xref: /titanic_41/usr/src/uts/common/fs/zfs/dsl_pool.c (revision 0521c5ebd0c906e1574175b64bd238405444c004)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  */
27 
28 #include <sys/dsl_pool.h>
29 #include <sys/dsl_dataset.h>
30 #include <sys/dsl_prop.h>
31 #include <sys/dsl_dir.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/dsl_scan.h>
34 #include <sys/dnode.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/zap.h>
39 #include <sys/zio.h>
40 #include <sys/zfs_context.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/zfs_znode.h>
43 #include <sys/spa_impl.h>
44 #include <sys/dsl_deadlist.h>
45 #include <sys/bptree.h>
46 #include <sys/zfeature.h>
47 #include <sys/zil_impl.h>
48 #include <sys/dsl_userhold.h>
49 
50 /*
51  * ZFS Write Throttle
52  * ------------------
53  *
54  * ZFS must limit the rate of incoming writes to the rate at which it is able
55  * to sync data modifications to the backend storage. Throttling by too much
56  * creates an artificial limit; throttling by too little can only be sustained
57  * for short periods and would lead to highly lumpy performance. On a per-pool
58  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
59  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
60  * of dirty data decreases. When the amount of dirty data exceeds a
61  * predetermined threshold further modifications are blocked until the amount
62  * of dirty data decreases (as data is synced out).
63  *
64  * The limit on dirty data is tunable, and should be adjusted according to
65  * both the IO capacity and available memory of the system. The larger the
66  * window, the more ZFS is able to aggregate and amortize metadata (and data)
67  * changes. However, memory is a limited resource, and allowing for more dirty
68  * data comes at the cost of keeping other useful data in memory (for example
69  * ZFS data cached by the ARC).
70  *
71  * Implementation
72  *
73  * As buffers are modified dsl_pool_willuse_space() increments both the per-
74  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
75  * dirty space used; dsl_pool_dirty_space() decrements those values as data
76  * is synced out from dsl_pool_sync(). While only the poolwide value is
77  * relevant, the per-txg value is useful for debugging. The tunable
78  * zfs_dirty_data_max determines the dirty space limit. Once that value is
79  * exceeded, new writes are halted until space frees up.
80  *
81  * The zfs_dirty_data_sync tunable dictates the threshold at which we
82  * ensure that there is a txg syncing (see the comment in txg.c for a full
83  * description of transaction group stages).
84  *
85  * The IO scheduler uses both the dirty space limit and current amount of
86  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
87  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
88  *
89  * The delay is also calculated based on the amount of dirty data.  See the
90  * comment above dmu_tx_delay() for details.
91  */
92 
93 /*
94  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
95  * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
96  */
97 uint64_t zfs_dirty_data_max;
98 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
99 int zfs_dirty_data_max_percent = 10;
100 
101 /*
102  * If there is at least this much dirty data, push out a txg.
103  */
104 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
105 
106 /*
107  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
108  * and delay each transaction.
109  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
110  */
111 int zfs_delay_min_dirty_percent = 60;
112 
113 /*
114  * This controls how quickly the delay approaches infinity.
115  * Larger values cause it to delay more for a given amount of dirty data.
116  * Therefore larger values will cause there to be less dirty data for a
117  * given throughput.
118  *
119  * For the smoothest delay, this value should be about 1 billion divided
120  * by the maximum number of operations per second.  This will smoothly
121  * handle between 10x and 1/10th this number.
122  *
123  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
124  * multiply in dmu_tx_delay().
