xref: /titanic_41/usr/src/uts/common/fs/zfs/metaslab.c (revision 1f6eb0216cb17ca5fdff9563329f1dda47c8b801)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 
35 uint64_t metaslab_aliquot = 512ULL << 10;
36 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
37 
38 /*
39  * ==========================================================================
40  * Metaslab classes
41  * ==========================================================================
42  */
43 metaslab_class_t *
44 metaslab_class_create(void)
45 {
46 	metaslab_class_t *mc;
47 
48 	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
49 
50 	mc->mc_rotor = NULL;
51 
52 	return (mc);
53 }
54 
55 void
56 metaslab_class_destroy(metaslab_class_t *mc)
57 {
58 	metaslab_group_t *mg;
59 
60 	while ((mg = mc->mc_rotor) != NULL) {
61 		metaslab_class_remove(mc, mg);
62 		metaslab_group_destroy(mg);
63 	}
64 
65 	kmem_free(mc, sizeof (metaslab_class_t));
66 }
67 
68 void
69 metaslab_class_add(metaslab_class_t *mc, metaslab_group_t *mg)
70 {
71 	metaslab_group_t *mgprev, *mgnext;
72 
73 	ASSERT(mg->mg_class == NULL);
74 
75 	if ((mgprev = mc->mc_rotor) == NULL) {
76 		mg->mg_prev = mg;
77 		mg->mg_next = mg;
78 	} else {
79 		mgnext = mgprev->mg_next;
80 		mg->mg_prev = mgprev;
81 		mg->mg_next = mgnext;
82 		mgprev->mg_next = mg;
83 		mgnext->mg_prev = mg;
84 	}
85 	mc->mc_rotor = mg;
86 	mg->mg_class = mc;
87 }
88 
89 void
90 metaslab_class_remove(metaslab_class_t *mc, metaslab_group_t *mg)
91 {
92 	metaslab_group_t *mgprev, *mgnext;
93 
94 	ASSERT(mg->mg_class == mc);
95 
96 	mgprev = mg->mg_prev;
97 	mgnext = mg->mg_next;
98 
99 	if (mg == mgnext) {
100 		mc->mc_rotor = NULL;
101 	} else {
102 		mc->mc_rotor = mgnext;
103 		mgprev->mg_next = mgnext;
104 		mgnext->mg_prev = mgprev;
105 	}
106 
107 	mg->mg_prev = NULL;
108 	mg->mg_next = NULL;
109 	mg->mg_class = NULL;
110 }
111 
112 /*
113  * ==========================================================================
114  * Metaslab groups
115  * ==========================================================================
116  */
117 static int
118 metaslab_compare(const void *x1, const void *x2)
119 {
120 	const metaslab_t *m1 = x1;
121 	const metaslab_t *m2 = x2;
122 
123 	if (m1->ms_weight < m2->ms_weight)
124 		return (1);
125 	if (m1->ms_weight > m2->ms_weight)
126 		return (-1);
127 
128 	/*
129 	 * If the weights are identical, use the offset to force uniqueness.
130 	 */
131 	if (m1->ms_map.sm_start < m2->ms_map.sm_start)
132 		return (-1);
133 	if (m1->ms_map.sm_start > m2->ms_map.sm_start)
134 		return (1);
135 
136 	ASSERT3P(m1, ==, m2);
137 
138 	return (0);
139 }
140 
141 metaslab_group_t *
142 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
143 {
144 	metaslab_group_t *mg;
145 
146 	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
147 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
148 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
149 	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
150 	mg->mg_aliquot = metaslab_aliquot * MAX(1, vd->vdev_children);
151 	mg->mg_vd = vd;
152 	metaslab_class_add(mc, mg);
153 
154 	return (mg);
155 }
156 
157 void
158 metaslab_group_destroy(metaslab_group_t *mg)
159 {
160 	avl_destroy(&mg->mg_metaslab_tree);
161 	mutex_destroy(&mg->mg_lock);
162 	kmem_free(mg, sizeof (metaslab_group_t));
163 }
164 
165 static void
166 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
167 {
168 	mutex_enter(&mg->mg_lock);
169 	ASSERT(msp->ms_group == NULL);
170 	msp->ms_group = mg;
171 	msp->ms_weight = 0;
172 	avl_add(&mg->mg_metaslab_tree, msp);
173 	mutex_exit(&mg->mg_lock);
174 }
175 
176 static void
177 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
178 {
179 	mutex_enter(&mg->mg_lock);
180 	ASSERT(msp->ms_group == mg);
181 	avl_remove(&mg->mg_metaslab_tree, msp);
182 	msp->ms_group = NULL;
183 	mutex_exit(&mg->mg_lock);
184 }
185 
186 static void
187 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
188 {
189 	/*
190 	 * Although in principle the weight can be any value, in
191 	 * practice we do not use values in the range [1, 510].
