1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/dsl_pool.h> 26 #include <sys/dsl_dataset.h> 27 #include <sys/dsl_prop.h> 28 #include <sys/dsl_dir.h> 29 #include <sys/dsl_synctask.h> 30 #include <sys/dsl_scan.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dmu_objset.h> 34 #include <sys/arc.h> 35 #include <sys/zap.h> 36 #include <sys/zio.h> 37 #include <sys/zfs_context.h> 38 #include <sys/fs/zfs.h> 39 #include <sys/zfs_znode.h> 40 #include <sys/spa_impl.h> 41 42 int zfs_no_write_throttle = 0; 43 int zfs_write_limit_shift = 3; /* 1/8th of physical memory */ 44 int zfs_txg_synctime_ms = 5000; /* target millisecs to sync a txg */ 45 46 uint64_t zfs_write_limit_min = 32 << 20; /* min write limit is 32MB */ 47 uint64_t zfs_write_limit_max = 0; /* max data payload per txg */ 48 uint64_t zfs_write_limit_inflated = 0; 49 uint64_t zfs_write_limit_override = 0; 50 51 kmutex_t zfs_write_limit_lock; 52 53 static pgcnt_t old_physmem = 0; 54 55 int 56 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 57 { 58 uint64_t obj; 59 int err; 60 61 err = zap_lookup(dp->dp_meta_objset, 62 dp->dp_root_dir->dd_phys->dd_child_dir_zapobj, 63 name, sizeof (obj), 1, &obj); 64 if (err) 65 return (err); 66 67 return (dsl_dir_open_obj(dp, obj, name, dp, ddp)); 68 } 69 70 static dsl_pool_t * 71 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 72 { 73 dsl_pool_t *dp; 74 blkptr_t *bp = spa_get_rootblkptr(spa); 75 76 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 77 dp->dp_spa = spa; 78 dp->dp_meta_rootbp = *bp; 79 rw_init(&dp->dp_config_rwlock, NULL, RW_DEFAULT, NULL); 80 dp->dp_write_limit = zfs_write_limit_min; 81 txg_init(dp, txg); 82 83 txg_list_create(&dp->dp_dirty_datasets, 84 offsetof(dsl_dataset_t, ds_dirty_link)); 85 txg_list_create(&dp->dp_dirty_dirs, 86 offsetof(dsl_dir_t, dd_dirty_link)); 87 txg_list_create(&dp->dp_sync_tasks, 88 offsetof(dsl_sync_task_group_t, dstg_node)); 89 list_create(&dp->dp_synced_datasets, sizeof (dsl_dataset_t), 90 offsetof(dsl_dataset_t, ds_synced_link)); 91 92 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 93 94 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 95 1, 4, 0); 96 97 return (dp); 98 } 99 100 int 101 dsl_pool_open(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 102 { 103 int err; 104 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 105 dsl_dir_t *dd; 106 dsl_dataset_t *ds; 107 108 rw_enter(&dp->dp_config_rwlock, RW_WRITER); 109 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 110 &dp->dp_meta_objset); 111 if (err) 112 goto out; 113 114 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 115 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 116 &dp->dp_root_dir_obj); 117 if (err) 118 goto out; 119 120 err = dsl_dir_open_obj(dp, dp->dp_root_dir_obj, 121 NULL, dp, &dp->dp_root_dir); 122 if (err) 123 goto out; 124 125 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 126 if (err) 127 goto out; 128 129 if (spa_version(spa) >= SPA_VERSION_ORIGIN) { 130 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 131 if (err) 132 goto out; 133 err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj, 134 FTAG, &ds); 135 if (err == 0) { 136 err = dsl_dataset_hold_obj(dp, 137 ds->ds_phys->ds_prev_snap_obj, dp, 138 &dp->dp_origin_snap); 139 dsl_dataset_rele(ds, FTAG); 140 } 141 dsl_dir_close(dd, dp); 142 if (err) 143 goto out; 144 } 145 146 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 147 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 148 &dp->dp_tmp_userrefs_obj); 149 if (err == ENOENT) 150 err = 0; 151 if (err) 152 goto out; 153 154 err = dsl_scan_init(dp, txg); 155 156 out: 157 rw_exit(&dp->dp_config_rwlock); 158 if (err) 159 dsl_pool_close(dp); 160 else 161 *dpp = dp; 162 163 return (err); 164 } 165 166 void 167 dsl_pool_close(dsl_pool_t *dp) 168 { 169 /* drop our references from dsl_pool_open() */ 170 171 /* 172 * Since we held the origin_snap from "syncing" context (which 173 * includes pool-opening context), it actually only got a "ref" 174 * and not a hold, so just drop that here. 175 */ 176 if (dp->dp_origin_snap) 177 dsl_dataset_drop_ref(dp->dp_origin_snap, dp); 178 if (dp->dp_mos_dir) 179 dsl_dir_close(dp->dp_mos_dir, dp); 180 if (dp->dp_root_dir) 181 dsl_dir_close(dp->dp_root_dir, dp); 