xref: /titanic_41/usr/src/uts/common/fs/zfs/dsl_dir.c (revision d339dfeffb229c9d6600872a9e1175f6c68a4bb3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Martin Matuska. All rights reserved.
25  * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28  */
29 
30 #include <sys/dmu.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
39 #include <sys/spa.h>
40 #include <sys/metaslab.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/arc.h>
44 #include <sys/sunddi.h>
45 #include <sys/zfeature.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
48 #include "zfs_namecheck.h"
49 #include "zfs_prop.h"
50 
51 /*
52  * Filesystem and Snapshot Limits
53  * ------------------------------
54  *
55  * These limits are used to restrict the number of filesystems and/or snapshots
56  * that can be created at a given level in the tree or below. A typical
57  * use-case is with a delegated dataset where the administrator wants to ensure
58  * that a user within the zone is not creating too many additional filesystems
59  * or snapshots, even though they're not exceeding their space quota.
60  *
61  * The filesystem and snapshot counts are stored as extensible properties. This
62  * capability is controlled by a feature flag and must be enabled to be used.
63  * Once enabled, the feature is not active until the first limit is set. At
64  * that point, future operations to create/destroy filesystems or snapshots
65  * will validate and update the counts.
66  *
67  * Because the count properties will not exist before the feature is active,
68  * the counts are updated when a limit is first set on an uninitialized
69  * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
70  * all of the nested filesystems/snapshots. Thus, a new leaf node has a
71  * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
72  * snapshot count properties on a node indicate uninitialized counts on that
73  * node.) When first setting a limit on an uninitialized node, the code starts
74  * at the filesystem with the new limit and descends into all sub-filesystems
75  * to add the count properties.
76  *
77  * In practice this is lightweight since a limit is typically set when the
78  * filesystem is created and thus has no children. Once valid, changing the
79  * limit value won't require a re-traversal since the counts are already valid.
80  * When recursively fixing the counts, if a node with a limit is encountered
81  * during the descent, the counts are known to be valid and there is no need to
82  * descend into that filesystem's children. The counts on filesystems above the
83  * one with the new limit will still be uninitialized, unless a limit is
84  * eventually set on one of those filesystems. The counts are always recursively
85  * updated when a limit is set on a dataset, unless there is already a limit.
86  * When a new limit value is set on a filesystem with an existing limit, it is
87  * possible for the new limit to be less than the current count at that level
88  * since a user who can change the limit is also allowed to exceed the limit.
89  *
90  * Once the feature is active, then whenever a filesystem or snapshot is
91  * created, the code recurses up the tree, validating the new count against the
92  * limit at each initialized level. In practice, most levels will not have a
93  * limit set. If there is a limit at any initialized level up the tree, the
94  * check must pass or the creation will fail. Likewise, when a filesystem or
95  * snapshot is destroyed, the counts are recursively adjusted all the way up
96  * the initizized nodes in the tree. Renaming a filesystem into different point
97  * in the tree will first validate, then update the counts on each branch up to
98  * the common ancestor. A receive will also validate the counts and then update
99  * them.
100  *
101  * An exception to the above behavior is that the limit is not enforced if the
102  * user has permission to modify the limit. This is primarily so that
103  * recursive snapshots in the global zone always work. We want to prevent a
104  * denial-of-service in which a lower level delegated dataset could max out its
105  * limit and thus block recursive snapshots from being taken in the global zone.
106  * Because of this, it is possible for the snapshot count to be over the limit
107  * and snapshots taken in the global zone could cause a lower level dataset to
108  * hit or exceed its limit. The administrator taking the global zone recursive
109  * snapshot should be aware of this side-effect and behave accordingly.
110  * For consistency, the filesystem limit is also not enforced if the user can
111  * modify the limit.
112  *
113  * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
114  * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
115  * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
116  * dsl_dir_init_fs_ss_count().
117  *
118  * There is a special case when we receive a filesystem that already exists. In
119  * this case a temporary clone name of %X is created (see dmu_recv_begin). We
120  * never update the filesystem counts for temporary clones.
121  *
122  * Likewise, we do not update the snapshot counts for temporary snapshots,
123  * such as those created by zfs diff.
124  */
125 
126 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
127 
128 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
129 
130 static void
131 dsl_dir_evict(void *dbu)
132 {
133 	dsl_dir_t *dd = dbu;
134 	dsl_pool_t *dp = dd->dd_pool;
135 	int t;
136 
137 	dd->dd_dbuf = NULL;
138 
139 	for (t = 0; t < TXG_SIZE; t++) {
140 		ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
141 		ASSERT(dd->dd_tempreserved[t] == 0);
142 		ASSERT(dd->dd_space_towrite[t] == 0);
143 	}
144 
145 	if (dd->dd_parent)
146 		dsl_dir_async_rele(dd->dd_parent, dd);
147 
148 	spa_async_close(dd->dd_pool->dp_spa, dd);
149 
150 	/*
151 	 * The props callback list should have been cleaned up by
152 	 * objset_evict().