192 	 */
193 	ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
194 	ASSERT(MUTEX_HELD(&msp->ms_lock));
195 
196 	mutex_enter(&mg->mg_lock);
197 	ASSERT(msp->ms_group == mg);
198 	avl_remove(&mg->mg_metaslab_tree, msp);
199 	msp->ms_weight = weight;
200 	avl_add(&mg->mg_metaslab_tree, msp);
201 	mutex_exit(&mg->mg_lock);
202 }
203 
204 /*
205  * ==========================================================================
206  * The first-fit block allocator
207  * ==========================================================================
208  */
209 static void
210 metaslab_ff_load(space_map_t *sm)
211 {
212 	ASSERT(sm->sm_ppd == NULL);
213 	sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
214 }
215 
216 static void
217 metaslab_ff_unload(space_map_t *sm)
218 {
219 	kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
220 	sm->sm_ppd = NULL;
221 }
222 
223 static uint64_t
224 metaslab_ff_alloc(space_map_t *sm, uint64_t size)
225 {
226 	avl_tree_t *t = &sm->sm_root;
227 	uint64_t align = size & -size;
228 	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
229 	space_seg_t *ss, ssearch;
230 	avl_index_t where;
231 
232 	ssearch.ss_start = *cursor;
233 	ssearch.ss_end = *cursor + size;
234 
235 	ss = avl_find(t, &ssearch, &where);
236 	if (ss == NULL)
237 		ss = avl_nearest(t, where, AVL_AFTER);
238 
239 	while (ss != NULL) {
240 		uint64_t offset = P2ROUNDUP(ss->ss_start, align);
241 
242 		if (offset + size <= ss->ss_end) {
243 			*cursor = offset + size;
244 			return (offset);
245 		}
246 		ss = AVL_NEXT(t, ss);
247 	}
248 
249 	/*
250 	 * If we know we've searched the whole map (*cursor == 0), give up.
251 	 * Otherwise, reset the cursor to the beginning and try again.
252 	 */
253 	if (*cursor == 0)
254 		return (-1ULL);
255 
256 	*cursor = 0;
257 	return (metaslab_ff_alloc(sm, size));
258 }
259 
260 /* ARGSUSED */
261 static void
262 metaslab_ff_claim(space_map_t *sm, uint64_t start, uint64_t size)
263 {
264 	/* No need to update cursor */
265 }
266 
267 /* ARGSUSED */
268 static void
269 metaslab_ff_free(space_map_t *sm, uint64_t start, uint64_t size)
270 {
271 	/* No need to update cursor */
272 }
273 
274 static space_map_ops_t metaslab_ff_ops = {
275 	metaslab_ff_load,
276 	metaslab_ff_unload,
277 	metaslab_ff_alloc,
278 	metaslab_ff_claim,
279 	metaslab_ff_free
280 };
281 
282 /*
283  * ==========================================================================
284  * Metaslabs
285  * ==========================================================================
286  */
287 metaslab_t *
288 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
289 	uint64_t start, uint64_t size, uint64_t txg)
290 {
291 	vdev_t *vd = mg->mg_vd;
292 	metaslab_t *msp;
293 
294 	msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
295 	mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
296 
297 	msp->ms_smo_syncing = *smo;
298 
299 	/*
300 	 * We create the main space map here, but we don't create the
301 	 * allocmaps and freemaps until metaslab_sync_done().  This serves
302 	 * two purposes: it allows metaslab_sync_done() to detect the
303 	 * addition of new space; and for debugging, it ensures that we'd
304 	 * data fault on any attempt to use this metaslab before it's ready.
