1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 */ 26 27 #include <sys/dsl_pool.h> 28 #include <sys/dsl_dataset.h> 29 #include <sys/dsl_prop.h> 30 #include <sys/dsl_dir.h> 31 #include <sys/dsl_synctask.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/dnode.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/arc.h> 37 #include <sys/zap.h> 38 #include <sys/zio.h> 39 #include <sys/zfs_context.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/zfs_znode.h> 42 #include <sys/spa_impl.h> 43 #include <sys/dsl_deadlist.h> 44 #include <sys/bptree.h> 45 #include <sys/zfeature.h> 46 #include <sys/zil_impl.h> 47 #include <sys/dsl_userhold.h> 48 49 /* 50 * ZFS Write Throttle 51 * ------------------ 52 * 53 * ZFS must limit the rate of incoming writes to the rate at which it is able 54 * to sync data modifications to the backend storage. Throttling by too much 55 * creates an artificial limit; throttling by too little can only be sustained 56 * for short periods and would lead to highly lumpy performance. On a per-pool 57 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 58 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 59 * of dirty data decreases. When the amount of dirty data exceeds a 60 * predetermined threshold further modifications are blocked until the amount 61 * of dirty data decreases (as data is synced out). 62 * 63 * The limit on dirty data is tunable, and should be adjusted according to 64 * both the IO capacity and available memory of the system. The larger the 65 * window, the more ZFS is able to aggregate and amortize metadata (and data) 66 * changes. However, memory is a limited resource, and allowing for more dirty 67 * data comes at the cost of keeping other useful data in memory (for example 68 * ZFS data cached by the ARC). 69 * 70 * Implementation 71 * 72 * As buffers are modified dsl_pool_willuse_space() increments both the per- 73 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 74 * dirty space used; dsl_pool_dirty_space() decrements those values as data 75 * is synced out from dsl_pool_sync(). While only the poolwide value is 76 * relevant, the per-txg value is useful for debugging. The tunable 77 * zfs_dirty_data_max determines the dirty space limit. Once that value is 78 * exceeded, new writes are halted until space frees up. 79 * 80 * The zfs_dirty_data_sync tunable dictates the threshold at which we 81 * ensure that there is a txg syncing (see the comment in txg.c for a full 82 * description of transaction group stages). 83 * 84 * The IO scheduler uses both the dirty space limit and current amount of 85 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 86 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 87 * 88 * The delay is also calculated based on the amount of dirty data. See the 89 * comment above dmu_tx_delay() for details. 90 */ 91 92 /* 93 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 94 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 95 */ 96 uint64_t zfs_dirty_data_max; 97 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 98 int zfs_dirty_data_max_percent = 10; 99 100 /* 101 * If there is at least this much dirty data, push out a txg. 102 */ 103 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; 104 105 /* 106 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 107 * and delay each transaction. 108 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 109 */ 110 int zfs_delay_min_dirty_percent = 60; 111 112 /* 113 * This controls how quickly the delay approaches infinity. 114 * Larger values cause it to delay less for a given amount of dirty data. 115 * Therefore larger values will cause there to be more dirty data for a 116 * given throughput. 117 * 118 * For the smoothest delay, this value should be about 1 billion divided 119 * by the maximum number of operations per second. This will smoothly 120 * handle between 10x and 1/10th this number. 121 * 122 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 123 * multiply in dmu_tx_delay(). 