153 	 */
154 	list_destroy(&dd->dd_prop_cbs);
155 	mutex_destroy(&dd->dd_lock);
156 	kmem_free(dd, sizeof (dsl_dir_t));
157 }
158 
159 int
160 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
161     const char *tail, void *tag, dsl_dir_t **ddp)
162 {
163 	dmu_buf_t *dbuf;
164 	dsl_dir_t *dd;
165 	int err;
166 
167 	ASSERT(dsl_pool_config_held(dp));
168 
169 	err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
170 	if (err != 0)
171 		return (err);
172 	dd = dmu_buf_get_user(dbuf);
173 #ifdef ZFS_DEBUG
174 	{
175 		dmu_object_info_t doi;
176 		dmu_object_info_from_db(dbuf, &doi);
177 		ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
178 		ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
179 	}
180 #endif
181 	if (dd == NULL) {
182 		dsl_dir_t *winner;
183 
184 		dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
185 		dd->dd_object = ddobj;
186 		dd->dd_dbuf = dbuf;
187 		dd->dd_pool = dp;
188 		mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
189 
190 		list_create(&dd->dd_prop_cbs, sizeof (dsl_prop_cb_record_t),
191 		    offsetof(dsl_prop_cb_record_t, cbr_node));
192 
193 		dsl_dir_snap_cmtime_update(dd);
194 
195 		if (dsl_dir_phys(dd)->dd_parent_obj) {
196 			err = dsl_dir_hold_obj(dp,
197 			    dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
198 			    &dd->dd_parent);
199 			if (err != 0)
200 				goto errout;
201 			if (tail) {
202 #ifdef ZFS_DEBUG
203 				uint64_t foundobj;
204 
205 				err = zap_lookup(dp->dp_meta_objset,
206 				    dsl_dir_phys(dd->dd_parent)->
207 				    dd_child_dir_zapobj, tail,
208 				    sizeof (foundobj), 1, &foundobj);
209 				ASSERT(err || foundobj == ddobj);
210 #endif
211 				(void) strcpy(dd->dd_myname, tail);
212 			} else {
213 				err = zap_value_search(dp->dp_meta_objset,
214 				    dsl_dir_phys(dd->dd_parent)->
215 				    dd_child_dir_zapobj,
216 				    ddobj, 0, dd->dd_myname);
217 			}
218 			if (err != 0)
219 				goto errout;
220 		} else {
221 			(void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
222 		}
223 
224 		if (dsl_dir_is_clone(dd)) {
225 			dmu_buf_t *origin_bonus;
226 			dsl_dataset_phys_t *origin_phys;
227 
228 			/*
229 			 * We can't open the origin dataset, because
230 			 * that would require opening this dsl_dir.
231 			 * Just look at its phys directly instead.
232 			 */
233 			err = dmu_bonus_hold(dp->dp_meta_objset,
234 			    dsl_dir_phys(dd)->dd_origin_obj, FTAG,
235 			    &origin_bonus);
236 			if (err != 0)
237 				goto errout;
238 			origin_phys = origin_bonus->db_data;
239 			dd->dd_origin_txg =
240 			    origin_phys->ds_creation_txg;
241 			dmu_buf_rele(origin_bonus, FTAG);
242 		}
243 
244 		dmu_buf_init_user(&dd->dd_dbu, dsl_dir_evict, &dd->dd_dbuf);
245 		winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
246 		if (winner != NULL) {
247 			if (dd->dd_parent)
248 				dsl_dir_rele(dd->dd_parent, dd);
249 			mutex_destroy(&dd->dd_lock);
250 			kmem_free(dd, sizeof (dsl_dir_t));
251 			dd = winner;
252 		} else {
253 			spa_open_ref(dp->dp_spa, dd);
254 		}
255 	}
256 
257 	/*
258 	 * The dsl_dir_t has both open-to-close and instantiate-to-evict
259 	 * holds on the spa.  We need the open-to-close holds because
260 	 * otherwise the spa_refcnt wouldn't change when we open a
261 	 * dir which the spa also has open, so we could incorrectly
262 	 * think it was OK to unload/export/destroy the pool.  We need
263 	 * the instantiate-to-evict hold because the dsl_dir_t has a
264 	 * pointer to the dd_pool, which has a pointer to the spa_t.
265 	 */
266 	spa_open_ref(dp->dp_spa, tag);
267 	ASSERT3P(dd->dd_pool, ==, dp);
268 	ASSERT3U(dd->dd_object, ==, ddobj);
269 	ASSERT3P(dd->dd_dbuf, ==, dbuf);
270 	*ddp = dd;
271 	return (0);
272 
273 errout:
274 	if (dd->dd_parent)
275 		dsl_dir_rele(dd->dd_parent, dd);
276 	mutex_destroy(&dd->dd_lock);
277 	kmem_free(dd, sizeof (dsl_dir_t));
278 	dmu_buf_rele(dbuf, tag);
279 	return (err);
280 }
281 
282 void
283 dsl_dir_rele(dsl_dir_t *dd, void *tag)
284 {
285 	dprintf_dd(dd, "%s\n", "");
286 	spa_close(dd->dd_pool->dp_spa, tag);
287 	dmu_buf_rele(dd->dd_dbuf, tag);
288 }
289 
290 /*
291  * Remove a reference to the given dsl dir that is being asynchronously
292  * released.  Async releases occur from a taskq performing eviction of
293  * dsl datasets and dirs.  This process is identical to a normal release
294  * with the exception of using the async API for releasing the reference on
295  * the spa.