182 183 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 184 if (dp->dp_meta_objset) 185 dmu_objset_evict(dp->dp_meta_objset); 186 187 txg_list_destroy(&dp->dp_dirty_datasets); 188 txg_list_destroy(&dp->dp_sync_tasks); 189 txg_list_destroy(&dp->dp_dirty_dirs); 190 list_destroy(&dp->dp_synced_datasets); 191 192 arc_flush(dp->dp_spa); 193 txg_fini(dp); 194 dsl_scan_fini(dp); 195 rw_destroy(&dp->dp_config_rwlock); 196 mutex_destroy(&dp->dp_lock); 197 taskq_destroy(dp->dp_vnrele_taskq); 198 if (dp->dp_blkstats) 199 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 200 kmem_free(dp, sizeof (dsl_pool_t)); 201 } 202 203 dsl_pool_t * 204 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 205 { 206 int err; 207 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 208 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 209 objset_t *os; 210 dsl_dataset_t *ds; 211 uint64_t dsobj; 212 213 /* create and open the MOS (meta-objset) */ 214 dp->dp_meta_objset = dmu_objset_create_impl(spa, 215 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 216 217 /* create the pool directory */ 218 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 219 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 220 ASSERT3U(err, ==, 0); 221 222 /* Initialize scan structures */ 223 VERIFY3U(0, ==, dsl_scan_init(dp, txg)); 224 225 /* create and open the root dir */ 226 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 227 VERIFY(0 == dsl_dir_open_obj(dp, dp->dp_root_dir_obj, 228 NULL, dp, &dp->dp_root_dir)); 229 230 /* create and open the meta-objset dir */ 231 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 232 VERIFY(0 == dsl_pool_open_special_dir(dp, 233 MOS_DIR_NAME, &dp->dp_mos_dir)); 234 235 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 236 dsl_pool_create_origin(dp, tx); 237 238 /* create the root dataset */ 239 dsobj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 240 241 /* create the root objset */ 242 VERIFY(0 == dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 243 os = dmu_objset_create_impl(dp->dp_spa, ds, 244 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 245 #ifdef _KERNEL 246 zfs_create_fs(os, kcred, zplprops, tx); 247 #endif 248 dsl_dataset_rele(ds, FTAG); 249 250 dmu_tx_commit(tx); 251 252 return (dp); 253 } 254 255 void 256 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 257 { 258 zio_t *zio; 259 dmu_tx_t *tx; 260 dsl_dir_t *dd; 261 dsl_dataset_t *ds; 262 dsl_sync_task_group_t *dstg; 263 objset_t *mos = dp->dp_meta_objset; 264 hrtime_t start, write_time; 265 uint64_t data_written; 266 int err; 267 268 /* 269 * We need to copy dp_space_towrite() before doing 270 * dsl_sync_task_group_sync(), because 271 * dsl_dataset_snapshot_reserve_space() will increase 272 * dp_space_towrite but not actually write anything. 273 */ 274 data_written = dp->dp_space_towrite[txg & TXG_MASK]; 275 276 tx = dmu_tx_create_assigned(dp, txg); 277 278 dp->dp_read_overhead = 0; 279 start = gethrtime(); 280 281 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 282 while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) { 283 /* 284 * We must not sync any non-MOS datasets twice, because 285 * we may have taken a snapshot of them. However, we 286 * may sync newly-created datasets on pass 2. 287 */ 288 ASSERT(!list_link_active(&ds->ds_synced_link)); 289 list_insert_tail(&dp->dp_synced_datasets, ds); 290 dsl_dataset_sync(ds, zio, tx); 291 } 292 DTRACE_PROBE(pool_sync__1setup); 293 err = zio_wait(zio); 294 295 write_time = gethrtime() - start; 296 ASSERT(err == 0); 297 DTRACE_PROBE(pool_sync__2rootzio); 298 299 for (ds = list_head(&dp->dp_synced_datasets); ds; 300 ds = list_next(&dp->dp_synced_datasets, ds)) 301 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 302 303 /* 304 * Sync the datasets again to push out the changes due to 305 * userspace updates. This must be done before we process the 306 * sync tasks, because that could cause a snapshot of a dataset 307 * whose ds_bp will be rewritten when we do this 2nd sync. 308 */ 309 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 310 while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) { 311 ASSERT(list_link_active(&ds->ds_synced_link)); 312 dmu_buf_rele(ds->ds_dbuf, ds); 313 dsl_dataset_sync(ds, zio, tx); 314 } 315 err = zio_wait(zio); 316 317 /* 318 * If anything was added to a deadlist during a zio done callback, 319 * it had to be put on the deferred queue. Enqueue it for real now. 320 */ 321 for (ds = list_head(&dp->dp_synced_datasets); ds; 322 ds = list_next(&dp->dp_synced_datasets, ds)) 323 bplist_sync(&ds->ds_deadlist, 324 bplist_enqueue_cb, &ds->ds_deadlist, tx); 325 326 while (dstg = txg_list_remove(&dp->dp_sync_tasks, txg)) { 327 /* 328 * No more sync tasks should have been added while we 329 * were syncing. 