change
40  * it's allocation strategy. Once the space map cannot satisfy
41  * an allocation of this size then it switches to using more
42  * aggressive strategy (i.e search by size rather than offset).
43  */
44 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
45 
46 /*
47  * The minimum free space, in percent, which must be available
48  * in a space map to continue allocations in a first-fit fashion.
49  * Once the space_map's free space drops below this level we dynamically
50  * switch to using best-fit allocations.
51  */
52 int metaslab_df_free_pct = 30;
53 
54 /*
55  * ==========================================================================
56  * Metaslab classes
57  * ==========================================================================
58  */
59 metaslab_class_t *
60 metaslab_class_create(spa_t *spa, space_map_ops_t *ops)
61 {
62 	metaslab_class_t *mc;
63 
64 	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
65 
66 	mc->mc_spa = spa;
67 	mc->mc_rotor = NULL;
68 	mc->mc_ops = ops;
69 
70 	return (mc);
71 }
72 
73 void
74 metaslab_class_destroy(metaslab_class_t *mc)
75 {
76 	metaslab_group_t *mg;
77 
78 	while ((mg = mc->mc_rotor) != NULL) {
79 		metaslab_class_remove(mc, mg);
80 		metaslab_group_destroy(mg);
81 	}
82 
83 	kmem_free(mc, sizeof (metaslab_class_t));
84 }
85 
86 void
87 metaslab_class_add(metaslab_class_t *mc, metaslab_group_t *mg)
88 {
89 	metaslab_group_t *mgprev, *mgnext;
90 
91 	ASSERT(mg->mg_class == NULL);
92 
93 	if ((mgprev = mc->mc_rotor) == NULL) {
94 		mg->mg_prev = mg;
95 		mg->mg_next = mg;
96 	} else {
97 		mgnext = mgprev->mg_next;
98 		mg->mg_prev = mgprev;
99 		mg->mg_next = mgnext;
100 		mgprev->mg_next = mg;
101 		mgnext->mg_prev = mg;
102 	}
103 	mc->mc_rotor = mg;
104 	mg->mg_class = mc;
105 }
106 
107 void
108 metaslab_class_remove(metaslab_class_t *mc, metaslab_group_t *mg)
109 {
110 	metaslab_group_t *mgprev, *mgnext;
111 
112 	ASSERT(mg->mg_class == mc);
113 
114 	mgprev = mg->mg_prev;
115 	mgnext = mg->mg_next;
116 
117 	if (mg == mgnext) {
118 		mc->mc_rotor = NULL;
119 	} else {
120 		mc->mc_rotor = mgnext;
121 		mgprev->mg_next = mgnext;
122 		mgnext->mg_prev = mgprev;
123 	}
124 
125 	mg->mg_prev = NULL;
126 	mg->mg_next = NULL;
127 	mg->mg_class = NULL;
128 }
129 
130 int
131 metaslab_class_validate(metaslab_class_t *mc)
132 {
133 	metaslab_group_t *mg;
134 	vdev_t *vd;
135 
136 	/*
137 	 * Must hold one of the spa_config locks.
138 	 */
139 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
140 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
141 
142 	if ((mg = mc->mc_rotor) == NULL)
143 		return (0);
144 
145 	do {
146 		vd = mg->mg_vd;
147 		ASSERT(vd->vdev_mg != NULL);
148 		ASSERT3P(vd->vdev_top, ==, vd);
149 		ASSERT3P(mg->mg_class, ==, mc);
150 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
151 	} while ((mg = mg->mg_next) != mc->mc_rotor);
152 
153 	return (0);
154 }
155 
156 /*
157  * ==========================================================================
158  * Metaslab groups
159  * ==========================================================================
160  */
161 static int
162 metaslab_compare(const void *x1, const void *x2)
163 {
164 	const metaslab_t *m1 = x1;
165 	const metaslab_t *m2 = x2;
166 
167 	if (m1->ms_weight < m2->ms_weight)
168 		return (1);
169 	if (m1->ms_weight > m2->ms_weight)
170 		return (-1);
171 
172 	/*
173 	 * If the weights are identical, use the offset to force uniqueness.