296  */
297 void
298 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
299 {
300 	dprintf_dd(dd, "%s\n", "");
301 	spa_async_close(dd->dd_pool->dp_spa, tag);
302 	dmu_buf_rele(dd->dd_dbuf, tag);
303 }
304 
305 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
306 void
307 dsl_dir_name(dsl_dir_t *dd, char *buf)
308 {
309 	if (dd->dd_parent) {
310 		dsl_dir_name(dd->dd_parent, buf);
311 		VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
312 		    ZFS_MAX_DATASET_NAME_LEN);
313 	} else {
314 		buf[0] = '\0';
315 	}
316 	if (!MUTEX_HELD(&dd->dd_lock)) {
317 		/*
318 		 * recursive mutex so that we can use
319 		 * dprintf_dd() with dd_lock held
320 		 */
321 		mutex_enter(&dd->dd_lock);
322 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
323 		    <, ZFS_MAX_DATASET_NAME_LEN);
324 		mutex_exit(&dd->dd_lock);
325 	} else {
326 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
327 		    <, ZFS_MAX_DATASET_NAME_LEN);
328 	}
329 }
330 
331 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
332 int
333 dsl_dir_namelen(dsl_dir_t *dd)
334 {
335 	int result = 0;
336 
337 	if (dd->dd_parent) {
338 		/* parent's name + 1 for the "/" */
339 		result = dsl_dir_namelen(dd->dd_parent) + 1;
340 	}
341 
342 	if (!MUTEX_HELD(&dd->dd_lock)) {
343 		/* see dsl_dir_name */
344 		mutex_enter(&dd->dd_lock);
345 		result += strlen(dd->dd_myname);
346 		mutex_exit(&dd->dd_lock);
347 	} else {
348 		result += strlen(dd->dd_myname);
349 	}
350 
351 	return (result);
352 }
353 
354 static int
355 getcomponent(const char *path, char *component, const char **nextp)
356 {
357 	char *p;
358 
359 	if ((path == NULL) || (path[0] == '\0'))
360 		return (SET_ERROR(ENOENT));
361 	/* This would be a good place to reserve some namespace... */
362 	p = strpbrk(path, "/@");
363 	if (p && (p[1] == '/' || p[1] == '@')) {
364 		/* two separators in a row */
365 		return (SET_ERROR(EINVAL));
366 	}
367 	if (p == NULL || p == path) {
368 		/*
369 		 * if the first thing is an @ or /, it had better be an
370 		 * @ and it had better not have any more ats or slashes,
371 		 * and it had better have something after the @.
372 		 */
373 		if (p != NULL &&
374 		    (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
375 			return (SET_ERROR(EINVAL));
376 		if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
377 			return (SET_ERROR(ENAMETOOLONG));
378 		(void) strcpy(component, path);
379 		p = NULL;
380 	} else if (p[0] == '/') {
381 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
382 			return (SET_ERROR(ENAMETOOLONG));
383 		(void) strncpy(component, path, p - path);
384 		component[p - path] = '\0';
385 		p++;
386 	} else if (p[0] == '@') {
387 		/*
388 		 * if the next separator is an @, there better not be
389 		 * any more slashes.
390 		 */
391 		if (strchr(path, '/'))
392 			return (SET_ERROR(EINVAL));
393 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
394 			return (SET_ERROR(ENAMETOOLONG));
395 		(void) strncpy(component, path, p - path);
396 		component[p - path] = '\0';
397 	} else {
398 		panic("invalid p=%p", (void *)p);
399 	}
400 	*nextp = p;
401 	return (0);
402 }
403 
404 /*
405  * Return the dsl_dir_t, and possibly the last component which couldn't
406  * be found in *tail.  The name must be in the specified dsl_pool_t.  This
407  * thread must hold the dp_config_rwlock for the pool.  Returns NULL if the
408  * path is bogus, or if tail==NULL and we couldn't parse the whole name.
409  * (*tail)[0] == '@' means that the last component is a snapshot.
410  */
411 int
412 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
413     dsl_dir_t **ddp, const char **tailp)
414 {
415 	char buf[ZFS_MAX_DATASET_NAME_LEN];
416 	const char *spaname, *next, *nextnext = NULL;
417 	int err;
418 	dsl_dir_t *dd;
419 	uint64_t ddobj;
420 
421 	err = getcomponent(name, buf, &next);
422 	if (err != 0)
423 		return (err);
424 
425 	/* Make sure the name is in the specified pool. */
426 	spaname = spa_name(dp->dp_spa);
427 	if (strcmp(buf, spaname) != 0)
428 		return (SET_ERROR(EXDEV));
429 
430 	ASSERT(dsl_pool_config_held(dp));
431 
432 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
433 	if (err != 0) {
434 		return (err);
435 	}
436 
437 	while (next != NULL) {
438 		dsl_dir_t *child_dd;
439 		err = getcomponent(next, buf, &nextnext);
440 		if (err != 0)
441 			break;
442 		ASSERT(next[0] != '\0');
443 		if (next[0] == '@')
444 			break;
445 		dprintf("looking up %s in obj%lld\n",
446 		    buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
447 
448 		err = zap_lookup(dp->dp_meta_objset,
449 		    dsl_dir_phys(dd)->dd_child_dir_zapobj,
450 		    buf, sizeof (ddobj), 1, &ddobj);
451 		if (err != 0) {
452 			if (err == ENOENT)
453 				err = 0;
454 			break;
455 		}
456 
457 		err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
458 		if (err != 0)
459 			break;
460 		dsl_dir_rele(dd, tag);
461 		dd = child_dd;
462 		next = nextnext;
463 	}
464 
465 	if (err != 0) {
466 		dsl_dir_rele(dd, tag);
467 		return (err);
468 	}
469 
470 	/*
471 	 * It's an error if there's more than one component left, or
472 	 * tailp==NULL and there's any component left.