125  */
126 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
127 
128 
129 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
130 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
131 
132 int
133 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
134 {
135 	uint64_t obj;
136 	int err;
137 
138 	err = zap_lookup(dp->dp_meta_objset,
139 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
140 	    name, sizeof (obj), 1, &obj);
141 	if (err)
142 		return (err);
143 
144 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
145 }
146 
147 static dsl_pool_t *
148 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
149 {
150 	dsl_pool_t *dp;
151 	blkptr_t *bp = spa_get_rootblkptr(spa);
152 
153 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
154 	dp->dp_spa = spa;
155 	dp->dp_meta_rootbp = *bp;
156 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
157 	txg_init(dp, txg);
158 
159 	txg_list_create(&dp->dp_dirty_datasets,
160 	    offsetof(dsl_dataset_t, ds_dirty_link));
161 	txg_list_create(&dp->dp_dirty_zilogs,
162 	    offsetof(zilog_t, zl_dirty_link));
163 	txg_list_create(&dp->dp_dirty_dirs,
164 	    offsetof(dsl_dir_t, dd_dirty_link));
165 	txg_list_create(&dp->dp_sync_tasks,
166 	    offsetof(dsl_sync_task_t, dst_node));
167 
168 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
169 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
170 
171 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
172 	    1, 4, 0);
173 
174 	return (dp);
175 }
176 
177 int
178 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
179 {
180 	int err;
181 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
182 
183 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
184 	    &dp->dp_meta_objset);
185 	if (err != 0)
186 		dsl_pool_close(dp);
187 	else
188 		*dpp = dp;
189 
190 	return (err);
191 }
192 
193 int
194 dsl_pool_open(dsl_pool_t *dp)
195 {
196 	int err;
197 	dsl_dir_t *dd;
198 	dsl_dataset_t *ds;
199 	uint64_t obj;
200 
201 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
202 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
203 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
204 	    &dp->dp_root_dir_obj);
205 	if (err)
206 		goto out;
207 
208 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
209 	    NULL, dp, &dp->dp_root_dir);
210 	if (err)
211 		goto out;
212 
213 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
214 	if (err)
215 		goto out;
216 
217 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
218 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
219 		if (err)
220 			goto out;
221 		err = dsl_dataset_hold_obj(dp,
222 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
223 		if (err == 0) {
224 			err = dsl_dataset_hold_obj(dp,
225 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
226 			    &dp->dp_origin_snap);
227 			dsl_dataset_rele(ds, FTAG);
228 		}
229 		dsl_dir_rele(dd, dp);
230 		if (err)
231 			goto out;
232 	}
233 
234 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
235 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
236 		    &dp->dp_free_dir);
237 		if (err)
238 			goto out;
239 
240 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
241 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
242 		if (err)
243 			goto out;
244 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
245 		    dp->dp_meta_objset, obj));
246 	}
247 
248 	/*
249 	 * Note: errors ignored, because the leak dir will not exist if we
250 	 * have not encountered a leak yet.
251 	 */
252 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
253 	    &dp->dp_leak_dir);
254 
255 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
256 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
257 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
258 		    &dp->dp_bptree_obj);
259 		if (err != 0)
260 			goto out;
261 	}
262 
263 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
264 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
265 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
266 		    &dp->dp_empty_bpobj);
267 		if (err != 0)
268 			goto out;
269 	}
270 
271 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
272 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
273 	    &dp->dp_tmp_userrefs_obj);
274 	if (err == ENOENT)
275 		err = 0;
276 	if (err)
277 		goto out;
278 
279 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
280 
281 out:
282 	rrw_exit(&dp->dp_config_rwlock, FTAG);
283 	return (err);
284 }
285 
286 void
287 dsl_pool_close(dsl_pool_t *dp)
288 {
289 	/*
290 	 * Drop our references from dsl_pool_open().
291 	 *
292 	 * Since we held the origin_snap from "syncing" context (which
293 	 * includes pool-opening context), it actually only got a "ref"
294 	 * and not a hold, so just drop that here.