124 */ 125 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 126 127 128 /* 129 * XXX someday maybe turn these into #defines, and you have to tune it on a 130 * per-pool basis using zfs.conf. 131 */ 132 133 134 hrtime_t zfs_throttle_delay = MSEC2NSEC(10); 135 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); 136 137 int 138 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 139 { 140 uint64_t obj; 141 int err; 142 143 err = zap_lookup(dp->dp_meta_objset, 144 dp->dp_root_dir->dd_phys->dd_child_dir_zapobj, 145 name, sizeof (obj), 1, &obj); 146 if (err) 147 return (err); 148 149 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 150 } 151 152 static dsl_pool_t * 153 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 154 { 155 dsl_pool_t *dp; 156 blkptr_t *bp = spa_get_rootblkptr(spa); 157 158 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 159 dp->dp_spa = spa; 160 dp->dp_meta_rootbp = *bp; 161 rrw_init(&dp->dp_config_rwlock, B_TRUE); 162 txg_init(dp, txg); 163 164 txg_list_create(&dp->dp_dirty_datasets, 165 offsetof(dsl_dataset_t, ds_dirty_link)); 166 txg_list_create(&dp->dp_dirty_zilogs, 167 offsetof(zilog_t, zl_dirty_link)); 168 txg_list_create(&dp->dp_dirty_dirs, 169 offsetof(dsl_dir_t, dd_dirty_link)); 170 txg_list_create(&dp->dp_sync_tasks, 171 offsetof(dsl_sync_task_t, dst_node)); 172 173 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 174 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 175 176 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 177 1, 4, 0); 178 179 return (dp); 180 } 181 182 int 183 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 184 { 185 int err; 186 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 187 188 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 189 &dp->dp_meta_objset); 190 if (err != 0) 191 dsl_pool_close(dp); 192 else 193 *dpp = dp; 194 195 return (err); 196 } 197 198 int 199 dsl_pool_open(dsl_pool_t *dp) 200 { 201 int err; 202 dsl_dir_t *dd; 203 dsl_dataset_t *ds; 204 uint64_t obj; 205 206 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 207 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 208 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 209 &dp->dp_root_dir_obj); 210 if (err) 211 goto out; 212 213 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 214 NULL, dp, &dp->dp_root_dir); 215 if (err) 216 goto out; 217 218 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 219 if (err) 220 goto out; 221 222 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 223 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 224 if (err) 225 goto out; 226 err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj, 227 FTAG, &ds); 228 if (err == 0) { 229 err = dsl_dataset_hold_obj(dp, 230 ds->ds_phys->ds_prev_snap_obj, dp, 231 &dp->dp_origin_snap); 232 dsl_dataset_rele(ds, FTAG); 233 } 234 dsl_dir_rele(dd, dp); 235 if (err) 236 goto out; 237 } 238 239 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 240 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 241 &dp->dp_free_dir); 242 if (err) 243 goto out; 244 245 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 246 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 247 if (err) 248 goto out; 249 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 250 dp->dp_meta_objset, obj)); 251 } 252 253 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 254 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 255 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 256 &dp->dp_bptree_obj); 257 if (err != 0) 258 goto out; 259 } 260 261 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 262 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 263 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 264 &dp->dp_empty_bpobj); 265 if (err != 0) 266 goto out; 267 } 268 269 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 270 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 271 &dp->dp_tmp_userrefs_obj); 272 if (err == ENOENT) 273 err = 0; 274 if (err) 275 goto out; 276 277 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 278 279 out: 280 rrw_exit(&dp->dp_config_rwlock, FTAG); 281 return (err); 282 } 283 284 void 285 dsl_pool_close(dsl_pool_t *dp) 286 { 287 /* 288 * Drop our references from dsl_pool_open(). 289 * 290 * Since we held the origin_snap from "syncing" context (which 291 * includes pool-opening context), it actually only got a "ref" 292 * and not a hold, so just drop that here. 293 */ 294 if (dp->dp_origin_snap) 295 dsl_dataset_rele(dp->dp_origin_snap, dp); 296 if (dp->dp_mos_dir) 297 dsl_dir_rele(dp->dp_mos_dir, dp); 298 if (dp->dp_free_dir) 299 dsl_dir_rele(dp->dp_free_dir, dp); 300 if (dp->dp_root_dir) 301 dsl_dir_rele(dp->dp_root_dir, dp); 302 303 bpobj_close(&dp->dp_free_bpobj); 304 305 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 306 if (dp->dp_meta_objset) 307 dmu_objset_evict(dp->dp_meta_objset); 308 309 txg_list_destroy(&dp->dp_dirty_datasets); 310 txg_list_destroy(&dp->dp_dirty_zilogs); 311 txg_list_destroy(&dp->dp_sync_tasks); 312 