473 	 */
474 	if (next != NULL &&
475 	    (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
476 		/* bad path name */
477 		dsl_dir_rele(dd, tag);
478 		dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
479 		err = SET_ERROR(ENOENT);
480 	}
481 	if (tailp != NULL)
482 		*tailp = next;
483 	*ddp = dd;
484 	return (err);
485 }
486 
487 /*
488  * If the counts are already initialized for this filesystem and its
489  * descendants then do nothing, otherwise initialize the counts.
490  *
491  * The counts on this filesystem, and those below, may be uninitialized due to
492  * either the use of a pre-existing pool which did not support the
493  * filesystem/snapshot limit feature, or one in which the feature had not yet
494  * been enabled.
495  *
496  * Recursively descend the filesystem tree and update the filesystem/snapshot
497  * counts on each filesystem below, then update the cumulative count on the
498  * current filesystem. If the filesystem already has a count set on it,
499  * then we know that its counts, and the counts on the filesystems below it,
500  * are already correct, so we don't have to update this filesystem.
501  */
502 static void
503 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
504 {
505 	uint64_t my_fs_cnt = 0;
506 	uint64_t my_ss_cnt = 0;
507 	dsl_pool_t *dp = dd->dd_pool;
508 	objset_t *os = dp->dp_meta_objset;
509 	zap_cursor_t *zc;
510 	zap_attribute_t *za;
511 	dsl_dataset_t *ds;
512 
513 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
514 	ASSERT(dsl_pool_config_held(dp));
515 	ASSERT(dmu_tx_is_syncing(tx));
516 
517 	dsl_dir_zapify(dd, tx);
518 
519 	/*
520 	 * If the filesystem count has already been initialized then we
521 	 * don't need to recurse down any further.
522 	 */
523 	if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
524 		return;
525 
526 	zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
527 	za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
528 
529 	/* Iterate my child dirs */
530 	for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
531 	    zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
532 		dsl_dir_t *chld_dd;
533 		uint64_t count;
534 
535 		VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
536 		    &chld_dd));
537 
538 		/*
539 		 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
540 		 * temporary datasets.
541 		 */
542 		if (chld_dd->dd_myname[0] == '$' ||
543 		    chld_dd->dd_myname[0] == '%') {
544 			dsl_dir_rele(chld_dd, FTAG);
545 			continue;
546 		}
547 
548 		my_fs_cnt++;	/* count this child */
549 
550 		dsl_dir_init_fs_ss_count(chld_dd, tx);
551 
552 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
553 		    DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
554 		my_fs_cnt += count;
555 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
556 		    DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
557 		my_ss_cnt += count;
558 
559 		dsl_dir_rele(chld_dd, FTAG);
560 	}
561 	zap_cursor_fini(zc);
562 	/* Count my snapshots (we counted children's snapshots above) */
563 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
564 	    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
565 
566 	for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
567 	    zap_cursor_retrieve(zc, za) == 0;
568 	    zap_cursor_advance(zc)) {
569 		/* Don't count temporary snapshots */
570 		if (za->za_name[0] != '%')
571 			my_ss_cnt++;
572 	}
573 	zap_cursor_fini(zc);
574 
575 	dsl_dataset_rele(ds, FTAG);
576 
577 	kmem_free(zc, sizeof (zap_cursor_t));
578 	kmem_free(za, sizeof (zap_attribute_t));
579 
580 	/* we're in a sync task, update counts */
581 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
582 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
583 	    sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
584 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
585 	    sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
586 }
587 
588 static int
589 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
590 {
591 	char *ddname = (char *)arg;
592 	dsl_pool_t *dp = dmu_tx_pool(tx);
593 	dsl_dataset_t *ds;
594 	dsl_dir_t *dd;
595 	int error;
596 
597 	error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
598 	if (error != 0)
599 		return (error);
600 
601 	if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
602 		dsl_dataset_rele(ds, FTAG);
603 		return (SET_ERROR(ENOTSUP));
604 	}
605 
606 	dd = ds->ds_dir;
607 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
608 	    dsl_dir_is_zapified(dd) &&
609 	    zap_contains(dp->dp_meta_objset, dd->dd_object,
610 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
611 		dsl_dataset_rele(ds, FTAG);
612 		return (SET_ERROR(EALREADY));
613 	}
614 
615 	dsl_dataset_rele(ds, FTAG);
616 	return (0);
617 }
618 
619 static void
620 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
621 {
622 	char *ddname = (char *)arg;
623 	dsl_pool_t *dp = dmu_tx_pool(tx);
624 	dsl_dataset_t *ds;
625 	spa_t *spa;
626 
627 	VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
628 
629 	spa = dsl_dataset_get_spa(ds);
630 
631 	if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
632 		/*
633 		 * Since the feature was not active and we're now setting a
634 		 * limit, increment the feature-active counter so that the
635 		 * feature becomes active for the first time.
636 		 *
637 		 * We are already in a sync task so we can update the MOS.
638 		 */
639 		spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
640 	}
641 
642 	/*
643 	 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
644 	 * we need to ensure the counts are correct. Descend down the tree from
645 	 * this point and update all of the counts to be accurate.
646 	 */
647 	dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
648 
649 	dsl_dataset_rele(ds, FTAG);
650 }
651 
652 /*
653  * Make sure the feature is enabled and activate it if necessary.
654  * Since we're setting a limit, ensure the on-disk counts are valid.