174 	 */
175 	if (m1->ms_map.sm_start < m2->ms_map.sm_start)
176 		return (-1);
177 	if (m1->ms_map.sm_start > m2->ms_map.sm_start)
178 		return (1);
179 
180 	ASSERT3P(m1, ==, m2);
181 
182 	return (0);
183 }
184 
185 metaslab_group_t *
186 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
187 {
188 	metaslab_group_t *mg;
189 
190 	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
191 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
192 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
193 	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
194 	mg->mg_aliquot = metaslab_aliquot * MAX(1, vd->vdev_children);
195 	mg->mg_vd = vd;
196 	metaslab_class_add(mc, mg);
197 
198 	return (mg);
199 }
200 
201 void
202 metaslab_group_destroy(metaslab_group_t *mg)
203 {
204 	avl_destroy(&mg->mg_metaslab_tree);
205 	mutex_destroy(&mg->mg_lock);
206 	kmem_free(mg, sizeof (metaslab_group_t));
207 }
208 
209 static void
210 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
211 {
212 	mutex_enter(&mg->mg_lock);
213 	ASSERT(msp->ms_group == NULL);
214 	msp->ms_group = mg;
215 	msp->ms_weight = 0;
216 	avl_add(&mg->mg_metaslab_tree, msp);
217 	mutex_exit(&mg->mg_lock);
218 }
219 
220 static void
221 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
222 {
223 	mutex_enter(&mg->mg_lock);
224 	ASSERT(msp->ms_group == mg);
225 	avl_remove(&mg->mg_metaslab_tree, msp);
226 	msp->ms_group = NULL;
227 	mutex_exit(&mg->mg_lock);
228 }
229 
230 static void
231 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
232 {
233 	/*
234 	 * Although in principle the weight can be any value, in
235 	 * practice we do not use values in the range [1, 510].
236 	 */
237 	ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
238 	ASSERT(MUTEX_HELD(&msp->ms_lock));
239 
240 	mutex_enter(&mg->mg_lock);
241 	ASSERT(msp->ms_group == mg);
242 	avl_remove(&mg->mg_metaslab_tree, msp);
243 	msp->ms_weight = weight;
244 	avl_add(&mg->mg_metaslab_tree, msp);
245 	mutex_exit(&mg->mg_lock);
246 }
247 
248 /*
249  * This is a helper function that can be used by the allocator to find
250  * a suitable block to allocate. This will search the specified AVL
251  * tree looking for a block that matches the specified criteria.
252  */
253 static uint64_t
254 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
255     uint64_t align)
256 {
257 	space_seg_t *ss, ssearch;
258 	avl_index_t where;
259 
260 	ssearch.ss_start = *cursor;
261 	ssearch.ss_end = *cursor + size;
262 
263 	ss = avl_find(t, &ssearch, &where);
264 	if (ss == NULL)
265 		ss = avl_nearest(t, where, AVL_AFTER);
266 
267 	while (ss != NULL) {
268 		uint64_t offset = P2ROUNDUP(ss->ss_start, align);
269 
270 		if (offset + size <= ss->ss_end) {
271 			*cursor = offset + size;
272 			return (offset);
273 		}
274 		ss = AVL_NEXT(t, ss);
275 	}
276 
277 	/*
278 	 * If we know we've searched the whole map (*cursor == 0), give up.
279 	 * Otherwise, reset the cursor to the beginning and try again.
280 	 */
281 	if (*cursor == 0)
282 		return (-1ULL);
283 
284 	*cursor = 0;
285 	return (metaslab_block_picker(t, cursor, size, align));
286 }
287 
288 /*
289  * ==========================================================================
290  * The first-fit block allocator
291  * ==========================================================================
292  */
293 static void
294 metaslab_ff_load(space_map_t *sm)
295 {
296 	ASSERT(sm->sm_ppd == NULL);
297 	sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
298 	sm->sm_pp_root = NULL;
299 }
300 
301 static void
302 metaslab_ff_unload(space_map_t *sm)
303 {
304 	kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
305 	sm->sm_ppd = NULL;
306 }
307 
308 static uint64_t
309 metaslab_ff_alloc(space_map_t *sm, uint64_t size)
310 {
311 	avl_tree_t *t = &sm->sm_root;
312 	uint64_t align = size & -size;
313 	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
314 
315 	return (metaslab_block_picker(t, cursor, size, align));
316 }
317 
318 /* ARGSUSED */
319 static void
320 metaslab_ff_claim(space_map_t *sm, uint64_t start, uint64_t size)
321 {
322 	/* No need to update cursor */
323 }
324 
325 /* ARGSUSED */
326 static void
327 metaslab_ff_free(space_map_t *sm, uint64_t start, uint64_t size)
328 {
329 	/* No need to update cursor */
330 }
331 
332 static space_map_ops_t metaslab_ff_ops = {
333 	metaslab_ff_load,
334 	metaslab_ff_unload,
335 	metaslab_ff_alloc,
336 	metaslab_ff_claim,
337 	metaslab_ff_free,
338 	NULL	/* maxsize */
339 };
340 
341 /*
342  * Dynamic block allocator -
343  * Uses the first fit allocation scheme until space get low and then
344  * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
345  * and metaslab_df_free_pct to determine when to switch the allocation scheme.