txg_list_destroy(&dp->dp_dirty_dirs); 313 314 arc_flush(dp->dp_spa); 315 txg_fini(dp); 316 dsl_scan_fini(dp); 317 rrw_destroy(&dp->dp_config_rwlock); 318 mutex_destroy(&dp->dp_lock); 319 taskq_destroy(dp->dp_vnrele_taskq); 320 if (dp->dp_blkstats) 321 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 322 kmem_free(dp, sizeof (dsl_pool_t)); 323 } 324 325 dsl_pool_t * 326 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 327 { 328 int err; 329 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 330 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 331 objset_t *os; 332 dsl_dataset_t *ds; 333 uint64_t obj; 334 335 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 336 337 /* create and open the MOS (meta-objset) */ 338 dp->dp_meta_objset = dmu_objset_create_impl(spa, 339 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 340 341 /* create the pool directory */ 342 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 343 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 344 ASSERT0(err); 345 346 /* Initialize scan structures */ 347 VERIFY0(dsl_scan_init(dp, txg)); 348 349 /* create and open the root dir */ 350 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 351 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 352 NULL, dp, &dp->dp_root_dir)); 353 354 /* create and open the meta-objset dir */ 355 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 356 VERIFY0(dsl_pool_open_special_dir(dp, 357 MOS_DIR_NAME, &dp->dp_mos_dir)); 358 359 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 360 /* create and open the free dir */ 361 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 362 FREE_DIR_NAME, tx); 363 VERIFY0(dsl_pool_open_special_dir(dp, 364 FREE_DIR_NAME, &dp->dp_free_dir)); 365 366 /* create and open the free_bplist */ 367 obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx); 368 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 369 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 370 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 371 dp->dp_meta_objset, obj)); 372 } 373 374 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 375 dsl_pool_create_origin(dp, tx); 376 377 /* create the root dataset */ 378 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 379 380 /* create the root objset */ 381 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 382 os = dmu_objset_create_impl(dp->dp_spa, ds, 383 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 384 #ifdef _KERNEL 385 zfs_create_fs(os, kcred, zplprops, tx); 386 #endif 387 dsl_dataset_rele(ds, FTAG); 388 389 dmu_tx_commit(tx); 390 391 rrw_exit(&dp->dp_config_rwlock, FTAG); 392 393 return (dp); 394 } 395 396 /* 397 * Account for the meta-objset space in its placeholder dsl_dir. 398 */ 399 void 400 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 401 int64_t used, int64_t comp, int64_t uncomp) 402 { 403 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 404 mutex_enter(&dp->dp_lock); 405 dp->dp_mos_used_delta += used; 406 dp->dp_mos_compressed_delta += comp; 407 dp->dp_mos_uncompressed_delta += uncomp; 408 mutex_exit(&dp->dp_lock); 409 } 410 411 static int 412 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 413 { 414 dsl_deadlist_t *dl = arg; 415 dsl_deadlist_insert(dl, bp, tx); 416 return (0); 417 } 418 419 static void 420 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 421 { 422 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 423 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 424 VERIFY0(zio_wait(zio)); 425 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 426 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 427 } 428 429 static void 430 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 431 { 432 ASSERT(MUTEX_HELD(&dp->dp_lock)); 433 434 if (delta < 0) 435 ASSERT3U(-delta, <=, dp->dp_dirty_total); 436 437 dp->dp_dirty_total += delta; 438 439 /* 440 * Note: we signal even when increasing dp_dirty_total. 441 * This ensures forward progress -- each thread wakes the next waiter. 442 */ 443 if (dp->dp_dirty_total <= zfs_dirty_data_max) 444 cv_signal(&dp->dp_spaceavail_cv); 445 } 446 447 void 448 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 449 { 450 zio_t *zio; 451 dmu_tx_t *tx; 452 dsl_dir_t *dd; 453 dsl_dataset_t *ds; 454 objset_t *mos = dp->dp_meta_objset; 455 list_t synced_datasets; 456 457 list_create(&synced_datasets, sizeof (dsl_dataset_t), 458 offsetof(dsl_dataset_t, ds_synced_link)); 459 460 tx = dmu_tx_create_assigned(dp, txg); 461 462 /* 463 * Write out all dirty blocks of dirty datasets. 