655  * This is only called by the ioctl path when setting a limit value.
656  *
657  * We do not need to validate the new limit, since users who can change the
658  * limit are also allowed to exceed the limit.
659  */
660 int
661 dsl_dir_activate_fs_ss_limit(const char *ddname)
662 {
663 	int error;
664 
665 	error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
666 	    dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
667 	    ZFS_SPACE_CHECK_RESERVED);
668 
669 	if (error == EALREADY)
670 		error = 0;
671 
672 	return (error);
673 }
674 
675 /*
676  * Used to determine if the filesystem_limit or snapshot_limit should be
677  * enforced. We allow the limit to be exceeded if the user has permission to
678  * write the property value. We pass in the creds that we got in the open
679  * context since we will always be the GZ root in syncing context. We also have
680  * to handle the case where we are allowed to change the limit on the current
681  * dataset, but there may be another limit in the tree above.
682  *
683  * We can never modify these two properties within a non-global zone. In
684  * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
685  * can't use that function since we are already holding the dp_config_rwlock.
686  * In addition, we already have the dd and dealing with snapshots is simplified
687  * in this code.
688  */
689 
690 typedef enum {
691 	ENFORCE_ALWAYS,
692 	ENFORCE_NEVER,
693 	ENFORCE_ABOVE
694 } enforce_res_t;
695 
696 static enforce_res_t
697 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
698 {
699 	enforce_res_t enforce = ENFORCE_ALWAYS;
700 	uint64_t obj;
701 	dsl_dataset_t *ds;
702 	uint64_t zoned;
703 
704 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
705 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
706 
707 #ifdef _KERNEL
708 	if (crgetzoneid(cr) != GLOBAL_ZONEID)
709 		return (ENFORCE_ALWAYS);
710 
711 	if (secpolicy_zfs(cr) == 0)
712 		return (ENFORCE_NEVER);
713 #endif
714 
715 	if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
716 		return (ENFORCE_ALWAYS);
717 
718 	ASSERT(dsl_pool_config_held(dd->dd_pool));
719 
720 	if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
721 		return (ENFORCE_ALWAYS);
722 
723 	if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
724 		/* Only root can access zoned fs's from the GZ */
725 		enforce = ENFORCE_ALWAYS;
726 	} else {
727 		if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
728 			enforce = ENFORCE_ABOVE;
729 	}
730 
731 	dsl_dataset_rele(ds, FTAG);
732 	return (enforce);
733 }
734 
735 /*
736  * Check if adding additional child filesystem(s) would exceed any filesystem
737  * limits or adding additional snapshot(s) would exceed any snapshot limits.
738  * The prop argument indicates which limit to check.
739  *
740  * Note that all filesystem limits up to the root (or the highest
741  * initialized) filesystem or the given ancestor must be satisfied.
742  */
743 int
744 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
745     dsl_dir_t *ancestor, cred_t *cr)
746 {
747 	objset_t *os = dd->dd_pool->dp_meta_objset;
748 	uint64_t limit, count;
749 	char *count_prop;
750 	enforce_res_t enforce;
751 	int err = 0;
752 
753 	ASSERT(dsl_pool_config_held(dd->dd_pool));
754 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
755 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
756 
757 	/*
758 	 * If we're allowed to change the limit, don't enforce the limit
759 	 * e.g. this can happen if a snapshot is taken by an administrative
760 	 * user in the global zone (i.e. a recursive snapshot by root).
761 	 * However, we must handle the case of delegated permissions where we
762 	 * are allowed to change the limit on the current dataset, but there
763 	 * is another limit in the tree above.
764 	 */
765 	enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
766 	if (enforce == ENFORCE_NEVER)
767 		return (0);
768 
769 	/*
770 	 * e.g. if renaming a dataset with no snapshots, count adjustment
771 	 * is 0.
772 	 */
773 	if (delta == 0)
774 		return (0);
775 
776 	if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
777 		/*
778 		 * We don't enforce the limit for temporary snapshots. This is
779 		 * indicated by a NULL cred_t argument.
780 		 */
781 		if (cr == NULL)
782 			return (0);
783 
784 		count_prop = DD_FIELD_SNAPSHOT_COUNT;
785 	} else {
786 		count_prop = DD_FIELD_FILESYSTEM_COUNT;
787 	}
788 
789 	/*
790 	 * If an ancestor has been provided, stop checking the limit once we
791 	 * hit that dir. We need this during rename so that we don't overcount
792 	 * the check once we recurse up to the common ancestor.
793 	 */
794 	if (ancestor == dd)
795 		return (0);
796 
797 	/*
798 	 * If we hit an uninitialized node while recursing up the tree, we can
799 	 * stop since we know there is no limit here (or above). The counts are
800 	 * not valid on this node and we know we won't touch this node's counts.
801 	 */
802 	if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
803 	    count_prop, sizeof (count), 1, &count) == ENOENT)
804 		return (0);
805 
806 	err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
807 	    B_FALSE);
808 	if (err != 0)
809 		return (err);
810 
811 	/* Is there a limit which we've hit? */
812 	if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
813 		return (SET_ERROR(EDQUOT));
814 
815 	if (dd->dd_parent != NULL)
816 		err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
817 		    ancestor, cr);
818 
819 	return (err);
820 }
821 
822 /*
823  * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
824  * parents. When a new filesystem/snapshot is created, increment the count on
825  * all parents, and when a filesystem/snapshot is destroyed, decrement the
826  * count.