295 	 */
296 	if (dp->dp_origin_snap)
297 		dsl_dataset_rele(dp->dp_origin_snap, dp);
298 	if (dp->dp_mos_dir)
299 		dsl_dir_rele(dp->dp_mos_dir, dp);
300 	if (dp->dp_free_dir)
301 		dsl_dir_rele(dp->dp_free_dir, dp);
302 	if (dp->dp_leak_dir)
303 		dsl_dir_rele(dp->dp_leak_dir, dp);
304 	if (dp->dp_root_dir)
305 		dsl_dir_rele(dp->dp_root_dir, dp);
306 
307 	bpobj_close(&dp->dp_free_bpobj);
308 
309 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
310 	if (dp->dp_meta_objset)
311 		dmu_objset_evict(dp->dp_meta_objset);
312 
313 	txg_list_destroy(&dp->dp_dirty_datasets);
314 	txg_list_destroy(&dp->dp_dirty_zilogs);
315 	txg_list_destroy(&dp->dp_sync_tasks);
316 	txg_list_destroy(&dp->dp_dirty_dirs);
317 
318 	arc_flush(dp->dp_spa);
319 	txg_fini(dp);
320 	dsl_scan_fini(dp);
321 	dmu_buf_user_evict_wait();
322 
323 	rrw_destroy(&dp->dp_config_rwlock);
324 	mutex_destroy(&dp->dp_lock);
325 	taskq_destroy(dp->dp_vnrele_taskq);
326 	if (dp->dp_blkstats)
327 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
328 	kmem_free(dp, sizeof (dsl_pool_t));
329 }
330 
331 dsl_pool_t *
332 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
333 {
334 	int err;
335 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
336 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
337 	objset_t *os;
338 	dsl_dataset_t *ds;
339 	uint64_t obj;
340 
341 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
342 
343 	/* create and open the MOS (meta-objset) */
344 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
345 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
346 
347 	/* create the pool directory */
348 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
349 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
350 	ASSERT0(err);
351 
352 	/* Initialize scan structures */
353 	VERIFY0(dsl_scan_init(dp, txg));
354 
355 	/* create and open the root dir */
356 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
357 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
358 	    NULL, dp, &dp->dp_root_dir));
359 
360 	/* create and open the meta-objset dir */
361 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
362 	VERIFY0(dsl_pool_open_special_dir(dp,
363 	    MOS_DIR_NAME, &dp->dp_mos_dir));
364 
365 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
366 		/* create and open the free dir */
367 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
368 		    FREE_DIR_NAME, tx);
369 		VERIFY0(dsl_pool_open_special_dir(dp,
370 		    FREE_DIR_NAME, &dp->dp_free_dir));
371 
372 		/* create and open the free_bplist */
373 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
374 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
375 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
376 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
377 		    dp->dp_meta_objset, obj));
378 	}
379 
380 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
381 		dsl_pool_create_origin(dp, tx);
382 
383 	/* create the root dataset */
384 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
385 
386 	/* create the root objset */
387 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
388 	os = dmu_objset_create_impl(dp->dp_spa, ds,
389 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
390 #ifdef _KERNEL
391 	zfs_create_fs(os, kcred, zplprops, tx);
392 #endif
393 	dsl_dataset_rele(ds, FTAG);
394 
395 	dmu_tx_commit(tx);
396 
397 	rrw_exit(&dp->dp_config_rwlock, FTAG);
398 
399 	return (dp);
400 }
401 
402 /*
403  * Account for the meta-objset space in its placeholder dsl_dir.
404  */
405 void
406 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
407     int64_t used, int64_t comp, int64_t uncomp)
408 {
409 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
410 	mutex_enter(&dp->dp_lock);
411 	dp->dp_mos_used_delta += used;
412 	dp->dp_mos_compressed_delta += comp;
413 	dp->dp_mos_uncompressed_delta += uncomp;
414 	mutex_exit(&dp->dp_lock);
415 }
416 
417 static int
418 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
419 {
420 	dsl_deadlist_t *dl = arg;
421 	dsl_deadlist_insert(dl, bp, tx);
422 	return (0);
423 }
424 
425 static void
426 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
427 {
428 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
429 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
430 	VERIFY0(zio_wait(zio));
431 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
432 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
433 }
434 
435 static void
436 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
437 {
438 	ASSERT(MUTEX_HELD(&dp->dp_lock));
439 
440 	if (delta < 0)
441 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
442 
443 	dp->dp_dirty_total += delta;
444 
445 	/*
446 	 * Note: we signal even when increasing dp_dirty_total.
447 	 * This ensures forward progress -- each thread wakes the next waiter.
