xref: /titanic_41/usr/src/uts/common/fs/zfs/dsl_pool.c (revision e95181dad4cc30742055089ecd61e6ccb97986e0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  */
26 
27 #include <sys/dsl_pool.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/dsl_scan.h>
33 #include <sys/dnode.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/arc.h>
37 #include <sys/zap.h>
38 #include <sys/zio.h>
39 #include <sys/zfs_context.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/zfs_znode.h>
42 #include <sys/spa_impl.h>
43 #include <sys/dsl_deadlist.h>
44 #include <sys/bptree.h>
45 #include <sys/zfeature.h>
46 #include <sys/zil_impl.h>
47 #include <sys/dsl_userhold.h>
48 
49 /*
50  * ZFS Write Throttle
51  * ------------------
52  *
53  * ZFS must limit the rate of incoming writes to the rate at which it is able
54  * to sync data modifications to the backend storage. Throttling by too much
55  * creates an artificial limit; throttling by too little can only be sustained
56  * for short periods and would lead to highly lumpy performance. On a per-pool
57  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
58  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
59  * of dirty data decreases. When the amount of dirty data exceeds a
60  * predetermined threshold further modifications are blocked until the amount
61  * of dirty data decreases (as data is synced out).
62  *
63  * The limit on dirty data is tunable, and should be adjusted according to
64  * both the IO capacity and available memory of the system. The larger the
65  * window, the more ZFS is able to aggregate and amortize metadata (and data)
66  * changes. However, memory is a limited resource, and allowing for more dirty
67  * data comes at the cost of keeping other useful data in memory (for example
68  * ZFS data cached by the ARC).
69  *
70  * Implementation
71  *
72  * As buffers are modified dsl_pool_willuse_space() increments both the per-
73  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
74  * dirty space used; dsl_pool_dirty_space() decrements those values as data
75  * is synced out from dsl_pool_sync(). While only the poolwide value is
76  * relevant, the per-txg value is useful for debugging. The tunable
77  * zfs_dirty_data_max determines the dirty space limit. Once that value is
78  * exceeded, new writes are halted until space frees up.
79  *
80  * The zfs_dirty_data_sync tunable dictates the threshold at which we
81  * ensure that there is a txg syncing (see the comment in txg.c for a full
82  * description of transaction group stages).
83  *
84  * The IO scheduler uses both the dirty space limit and current amount of
85  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
86  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
87  *
88  * The delay is also calculated based on the amount of dirty data.  See the
89  * comment above dmu_tx_delay() for details.
90  */
91 
92 /*
93  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
94  * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
95  */
96 uint64_t zfs_dirty_data_max;
97 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
98 int zfs_dirty_data_max_percent = 10;
99 
100 /*
101  * If there is at least this much dirty data, push out a txg.
102  */
103 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
104 
105 /*
106  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
107  * and delay each transaction.
108  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
109  */
110 int zfs_delay_min_dirty_percent = 60;
111 
112 /*
113  * This controls how quickly the delay approaches infinity.
114  * Larger values cause it to delay less for a given amount of dirty data.
115  * Therefore larger values will cause there to be more dirty data for a
116  * given throughput.
117  *
118  * For the smoothest delay, this value should be about 1 billion divided
119  * by the maximum number of operations per second.  This will smoothly
120  * handle between 10x and 1/10th this number.
121  *
122  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
123  * multiply in dmu_tx_delay().
124  */
125 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
126 
127 
128 /*
129  * XXX someday maybe turn these into #defines, and you have to tune it on a
130  * per-pool basis using zfs.conf.