827  */
828 void
829 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
830     dmu_tx_t *tx)
831 {
832 	int err;
833 	objset_t *os = dd->dd_pool->dp_meta_objset;
834 	uint64_t count;
835 
836 	ASSERT(dsl_pool_config_held(dd->dd_pool));
837 	ASSERT(dmu_tx_is_syncing(tx));
838 	ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
839 	    strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
840 
841 	/*
842 	 * When we receive an incremental stream into a filesystem that already
843 	 * exists, a temporary clone is created.  We don't count this temporary
844 	 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
845 	 * $MOS & $ORIGIN) objsets.
846 	 */
847 	if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
848 	    strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
849 		return;
850 
851 	/*
852 	 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
853 	 */
854 	if (delta == 0)
855 		return;
856 
857 	/*
858 	 * If we hit an uninitialized node while recursing up the tree, we can
859 	 * stop since we know the counts are not valid on this node and we
860 	 * know we shouldn't touch this node's counts. An uninitialized count
861 	 * on the node indicates that either the feature has not yet been
862 	 * activated or there are no limits on this part of the tree.
863 	 */
864 	if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
865 	    prop, sizeof (count), 1, &count)) == ENOENT)
866 		return;
867 	VERIFY0(err);
868 
869 	count += delta;
870 	/* Use a signed verify to make sure we're not neg. */
871 	VERIFY3S(count, >=, 0);
872 
873 	VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
874 	    tx));
875 
876 	/* Roll up this additional count into our ancestors */
877 	if (dd->dd_parent != NULL)
878 		dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
879 }
880 
881 uint64_t
882 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
883     dmu_tx_t *tx)
884 {
885 	objset_t *mos = dp->dp_meta_objset;
886 	uint64_t ddobj;
887 	dsl_dir_phys_t *ddphys;
888 	dmu_buf_t *dbuf;
889 
890 	ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
891 	    DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
892 	if (pds) {
893 		VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
894 		    name, sizeof (uint64_t), 1, &ddobj, tx));
895 	} else {
896 		/* it's the root dir */
897 		VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
898 		    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
899 	}
900 	VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
901 	dmu_buf_will_dirty(dbuf, tx);
902 	ddphys = dbuf->db_data;
903 
904 	ddphys->dd_creation_time = gethrestime_sec();
905 	if (pds) {
906 		ddphys->dd_parent_obj = pds->dd_object;
907 
908 		/* update the filesystem counts */
909 		dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
910 	}
911 	ddphys->dd_props_zapobj = zap_create(mos,
912 	    DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
913 	ddphys->dd_child_dir_zapobj = zap_create(mos,
914 	    DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
915 	if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
916 		ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
917 	dmu_buf_rele(dbuf, FTAG);
918 
919 	return (ddobj);
920 }
921 
922 boolean_t
923 dsl_dir_is_clone(dsl_dir_t *dd)
924 {
925 	return (dsl_dir_phys(dd)->dd_origin_obj &&
926 	    (dd->dd_pool->dp_origin_snap == NULL ||
927 	    dsl_dir_phys(dd)->dd_origin_obj !=
928 	    dd->dd_pool->dp_origin_snap->ds_object));
929 }
930 
931 void
932 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
933 {
934 	mutex_enter(&dd->dd_lock);
935 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED,
936 	    dsl_dir_phys(dd)->dd_used_bytes);
937 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
938 	    dsl_dir_phys(dd)->dd_quota);
939 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
940 	    dsl_dir_phys(dd)->dd_reserved);
941 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO,
942 	    dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
943 	    (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
944 	    dsl_dir_phys(dd)->dd_compressed_bytes));
945 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
946 	    dsl_dir_phys(dd)->dd_uncompressed_bytes);
947 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
948 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
949 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
950 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
951 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
952 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
953 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
954 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
955 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
956 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
957 	}
958 	mutex_exit(&dd->dd_lock);
959 
960 	if (dsl_dir_is_zapified(dd)) {
961 		uint64_t count;
962 		objset_t *os = dd->dd_pool->dp_meta_objset;
963 
964 		if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
965 		    sizeof (count), 1, &count) == 0) {
966 			dsl_prop_nvlist_add_uint64(nv,
967 			    ZFS_PROP_FILESYSTEM_COUNT, count);
968 		}
969 		if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
970 		    sizeof (count), 1, &count) == 0) {
971 			dsl_prop_nvlist_add_uint64(nv,
972 			    ZFS_PROP_SNAPSHOT_COUNT, count);
973 		}
974 	}
975 
976 	if (dsl_dir_is_clone(dd)) {
977 		dsl_dataset_t *ds;
978 		char buf[ZFS_MAX_DATASET_NAME_LEN];
979 
980 		VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
981 		    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
982 		dsl_dataset_name(ds, buf);
983 		dsl_dataset_rele(ds, FTAG);
984 		dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
985 	}
986 }
987 
988 void
989 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
990 {
991 	dsl_pool_t *dp = dd->dd_pool;
992 
993 	ASSERT(dsl_dir_phys(dd));
994 
995 	if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
996 		/* up the hold count until we can be written out */
997 		dmu_buf_add_ref(dd->dd_dbuf, dd);
998 	}
999 }
1000 
1001 static int64_t
1002 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1003 {
1004 	uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1005 	uint64_t new_accounted =
1006 	    MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1007 	return (new_accounted - old_accounted);
1008 }
1009 
1010 void
1011 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1012 {
1013 	ASSERT(dmu_tx_is_syncing(tx));
1014 
1015 	mutex_enter(&dd->dd_lock);
1016 	ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1017 	dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1018 	    dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1019 	dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1020 	mutex_exit(&dd->dd_lock);
1021 
1022 	/* release the hold from dsl_dir_dirty */
1023 	dmu_buf_rele(dd->dd_dbuf, dd);
1024 }
1025 
1026 static uint64_t
1027 dsl_dir_space_towrite(dsl_dir_t *dd)
1028 {
1029 	uint64_t space = 0;
1030 	int i;
1031 
1032 	ASSERT(MUTEX_HELD(&dd->dd_lock));
1033 
1034 	for (i = 0; i < TXG_SIZE; i++) {
1035 		space += dd->dd_space_towrite[i&TXG_MASK];
1036 		ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0);
1037 	}
1038 	return (space);
1039 }
1040 
1041 /*
1042  * How much space would dd have available if ancestor had delta applied
1043  * to it?  If ondiskonly is set, we're only interested in what's
1044  * on-disk, not estimated pending changes.