448 	 */
449 	if (dp->dp_dirty_total <= zfs_dirty_data_max)
450 		cv_signal(&dp->dp_spaceavail_cv);
451 }
452 
453 void
454 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
455 {
456 	zio_t *zio;
457 	dmu_tx_t *tx;
458 	dsl_dir_t *dd;
459 	dsl_dataset_t *ds;
460 	objset_t *mos = dp->dp_meta_objset;
461 	list_t synced_datasets;
462 
463 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
464 	    offsetof(dsl_dataset_t, ds_synced_link));
465 
466 	tx = dmu_tx_create_assigned(dp, txg);
467 
468 	/*
469 	 * Write out all dirty blocks of dirty datasets.
470 	 */
471 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
472 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
473 		/*
474 		 * We must not sync any non-MOS datasets twice, because
475 		 * we may have taken a snapshot of them.  However, we
476 		 * may sync newly-created datasets on pass 2.
477 		 */
478 		ASSERT(!list_link_active(&ds->ds_synced_link));
479 		list_insert_tail(&synced_datasets, ds);
480 		dsl_dataset_sync(ds, zio, tx);
481 	}
482 	VERIFY0(zio_wait(zio));
483 
484 	/*
485 	 * We have written all of the accounted dirty data, so our
486 	 * dp_space_towrite should now be zero.  However, some seldom-used
487 	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
488 	 * rounding error in dbuf_write_physdone).
489 	 * Shore up the accounting of any dirtied space now.
490 	 */
491 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
492 
493 	/*
494 	 * After the data blocks have been written (ensured by the zio_wait()
495 	 * above), update the user/group space accounting.
496 	 */
497 	for (ds = list_head(&synced_datasets); ds != NULL;
498 	    ds = list_next(&synced_datasets, ds)) {
499 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
500 	}
501 
502 	/*
503 	 * Sync the datasets again to push out the changes due to
504 	 * userspace updates.  This must be done before we process the
505 	 * sync tasks, so that any snapshots will have the correct
506 	 * user accounting information (and we won't get confused
507 	 * about which blocks are part of the snapshot).
508 	 */
509 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
510 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
511 		ASSERT(list_link_active(&ds->ds_synced_link));
512 		dmu_buf_rele(ds->ds_dbuf, ds);
513 		dsl_dataset_sync(ds, zio, tx);
514 	}
515 	VERIFY0(zio_wait(zio));
516 
517 	/*
518 	 * Now that the datasets have been completely synced, we can
519 	 * clean up our in-memory structures accumulated while syncing:
520 	 *
521 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
522 	 *  - release hold from dsl_dataset_dirty()
523 	 */
524 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
525 		objset_t *os = ds->ds_objset;
526 		bplist_iterate(&ds->ds_pending_deadlist,
527 		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
528 		ASSERT(!dmu_objset_is_dirty(os, txg));
529 		dmu_buf_rele(ds->ds_dbuf, ds);
530 	}
531 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
532 		dsl_dir_sync(dd, tx);
533 	}
534 
535 	/*
536 	 * The MOS's space is accounted for in the pool/$MOS
537 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
538 	 * it, so we remember the deltas and apply them here.
539 	 */
540 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
541 	    dp->dp_mos_uncompressed_delta != 0) {
542 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
543 		    dp->dp_mos_used_delta,
544 		    dp->dp_mos_compressed_delta,
545 		    dp->dp_mos_uncompressed_delta, tx);
546 		dp->dp_mos_used_delta = 0;
547 		dp->dp_mos_compressed_delta = 0;
548 		dp->dp_mos_uncompressed_delta = 0;
549 	}
550 
551 	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
552 	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
553 		dsl_pool_sync_mos(dp, tx);
554 	}
555 
556 	/*
557 	 * If we modify a dataset in the same txg that we want to destroy it,
558 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
559 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
560 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
561 	 * and clearing the hold on it) before we process the sync_tasks.
562 	 * The MOS data dirtied by the sync_tasks will be synced on the next
563 	 * pass.
564 	 */
565 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
566 		dsl_sync_task_t *dst;
567 		/*
568 		 * No more sync tasks should have been added while we
569 		 * were syncing.