131  */
132 
133 
134 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
135 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
136 
137 int
138 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
139 {
140 	uint64_t obj;
141 	int err;
142 
143 	err = zap_lookup(dp->dp_meta_objset,
144 	    dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
145 	    name, sizeof (obj), 1, &obj);
146 	if (err)
147 		return (err);
148 
149 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
150 }
151 
152 static dsl_pool_t *
153 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
154 {
155 	dsl_pool_t *dp;
156 	blkptr_t *bp = spa_get_rootblkptr(spa);
157 
158 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
159 	dp->dp_spa = spa;
160 	dp->dp_meta_rootbp = *bp;
161 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
162 	txg_init(dp, txg);
163 
164 	txg_list_create(&dp->dp_dirty_datasets,
165 	    offsetof(dsl_dataset_t, ds_dirty_link));
166 	txg_list_create(&dp->dp_dirty_zilogs,
167 	    offsetof(zilog_t, zl_dirty_link));
168 	txg_list_create(&dp->dp_dirty_dirs,
169 	    offsetof(dsl_dir_t, dd_dirty_link));
170 	txg_list_create(&dp->dp_sync_tasks,
171 	    offsetof(dsl_sync_task_t, dst_node));
172 
173 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
174 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
175 
176 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
177 	    1, 4, 0);
178 
179 	return (dp);
180 }
181 
182 int
183 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
184 {
185 	int err;
186 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
187 
188 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
189 	    &dp->dp_meta_objset);
190 	if (err != 0)
191 		dsl_pool_close(dp);
192 	else
193 		*dpp = dp;
194 
195 	return (err);
196 }
197 
198 int
199 dsl_pool_open(dsl_pool_t *dp)
200 {
201 	int err;
202 	dsl_dir_t *dd;
203 	dsl_dataset_t *ds;
204 	uint64_t obj;
205 
206 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
207 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
208 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
209 	    &dp->dp_root_dir_obj);
210 	if (err)
211 		goto out;
212 
213 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
214 	    NULL, dp, &dp->dp_root_dir);
215 	if (err)
216 		goto out;
217 
218 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
219 	if (err)
220 		goto out;
221 
222 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
223 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
224 		if (err)
225 			goto out;
226 		err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
227 		    FTAG, &ds);
228 		if (err == 0) {
229 			err = dsl_dataset_hold_obj(dp,
230 			    ds->ds_phys->ds_prev_snap_obj, dp,
231 			    &dp->dp_origin_snap);
232 			dsl_dataset_rele(ds, FTAG);
233 		}
234 		dsl_dir_rele(dd, dp);
235 		if (err)
236 			goto out;
237 	}
238 
239 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
240 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
241 		    &dp->dp_free_dir);
242 		if (err)
243 			goto out;
244 
245 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
246 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
247 		if (err)
248 			goto out;
249 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
250 		    dp->dp_meta_objset, obj));
251 	}
252 
253 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
254 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
255 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
256 		    &dp->dp_bptree_obj);
257 		if (err != 0)
258 			goto out;
259 	}
260 
261 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
262 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
263 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
264 		    &dp->dp_empty_bpobj);
265 		if (err != 0)
266 			goto out;
267 	}
268 
269 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
270 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
271 	    &dp->dp_tmp_userrefs_obj);
272 	if (err == ENOENT)
273 		err = 0;
274 	if (err)
275 		goto out;
276 
277 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
278 
279 out:
280 	rrw_exit(&dp->dp_config_rwlock, FTAG);
281 	return (err);
282 }
283 
284 void
285 dsl_pool_close(dsl_pool_t *dp)
286 {
287 	/*
288 	 * Drop our references from dsl_pool_open().
289 	 *
290 	 * Since we held the origin_snap from "syncing" context (which
291 	 * includes pool-opening context), it actually only got a "ref"
292 	 * and not a hold, so just drop that here.