1045  */
1046 uint64_t
1047 dsl_dir_space_available(dsl_dir_t *dd,
1048     dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1049 {
1050 	uint64_t parentspace, myspace, quota, used;
1051 
1052 	/*
1053 	 * If there are no restrictions otherwise, assume we have
1054 	 * unlimited space available.
1055 	 */
1056 	quota = UINT64_MAX;
1057 	parentspace = UINT64_MAX;
1058 
1059 	if (dd->dd_parent != NULL) {
1060 		parentspace = dsl_dir_space_available(dd->dd_parent,
1061 		    ancestor, delta, ondiskonly);
1062 	}
1063 
1064 	mutex_enter(&dd->dd_lock);
1065 	if (dsl_dir_phys(dd)->dd_quota != 0)
1066 		quota = dsl_dir_phys(dd)->dd_quota;
1067 	used = dsl_dir_phys(dd)->dd_used_bytes;
1068 	if (!ondiskonly)
1069 		used += dsl_dir_space_towrite(dd);
1070 
1071 	if (dd->dd_parent == NULL) {
1072 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE);
1073 		quota = MIN(quota, poolsize);
1074 	}
1075 
1076 	if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1077 		/*
1078 		 * We have some space reserved, in addition to what our
1079 		 * parent gave us.
1080 		 */
1081 		parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1082 	}
1083 
1084 	if (dd == ancestor) {
1085 		ASSERT(delta <= 0);
1086 		ASSERT(used >= -delta);
1087 		used += delta;
1088 		if (parentspace != UINT64_MAX)
1089 			parentspace -= delta;
1090 	}
1091 
1092 	if (used > quota) {
1093 		/* over quota */
1094 		myspace = 0;
1095 	} else {
1096 		/*
1097 		 * the lesser of the space provided by our parent and
1098 		 * the space left in our quota
1099 		 */
1100 		myspace = MIN(parentspace, quota - used);
1101 	}
1102 
1103 	mutex_exit(&dd->dd_lock);
1104 
1105 	return (myspace);
1106 }
1107 
1108 struct tempreserve {
1109 	list_node_t tr_node;
1110 	dsl_dir_t *tr_ds;
1111 	uint64_t tr_size;
1112 };
1113 
1114 static int
1115 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1116     boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list,
1117     dmu_tx_t *tx, boolean_t first)
1118 {
1119 	uint64_t txg = tx->tx_txg;
1120 	uint64_t est_inflight, used_on_disk, quota, parent_rsrv;
1121 	uint64_t deferred = 0;
1122 	struct tempreserve *tr;
1123 	int retval = EDQUOT;
1124 	int txgidx = txg & TXG_MASK;
1125 	int i;
1126 	uint64_t ref_rsrv = 0;
1127 
1128 	ASSERT3U(txg, !=, 0);
1129 	ASSERT3S(asize, >, 0);
1130 
1131 	mutex_enter(&dd->dd_lock);
1132 
1133 	/*
1134 	 * Check against the dsl_dir's quota.  We don't add in the delta
1135 	 * when checking for over-quota because they get one free hit.
1136 	 */
1137 	est_inflight = dsl_dir_space_towrite(dd);
1138 	for (i = 0; i < TXG_SIZE; i++)
1139 		est_inflight += dd->dd_tempreserved[i];
1140 	used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1141 
1142 	/*
1143 	 * On the first iteration, fetch the dataset's used-on-disk and
1144 	 * refreservation values. Also, if checkrefquota is set, test if
1145 	 * allocating this space would exceed the dataset's refquota.
1146 	 */
1147 	if (first && tx->tx_objset) {
1148 		int error;
1149 		dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1150 
1151 		error = dsl_dataset_check_quota(ds, checkrefquota,
1152 		    asize, est_inflight, &used_on_disk, &ref_rsrv);
1153 		if (error) {
1154 			mutex_exit(&dd->dd_lock);
1155 			return (error);
1156 		}
1157 	}
1158 
1159 	/*
1160 	 * If this transaction will result in a net free of space,
1161 	 * we want to let it through.
1162 	 */
1163 	if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1164 		quota = UINT64_MAX;
1165 	else
1166 		quota = dsl_dir_phys(dd)->dd_quota;
1167 
1168 	/*
1169 	 * Adjust the quota against the actual pool size at the root
1170 	 * minus any outstanding deferred frees.