346  */
347 
348 uint64_t
349 metaslab_df_maxsize(space_map_t *sm)
350 {
351 	avl_tree_t *t = sm->sm_pp_root;
352 	space_seg_t *ss;
353 
354 	if (t == NULL || (ss = avl_last(t)) == NULL)
355 		return (0ULL);
356 
357 	return (ss->ss_end - ss->ss_start);
358 }
359 
360 static int
361 metaslab_df_seg_compare(const void *x1, const void *x2)
362 {
363 	const space_seg_t *s1 = x1;
364 	const space_seg_t *s2 = x2;
365 	uint64_t ss_size1 = s1->ss_end - s1->ss_start;
366 	uint64_t ss_size2 = s2->ss_end - s2->ss_start;
367 
368 	if (ss_size1 < ss_size2)
369 		return (-1);
370 	if (ss_size1 > ss_size2)
371 		return (1);
372 
373 	if (s1->ss_start < s2->ss_start)
374 		return (-1);
375 	if (s1->ss_start > s2->ss_start)
376 		return (1);
377 
378 	return (0);
379 }
380 
381 static void
382 metaslab_df_load(space_map_t *sm)
383 {
384 	space_seg_t *ss;
385 
386 	ASSERT(sm->sm_ppd == NULL);
387 	sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
388 
389 	sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
390 	avl_create(sm->sm_pp_root, metaslab_df_seg_compare,
391 	    sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));
392 
393 	for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
394 		avl_add(sm->sm_pp_root, ss);
395 }
396 
397 static void
398 metaslab_df_unload(space_map_t *sm)
399 {
400 	void *cookie = NULL;
401 
402 	kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
403 	sm->sm_ppd = NULL;
404 
405 	while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
406 		/* tear down the tree */
407 	}
408 
409 	avl_destroy(sm->sm_pp_root);
410 	kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
411 	sm->sm_pp_root = NULL;
412 }
413 
414 static uint64_t
415 metaslab_df_alloc(space_map_t *sm, uint64_t size)
416 {
417 	avl_tree_t *t = &sm->sm_root;
418 	uint64_t align = size & -size;
419 	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
420 	uint64_t max_size = metaslab_df_maxsize(sm);
421 	int free_pct = sm->sm_space * 100 / sm->sm_size;
422 
423 	ASSERT(MUTEX_HELD(sm->sm_lock));
424 	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
425 
426 	if (max_size < size)
427 		return (-1ULL);
428 
429 	/*
430 	 * If we're running low on space switch to using the size
431 	 * sorted AVL tree (best-fit).
432 	 */
433 	if (max_size < metaslab_df_alloc_threshold ||
434 	    free_pct < metaslab_df_free_pct) {
435 		t = sm->sm_pp_root;
436 		*cursor = 0;
437 	}
438 
439 	return (metaslab_block_picker(t, cursor, size, 1ULL));
440 }
441 
442 /* ARGSUSED */
443 static void
444 metaslab_df_claim(space_map_t *sm, uint64_t start, uint64_t size)
445 {
446 	/* No need to update cursor */
447 }
448 
449 /* ARGSUSED */
450 static void
451 metaslab_df_free(space_map_t *sm, uint64_t start, uint64_t size)
452 {
453 	/* No need to update cursor */
454 }
455 
456 static space_map_ops_t metaslab_df_ops = {
457 	metaslab_df_load,
458 	metaslab_df_unload,
459 	metaslab_df_alloc,
460 	metaslab_df_claim,
461 	metaslab_df_free,
462 	metaslab_df_maxsize
463 };
464 
465 space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
466 
467 /*
468  * ==========================================================================
469  * Metaslabs
470  * ==========================================================================
471  */
472 metaslab_t *
473 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
474 	uint64_t start, uint64_t size, uint64_t txg)
475 {
476 	vdev_t *vd = mg->mg_vd;
477 	metaslab_t *msp;
478 
479 	msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
480 	mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
481 
482 	msp->ms_smo_syncing = *smo;
483 
484 	/*
485 	 * We create the main space map here, but we don't create the
486 	 * allocmaps and freemaps until metaslab_sync_done().  This serves
487 	 * two purposes: it allows metaslab_sync_done() to detect the
488 	 * addition of new space; and for debugging, it ensures that we'd
489 	 * data fault on any attempt to use this metaslab before it's ready.
490 	 */
491 	space_map_create(&msp->ms_map, start, size,
492 	    vd->vdev_ashift, &msp->ms_lock);
493 
494 	metaslab_group_add(mg, msp);
495 
496 	/*
497 	 * If we're opening an existing pool (txg == 0) or creating
498 	 * a new one (txg == TXG_INITIAL), all space is available now.
499 	 * If we're adding space to an existing pool, the new space
500 	 * does not become available until after this txg has synced.
501 	 */
502 	if (txg <= TXG_INITIAL)
503 		metaslab_sync_done(msp, 0);
504 
505 	if (txg != 0) {
506 		/*
507 		 * The vdev is dirty, but the metaslab isn't -- it just needs
508 		 * to have metaslab_sync_done() invoked from vdev_sync_done().
509 		 * [We could just dirty the metaslab, but that would cause us
510 		 * to allocate a space map object for it, which is wasteful
511 		 * and would mess up the locality logic in metaslab_weight().]