293 	 */
294 	if (dp->dp_origin_snap)
295 		dsl_dataset_rele(dp->dp_origin_snap, dp);
296 	if (dp->dp_mos_dir)
297 		dsl_dir_rele(dp->dp_mos_dir, dp);
298 	if (dp->dp_free_dir)
299 		dsl_dir_rele(dp->dp_free_dir, dp);
300 	if (dp->dp_root_dir)
301 		dsl_dir_rele(dp->dp_root_dir, dp);
302 
303 	bpobj_close(&dp->dp_free_bpobj);
304 
305 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
306 	if (dp->dp_meta_objset)
307 		dmu_objset_evict(dp->dp_meta_objset);
308 
309 	txg_list_destroy(&dp->dp_dirty_datasets);
310 	txg_list_destroy(&dp->dp_dirty_zilogs);
311 	txg_list_destroy(&dp->dp_sync_tasks);
312 	txg_list_destroy(&dp->dp_dirty_dirs);
313 
314 	arc_flush(dp->dp_spa);
315 	txg_fini(dp);
316 	dsl_scan_fini(dp);
317 	rrw_destroy(&dp->dp_config_rwlock);
318 	mutex_destroy(&dp->dp_lock);
319 	taskq_destroy(dp->dp_vnrele_taskq);
320 	if (dp->dp_blkstats)
321 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
322 	kmem_free(dp, sizeof (dsl_pool_t));
323 }
324 
325 dsl_pool_t *
326 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
327 {
328 	int err;
329 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
330 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
331 	objset_t *os;
332 	dsl_dataset_t *ds;
333 	uint64_t obj;
334 
335 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
336 
337 	/* create and open the MOS (meta-objset) */
338 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
339 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
340 
341 	/* create the pool directory */
342 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
343 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
344 	ASSERT0(err);
345 
346 	/* Initialize scan structures */
347 	VERIFY0(dsl_scan_init(dp, txg));
348 
349 	/* create and open the root dir */
350 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
351 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
352 	    NULL, dp, &dp->dp_root_dir));
353 
354 	/* create and open the meta-objset dir */
355 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
356 	VERIFY0(dsl_pool_open_special_dir(dp,
357 	    MOS_DIR_NAME, &dp->dp_mos_dir));
358 
359 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
360 		/* create and open the free dir */
361 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
362 		    FREE_DIR_NAME, tx);
363 		VERIFY0(dsl_pool_open_special_dir(dp,
364 		    FREE_DIR_NAME, &dp->dp_free_dir));
365 
366 		/* create and open the free_bplist */
367 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
368 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
369 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
370 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
371 		    dp->dp_meta_objset, obj));
372 	}
373 
374 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
375 		dsl_pool_create_origin(dp, tx);
376 
377 	/* create the root dataset */
378 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
379 
380 	/* create the root objset */
381 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
382 	os = dmu_objset_create_impl(dp->dp_spa, ds,
383 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
384 #ifdef _KERNEL
385 	zfs_create_fs(os, kcred, zplprops, tx);
386 #endif
387 	dsl_dataset_rele(ds, FTAG);
388 
389 	dmu_tx_commit(tx);
390 
391 	rrw_exit(&dp->dp_config_rwlock, FTAG);
392 
393 	return (dp);
394 }
395 
396 /*
397  * Account for the meta-objset space in its placeholder dsl_dir.
398  */
399 void
400 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
401     int64_t used, int64_t comp, int64_t uncomp)
402 {
403 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
404 	mutex_enter(&dp->dp_lock);
405 	dp->dp_mos_used_delta += used;
406 	dp->dp_mos_compressed_delta += comp;
407 	dp->dp_mos_uncompressed_delta += uncomp;
408 	mutex_exit(&dp->dp_lock);
409 }
410 
411 static int
412 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
413 {
414 	dsl_deadlist_t *dl = arg;
415 	dsl_deadlist_insert(dl, bp, tx);
416 	return (0);
417 }
418 
419 static void
420 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
421 {
422 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
423 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
424 	VERIFY0(zio_wait(zio));
425 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
426 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
427 }
428 
429 static void
430 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
431 {
432 	ASSERT(MUTEX_HELD(&dp->dp_lock));
433 
434 	if (delta < 0)
435 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
436 
437 	dp->dp_dirty_total += delta;
438 
439 	/*
440 	 * Note: we signal even when increasing dp_dirty_total.
441 	 * This ensures forward progress -- each thread wakes the next waiter.
442 	 */
443 	if (dp->dp_dirty_total <= zfs_dirty_data_max)
444 		cv_signal(&dp->dp_spaceavail_cv);
445 }
446 
447 void
448 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
449 {
450 	zio_t *zio;
451 	dmu_tx_t *tx;
452 	dsl_dir_t *dd;
453 	dsl_dataset_t *ds;
454 	objset_t *mos = dp->dp_meta_objset;
455 	list_t synced_datasets;
456 
457 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
458 	    offsetof(dsl_dataset_t, ds_synced_link));
459 
460 	tx = dmu_tx_create_assigned(dp, txg);
461 
462 	/*
463 	 * Write out all dirty blocks of dirty datasets.