305 	 */
306 	space_map_create(&msp->ms_map, start, size,
307 	    vd->vdev_ashift, &msp->ms_lock);
308 
309 	metaslab_group_add(mg, msp);
310 
311 	/*
312 	 * If we're opening an existing pool (txg == 0) or creating
313 	 * a new one (txg == TXG_INITIAL), all space is available now.
314 	 * If we're adding space to an existing pool, the new space
315 	 * does not become available until after this txg has synced.
316 	 */
317 	if (txg <= TXG_INITIAL)
318 		metaslab_sync_done(msp, 0);
319 
320 	if (txg != 0) {
321 		/*
322 		 * The vdev is dirty, but the metaslab isn't -- it just needs
323 		 * to have metaslab_sync_done() invoked from vdev_sync_done().
324 		 * [We could just dirty the metaslab, but that would cause us
325 		 * to allocate a space map object for it, which is wasteful
326 		 * and would mess up the locality logic in metaslab_weight().]
327 		 */
328 		ASSERT(TXG_CLEAN(txg) == spa_last_synced_txg(vd->vdev_spa));
329 		vdev_dirty(vd, 0, NULL, txg);
330 		vdev_dirty(vd, VDD_METASLAB, msp, TXG_CLEAN(txg));
331 	}
332 
333 	return (msp);
334 }
335 
336 void
337 metaslab_fini(metaslab_t *msp)
338 {
339 	metaslab_group_t *mg = msp->ms_group;
340 	int t;
341 
342 	vdev_space_update(mg->mg_vd, -msp->ms_map.sm_size,
343 	    -msp->ms_smo.smo_alloc, B_TRUE);
344 
345 	metaslab_group_remove(mg, msp);
346 
347 	mutex_enter(&msp->ms_lock);
348 
349 	space_map_unload(&msp->ms_map);
350 	space_map_destroy(&msp->ms_map);
351 
352 	for (t = 0; t < TXG_SIZE; t++) {
353 		space_map_destroy(&msp->ms_allocmap[t]);
354 		space_map_destroy(&msp->ms_freemap[t]);
355 	}
356 
357 	mutex_exit(&msp->ms_lock);
358 	mutex_destroy(&msp->ms_lock);
359 
360 	kmem_free(msp, sizeof (metaslab_t));
361 }
362 
363 #define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
364 #define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
365 #define	METASLAB_ACTIVE_MASK		\
366 	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
367 #define	METASLAB_SMO_BONUS_MULTIPLIER	2
368 
369 static uint64_t
370 metaslab_weight(metaslab_t *msp)
371 {
372 	metaslab_group_t *mg = msp->ms_group;
373 	space_map_t *sm = &msp->ms_map;
374 	space_map_obj_t *smo = &msp->ms_smo;
375 	vdev_t *vd = mg->mg_vd;
376 	uint64_t weight, space;
377 
378 	ASSERT(MUTEX_HELD(&msp->ms_lock));
379 
380 	/*
381 	 * The baseline weight is the metaslab's free space.
382 	 */
383 	space = sm->sm_size - smo->smo_alloc;
384 	weight = space;
385 
386 	/*
387 	 * Modern disks have uniform bit density and constant angular velocity.
388 	 * Therefore, the outer recording zones are faster (higher bandwidth)
389 	 * than the inner zones by the ratio of outer to inner track diameter,
390 	 * which is typically around 2:1.  We account for this by assigning
391 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
392 	 * In effect, this means that we'll select the metaslab with the most
393 	 * free bandwidth rather than simply the one with the most free space.
394 	 */
395 	weight = 2 * weight -
396 	    ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
397 	ASSERT(weight >= space && weight <= 2 * space);
398 
399 	/*
400 	 * For locality, assign higher weight to metaslabs we've used before.