570 		 */
571 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
572 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
573 			dsl_sync_task_sync(dst, tx);
574 	}
575 
576 	dmu_tx_commit(tx);
577 
578 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
579 }
580 
581 void
582 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
583 {
584 	zilog_t *zilog;
585 
586 	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
587 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
588 		zil_clean(zilog, txg);
589 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
590 		dmu_buf_rele(ds->ds_dbuf, zilog);
591 	}
592 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
593 }
594 
595 /*
596  * TRUE if the current thread is the tx_sync_thread or if we
597  * are being called from SPA context during pool initialization.
598  */
599 int
600 dsl_pool_sync_context(dsl_pool_t *dp)
601 {
602 	return (curthread == dp->dp_tx.tx_sync_thread ||
603 	    spa_is_initializing(dp->dp_spa));
604 }
605 
606 uint64_t
607 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
608 {
609 	uint64_t space, resv;
610 
611 	/*
612 	 * If we're trying to assess whether it's OK to do a free,
613 	 * cut the reservation in half to allow forward progress
614 	 * (e.g. make it possible to rm(1) files from a full pool).
615 	 */
616 	space = spa_get_dspace(dp->dp_spa);
617 	resv = spa_get_slop_space(dp->dp_spa);
618 	if (netfree)
619 		resv >>= 1;
620 
621 	return (space - resv);
622 }
623 
624 boolean_t
625 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
626 {
627 	uint64_t delay_min_bytes =
628 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
629 	boolean_t rv;
630 
631 	mutex_enter(&dp->dp_lock);
632 	if (dp->dp_dirty_total > zfs_dirty_data_sync)
633 		txg_kick(dp);
634 	rv = (dp->dp_dirty_total > delay_min_bytes);
635 	mutex_exit(&dp->dp_lock);
636 	return (rv);
637 }
638 
639 void
640 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
641 {
642 	if (space > 0) {
643 		mutex_enter(&dp->dp_lock);
644 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
645 		dsl_pool_dirty_delta(dp, space);
646 		mutex_exit(&dp->dp_lock);
647 	}
648 }
649 
650 void
651 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
652 {
653 	ASSERT3S(space, >=, 0);
654 	if (space == 0)
655 		return;
656 	mutex_enter(&dp->dp_lock);
657 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
658 		/* XXX writing something we didn't dirty? */
659 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
660 	}
661 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
662 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
663 	ASSERT3U(dp->dp_dirty_total, >=, space);
664 	dsl_pool_dirty_delta(dp, -space);
665 	mutex_exit(&dp->dp_lock);
666 }
667 
668 /* ARGSUSED */
669 static int
670 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
671 {
672 	dmu_tx_t *tx = arg;
673 	dsl_dataset_t *ds, *prev = NULL;
674 	int err;
675 
676 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
677 	if (err)
678 		return (err);
679 
680 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
681 		err = dsl_dataset_hold_obj(dp,
682 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
683 		if (err) {
684 			dsl_dataset_rele(ds, FTAG);
685 			return (err);
686 		}
687 
688 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
689 			break;
690 		dsl_dataset_rele(ds, FTAG);
691 		ds = prev;
692 		prev = NULL;
693 	}
694 
695 	if (prev == NULL) {
696 		prev = dp->dp_origin_snap;
697 
698 		/*
699 		 * The $ORIGIN can't have any data, or the accounting
700 		 * will be wrong.