464 	 */
465 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
466 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
467 		/*
468 		 * We must not sync any non-MOS datasets twice, because
469 		 * we may have taken a snapshot of them.  However, we
470 		 * may sync newly-created datasets on pass 2.
471 		 */
472 		ASSERT(!list_link_active(&ds->ds_synced_link));
473 		list_insert_tail(&synced_datasets, ds);
474 		dsl_dataset_sync(ds, zio, tx);
475 	}
476 	VERIFY0(zio_wait(zio));
477 
478 	/*
479 	 * We have written all of the accounted dirty data, so our
480 	 * dp_space_towrite should now be zero.  However, some seldom-used
481 	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
482 	 * rounding error in dbuf_write_physdone).
483 	 * Shore up the accounting of any dirtied space now.
484 	 */
485 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
486 
487 	/*
488 	 * After the data blocks have been written (ensured by the zio_wait()
489 	 * above), update the user/group space accounting.
490 	 */
491 	for (ds = list_head(&synced_datasets); ds != NULL;
492 	    ds = list_next(&synced_datasets, ds)) {
493 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
494 	}
495 
496 	/*
497 	 * Sync the datasets again to push out the changes due to
498 	 * userspace updates.  This must be done before we process the
499 	 * sync tasks, so that any snapshots will have the correct
500 	 * user accounting information (and we won't get confused
501 	 * about which blocks are part of the snapshot).
502 	 */
503 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
504 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
505 		ASSERT(list_link_active(&ds->ds_synced_link));
506 		dmu_buf_rele(ds->ds_dbuf, ds);
507 		dsl_dataset_sync(ds, zio, tx);
508 	}
509 	VERIFY0(zio_wait(zio));
510 
511 	/*
512 	 * Now that the datasets have been completely synced, we can
513 	 * clean up our in-memory structures accumulated while syncing:
514 	 *
515 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
516 	 *  - release hold from dsl_dataset_dirty()
517 	 */
518 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
519 		objset_t *os = ds->ds_objset;
520 		bplist_iterate(&ds->ds_pending_deadlist,
521 		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
522 		ASSERT(!dmu_objset_is_dirty(os, txg));
523 		dmu_buf_rele(ds->ds_dbuf, ds);
524 	}
525 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
526 		dsl_dir_sync(dd, tx);
527 	}
528 
529 	/*
530 	 * The MOS's space is accounted for in the pool/$MOS
531 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
532 	 * it, so we remember the deltas and apply them here.
533 	 */
534 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
535 	    dp->dp_mos_uncompressed_delta != 0) {
536 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
537 		    dp->dp_mos_used_delta,
538 		    dp->dp_mos_compressed_delta,
539 		    dp->dp_mos_uncompressed_delta, tx);
540 		dp->dp_mos_used_delta = 0;
541 		dp->dp_mos_compressed_delta = 0;
542 		dp->dp_mos_uncompressed_delta = 0;
543 	}
544 
545 	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
546 	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
547 		dsl_pool_sync_mos(dp, tx);
548 	}
549 
550 	/*
551 	 * If we modify a dataset in the same txg that we want to destroy it,
552 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
553 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
554 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
555 	 * and clearing the hold on it) before we process the sync_tasks.
556 	 * The MOS data dirtied by the sync_tasks will be synced on the next
557 	 * pass.
558 	 */
559 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
560 		dsl_sync_task_t *dst;
561 		/*
562 		 * No more sync tasks should have been added while we
563 		 * were syncing.
564 		 */
565 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
566 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
567 			dsl_sync_task_sync(dst, tx);
568 	}
569 
570 	dmu_tx_commit(tx);
571 
572 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
573 }
574 
575 void
576 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
577 {
578 	zilog_t *zilog;
579 
580 	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
581 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
582 		zil_clean(zilog, txg);
583 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
584 		dmu_buf_rele(ds->ds_dbuf, zilog);
585 	}
586 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
587 }
588 
589 /*
590  * TRUE if the current thread is the tx_sync_thread or if we
591  * are being called from SPA context during pool initialization.