401 	 */
402 	if (smo->smo_object != 0)
403 		weight *= METASLAB_SMO_BONUS_MULTIPLIER;
404 	ASSERT(weight >= space &&
405 	    weight <= 2 * METASLAB_SMO_BONUS_MULTIPLIER * space);
406 
407 	/*
408 	 * If this metaslab is one we're actively using, adjust its weight to
409 	 * make it preferable to any inactive metaslab so we'll polish it off.
410 	 */
411 	weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
412 
413 	return (weight);
414 }
415 
416 static int
417 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
418 {
419 	space_map_t *sm = &msp->ms_map;
420 
421 	ASSERT(MUTEX_HELD(&msp->ms_lock));
422 
423 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
424 		int error = space_map_load(sm, &metaslab_ff_ops,
425 		    SM_FREE, &msp->ms_smo,
426 		    msp->ms_group->mg_vd->vdev_spa->spa_meta_objset);
427 		if (error) {
428 			metaslab_group_sort(msp->ms_group, msp, 0);
429 			return (error);
430 		}
431 		metaslab_group_sort(msp->ms_group, msp,
432 		    msp->ms_weight | activation_weight);
433 	}
434 	ASSERT(sm->sm_loaded);
435 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
436 
437 	return (0);
438 }
439 
440 static void
441 metaslab_passivate(metaslab_t *msp, uint64_t size)
442 {
443 	/*
444 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
445 	 * this metaslab again.  In that case, it had better be empty,
446 	 * or we would be leaving space on the table.
447 	 */
448 	ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
449 	metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
450 	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
451 }
452 
453 /*
454  * Write a metaslab to disk in the context of the specified transaction group.
455  */
456 void
457 metaslab_sync(metaslab_t *msp, uint64_t txg)
458 {
459 	vdev_t *vd = msp->ms_group->mg_vd;
460 	spa_t *spa = vd->vdev_spa;
461 	objset_t *mos = spa->spa_meta_objset;
462 	space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
463 	space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
464 	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
465 	space_map_t *sm = &msp->ms_map;
466 	space_map_obj_t *smo = &msp->ms_smo_syncing;
467 	dmu_buf_t *db;
468 	dmu_tx_t *tx;
469 	int t;
470 
471 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
472 
473 	/*
474 	 * The only state that can actually be changing concurrently with
475 	 * metaslab_sync() is the metaslab's ms_map.  No other thread can
476 	 * be modifying this txg's allocmap, freemap, freed_map, or smo.
477 	 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
478 	 * We drop it whenever we call into the DMU, because the DMU
479 	 * can call down to us (e.g. via zio_free()) at any time.
480 	 */
481 	mutex_enter(&msp->ms_lock);
482 
483 	if (smo->smo_object == 0) {
484 		ASSERT(smo->smo_objsize == 0);
485 		ASSERT(smo->smo_alloc == 0);
486 		mutex_exit(&msp->ms_lock);
487 		smo->smo_object = dmu_object_alloc(mos,
488 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
489 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
490 		ASSERT(smo->smo_object != 0);
491 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
492 		    (sm->sm_start >> vd->vdev_ms_shift),
493 		    sizeof (uint64_t), &smo->smo_object, tx);
494 		mutex_enter(&msp->ms_lock);
495 	}
496 
497 	space_map_walk(freemap, space_map_add, freed_map);
498 
499 	if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
500 	    2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
501 		/*
502 		 * The in-core space map representation is twice as compact
503 		 * as the on-disk one, so it's time to condense the latter
504 		 * by generating a pure allocmap from first principles.
505 		 *
506 		 * This metaslab is 100% allocated,
507 		 * minus the content of the in-core map (sm),
508 		 * minus what's been freed this txg (freed_map),
509 		 * minus allocations from txgs in the future
510 		 * (because they haven't been committed yet).