512 		 */
513 		ASSERT(TXG_CLEAN(txg) == spa_last_synced_txg(vd->vdev_spa));
514 		vdev_dirty(vd, 0, NULL, txg);
515 		vdev_dirty(vd, VDD_METASLAB, msp, TXG_CLEAN(txg));
516 	}
517 
518 	return (msp);
519 }
520 
521 void
522 metaslab_fini(metaslab_t *msp)
523 {
524 	metaslab_group_t *mg = msp->ms_group;
525 	int t;
526 
527 	vdev_space_update(mg->mg_vd, -msp->ms_map.sm_size,
528 	    -msp->ms_smo.smo_alloc, B_TRUE);
529 
530 	metaslab_group_remove(mg, msp);
531 
532 	mutex_enter(&msp->ms_lock);
533 
534 	space_map_unload(&msp->ms_map);
535 	space_map_destroy(&msp->ms_map);
536 
537 	for (t = 0; t < TXG_SIZE; t++) {
538 		space_map_destroy(&msp->ms_allocmap[t]);
539 		space_map_destroy(&msp->ms_freemap[t]);
540 	}
541 
542 	mutex_exit(&msp->ms_lock);
543 	mutex_destroy(&msp->ms_lock);
544 
545 	kmem_free(msp, sizeof (metaslab_t));
546 }
547 
548 #define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
549 #define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
550 #define	METASLAB_ACTIVE_MASK		\
551 	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
552 #define	METASLAB_SMO_BONUS_MULTIPLIER	2
553 
554 static uint64_t
555 metaslab_weight(metaslab_t *msp)
556 {
557 	metaslab_group_t *mg = msp->ms_group;
558 	space_map_t *sm = &msp->ms_map;
559 	space_map_obj_t *smo = &msp->ms_smo;
560 	vdev_t *vd = mg->mg_vd;
561 	uint64_t weight, space;
562 
563 	ASSERT(MUTEX_HELD(&msp->ms_lock));
564 
565 	/*
566 	 * The baseline weight is the metaslab's free space.
567 	 */
568 	space = sm->sm_size - smo->smo_alloc;
569 	weight = space;
570 
571 	/*
572 	 * Modern disks have uniform bit density and constant angular velocity.
573 	 * Therefore, the outer recording zones are faster (higher bandwidth)
574 	 * than the inner zones by the ratio of outer to inner track diameter,
575 	 * which is typically around 2:1.  We account for this by assigning
576 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
577 	 * In effect, this means that we'll select the metaslab with the most
578 	 * free bandwidth rather than simply the one with the most free space.
579 	 */
580 	weight = 2 * weight -
581 	    ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
582 	ASSERT(weight >= space && weight <= 2 * space);
583 
584 	/*
585 	 * For locality, assign higher weight to metaslabs we've used before.
586 	 */
587 	if (smo->smo_object != 0)
588 		weight *= METASLAB_SMO_BONUS_MULTIPLIER;
589 	ASSERT(weight >= space &&
590 	    weight <= 2 * METASLAB_SMO_BONUS_MULTIPLIER * space);
591 
592 	/*
593 	 * If this metaslab is one we're actively using, adjust its weight to
594 	 * make it preferable to any inactive metaslab so we'll polish it off.
595 	 */
596 	weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
597 
598 	return (weight);
599 }
600 
601 static int
602 metaslab_activate(metaslab_t *msp, uint64_t activation_weight, uint64_t size)
603 {
604 	space_map_t *sm = &msp->ms_map;
605 	space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
606 
607 	ASSERT(MUTEX_HELD(&msp->ms_lock));
608 
609 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
610 		int error = space_map_load(sm, sm_ops, SM_FREE, &msp->ms_smo,
611 		    msp->ms_group->mg_vd->vdev_spa->spa_meta_objset);
612 		if (error) {
613 			metaslab_group_sort(msp->ms_group, msp, 0);
614 			return (error);
615 		}
616 
617 		/*
618 		 * If we were able to load the map then make sure
619 		 * that this map is still able to satisfy our request.
620 		 */
621 		if (msp->ms_weight < size)
622 			return (ENOSPC);
623 
624 		metaslab_group_sort(msp->ms_group, msp,
625 		    msp->ms_weight | activation_weight);
626 	}
627 	ASSERT(sm->sm_loaded);
628 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
629 
630 	return (0);
631 }
632 
633 static void
634 metaslab_passivate(metaslab_t *msp, uint64_t size)
635 {
636 	/*
637 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
638 	 * this metaslab again.  In that case, it had better be empty,
639 	 * or we would be leaving space on the table.
640 	 */
641 	ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
642 	metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
643 	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
644 }
645 
646 /*
647  * Write a metaslab to disk in the context of the specified transaction group.
648  */
649 void
650 metaslab_sync(metaslab_t *msp, uint64_t txg)
651 {
652 	vdev_t *vd = msp->ms_group->mg_vd;
653 	spa_t *spa = vd->vdev_spa;
654 	objset_t *mos = spa->spa_meta_objset;
655 	space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
656 	space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
657 	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
658 	space_map_t *sm = &msp->ms_map;
659 	space_map_obj_t *smo = &msp->ms_smo_syncing;
660 	dmu_buf_t *db;
661 	dmu_tx_t *tx;
662 	int t;
663 
664 	ASSERT(!vd->vdev_ishole);
665 
666 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
667 
668 	/*
669 	 * The only state that can actually be changing concurrently with
670 	 * metaslab_sync() is the metaslab's ms_map.  No other thread can
671 	 * be modifying this txg's allocmap, freemap, freed_map, or smo.