592  */
593 int
594 dsl_pool_sync_context(dsl_pool_t *dp)
595 {
596 	return (curthread == dp->dp_tx.tx_sync_thread ||
597 	    spa_is_initializing(dp->dp_spa));
598 }
599 
600 uint64_t
601 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
602 {
603 	uint64_t space, resv;
604 
605 	/*
606 	 * Reserve about 1.6% (1/64), or at least 32MB, for allocation
607 	 * efficiency.
608 	 * XXX The intent log is not accounted for, so it must fit
609 	 * within this slop.
610 	 *
611 	 * If we're trying to assess whether it's OK to do a free,
612 	 * cut the reservation in half to allow forward progress
613 	 * (e.g. make it possible to rm(1) files from a full pool).
614 	 */
615 	space = spa_get_dspace(dp->dp_spa);
616 	resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1);
617 	if (netfree)
618 		resv >>= 1;
619 
620 	return (space - resv);
621 }
622 
623 boolean_t
624 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
625 {
626 	uint64_t delay_min_bytes =
627 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
628 	boolean_t rv;
629 
630 	mutex_enter(&dp->dp_lock);
631 	if (dp->dp_dirty_total > zfs_dirty_data_sync)
632 		txg_kick(dp);
633 	rv = (dp->dp_dirty_total > delay_min_bytes);
634 	mutex_exit(&dp->dp_lock);
635 	return (rv);
636 }
637 
638 void
639 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
640 {
641 	if (space > 0) {
642 		mutex_enter(&dp->dp_lock);
643 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
644 		dsl_pool_dirty_delta(dp, space);
645 		mutex_exit(&dp->dp_lock);
646 	}
647 }
648 
649 void
650 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
651 {
652 	ASSERT3S(space, >=, 0);
653 	if (space == 0)
654 		return;
655 	mutex_enter(&dp->dp_lock);
656 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
657 		/* XXX writing something we didn't dirty? */
658 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
659 	}
660 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
661 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
662 	ASSERT3U(dp->dp_dirty_total, >=, space);
663 	dsl_pool_dirty_delta(dp, -space);
664 	mutex_exit(&dp->dp_lock);
665 }
666 
667 /* ARGSUSED */
668 static int
669 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
670 {
671 	dmu_tx_t *tx = arg;
672 	dsl_dataset_t *ds, *prev = NULL;
673 	int err;
674 
675 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
676 	if (err)
677 		return (err);
678 
679 	while (ds->ds_phys->ds_prev_snap_obj != 0) {
680 		err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
681 		    FTAG, &prev);
682 		if (err) {
683 			dsl_dataset_rele(ds, FTAG);
684 			return (err);
685 		}
686 
687 		if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
688 			break;
689 		dsl_dataset_rele(ds, FTAG);
690 		ds = prev;
691 		prev = NULL;
692 	}
693 
694 	if (prev == NULL) {
695 		prev = dp->dp_origin_snap;
696 
697 		/*
698 		 * The $ORIGIN can't have any data, or the accounting
699 		 * will be wrong.