464 */ 465 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 466 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 467 /* 468 * We must not sync any non-MOS datasets twice, because 469 * we may have taken a snapshot of them. However, we 470 * may sync newly-created datasets on pass 2. 471 */ 472 ASSERT(!list_link_active(&ds->ds_synced_link)); 473 list_insert_tail(&synced_datasets, ds); 474 dsl_dataset_sync(ds, zio, tx); 475 } 476 VERIFY0(zio_wait(zio)); 477 478 /* 479 * We have written all of the accounted dirty data, so our 480 * dp_space_towrite should now be zero. However, some seldom-used 481 * code paths do not adhere to this (e.g. dbuf_undirty(), also 482 * rounding error in dbuf_write_physdone). 483 * Shore up the accounting of any dirtied space now. 484 */ 485 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 486 487 /* 488 * After the data blocks have been written (ensured by the zio_wait() 489 * above), update the user/group space accounting. 490 */ 491 for (ds = list_head(&synced_datasets); ds != NULL; 492 ds = list_next(&synced_datasets, ds)) { 493 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 494 } 495 496 /* 497 * Sync the datasets again to push out the changes due to 498 * userspace updates. This must be done before we process the 499 * sync tasks, so that any snapshots will have the correct 500 * user accounting information (and we won't get confused 501 * about which blocks are part of the snapshot). 502 */ 503 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 504 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 505 ASSERT(list_link_active(&ds->ds_synced_link)); 506 dmu_buf_rele(ds->ds_dbuf, ds); 507 dsl_dataset_sync(ds, zio, tx); 508 } 509 VERIFY0(zio_wait(zio)); 510 511 /* 512 * Now that the datasets have been completely synced, we can 513 * clean up our in-memory structures accumulated while syncing: 514 * 515 * - move dead blocks from the pending deadlist to the on-disk deadlist 516 * - release hold from dsl_dataset_dirty() 517 */ 518 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 519 objset_t *os = ds->ds_objset; 520 bplist_iterate(&ds->ds_pending_deadlist, 521 deadlist_enqueue_cb, &ds->ds_deadlist, tx); 522 ASSERT(!dmu_objset_is_dirty(os, txg)); 523 dmu_buf_rele(ds->ds_dbuf, ds); 524 } 525 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 526 dsl_dir_sync(dd, tx); 527 } 528 529 /* 530 * The MOS's space is accounted for in the pool/$MOS 531 * (dp_mos_dir). We can't modify the mos while we're syncing 532 * it, so we remember the deltas and apply them here. 533 */ 534 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 535 dp->dp_mos_uncompressed_delta != 0) { 536 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 537 dp->dp_mos_used_delta, 538 dp->dp_mos_compressed_delta, 539 dp->dp_mos_uncompressed_delta, tx); 540 dp->dp_mos_used_delta = 0; 541 dp->dp_mos_compressed_delta = 0; 542 dp->dp_mos_uncompressed_delta = 0; 543 } 544 545 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || 546 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { 547 dsl_pool_sync_mos(dp, tx); 548 } 549 550 /* 551 * If we modify a dataset in the same txg that we want to destroy it, 552 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 553 * dsl_dir_destroy_check() will fail if there are unexpected holds. 554 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 555 * and clearing the hold on it) before we process the sync_tasks. 556 * The MOS data dirtied by the sync_tasks will be synced on the next 557 * pass. 558 */ 559 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 560 dsl_sync_task_t *dst; 561 /* 562 * No more sync tasks should have been added while we 563 * were syncing. 564 */ 565 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 566 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 567 dsl_sync_task_sync(dst, tx); 568 } 569 570 dmu_tx_commit(tx); 571 572 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 573 } 574 575 void 576 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 577 { 578 zilog_t *zilog; 579 580 while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) { 581 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 582 zil_clean(zilog, txg); 583 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 584 dmu_buf_rele(ds->ds_dbuf, zilog); 585 } 586 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 587 } 588 589 /* 590 * TRUE if the current thread is the tx_sync_thread or if we 591 * are being called from SPA context during pool initialization. 