701 		 */
702 		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
703 
704 		/* The origin doesn't get attached to itself */
705 		if (ds->ds_object == prev->ds_object) {
706 			dsl_dataset_rele(ds, FTAG);
707 			return (0);
708 		}
709 
710 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
711 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
712 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
713 		    dsl_dataset_phys(prev)->ds_creation_txg;
714 
715 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
716 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
717 
718 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
719 		dsl_dataset_phys(prev)->ds_num_children++;
720 
721 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
722 			ASSERT(ds->ds_prev == NULL);
723 			VERIFY0(dsl_dataset_hold_obj(dp,
724 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
725 			    ds, &ds->ds_prev));
726 		}
727 	}
728 
729 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
730 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
731 
732 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
733 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
734 		dsl_dataset_phys(prev)->ds_next_clones_obj =
735 		    zap_create(dp->dp_meta_objset,
736 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
737 	}
738 	VERIFY0(zap_add_int(dp->dp_meta_objset,
739 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
740 
741 	dsl_dataset_rele(ds, FTAG);
742 	if (prev != dp->dp_origin_snap)
743 		dsl_dataset_rele(prev, FTAG);
744 	return (0);
745 }
746 
747 void
748 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
749 {
750 	ASSERT(dmu_tx_is_syncing(tx));
751 	ASSERT(dp->dp_origin_snap != NULL);
752 
753 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
754 	    tx, DS_FIND_CHILDREN));
755 }
756 
757 /* ARGSUSED */
758 static int
759 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
760 {
761 	dmu_tx_t *tx = arg;
762 	objset_t *mos = dp->dp_meta_objset;
763 
764 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
765 		dsl_dataset_t *origin;
766 
767 		VERIFY0(dsl_dataset_hold_obj(dp,
768 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
769 
770 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
771 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
772 			dsl_dir_phys(origin->ds_dir)->dd_clones =
773 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
774 			    0, tx);
775 		}
776 
777 		VERIFY0(zap_add_int(dp->dp_meta_objset,
778 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
779 		    ds->ds_object, tx));
780 
781 		dsl_dataset_rele(origin, FTAG);
782 	}
783 	return (0);
784 }
785 
786 void
787 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
788 {
789 	ASSERT(dmu_tx_is_syncing(tx));
790 	uint64_t obj;
791 
792 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
793 	VERIFY0(dsl_pool_open_special_dir(dp,
794 	    FREE_DIR_NAME, &dp->dp_free_dir));
795 
796 	/*
797 	 * We can't use bpobj_alloc(), because spa_version() still
798 	 * returns the old version, and we need a new-version bpobj with
799 	 * subobj support.  So call dmu_object_alloc() directly.
800 	 */
801 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
802 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
803 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
804 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
805 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
806 
807 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
808 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
809 }
810 
811 void
812 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
813 {
814 	uint64_t dsobj;
815 	dsl_dataset_t *ds;
816 
817 	ASSERT(dmu_tx_is_syncing(tx));
818 	ASSERT(dp->dp_origin_snap == NULL);
819 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
820 
821 	/* create the origin dir, ds, & snap-ds */
822 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
823 	    NULL, 0, kcred, tx);
824 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
825 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
826 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
827 	    dp, &dp->dp_origin_snap));
828 	dsl_dataset_rele(ds, FTAG);
829 }
830 
831 taskq_t *
832 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
833 {
834 	return (dp->dp_vnrele_taskq);
835 }
836 
837 /*
838  * Walk through the pool-wide zap object of temporary snapshot user holds
839  * and release them.
840  */
841 void
842 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
843 {
844 	zap_attribute_t za;
845 	zap_cursor_t zc;
846 	objset_t *mos = dp->dp_meta_objset;
847 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
848 	nvlist_t *holds;
849 
850 	if (zapobj == 0)
851 		return;
852 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
853 
854 	holds = fnvlist_alloc();
855 
856 	for (zap_cursor_init(&zc, mos, zapobj);
857 	    zap_cursor_retrieve(&zc, &za) == 0;
858 	    zap_cursor_advance(&zc)) {
859 		char *htag;
860 		nvlist_t *tags;
861 
862 		htag = strchr(za.za_name, '-');
863 		*htag = '\0';
864 		++htag;
865 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
866 			tags = fnvlist_alloc();
867 			fnvlist_add_boolean(tags, htag);
868 			fnvlist_add_nvlist(holds, za.za_name, tags);
869 			fnvlist_free(tags);
870 		} else {
871 			fnvlist_add_boolean(tags, htag);
872 		}
873 	}
874 	dsl_dataset_user_release_tmp(dp, holds);
875 	fnvlist_free(holds);
876 	zap_cursor_fini(&zc);
877 }
878 
879 /*
880  * Create the pool-wide zap object for storing temporary snapshot holds.
881  */
882 void
883 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
884 {
885 	objset_t *mos = dp->dp_meta_objset;
886 
887 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
888 	ASSERT(dmu_tx_is_syncing(tx));
889 
890 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
891 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
892 }
893 
894 static int
895 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
896     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
897 {
898 	objset_t *mos = dp->dp_meta_objset;
899 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
900 	char *name;
901 	int error;
902 
903 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
904 	ASSERT(dmu_tx_is_syncing(tx));
905 
906 	/*
907 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
908 	 * zap object for temporary holds might not exist yet.