330 */ 331 ASSERT(spa_sync_pass(dp->dp_spa) == 1); 332 dsl_sync_task_group_sync(dstg, tx); 333 } 334 DTRACE_PROBE(pool_sync__3task); 335 336 start = gethrtime(); 337 while (dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) 338 dsl_dir_sync(dd, tx); 339 write_time += gethrtime() - start; 340 341 start = gethrtime(); 342 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || 343 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { 344 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 345 dmu_objset_sync(mos, zio, tx); 346 err = zio_wait(zio); 347 ASSERT(err == 0); 348 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 349 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 350 } 351 write_time += gethrtime() - start; 352 DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time, 353 hrtime_t, dp->dp_read_overhead); 354 write_time -= dp->dp_read_overhead; 355 356 dmu_tx_commit(tx); 357 358 dp->dp_space_towrite[txg & TXG_MASK] = 0; 359 ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0); 360 361 /* 362 * If the write limit max has not been explicitly set, set it 363 * to a fraction of available physical memory (default 1/8th). 364 * Note that we must inflate the limit because the spa 365 * inflates write sizes to account for data replication. 366 * Check this each sync phase to catch changing memory size. 367 */ 368 if (physmem != old_physmem && zfs_write_limit_shift) { 369 mutex_enter(&zfs_write_limit_lock); 370 old_physmem = physmem; 371 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 372 zfs_write_limit_inflated = MAX(zfs_write_limit_min, 373 spa_get_asize(dp->dp_spa, zfs_write_limit_max)); 374 mutex_exit(&zfs_write_limit_lock); 375 } 376 377 /* 378 * Attempt to keep the sync time consistent by adjusting the 379 * amount of write traffic allowed into each transaction group. 380 * Weight the throughput calculation towards the current value: 381 * thru = 3/4 old_thru + 1/4 new_thru 382 * 383 * Note: write_time is in nanosecs, so write_time/MICROSEC 384 * yields millisecs 385 */ 386 ASSERT(zfs_write_limit_min > 0); 387 if (data_written > zfs_write_limit_min / 8 && write_time > MICROSEC) { 388 uint64_t throughput = data_written / (write_time / MICROSEC); 389 390 if (dp->dp_throughput) 391 dp->dp_throughput = throughput / 4 + 392 3 * dp->dp_throughput / 4; 393 else 394 dp->dp_throughput = throughput; 395 dp->dp_write_limit = MIN(zfs_write_limit_inflated, 396 MAX(zfs_write_limit_min, 397 dp->dp_throughput * zfs_txg_synctime_ms)); 398 } 399 } 400 401 void 402 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 403 { 404 dsl_dataset_t *ds; 405 objset_t *os; 406 407 while (ds = list_head(&dp->dp_synced_datasets)) { 408 list_remove(&dp->dp_synced_datasets, ds); 409 os = ds->ds_objset; 410 zil_clean(os->os_zil); 411 ASSERT(!dmu_objset_is_dirty(os, txg)); 412 dmu_buf_rele(ds->ds_dbuf, ds); 413 } 414 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 415 } 416 417 /* 418 * TRUE if the current thread is the tx_sync_thread or if we 419 * are being called from SPA context during pool initialization. 420 */ 421 int 422 dsl_pool_sync_context(dsl_pool_t *dp) 423 { 424 return (curthread == dp->dp_tx.tx_sync_thread || 425 spa_get_dsl(dp->dp_spa) == NULL); 426 } 427 428 uint64_t 429 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) 430 { 431 uint64_t space, resv; 432 433 /* 434 * Reserve about 1.6% (1/64), or at least 32MB, for allocation 435 * efficiency. 436 * XXX The intent log is not accounted for, so it must fit 437 * within this slop. 438 * 439 * If we're trying to assess whether it's OK to do a free, 440 * cut the reservation in half to allow forward progress 441 * (e.g. make it possible to rm(1) files from a full pool). 