511 		 */
512 		space_map_vacate(allocmap, NULL, NULL);
513 		space_map_vacate(freemap, NULL, NULL);
514 
515 		space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
516 
517 		space_map_walk(sm, space_map_remove, allocmap);
518 		space_map_walk(freed_map, space_map_remove, allocmap);
519 
520 		for (t = 1; t < TXG_CONCURRENT_STATES; t++)
521 			space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
522 			    space_map_remove, allocmap);
523 
524 		mutex_exit(&msp->ms_lock);
525 		space_map_truncate(smo, mos, tx);
526 		mutex_enter(&msp->ms_lock);
527 	}
528 
529 	space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
530 	space_map_sync(freemap, SM_FREE, smo, mos, tx);
531 
532 	mutex_exit(&msp->ms_lock);
533 
534 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
535 	dmu_buf_will_dirty(db, tx);
536 	ASSERT3U(db->db_size, >=, sizeof (*smo));
537 	bcopy(smo, db->db_data, sizeof (*smo));
538 	dmu_buf_rele(db, FTAG);
539 
540 	dmu_tx_commit(tx);
541 }
542 
543 /*
544  * Called after a transaction group has completely synced to mark
545  * all of the metaslab's free space as usable.
546  */
547 void
548 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
549 {
550 	space_map_obj_t *smo = &msp->ms_smo;
551 	space_map_obj_t *smosync = &msp->ms_smo_syncing;
552 	space_map_t *sm = &msp->ms_map;
553 	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
554 	metaslab_group_t *mg = msp->ms_group;
555 	vdev_t *vd = mg->mg_vd;
556 	int t;
557 
558 	mutex_enter(&msp->ms_lock);
559 
560 	/*
561 	 * If this metaslab is just becoming available, initialize its
562 	 * allocmaps and freemaps and add its capacity to the vdev.
563 	 */
564 	if (freed_map->sm_size == 0) {
565 		for (t = 0; t < TXG_SIZE; t++) {
566 			space_map_create(&msp->ms_allocmap[t], sm->sm_start,
567 			    sm->sm_size, sm->sm_shift, sm->sm_lock);
568 			space_map_create(&msp->ms_freemap[t], sm->sm_start,
569 			    sm->sm_size, sm->sm_shift, sm->sm_lock);
570 		}
571 		vdev_space_update(vd, sm->sm_size, 0, B_TRUE);
572 	}
573 
574 	vdev_space_update(vd, 0, smosync->smo_alloc - smo->smo_alloc, B_TRUE);
575 
576 	ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
577 	ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
578 
579 	/*
580 	 * If there's a space_map_load() in progress, wait for it to complete
581 	 * so that we have a consistent view of the in-core space map.
582 	 * Then, add everything we freed in this txg to the map.
583 	 */
584 	space_map_load_wait(sm);
585 	space_map_vacate(freed_map, sm->sm_loaded ? space_map_free : NULL, sm);
586 
587 	*smo = *smosync;
588 
589 	/*
590 	 * If the map is loaded but no longer active, evict it as soon as all
591 	 * future allocations have synced.  (If we unloaded it now and then
592 	 * loaded a moment later, the map wouldn't reflect those allocations.)
593 	 */
594 	if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
595 		int evictable = 1;
596 
597 		for (t = 1; t < TXG_CONCURRENT_STATES; t++)
598 			if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
599 				evictable = 0;
600 
601 		if (evictable)
602 			space_map_unload(sm);
603 	}
604 
605 	metaslab_group_sort(mg, msp, metaslab_weight(msp));
606 
607 	mutex_exit(&msp->ms_lock);
608 }
609 
610 static uint64_t
611 metaslab_distance(metaslab_t *msp, dva_t *dva)
612 {
613 	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
614 	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
615 	uint64_t start = msp->ms_map.sm_start >> ms_shift;
616 
617 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
618 		return (1ULL << 63);
619 
620 	if (offset < start)
621 		return ((start - offset) << ms_shift);
622 	if (offset > start)
623 		return ((offset - start) << ms_shift);
624 	return (0);
625 }
626 
627 static uint64_t
628 metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg,
629     uint64_t min_distance, dva_t *dva, int d)
630 {
631 	metaslab_t *msp = NULL;
632 	uint64_t offset = -1ULL;
633 	avl_tree_t *t = &mg->mg_metaslab_tree;
634 	uint64_t activation_weight;
635 	uint64_t target_distance;
636 	int i;
637 
638 	activation_weight = METASLAB_WEIGHT_PRIMARY;
639 	for (i = 0; i < d; i++)
640 		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id)
641 			activation_weight = METASLAB_WEIGHT_SECONDARY;
642 
643 	for (;;) {
644 		mutex_enter(&mg->mg_lock);
645 		for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
646 			if (msp->ms_weight < size) {
647 				mutex_exit(&mg->mg_lock);
648 				return (-1ULL);
649 			}
650 
651 			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
652 				break;
653 
654 			target_distance = min_distance +
655 			    (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
656 
657 			for (i = 0; i < d; i++)
658 				if (metaslab_distance(msp, &dva[i]) <
659 				    target_distance)
660 					break;
661 			if (i == d)
662 				break;
663 		}
664 		mutex_exit(&mg->mg_lock);
665 		if (msp == NULL)
666 			return (-1ULL);
667 
668 		mutex_enter(&msp->ms_lock);
669 
670 		/*
671 		 * Ensure that the metaslab we have selected is still
672 		 * capable of handling our request. It's possible that
673 		 * another thread may have changed the weight while we
674 		 * were blocked on the metaslab lock.