909 	 */
910 	if (zapobj == 0) {
911 		if (holding) {
912 			dsl_pool_user_hold_create_obj(dp, tx);
913 			zapobj = dp->dp_tmp_userrefs_obj;
914 		} else {
915 			return (SET_ERROR(ENOENT));
916 		}
917 	}
918 
919 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
920 	if (holding)
921 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
922 	else
923 		error = zap_remove(mos, zapobj, name, tx);
924 	strfree(name);
925 
926 	return (error);
927 }
928 
929 /*
930  * Add a temporary hold for the given dataset object and tag.
931  */
932 int
933 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
934     uint64_t now, dmu_tx_t *tx)
935 {
936 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
937 }
938 
939 /*
940  * Release a temporary hold for the given dataset object and tag.
941  */
942 int
943 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
944     dmu_tx_t *tx)
945 {
946 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
947 	    tx, B_FALSE));
948 }
949 
950 /*
951  * DSL Pool Configuration Lock
952  *
953  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
954  * creation / destruction / rename / property setting).  It must be held for
955  * read to hold a dataset or dsl_dir.  I.e. you must call
956  * dsl_pool_config_enter() or dsl_pool_hold() before calling
957  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
958  * must be held continuously until all datasets and dsl_dirs are released.
959  *
960  * The only exception to this rule is that if a "long hold" is placed on
961  * a dataset, then the dp_config_rwlock may be dropped while the dataset
962  * is still held.  The long hold will prevent the dataset from being
963  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
964  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
965  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
966  *
967  * Legitimate long-holders (including owners) should be long-running, cancelable
968  * tasks that should cause "zfs destroy" to fail.  This includes DMU
969  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
970  * "zfs send", and "zfs diff".  There are several other long-holders whose
971  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
972  *
973  * The usual formula for long-holding would be:
974  * dsl_pool_hold()
975  * dsl_dataset_hold()
976  * ... perform checks ...
977  * dsl_dataset_long_hold()
978  * dsl_pool_rele()
979  * ... perform long-running task ...
980  * dsl_dataset_long_rele()
981  * dsl_dataset_rele()
982  *
983  * Note that when the long hold is released, the dataset is still held but
984  * the pool is not held.  The dataset may change arbitrarily during this time
985  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
986  * dataset except release it.
987  *
988  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
989  * or modifying operations.
990  *
991  * Modifying operations should generally use dsl_sync_task().  The synctask
992  * infrastructure enforces proper locking strategy with respect to the
993  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
994  *
995  * Read-only operations will manually hold the pool, then the dataset, obtain
996  * information from the dataset, then release the pool and dataset.
997  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
998  * hold/rele.
999  */
1000 
1001 int
1002 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1003 {
1004 	spa_t *spa;
1005 	int error;
1006 
1007 	error = spa_open(name, &spa, tag);
1008 	if (error == 0) {
1009 		*dp = spa_get_dsl(spa);
1010 		dsl_pool_config_enter(*dp, tag);
1011 	}
1012 	return (error);
1013 }
1014 
1015 void
1016 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1017 {
1018 	dsl_pool_config_exit(dp, tag);
1019 	spa_close(dp->dp_spa, tag);
1020 }
1021 
1022 void
1023 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1024 {
1025 	/*
1026 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1027 	 *
1028 	 * The rrwlock can (with the track_all flag) track all reading threads,
1029 	 * which is very useful for debugging which code path failed to release
1030 	 * the lock, and for verifying that the *current* thread does hold
1031 	 * the lock.
1032 	 *
1033 	 * (Unlike a rwlock, which knows that N threads hold it for
1034 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1035 	 * if any thread holds it for read, even if this thread doesn't).
1036 	 */
1037 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1038 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1039 }
1040 
1041 void
1042 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1043 {
1044 	rrw_exit(&dp->dp_config_rwlock, tag);
1045 }
1046 
1047 boolean_t
1048 dsl_pool_config_held(dsl_pool_t *dp)
1049 {
1050 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1051 }
1052