700 		 */
701 		ASSERT0(prev->ds_phys->ds_bp.blk_birth);
702 
703 		/* The origin doesn't get attached to itself */
704 		if (ds->ds_object == prev->ds_object) {
705 			dsl_dataset_rele(ds, FTAG);
706 			return (0);
707 		}
708 
709 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
710 		ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
711 		ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
712 
713 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
714 		ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
715 
716 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
717 		prev->ds_phys->ds_num_children++;
718 
719 		if (ds->ds_phys->ds_next_snap_obj == 0) {
720 			ASSERT(ds->ds_prev == NULL);
721 			VERIFY0(dsl_dataset_hold_obj(dp,
722 			    ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
723 		}
724 	}
725 
726 	ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
727 	ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
728 
729 	if (prev->ds_phys->ds_next_clones_obj == 0) {
730 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
731 		prev->ds_phys->ds_next_clones_obj =
732 		    zap_create(dp->dp_meta_objset,
733 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
734 	}
735 	VERIFY0(zap_add_int(dp->dp_meta_objset,
736 	    prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
737 
738 	dsl_dataset_rele(ds, FTAG);
739 	if (prev != dp->dp_origin_snap)
740 		dsl_dataset_rele(prev, FTAG);
741 	return (0);
742 }
743 
744 void
745 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
746 {
747 	ASSERT(dmu_tx_is_syncing(tx));
748 	ASSERT(dp->dp_origin_snap != NULL);
749 
750 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
751 	    tx, DS_FIND_CHILDREN));
752 }
753 
754 /* ARGSUSED */
755 static int
756 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
757 {
758 	dmu_tx_t *tx = arg;
759 	objset_t *mos = dp->dp_meta_objset;
760 
761 	if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
762 		dsl_dataset_t *origin;
763 
764 		VERIFY0(dsl_dataset_hold_obj(dp,
765 		    ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
766 
767 		if (origin->ds_dir->dd_phys->dd_clones == 0) {
768 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
769 			origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
770 			    DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
771 		}
772 
773 		VERIFY0(zap_add_int(dp->dp_meta_objset,
774 		    origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
775 
776 		dsl_dataset_rele(origin, FTAG);
777 	}
778 	return (0);
779 }
780 
781 void
782 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
783 {
784 	ASSERT(dmu_tx_is_syncing(tx));
785 	uint64_t obj;
786 
787 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
788 	VERIFY0(dsl_pool_open_special_dir(dp,
789 	    FREE_DIR_NAME, &dp->dp_free_dir));
790 
791 	/*
792 	 * We can't use bpobj_alloc(), because spa_version() still
793 	 * returns the old version, and we need a new-version bpobj with
794 	 * subobj support.  So call dmu_object_alloc() directly.
795 	 */
796 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
797 	    SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
798 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
799 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
800 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
801 
802 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
803 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
804 }
805 
806 void
807 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
808 {
809 	uint64_t dsobj;
810 	dsl_dataset_t *ds;
811 
812 	ASSERT(dmu_tx_is_syncing(tx));
813 	ASSERT(dp->dp_origin_snap == NULL);
814 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
815 
816 	/* create the origin dir, ds, & snap-ds */
817 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
818 	    NULL, 0, kcred, tx);
819 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
820 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
821 	VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
822 	    dp, &dp->dp_origin_snap));
823 	dsl_dataset_rele(ds, FTAG);
824 }
825 
826 taskq_t *
827 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
828 {
829 	return (dp->dp_vnrele_taskq);
830 }
831 
832 /*
833  * Walk through the pool-wide zap object of temporary snapshot user holds
834  * and release them.
835  */
836 void
837 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
838 {
839 	zap_attribute_t za;
840 	zap_cursor_t zc;
841 	objset_t *mos = dp->dp_meta_objset;
842 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
843 	nvlist_t *holds;
844 
845 	if (zapobj == 0)
846 		return;
847 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
848 
849 	holds = fnvlist_alloc();
850 
851 	for (zap_cursor_init(&zc, mos, zapobj);
852 	    zap_cursor_retrieve(&zc, &za) == 0;
853 	    zap_cursor_advance(&zc)) {
854 		char *htag;
855 		nvlist_t *tags;
856 
857 		htag = strchr(za.za_name, '-');
858 		*htag = '\0';
859 		++htag;
860 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
861 			tags = fnvlist_alloc();
862 			fnvlist_add_boolean(tags, htag);
863 			fnvlist_add_nvlist(holds, za.za_name, tags);
864 			fnvlist_free(tags);
865 		} else {
866 			fnvlist_add_boolean(tags, htag);
867 		}
868 	}
869 	dsl_dataset_user_release_tmp(dp, holds);
870 	fnvlist_free(holds);
871 	zap_cursor_fini(&zc);
872 }
873 
874 /*
875  * Create the pool-wide zap object for storing temporary snapshot holds.
876  */
877 void
878 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
879 {
880 	objset_t *mos = dp->dp_meta_objset;
881 
882 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
883 	ASSERT(dmu_tx_is_syncing(tx));
884 
885 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
886 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
887 }
888 
889 static int
890 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
891     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
892 {
893 	objset_t *mos = dp->dp_meta_objset;
894 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
895 	char *name;
896 	int error;
897 
898 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
899 	ASSERT(dmu_tx_is_syncing(tx));
900 
901 	/*
902 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
903 	 * zap object for temporary holds might not exist yet.