672 	 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
673 	 * We drop it whenever we call into the DMU, because the DMU
674 	 * can call down to us (e.g. via zio_free()) at any time.
675 	 */
676 	mutex_enter(&msp->ms_lock);
677 
678 	if (smo->smo_object == 0) {
679 		ASSERT(smo->smo_objsize == 0);
680 		ASSERT(smo->smo_alloc == 0);
681 		mutex_exit(&msp->ms_lock);
682 		smo->smo_object = dmu_object_alloc(mos,
683 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
684 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
685 		ASSERT(smo->smo_object != 0);
686 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
687 		    (sm->sm_start >> vd->vdev_ms_shift),
688 		    sizeof (uint64_t), &smo->smo_object, tx);
689 		mutex_enter(&msp->ms_lock);
690 	}
691 
692 	space_map_walk(freemap, space_map_add, freed_map);
693 
694 	if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
695 	    2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
696 		/*
697 		 * The in-core space map representation is twice as compact
698 		 * as the on-disk one, so it's time to condense the latter
699 		 * by generating a pure allocmap from first principles.
700 		 *
701 		 * This metaslab is 100% allocated,
702 		 * minus the content of the in-core map (sm),
703 		 * minus what's been freed this txg (freed_map),
704 		 * minus allocations from txgs in the future
705 		 * (because they haven't been committed yet).
706 		 */
707 		space_map_vacate(allocmap, NULL, NULL);
708 		space_map_vacate(freemap, NULL, NULL);
709 
710 		space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
711 
712 		space_map_walk(sm, space_map_remove, allocmap);
713 		space_map_walk(freed_map, space_map_remove, allocmap);
714 
715 		for (t = 1; t < TXG_CONCURRENT_STATES; t++)
716 			space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
717 			    space_map_remove, allocmap);
718 
719 		mutex_exit(&msp->ms_lock);
720 		space_map_truncate(smo, mos, tx);
721 		mutex_enter(&msp->ms_lock);
722 	}
723 
724 	space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
725 	space_map_sync(freemap, SM_FREE, smo, mos, tx);
726 
727 	mutex_exit(&msp->ms_lock);
728 
729 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
730 	dmu_buf_will_dirty(db, tx);
731 	ASSERT3U(db->db_size, >=, sizeof (*smo));
732 	bcopy(smo, db->db_data, sizeof (*smo));
733 	dmu_buf_rele(db, FTAG);
734 
735 	dmu_tx_commit(tx);
736 }
737 
738 /*
739  * Called after a transaction group has completely synced to mark
740  * all of the metaslab's free space as usable.
741  */
742 void
743 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
744 {
745 	space_map_obj_t *smo = &msp->ms_smo;
746 	space_map_obj_t *smosync = &msp->ms_smo_syncing;
747 	space_map_t *sm = &msp->ms_map;
748 	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
749 	metaslab_group_t *mg = msp->ms_group;
750 	vdev_t *vd = mg->mg_vd;
751 	int t;
752 
753 	ASSERT(!vd->vdev_ishole);
754 
755 	mutex_enter(&msp->ms_lock);
756 
757 	/*
758 	 * If this metaslab is just becoming available, initialize its
759 	 * allocmaps and freemaps and add its capacity to the vdev.
760 	 */
761 	if (freed_map->sm_size == 0) {
762 		for (t = 0; t < TXG_SIZE; t++) {
763 			space_map_create(&msp->ms_allocmap[t], sm->sm_start,
764 			    sm->sm_size, sm->sm_shift, sm->sm_lock);
765 			space_map_create(&msp->ms_freemap[t], sm->sm_start,
766 			    sm->sm_size, sm->sm_shift, sm->sm_lock);
767 		}
768 		vdev_space_update(vd, sm->sm_size, 0, B_TRUE);
769 	}
770 
771 	vdev_space_update(vd, 0, smosync->smo_alloc - smo->smo_alloc, B_TRUE);
772 
773 	ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
774 	ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
775 
776 	/*
777 	 * If there's a space_map_load() in progress, wait for it to complete
778 	 * so that we have a consistent view of the in-core space map.
779 	 * Then, add everything we freed in this txg to the map.
780 	 */
781 	space_map_load_wait(sm);
782 	space_map_vacate(freed_map, sm->sm_loaded ? space_map_free : NULL, sm);
783 
784 	*smo = *smosync;
785 
786 	/*
787 	 * If the map is loaded but no longer active, evict it as soon as all
788 	 * future allocations have synced.  (If we unloaded it now and then
789 	 * loaded a moment later, the map wouldn't reflect those allocations.)