592 */ 593 int 594 dsl_pool_sync_context(dsl_pool_t *dp) 595 { 596 return (curthread == dp->dp_tx.tx_sync_thread || 597 spa_is_initializing(dp->dp_spa)); 598 } 599 600 uint64_t 601 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) 602 { 603 uint64_t space, resv; 604 605 /* 606 * Reserve about 1.6% (1/64), or at least 32MB, for allocation 607 * efficiency. 608 * XXX The intent log is not accounted for, so it must fit 609 * within this slop. 610 * 611 * If we're trying to assess whether it's OK to do a free, 612 * cut the reservation in half to allow forward progress 613 * (e.g. make it possible to rm(1) files from a full pool). 614 */ 615 space = spa_get_dspace(dp->dp_spa); 616 resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1); 617 if (netfree) 618 resv >>= 1; 619 620 return (space - resv); 621 } 622 623 boolean_t 624 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 625 { 626 uint64_t delay_min_bytes = 627 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 628 boolean_t rv; 629 630 mutex_enter(&dp->dp_lock); 631 if (dp->dp_dirty_total > zfs_dirty_data_sync) 632 txg_kick(dp); 633 rv = (dp->dp_dirty_total > delay_min_bytes); 634 mutex_exit(&dp->dp_lock); 635 return (rv); 636 } 637 638 void 639 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 640 { 641 if (space > 0) { 642 mutex_enter(&dp->dp_lock); 643 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 644 dsl_pool_dirty_delta(dp, space); 645 mutex_exit(&dp->dp_lock); 646 } 647 } 648 649 void 650 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 651 { 652 ASSERT3S(space, >=, 0); 653 if (space == 0) 654 return; 655 mutex_enter(&dp->dp_lock); 656 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 657 /* XXX writing something we didn't dirty? */ 658 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 659 } 660 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 661 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 662 ASSERT3U(dp->dp_dirty_total, >=, space); 663 dsl_pool_dirty_delta(dp, -space); 664 mutex_exit(&dp->dp_lock); 665 } 666 667 /* ARGSUSED */ 668 static int 669 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 670 { 671 dmu_tx_t *tx = arg; 672 dsl_dataset_t *ds, *prev = NULL; 673 int err; 674 675 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 676 if (err) 677 return (err); 678 679 while (ds->ds_phys->ds_prev_snap_obj != 0) { 680 err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, 681 FTAG, &prev); 682 if (err) { 683 dsl_dataset_rele(ds, FTAG); 684 return (err); 685 } 686 687 if (prev->ds_phys->ds_next_snap_obj != ds->ds_object) 688 break; 689 dsl_dataset_rele(ds, FTAG); 690 ds = prev; 691 prev = NULL; 692 } 693 694 if (prev == NULL) { 695 prev = dp->dp_origin_snap; 696 697 /* 698 * The $ORIGIN can't have any data, or the accounting 699 * will be wrong. 700 */ 701 ASSERT0(prev->ds_phys->ds_bp.blk_birth); 702 703 /* The origin doesn't get attached to itself */ 704 if (ds->ds_object == prev->ds_object) { 705 dsl_dataset_rele(ds, FTAG); 706 return (0); 707 } 708 709 dmu_buf_will_dirty(ds->ds_dbuf, tx); 710 ds->ds_phys->ds_prev_snap_obj = prev->ds_object; 711 ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg; 712 713 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 714 ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object; 715 716 dmu_buf_will_dirty(prev->ds_dbuf, tx); 717 prev->ds_phys->ds_num_children++; 718 719 if (ds->ds_phys->ds_next_snap_obj == 0) { 720 ASSERT(ds->ds_prev == NULL); 721 VERIFY0(dsl_dataset_hold_obj(dp, 722 ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev)); 723 } 724 } 725 726 ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object); 727 ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object); 728 729 if (prev->ds_phys->ds_next_clones_obj == 0) { 730 dmu_buf_will_dirty(prev->ds_dbuf, tx); 731 prev->ds_phys->ds_next_clones_obj = 732 zap_create(dp->dp_meta_objset, 733 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 734 } 735 VERIFY0(zap_add_int(dp->dp_meta_objset, 736 prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx)); 737 738 dsl_dataset_rele(ds, FTAG); 739 if (prev != dp->dp_origin_snap) 740 dsl_dataset_rele(prev, FTAG); 741 return (0); 742 } 743 744 void 745 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 746 { 747 ASSERT(dmu_tx_is_syncing(tx)); 748 ASSERT(dp->dp_origin_snap != NULL); 749 750 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 751 tx, DS_FIND_CHILDREN)); 752 } 753 754 /* ARGSUSED */ 755 static int 756 