675 		 */
676 		if (msp->ms_weight < size) {
677 			mutex_exit(&msp->ms_lock);
678 			continue;
679 		}
680 
681 		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
682 		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
683 			metaslab_passivate(msp,
684 			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
685 			mutex_exit(&msp->ms_lock);
686 			continue;
687 		}
688 
689 		if (metaslab_activate(msp, activation_weight) != 0) {
690 			mutex_exit(&msp->ms_lock);
691 			continue;
692 		}
693 
694 		if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL)
695 			break;
696 
697 		metaslab_passivate(msp, size - 1);
698 
699 		mutex_exit(&msp->ms_lock);
700 	}
701 
702 	if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
703 		vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
704 
705 	space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
706 
707 	mutex_exit(&msp->ms_lock);
708 
709 	return (offset);
710 }
711 
712 /*
713  * Allocate a block for the specified i/o.
714  */
715 static int
716 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
717     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
718 {
719 	metaslab_group_t *mg, *rotor;
720 	vdev_t *vd;
721 	int dshift = 3;
722 	int all_zero;
723 	uint64_t offset = -1ULL;
724 	uint64_t asize;
725 	uint64_t distance;
726 
727 	ASSERT(!DVA_IS_VALID(&dva[d]));
728 
729 	/*
730 	 * For testing, make some blocks above a certain size be gang blocks.
731 	 */
732 	if (psize >= metaslab_gang_bang && (lbolt & 3) == 0)
733 		return (ENOSPC);
734 
735 	/*
736 	 * Start at the rotor and loop through all mgs until we find something.
737 	 * Note that there's no locking on mc_rotor or mc_allocated because
738 	 * nothing actually breaks if we miss a few updates -- we just won't
739 	 * allocate quite as evenly.  It all balances out over time.
740 	 *
741 	 * If we are doing ditto or log blocks, try to spread them across
742 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
743 	 * allocated all of our ditto blocks, then try and spread them out on
744 	 * that vdev as much as possible.  If it turns out to not be possible,
745 	 * gradually lower our standards until anything becomes acceptable.
746 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
747 	 * gives us hope of containing our fault domains to something we're
748 	 * able to reason about.  Otherwise, any two top-level vdev failures
749 	 * will guarantee the loss of data.  With consecutive allocation,
750 	 * only two adjacent top-level vdev failures will result in data loss.
751 	 *
752 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
753 	 * ourselves on the same vdev as our gang block header.  That
754 	 * way, we can hope for locality in vdev_cache, plus it makes our
755 	 * fault domains something tractable.
756 	 */
757 	if (hintdva) {
758 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
759 		if (flags & METASLAB_HINTBP_AVOID)
760 			mg = vd->vdev_mg->mg_next;
761 		else
762 			mg = vd->vdev_mg;
763 	} else if (d != 0) {
764 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
765 		mg = vd->vdev_mg->mg_next;
766 	} else {
767 		mg = mc->mc_rotor;
768 	}
769 
770 	/*
771 	 * If the hint put us into the wrong class, just follow the rotor.