790 	 */
791 	if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
792 		int evictable = 1;
793 
794 		for (t = 1; t < TXG_CONCURRENT_STATES; t++)
795 			if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
796 				evictable = 0;
797 
798 		if (evictable)
799 			space_map_unload(sm);
800 	}
801 
802 	metaslab_group_sort(mg, msp, metaslab_weight(msp));
803 
804 	mutex_exit(&msp->ms_lock);
805 }
806 
807 static uint64_t
808 metaslab_distance(metaslab_t *msp, dva_t *dva)
809 {
810 	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
811 	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
812 	uint64_t start = msp->ms_map.sm_start >> ms_shift;
813 
814 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
815 		return (1ULL << 63);
816 
817 	if (offset < start)
818 		return ((start - offset) << ms_shift);
819 	if (offset > start)
820 		return ((offset - start) << ms_shift);
821 	return (0);
822 }
823 
824 static uint64_t
825 metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg,
826     uint64_t min_distance, dva_t *dva, int d)
827 {
828 	metaslab_t *msp = NULL;
829 	uint64_t offset = -1ULL;
830 	avl_tree_t *t = &mg->mg_metaslab_tree;
831 	uint64_t activation_weight;
832 	uint64_t target_distance;
833 	int i;
834 
835 	activation_weight = METASLAB_WEIGHT_PRIMARY;
836 	for (i = 0; i < d; i++) {
837 		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
838 			activation_weight = METASLAB_WEIGHT_SECONDARY;
839 			break;
840 		}
841 	}
842 
843 	for (;;) {
844 		boolean_t was_active;
845 
846 		mutex_enter(&mg->mg_lock);
847 		for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
848 			if (msp->ms_weight < size) {
849 				mutex_exit(&mg->mg_lock);
850 				return (-1ULL);
851 			}
852 
853 			was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
854 			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
855 				break;
856 
857 			target_distance = min_distance +
858 			    (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
859 
860 			for (i = 0; i < d; i++)
861 				if (metaslab_distance(msp, &dva[i]) <
862 				    target_distance)
863 					break;
864 			if (i == d)
865 				break;
866 		}
867 		mutex_exit(&mg->mg_lock);
868 		if (msp == NULL)
869 			return (-1ULL);
870 
871 		mutex_enter(&msp->ms_lock);
872 
873 		/*
874 		 * Ensure that the metaslab we have selected is still
875 		 * capable of handling our request. It's possible that
876 		 * another thread may have changed the weight while we
877 		 * were blocked on the metaslab lock.
878 		 */
879 		if (msp->ms_weight < size || (was_active &&
880 		    !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
881 		    activation_weight == METASLAB_WEIGHT_PRIMARY)) {
882 			mutex_exit(&msp->ms_lock);
883 			continue;
884 		}
885 
886 		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
887 		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
888 			metaslab_passivate(msp,
889 			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
890 			mutex_exit(&msp->ms_lock);
891 			continue;
892 		}
893 
894 		if (metaslab_activate(msp, activation_weight, size) != 0) {
895 			mutex_exit(&msp->ms_lock);
896 			continue;
897 		}
898 
899 		if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL)
900 			break;
901 
902 		metaslab_passivate(msp, size - 1);
903 
904 		mutex_exit(&msp->ms_lock);
905 	}
906 
907 	if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
908 		vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
909 
910 	space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
911 
912 	mutex_exit(&msp->ms_lock);
913 
914 	return (offset);
915 }
916 
917 /*
918  * Allocate a block for the specified i/o.
919  */
920 static int
921 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
922     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
923 {
924 	metaslab_group_t *mg, *rotor;
925 	vdev_t *vd;
926 	int dshift = 3;
927 	int all_zero;
928 	int zio_lock = B_FALSE;
929 	boolean_t allocatable;
930 	uint64_t offset = -1ULL;
931 	uint64_t asize;
932 	uint64_t distance;
933 
934 	ASSERT(!DVA_IS_VALID(&dva[d]));
935 
936 	/*
937 	 * For testing, make some blocks above a certain size be gang blocks.
938 	 */
939 	if (psize >= metaslab_gang_bang && (lbolt & 3) == 0)
940 		return (ENOSPC);
941 
942 	/*
943 	 * Start at the rotor and loop through all mgs until we find something.
944 	 * Note that there's no locking on mc_rotor or mc_allocated because
945 	 * nothing actually breaks if we miss a few updates -- we just won't
946 	 * allocate quite as evenly.  It all balances out over time.
947 	 *
948 	 * If we are doing ditto or log blocks, try to spread them across
949 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
950 	 * allocated all of our ditto blocks, then try and spread them out on
951 	 * that vdev as much as possible.  If it turns out to not be possible,
952 	 * gradually lower our standards until anything becomes acceptable.
953 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
954 	 * gives us hope of containing our fault domains to something we're
955 	 * able to reason about.  Otherwise, any two top-level vdev failures
956 	 * will guarantee the loss of data.  With consecutive allocation,
957 	 * only two adjacent top-level vdev failures will result in data loss.