442 */ 443 space = spa_get_dspace(dp->dp_spa); 444 resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1); 445 if (netfree) 446 resv >>= 1; 447 448 return (space - resv); 449 } 450 451 int 452 dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx) 453 { 454 uint64_t reserved = 0; 455 uint64_t write_limit = (zfs_write_limit_override ? 456 zfs_write_limit_override : dp->dp_write_limit); 457 458 if (zfs_no_write_throttle) { 459 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], 460 space); 461 return (0); 462 } 463 464 /* 465 * Check to see if we have exceeded the maximum allowed IO for 466 * this transaction group. We can do this without locks since 467 * a little slop here is ok. Note that we do the reserved check 468 * with only half the requested reserve: this is because the 469 * reserve requests are worst-case, and we really don't want to 470 * throttle based off of worst-case estimates. 471 */ 472 if (write_limit > 0) { 473 reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK] 474 + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2; 475 476 if (reserved && reserved > write_limit) 477 return (ERESTART); 478 } 479 480 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space); 481 482 /* 483 * If this transaction group is over 7/8ths capacity, delay 484 * the caller 1 clock tick. This will slow down the "fill" 485 * rate until the sync process can catch up with us. 486 */ 487 if (reserved && reserved > (write_limit - (write_limit >> 3))) 488 txg_delay(dp, tx->tx_txg, 1); 489 490 return (0); 491 } 492 493 void 494 dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 495 { 496 ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space); 497 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space); 498 } 499 500 void 501 dsl_pool_memory_pressure(dsl_pool_t *dp) 502 { 503 uint64_t space_inuse = 0; 504 int i; 505 506 if (dp->dp_write_limit == zfs_write_limit_min) 507 return; 508 509 for (i = 0; i < TXG_SIZE; i++) { 510 space_inuse += dp->dp_space_towrite[i]; 511 space_inuse += dp->dp_tempreserved[i]; 512 } 513 dp->dp_write_limit = MAX(zfs_write_limit_min, 514 MIN(dp->dp_write_limit, space_inuse / 4)); 515 } 516 517 void 518 dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 519 { 520 if (space > 0) { 521 mutex_enter(&dp->dp_lock); 522 dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space; 523 mutex_exit(&dp->dp_lock); 524 } 525 } 526 527 /* ARGSUSED */ 528 static int 529 upgrade_clones_cb(spa_t *spa, uint64_t dsobj, const char *dsname, void *arg) 530 { 531 dmu_tx_t *tx = arg; 532 dsl_dataset_t *ds, *prev = NULL; 533 int err; 534 dsl_pool_t *dp = spa_get_dsl(spa); 535 536 err = dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds); 537 if (err) 538 return (err); 539 540 while (ds->ds_phys->ds_prev_snap_obj != 0) { 541 err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, 542 FTAG, &prev); 543 if (err) { 544 dsl_dataset_rele(ds, FTAG); 545 return (err); 546 } 547 548 if (prev->ds_phys->ds_next_snap_obj != ds->ds_object) 549 break; 550 dsl_dataset_rele(ds, FTAG); 551 ds = prev; 552 prev = NULL; 553 } 554 555 if (prev == NULL) { 556 prev = dp->dp_origin_snap; 557 558 /* 559 * The $ORIGIN can't have any data, or the accounting 560 * will be wrong. 561 */ 562 ASSERT(prev->ds_phys->ds_bp.blk_birth == 0); 563 564 /* The origin doesn't get attached to itself */ 565 if (ds->ds_object == prev->ds_object) { 566 dsl_dataset_rele(ds, FTAG); 567 return (0); 568 } 569 570 dmu_buf_will_dirty(ds->ds_dbuf, tx); 571 ds->ds_phys->ds_prev_snap_obj = prev->ds_object; 572 ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg; 573 574 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 575 ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object; 576 577 dmu_buf_will_dirty(prev->ds_dbuf, tx); 578 prev->ds_phys->ds_num_children++; 579 580 if (ds->ds_phys->ds_next_snap_obj == 0) { 581 ASSERT(ds->ds_prev == NULL); 582 VERIFY(0 == dsl_dataset_hold_obj(dp, 583 ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev)); 584 } 585 } 586 587 ASSERT(ds->ds_dir->dd_phys->dd_origin_obj == prev->ds_object); 588 ASSERT(ds->ds_phys->ds_prev_snap_obj == prev->ds_object); 589 590 if (prev->ds_phys->ds_next_clones_obj == 0) { 591 