904 	 */
905 	if (zapobj == 0) {
906 		if (holding) {
907 			dsl_pool_user_hold_create_obj(dp, tx);
908 			zapobj = dp->dp_tmp_userrefs_obj;
909 		} else {
910 			return (SET_ERROR(ENOENT));
911 		}
912 	}
913 
914 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
915 	if (holding)
916 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
917 	else
918 		error = zap_remove(mos, zapobj, name, tx);
919 	strfree(name);
920 
921 	return (error);
922 }
923 
924 /*
925  * Add a temporary hold for the given dataset object and tag.
926  */
927 int
928 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
929     uint64_t now, dmu_tx_t *tx)
930 {
931 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
932 }
933 
934 /*
935  * Release a temporary hold for the given dataset object and tag.
936  */
937 int
938 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
939     dmu_tx_t *tx)
940 {
941 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
942 	    tx, B_FALSE));
943 }
944 
945 /*
946  * DSL Pool Configuration Lock
947  *
948  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
949  * creation / destruction / rename / property setting).  It must be held for
950  * read to hold a dataset or dsl_dir.  I.e. you must call
951  * dsl_pool_config_enter() or dsl_pool_hold() before calling
952  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
953  * must be held continuously until all datasets and dsl_dirs are released.
954  *
955  * The only exception to this rule is that if a "long hold" is placed on
956  * a dataset, then the dp_config_rwlock may be dropped while the dataset
957  * is still held.  The long hold will prevent the dataset from being
958  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
959  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
960  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
961  *
962  * Legitimate long-holders (including owners) should be long-running, cancelable
963  * tasks that should cause "zfs destroy" to fail.  This includes DMU
964  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
965  * "zfs send", and "zfs diff".  There are several other long-holders whose
966  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
967  *
968  * The usual formula for long-holding would be:
969  * dsl_pool_hold()
970  * dsl_dataset_hold()
971  * ... perform checks ...
972  * dsl_dataset_long_hold()
973  * dsl_pool_rele()
974  * ... perform long-running task ...
975  * dsl_dataset_long_rele()
976  * dsl_dataset_rele()
977  *
978  * Note that when the long hold is released, the dataset is still held but
979  * the pool is not held.  The dataset may change arbitrarily during this time
980  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
981  * dataset except release it.
982  *
983  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
984  * or modifying operations.
985  *
986  * Modifying operations should generally use dsl_sync_task().  The synctask
987  * infrastructure enforces proper locking strategy with respect to the
988  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
989  *
990  * Read-only operations will manually hold the pool, then the dataset, obtain
991  * information from the dataset, then release the pool and dataset.
992  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
993  * hold/rele.
994  */
995 
996 int
997 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
998 {
999 	spa_t *spa;
1000 	int error;
1001 
1002 	error = spa_open(name, &spa, tag);
1003 	if (error == 0) {
1004 		*dp = spa_get_dsl(spa);
1005 		dsl_pool_config_enter(*dp, tag);
1006 	}
1007 	return (error);
1008 }
1009 
1010 void
1011 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1012 {
1013 	dsl_pool_config_exit(dp, tag);
1014 	spa_close(dp->dp_spa, tag);
1015 }
1016 
1017 void
1018 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1019 {
1020 	/*
1021 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1022 	 *
1023 	 * The rrwlock can (with the track_all flag) track all reading threads,
1024 	 * which is very useful for debugging which code path failed to release
1025 	 * the lock, and for verifying that the *current* thread does hold
1026 	 * the lock.
1027 	 *
1028 	 * (Unlike a rwlock, which knows that N threads hold it for
1029 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1030 	 * if any thread holds it for read, even if this thread doesn't).
1031 	 */
1032 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1033 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1034 }
1035 
1036 void
1037 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1038 {
1039 	rrw_exit(&dp->dp_config_rwlock, tag);
1040 }
1041 
1042 boolean_t
1043 dsl_pool_config_held(dsl_pool_t *dp)
1044 {
1045 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1046 }
1047