958 	 *
959 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
960 	 * ourselves on the same vdev as our gang block header.  That
961 	 * way, we can hope for locality in vdev_cache, plus it makes our
962 	 * fault domains something tractable.
963 	 */
964 	if (hintdva) {
965 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
966 
967 		/*
968 		 * It's possible the vdev we're using as the hint no
969 		 * longer exists (i.e. removed). Consult the rotor when
970 		 * all else fails.
971 		 */
972 		if (vd != NULL && vd->vdev_mg != NULL) {
973 			mg = vd->vdev_mg;
974 
975 			if (flags & METASLAB_HINTBP_AVOID &&
976 			    mg->mg_next != NULL)
977 				mg = mg->mg_next;
978 		} else {
979 			mg = mc->mc_rotor;
980 		}
981 	} else if (d != 0) {
982 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
983 		mg = vd->vdev_mg->mg_next;
984 	} else {
985 		mg = mc->mc_rotor;
986 	}
987 
988 	/*
989 	 * If the hint put us into the wrong class, just follow the rotor.
990 	 */
991 	if (mg->mg_class != mc)
992 		mg = mc->mc_rotor;
993 
994 	rotor = mg;
995 top:
996 	all_zero = B_TRUE;
997 	do {
998 		vd = mg->mg_vd;
999 
1000 		/*
1001 		 * Don't allocate from faulted devices.
1002 		 */
1003 		if (zio_lock) {
1004 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1005 			allocatable = vdev_allocatable(vd);
1006 			spa_config_exit(spa, SCL_ZIO, FTAG);
1007 		} else {
1008 			allocatable = vdev_allocatable(vd);
1009 		}
1010 		if (!allocatable)
1011 			goto next;
1012 
1013 		/*
1014 		 * Avoid writing single-copy data to a failing vdev
1015 		 */
1016 		if ((vd->vdev_stat.vs_write_errors > 0 ||
1017 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
1018 		    d == 0 && dshift == 3) {
1019 			all_zero = B_FALSE;
1020 			goto next;
1021 		}
1022 
1023 		ASSERT(mg->mg_class == mc);
1024 
1025 		distance = vd->vdev_asize >> dshift;
1026 		if (distance <= (1ULL << vd->vdev_ms_shift))
1027 			distance = 0;
1028 		else
1029 			all_zero = B_FALSE;
1030 
1031 		asize = vdev_psize_to_asize(vd, psize);
1032 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1033 
1034 		offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d);
1035 		if (offset != -1ULL) {
1036 			/*
1037 			 * If we've just selected this metaslab group,
1038 			 * figure out whether the corresponding vdev is
1039 			 * over- or under-used relative to the pool,
1040 			 * and set an allocation bias to even it out.
1041 			 */
1042 			if (mc->mc_allocated == 0) {
1043 				vdev_stat_t *vs = &vd->vdev_stat;
1044 				uint64_t alloc, space;
1045 				int64_t vu, su;
1046 
1047 				alloc = spa_get_alloc(spa);
1048 				space = spa_get_space(spa);
1049 
1050 				/*
1051 				 * Determine percent used in units of 0..1024.
1052 				 * (This is just to avoid floating point.)
1053 				 */
1054 				vu = (vs->vs_alloc << 10) / (vs->vs_space + 1);
1055 				su = (alloc << 10) / (space + 1);
1056 
1057 				/*
1058 				 * Bias by at most +/- 25% of the aliquot.
1059 				 */
1060 				mg->mg_bias = ((su - vu) *
1061 				    (int64_t)mg->mg_aliquot) / (1024 * 4);
1062 			}
1063 
1064 			if (atomic_add_64_nv(&mc->mc_allocated, asize) >=
1065 			    mg->mg_aliquot + mg->mg_bias) {
1066 				mc->mc_rotor = mg->mg_next;
1067 				mc->mc_allocated = 0;
1068 			}
1069 
1070 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
1071 			DVA_SET_OFFSET(&dva[d], offset);
1072 			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
1073 			DVA_SET_ASIZE(&dva[d], asize);
1074 
1075 			return (0);
1076 		}
1077 next:
1078 		mc->mc_rotor = mg->mg_next;
1079 		mc->mc_allocated = 0;
1080 	} while ((mg = mg->mg_next) != rotor);
1081 
1082 	if (!all_zero) {
1083 		dshift++;
1084 		ASSERT(dshift < 64);
1085 		goto top;
1086 	}
1087 
1088 	if (!allocatable && !zio_lock) {
1089 		dshift = 3;
1090 		zio_lock = B_TRUE;
1091 		goto top;
1092 	}
1093 
1094 	bzero(&dva[d], sizeof (dva_t));
1095 
1096 	return (ENOSPC);
1097 }
1098 
1099 /*
1100  * Free the block represented by DVA in the context of the specified
1101  * transaction group.