772 	 */
773 	if (mg->mg_class != mc)
774 		mg = mc->mc_rotor;
775 
776 	rotor = mg;
777 top:
778 	all_zero = B_TRUE;
779 	do {
780 		vd = mg->mg_vd;
781 		/*
782 		 * Don't allocate from faulted devices.
783 		 */
784 		if (!vdev_writeable(vd))
785 			goto next;
786 		/*
787 		 * Avoid writing single-copy data to a failing vdev
788 		 */
789 		if ((vd->vdev_stat.vs_write_errors > 0 ||
790 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
791 		    d == 0 && dshift == 3) {
792 			all_zero = B_FALSE;
793 			goto next;
794 		}
795 
796 		ASSERT(mg->mg_class == mc);
797 
798 		distance = vd->vdev_asize >> dshift;
799 		if (distance <= (1ULL << vd->vdev_ms_shift))
800 			distance = 0;
801 		else
802 			all_zero = B_FALSE;
803 
804 		asize = vdev_psize_to_asize(vd, psize);
805 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
806 
807 		offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d);
808 		if (offset != -1ULL) {
809 			/*
810 			 * If we've just selected this metaslab group,
811 			 * figure out whether the corresponding vdev is
812 			 * over- or under-used relative to the pool,
813 			 * and set an allocation bias to even it out.
814 			 */
815 			if (mc->mc_allocated == 0) {
816 				vdev_stat_t *vs = &vd->vdev_stat;
817 				uint64_t alloc, space;
818 				int64_t vu, su;
819 
820 				alloc = spa_get_alloc(spa);
821 				space = spa_get_space(spa);
822 
823 				/*
824 				 * Determine percent used in units of 0..1024.
825 				 * (This is just to avoid floating point.)
826 				 */
827 				vu = (vs->vs_alloc << 10) / (vs->vs_space + 1);
828 				su = (alloc << 10) / (space + 1);
829 
830 				/*
831 				 * Bias by at most +/- 25% of the aliquot.
832 				 */
833 				mg->mg_bias = ((su - vu) *
834 				    (int64_t)mg->mg_aliquot) / (1024 * 4);
835 			}
836 
837 			if (atomic_add_64_nv(&mc->mc_allocated, asize) >=
838 			    mg->mg_aliquot + mg->mg_bias) {
839 				mc->mc_rotor = mg->mg_next;
840 				mc->mc_allocated = 0;
841 			}
842 
843 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
844 			DVA_SET_OFFSET(&dva[d], offset);
845 			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
846 			DVA_SET_ASIZE(&dva[d], asize);
847 
848 			return (0);
849 		}
850 next:
851 		mc->mc_rotor = mg->mg_next;
852 		mc->mc_allocated = 0;
853 	} while ((mg = mg->mg_next) != rotor);
854 
855 	if (!all_zero) {
856 		dshift++;
857 		ASSERT(dshift < 64);
858 		goto top;
859 	}
860 
861 	bzero(&dva[d], sizeof (dva_t));
862 
863 	return (ENOSPC);
864 }
865 
866 /*
867  * Free the block represented by DVA in the context of the specified
868  * transaction group.
869  */
870 static void
871 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
872 {
873 	uint64_t vdev = DVA_GET_VDEV(dva);
874 	uint64_t offset = DVA_GET_OFFSET(dva);
875 	uint64_t size = DVA_GET_ASIZE(dva);
876 	vdev_t *vd;
877 	metaslab_t *msp;
878 
879 	ASSERT(DVA_IS_VALID(dva));
880 
881 	if (txg > spa_freeze_txg(spa))
882 		return;
883 
884 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
885 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
886 		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
887 		    (u_longlong_t)vdev, (u_longlong_t)offset);
888 		ASSERT(0);
889 		return;
890 	}
891 
892 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
893 
894 	if (DVA_GET_GANG(dva))
895 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
896 
897 	mutex_enter(&msp->ms_lock);
898 
899 	if (now) {
900 		space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
901 		    offset, size);
902 		space_map_free(&msp->ms_map, offset, size);
903 	} else {
904 		if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
905 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
906 		space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
907 	}
908 
909 	mutex_exit(&msp->ms_lock);
910 }
911 
912 /*
913  * Intent log support: upon opening the pool after a crash, notify the SPA
914  * of blocks that the intent log has allocated for immediate write, but
915  * which are still considered free by the SPA because the last transaction
916  * group didn't commit yet.