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 757 { 758 dmu_tx_t *tx = arg; 759 objset_t *mos = dp->dp_meta_objset; 760 761 if (ds->ds_dir->dd_phys->dd_origin_obj != 0) { 762 dsl_dataset_t *origin; 763 764 VERIFY0(dsl_dataset_hold_obj(dp, 765 ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin)); 766 767 if (origin->ds_dir->dd_phys->dd_clones == 0) { 768 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 769 origin->ds_dir->dd_phys->dd_clones = zap_create(mos, 770 DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); 771 } 772 773 VERIFY0(zap_add_int(dp->dp_meta_objset, 774 origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx)); 775 776 dsl_dataset_rele(origin, FTAG); 777 } 778 return (0); 779 } 780 781 void 782 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 783 { 784 ASSERT(dmu_tx_is_syncing(tx)); 785 uint64_t obj; 786 787 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 788 VERIFY0(dsl_pool_open_special_dir(dp, 789 FREE_DIR_NAME, &dp->dp_free_dir)); 790 791 /* 792 * We can't use bpobj_alloc(), because spa_version() still 793 * returns the old version, and we need a new-version bpobj with 794 * subobj support. So call dmu_object_alloc() directly. 795 */ 796 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 797 SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 798 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 799 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 800 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 801 802 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 803 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN)); 804 } 805 806 void 807 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 808 { 809 uint64_t dsobj; 810 dsl_dataset_t *ds; 811 812 ASSERT(dmu_tx_is_syncing(tx)); 813 ASSERT(dp->dp_origin_snap == NULL); 814 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 815 816 /* create the origin dir, ds, & snap-ds */ 817 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 818 NULL, 0, kcred, tx); 819 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 820 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 821 VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, 822 dp, &dp->dp_origin_snap)); 823 dsl_dataset_rele(ds, FTAG); 824 } 825 826 taskq_t * 827 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 828 { 829 return (dp->dp_vnrele_taskq); 830 } 831 832 /* 833 * Walk through the pool-wide zap object of temporary snapshot user holds 834 * and release them. 835 */ 836 void 837 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 838 { 839 zap_attribute_t za; 840 zap_cursor_t zc; 841 objset_t *mos = dp->dp_meta_objset; 842 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 843 nvlist_t *holds; 844 845 if (zapobj == 0) 846 return; 847 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 848 849 holds = fnvlist_alloc(); 850 851 for (zap_cursor_init(&zc, mos, zapobj); 852 zap_cursor_retrieve(&zc, &za) == 0; 853 zap_cursor_advance(&zc)) { 854 char *htag; 855 nvlist_t *tags; 856 857 htag = strchr(za.za_name, '-'); 858 *htag = '\0'; 859 ++htag; 860 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 861 tags = fnvlist_alloc(); 862 fnvlist_add_boolean(tags, htag); 863 fnvlist_add_nvlist(holds, za.za_name, tags); 864 fnvlist_free(tags); 865 } else { 866 fnvlist_add_boolean(tags, htag); 867 } 868 } 869 dsl_dataset_user_release_tmp(dp, holds); 870 fnvlist_free(holds); 871 zap_cursor_fini(&zc); 872 } 873 874 /* 875 * Create the pool-wide zap object for storing temporary snapshot holds. 876 */ 877 void 878 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 879 { 880 objset_t *mos = dp->dp_meta_objset; 881 882 ASSERT(dp->dp_tmp_userrefs_obj == 0); 883 ASSERT(dmu_tx_is_syncing(tx)); 884 885 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 886 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 887 } 888 889 static int 890 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 891 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 892 { 893 objset_t *mos = dp->dp_meta_objset; 894 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 895 char *name; 896 int error; 897 898 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 899 ASSERT(dmu_tx_is_syncing(tx)); 900 901 /* 902 * If the pool was created prior to SPA_VERSION_USERREFS, the 903 * zap object for temporary holds might not exist yet. 904 */ 905 if (zapobj == 0) { 906 if (holding) { 907 dsl_pool_user_hold_create_obj(dp, tx); 908 zapobj = dp->dp_tmp_userrefs_obj; 909 } else { 910 return (SET_ERROR(ENOENT)); 911 } 912 } 913 914 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 915 if (holding) 916 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 917 else 918 error = zap_remove(mos, zapobj, name, tx); 919 strfree(name); 920 921 return (error); 922 } 923 924 /* 925 * Add a temporary hold for the given dataset object and tag. 926 */ 927 int 928 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 929 uint64_t now, dmu_tx_t *tx) 930 { 931 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 932 } 933 934 /* 935 * Release a temporary hold for the given dataset object and tag. 936 */ 937 int 938 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 939 dmu_tx_t *tx) 940 { 941 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 942 tx, B_FALSE)); 943 } 944 945 /* 946 * DSL Pool Configuration Lock 947 * 948 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 949 * creation / destruction / rename / property setting). It must be held for 950 * read to hold a dataset or dsl_dir. I.e. you must call 951 * dsl_pool_config_enter() or dsl_pool_hold() before calling 952 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 953 * must be held continuously until all datasets and dsl_dirs are released. 954 * 955 * The only exception to this rule is that if a "long hold" is placed on 956 * a dataset, then the dp_config_rwlock may be dropped while the dataset 957 * is still held. The long hold will prevent the dataset from being 958 * destroyed -- the destroy will fail with EBUSY. A long hold can be 959 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 960 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 961 * 962 * Legitimate long-holders (including owners) should be long-running, cancelable 963 * tasks that should cause "zfs destroy" to fail. This includes DMU 964 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 965 * "zfs send", and "zfs diff". There are several other long-holders whose 966 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 967 * 968 * The usual formula for long-holding would be: 969 * dsl_pool_hold() 970 * dsl_dataset_hold() 971 * ... perform checks ... 972 * dsl_dataset_long_hold() 973 * dsl_pool_rele() 974 * ... perform long-running task ... 975 * dsl_dataset_long_rele() 976 * dsl_dataset_rele() 977 * 978 * Note that when the long hold is released, the dataset is still held but 979 * the pool is not held. The dataset may change arbitrarily during this time 980 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 981 * dataset except release it. 982 * 983 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 984 * or modifying operations. 985 * 986 * Modifying operations should generally use dsl_sync_task(). The synctask 987 * infrastructure enforces proper locking strategy with respect to the 988 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 989 * 990 * Read-only operations will manually hold the pool, then the dataset, obtain 991 * information from the dataset, then release the pool and dataset. 992 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 993 * hold/rele. 994 */ 995 996 int 997 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 998 { 999 spa_t *spa; 1000 int error; 1001 1002 error = spa_open(name, &spa, tag); 1003 if (error == 0) { 1004 *dp = spa_get_dsl(spa); 1005 dsl_pool_config_enter(*dp, tag); 1006 } 1007 return (error); 1008 } 1009 1010 void 1011 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1012 { 1013 dsl_pool_config_exit(dp, tag); 1014 spa_close(dp->dp_spa, tag); 1015 } 1016 1017 void 1018 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1019 { 1020 /* 1021 * We use a "reentrant" reader-writer lock, but not reentrantly. 1022 * 1023 * The rrwlock can (with the track_all flag) track all reading threads, 1024 * which is very useful for debugging which code path failed to release 1025 * the lock, and for verifying that the *current* thread does hold 1026 * the lock. 1027 * 1028 * (Unlike a rwlock, which knows that N threads hold it for 1029 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1030 * if any thread holds it for read, even if this thread doesn't). 1031 */ 1032 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1033 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1034 } 1035 1036 void 1037 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1038 { 1039 rrw_exit(&dp->dp_config_rwlock, tag); 1040 } 1041 1042 boolean_t 1043 dsl_pool_config_held(dsl_pool_t *dp) 1044 { 1045 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1046 } 1047