dmu_buf_will_dirty(prev->ds_dbuf, tx); 592 prev->ds_phys->ds_next_clones_obj = 593 zap_create(dp->dp_meta_objset, 594 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 595 } 596 VERIFY(0 == zap_add_int(dp->dp_meta_objset, 597 prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx)); 598 599 dsl_dataset_rele(ds, FTAG); 600 if (prev != dp->dp_origin_snap) 601 dsl_dataset_rele(prev, FTAG); 602 return (0); 603 } 604 605 void 606 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 607 { 608 ASSERT(dmu_tx_is_syncing(tx)); 609 ASSERT(dp->dp_origin_snap != NULL); 610 611 VERIFY3U(0, ==, dmu_objset_find_spa(dp->dp_spa, NULL, upgrade_clones_cb, 612 tx, DS_FIND_CHILDREN)); 613 } 614 615 void 616 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 617 { 618 uint64_t dsobj; 619 dsl_dataset_t *ds; 620 621 ASSERT(dmu_tx_is_syncing(tx)); 622 ASSERT(dp->dp_origin_snap == NULL); 623 624 /* create the origin dir, ds, & snap-ds */ 625 rw_enter(&dp->dp_config_rwlock, RW_WRITER); 626 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 627 NULL, 0, kcred, tx); 628 VERIFY(0 == dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 629 dsl_dataset_snapshot_sync(ds, ORIGIN_DIR_NAME, tx); 630 VERIFY(0 == dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, 631 dp, &dp->dp_origin_snap)); 632 dsl_dataset_rele(ds, FTAG); 633 rw_exit(&dp->dp_config_rwlock); 634 } 635 636 taskq_t * 637 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 638 { 639 return (dp->dp_vnrele_taskq); 640 } 641 642 /* 643 * Walk through the pool-wide zap object of temporary snapshot user holds 644 * and release them. 645 */ 646 void 647 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 648 { 649 zap_attribute_t za; 650 zap_cursor_t zc; 651 objset_t *mos = dp->dp_meta_objset; 652 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 653 654 if (zapobj == 0) 655 return; 656 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 657 658 for (zap_cursor_init(&zc, mos, zapobj); 659 zap_cursor_retrieve(&zc, &za) == 0; 660 zap_cursor_advance(&zc)) { 661 char *htag; 662 uint64_t dsobj; 663 664 htag = strchr(za.za_name, '-'); 665 *htag = '\0'; 666 ++htag; 667 dsobj = strtonum(za.za_name, NULL); 668 (void) dsl_dataset_user_release_tmp(dp, dsobj, htag); 669 } 670 zap_cursor_fini(&zc); 671 } 672 673 /* 674 * Create the pool-wide zap object for storing temporary snapshot holds. 675 */ 676 void 677 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 678 { 679 objset_t *mos = dp->dp_meta_objset; 680 681 ASSERT(dp->dp_tmp_userrefs_obj == 0); 682 ASSERT(dmu_tx_is_syncing(tx)); 683 684 dp->dp_tmp_userrefs_obj = zap_create(mos, DMU_OT_USERREFS, 685 DMU_OT_NONE, 0, tx); 686 687 VERIFY(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, 688 sizeof (uint64_t), 1, &dp->dp_tmp_userrefs_obj, tx) == 0); 689 } 690 691 static int 692 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 693 const char *tag, uint64_t *now, dmu_tx_t *tx, boolean_t holding) 694 { 695 objset_t *mos = dp->dp_meta_objset; 696 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 697 char *name; 698 int error; 699 700 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 701 ASSERT(dmu_tx_is_syncing(tx)); 702 703 /* 704 * If the pool was created prior to SPA_VERSION_USERREFS, the 705 * zap object for temporary holds might not exist yet. 706 */ 707 if (zapobj == 0) { 708 if (holding) { 709 dsl_pool_user_hold_create_obj(dp, tx); 710 zapobj = dp->dp_tmp_userrefs_obj; 711 } else { 712 return (ENOENT); 713 } 714 } 715 716 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 717 if (holding) 718 error = zap_add(mos, zapobj, name, 8, 1, now, tx); 719 else 720 error = zap_remove(mos, zapobj, name, tx); 721 strfree(name); 722 723 return (error); 724 } 725 726 /* 727 * Add a temporary hold for the given dataset object and tag. 728 */ 729 int 730 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 731 uint64_t *now, dmu_tx_t *tx) 732 { 733 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 734 } 735 736 /* 737 * Release a temporary hold for the given dataset object and tag. 738 */ 739 int 740 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 741 dmu_tx_t *tx) 742 { 743 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 744 tx, B_FALSE)); 745 } 746