917  */
918 static int
919 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
920 {
921 	uint64_t vdev = DVA_GET_VDEV(dva);
922 	uint64_t offset = DVA_GET_OFFSET(dva);
923 	uint64_t size = DVA_GET_ASIZE(dva);
924 	vdev_t *vd;
925 	metaslab_t *msp;
926 	int error;
927 
928 	ASSERT(DVA_IS_VALID(dva));
929 
930 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
931 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
932 		return (ENXIO);
933 
934 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
935 
936 	if (DVA_GET_GANG(dva))
937 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
938 
939 	mutex_enter(&msp->ms_lock);
940 
941 	error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
942 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
943 		mutex_exit(&msp->ms_lock);
944 		return (error);
945 	}
946 
947 	space_map_claim(&msp->ms_map, offset, size);
948 
949 	if (spa_mode & FWRITE) {	/* don't dirty if we're zdb(1M) */
950 		if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
951 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
952 		space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
953 	}
954 
955 	mutex_exit(&msp->ms_lock);
956 
957 	return (0);
958 }
959 
960 int
961 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
962     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
963 {
964 	dva_t *dva = bp->blk_dva;
965 	dva_t *hintdva = hintbp->blk_dva;
966 	int error = 0;
967 
968 	ASSERT(bp->blk_birth == 0);
969 
970 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
971 
972 	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
973 		spa_config_exit(spa, SCL_ALLOC, FTAG);
974 		return (ENOSPC);
975 	}
976 
977 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
978 	ASSERT(BP_GET_NDVAS(bp) == 0);
979 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
980 
981 	for (int d = 0; d < ndvas; d++) {
982 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
983 		    txg, flags);
984 		if (error) {
985 			for (d--; d >= 0; d--) {
986 				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
987 				bzero(&dva[d], sizeof (dva_t));
988 			}
989 			spa_config_exit(spa, SCL_ALLOC, FTAG);
990 			return (error);
991 		}
992 	}
993 	ASSERT(error == 0);
994 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
995 
996 	spa_config_exit(spa, SCL_ALLOC, FTAG);
997 
998 	bp->blk_birth = txg;
999 
1000 	return (0);
1001 }
1002 
1003 void
1004 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1005 {
1006 	const dva_t *dva = bp->blk_dva;
1007 	int ndvas = BP_GET_NDVAS(bp);
1008 
1009 	ASSERT(!BP_IS_HOLE(bp));
1010 	ASSERT(!now || bp->blk_birth >= spa->spa_syncing_txg);
1011 
1012 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
1013 
1014 	for (int d = 0; d < ndvas; d++)
1015 		metaslab_free_dva(spa, &dva[d], txg, now);
1016 
1017 	spa_config_exit(spa, SCL_FREE, FTAG);
1018 }
1019 
1020 int
1021 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
1022 {
1023 	const dva_t *dva = bp->blk_dva;
1024 	int ndvas = BP_GET_NDVAS(bp);
1025 	int error = 0;
1026 
1027 	ASSERT(!BP_IS_HOLE(bp));
1028 
1029 	if (txg != 0) {
1030 		/*
1031 		 * First do a dry run to make sure all DVAs are claimable,
1032 		 * so we don't have to unwind from partial failures below.
1033 		 */
1034 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
1035 			return (error);
1036 	}
1037 
1038 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1039 
1040 	for (int d = 0; d < ndvas; d++)
1041 		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
1042 			break;
1043 
1044 	spa_config_exit(spa, SCL_ALLOC, FTAG);
1045 
1046 	ASSERT(error == 0 || txg == 0);
1047 
1048 	return (error);
1049 }
1050