1102  */
1103 static void
1104 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1105 {
1106 	uint64_t vdev = DVA_GET_VDEV(dva);
1107 	uint64_t offset = DVA_GET_OFFSET(dva);
1108 	uint64_t size = DVA_GET_ASIZE(dva);
1109 	vdev_t *vd;
1110 	metaslab_t *msp;
1111 
1112 	ASSERT(DVA_IS_VALID(dva));
1113 
1114 	if (txg > spa_freeze_txg(spa))
1115 		return;
1116 
1117 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1118 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1119 		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1120 		    (u_longlong_t)vdev, (u_longlong_t)offset);
1121 		ASSERT(0);
1122 		return;
1123 	}
1124 
1125 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1126 
1127 	if (DVA_GET_GANG(dva))
1128 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1129 
1130 	mutex_enter(&msp->ms_lock);
1131 
1132 	if (now) {
1133 		space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
1134 		    offset, size);
1135 		space_map_free(&msp->ms_map, offset, size);
1136 	} else {
1137 		if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
1138 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
1139 		space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
1140 	}
1141 
1142 	mutex_exit(&msp->ms_lock);
1143 }
1144 
1145 /*
1146  * Intent log support: upon opening the pool after a crash, notify the SPA
1147  * of blocks that the intent log has allocated for immediate write, but
1148  * which are still considered free by the SPA because the last transaction
1149  * group didn't commit yet.
1150  */
1151 static int
1152 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
1153 {
1154 	uint64_t vdev = DVA_GET_VDEV(dva);
1155 	uint64_t offset = DVA_GET_OFFSET(dva);
1156 	uint64_t size = DVA_GET_ASIZE(dva);
1157 	vdev_t *vd;
1158 	metaslab_t *msp;
1159 	int error;
1160 
1161 	ASSERT(DVA_IS_VALID(dva));
1162 
1163 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1164 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
1165 		return (ENXIO);
1166 
1167 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1168 
1169 	if (DVA_GET_GANG(dva))
1170 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1171 
1172 	mutex_enter(&msp->ms_lock);
1173 
1174 	error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY, 0);
1175 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
1176 		mutex_exit(&msp->ms_lock);
1177 		return (error);
1178 	}
1179 
1180 	space_map_claim(&msp->ms_map, offset, size);
1181 
1182 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
1183 		if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1184 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
1185 		space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
1186 	}
1187 
1188 	mutex_exit(&msp->ms_lock);
1189 
1190 	return (0);
1191 }
1192 
1193 int
1194 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
1195     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
1196 {
1197 	dva_t *dva = bp->blk_dva;
1198 	dva_t *hintdva = hintbp->blk_dva;
1199 	int error = 0;
1200 
1201 	ASSERT(bp->blk_birth == 0);
1202 
1203 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1204 
1205 	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
1206 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1207 		return (ENOSPC);
1208 	}
1209 
1210 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
1211 	ASSERT(BP_GET_NDVAS(bp) == 0);
1212 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
1213 
1214 	for (int d = 0; d < ndvas; d++) {
1215 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
1216 		    txg, flags);
1217 		if (error) {
1218 			for (d--; d >= 0; d--) {
1219 				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
1220 				bzero(&dva[d], sizeof (dva_t));
1221 			}
1222 			spa_config_exit(spa, SCL_ALLOC, FTAG);
1223 			return (error);
1224 		}
1225 	}
1226 	ASSERT(error == 0);
1227 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
1228 
1229 	spa_config_exit(spa, SCL_ALLOC, FTAG);
1230 
1231 	bp->blk_birth = txg;
1232 
1233 	return (0);
1234 }
1235 
1236 void
1237 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1238 {
1239 	const dva_t *dva = bp->blk_dva;
1240 	int ndvas = BP_GET_NDVAS(bp);
1241 
1242 	ASSERT(!BP_IS_HOLE(bp));
1243 	ASSERT(!now || bp->blk_birth >= spa->spa_syncing_txg);
1244 
1245 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
1246 
1247 	for (int d = 0; d < ndvas; d++)
1248 		metaslab_free_dva(spa, &dva[d], txg, now);
1249 
1250 	spa_config_exit(spa, SCL_FREE, FTAG);
1251 }
1252 
1253 int
1254 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
1255 {
1256 	const dva_t *dva = bp->blk_dva;
1257 	int ndvas = BP_GET_NDVAS(bp);
1258 	int error = 0;
1259 
1260 	ASSERT(!BP_IS_HOLE(bp));
1261 
1262 	if (txg != 0) {
1263 		/*
1264 		 * First do a dry run to make sure all DVAs are claimable,
1265 		 * so we don't have to unwind from partial failures below.
1266 		 */
1267 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
1268 			return (error);
1269 	}
1270 
1271 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1272 
1273 	for (int d = 0; d < ndvas; d++)
1274 		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
1275 			break;
1276 
1277 	spa_config_exit(spa, SCL_ALLOC, FTAG);
1278 
1279 	ASSERT(error == 0 || txg == 0);
1280 
1281 	return (error);
1282 }
1283