1171 	 * To ensure that it's possible to remove files from a full
1172 	 * pool without inducing transient overcommits, we throttle
1173 	 * netfree transactions against a quota that is slightly larger,
1174 	 * but still within the pool's allocation slop.  In cases where
1175 	 * we're very close to full, this will allow a steady trickle of
1176 	 * removes to get through.
1177 	 */
1178 	if (dd->dd_parent == NULL) {
1179 		spa_t *spa = dd->dd_pool->dp_spa;
1180 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree);
1181 		deferred = metaslab_class_get_deferred(spa_normal_class(spa));
1182 		if (poolsize - deferred < quota) {
1183 			quota = poolsize - deferred;
1184 			retval = ENOSPC;
1185 		}
1186 	}
1187 
1188 	/*
1189 	 * If they are requesting more space, and our current estimate
1190 	 * is over quota, they get to try again unless the actual
1191 	 * on-disk is over quota and there are no pending changes (which
1192 	 * may free up space for us).
1193 	 */
1194 	if (used_on_disk + est_inflight >= quota) {
1195 		if (est_inflight > 0 || used_on_disk < quota ||
1196 		    (retval == ENOSPC && used_on_disk < quota + deferred))
1197 			retval = ERESTART;
1198 		dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1199 		    "quota=%lluK tr=%lluK err=%d\n",
1200 		    used_on_disk>>10, est_inflight>>10,
1201 		    quota>>10, asize>>10, retval);
1202 		mutex_exit(&dd->dd_lock);
1203 		return (SET_ERROR(retval));
1204 	}
1205 
1206 	/* We need to up our estimated delta before dropping dd_lock */
1207 	dd->dd_tempreserved[txgidx] += asize;
1208 
1209 	parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1210 	    asize - ref_rsrv);
1211 	mutex_exit(&dd->dd_lock);
1212 
1213 	tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1214 	tr->tr_ds = dd;
1215 	tr->tr_size = asize;
1216 	list_insert_tail(tr_list, tr);
1217 
1218 	/* see if it's OK with our parent */
1219 	if (dd->dd_parent && parent_rsrv) {
1220 		boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1221 
1222 		return (dsl_dir_tempreserve_impl(dd->dd_parent,
1223 		    parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE));
1224 	} else {
1225 		return (0);
1226 	}
1227 }
1228 
1229 /*
1230  * Reserve space in this dsl_dir, to be used in this tx's txg.
1231  * After the space has been dirtied (and dsl_dir_willuse_space()
1232  * has been called), the reservation should be canceled, using
1233  * dsl_dir_tempreserve_clear().
1234  */
1235 int
1236 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1237     uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx)
1238 {
1239 	int err;
1240 	list_t *tr_list;
1241 
1242 	if (asize == 0) {
1243 		*tr_cookiep = NULL;
1244 		return (0);
1245 	}
1246 
1247 	tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1248 	list_create(tr_list, sizeof (struct tempreserve),
1249 	    offsetof(struct tempreserve, tr_node));
1250 	ASSERT3S(asize, >, 0);
1251 	ASSERT3S(fsize, >=, 0);
1252 
1253 	err = arc_tempreserve_space(lsize, tx->tx_txg);
1254 	if (err == 0) {
1255 		struct tempreserve *tr;
1256 
1257 		tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1258 		tr->tr_size = lsize;
1259 		list_insert_tail(tr_list, tr);
1260 	} else {
1261 		if (err == EAGAIN) {
1262 			/*
1263 			 * If arc_memory_throttle() detected that pageout
1264 			 * is running and we are low on memory, we delay new
1265 			 * non-pageout transactions to give pageout an
1266 			 * advantage.
1267 			 *
1268 			 * It is unfortunate to be delaying while the caller's
1269 			 * locks are held.
1270 			 */
1271 			txg_delay(dd->dd_pool, tx->tx_txg,
1272 			    MSEC2NSEC(10), MSEC2NSEC(10));
1273 			err = SET_ERROR(ERESTART);
1274 		}
1275 	}
1276 
1277 	if (err == 0) {
1278 		err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize,
1279 		    FALSE, asize > usize, tr_list, tx, TRUE);
1280 	}
1281 
1282 	if (err != 0)
1283 		dsl_dir_tempreserve_clear(tr_list, tx);
1284 	else
1285 		*tr_cookiep = tr_list;
1286 
1287 	return (err);
1288 }
1289 
1290 /*
1291  * Clear a temporary reservation that we previously made with
1292  * dsl_dir_tempreserve_space().
1293  */
1294 void
1295 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1296 {
1297 	int txgidx = tx->tx_txg & TXG_MASK;
1298 	list_t *tr_list = tr_cookie;
1299 	struct tempreserve *tr;
1300 
1301 	ASSERT3U(tx->tx_txg, !=, 0);
1302 
1303 	if (tr_cookie == NULL)
1304 		return;
1305 
1306 	while ((tr = list_head(tr_list)) != NULL) {
1307 		if (tr->tr_ds) {
1308 			mutex_enter(&tr->tr_ds->dd_lock);
1309 			ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1310 			    tr->tr_size);
1311 			tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1312 			mutex_exit(&tr->tr_ds->dd_lock);
1313 		} else {
1314 			arc_tempreserve_clear(tr->tr_size);
1315 		}
1316 		list_remove(tr_list, tr);
1317 		kmem_free(tr, sizeof (struct tempreserve));
1318 	}
1319 
1320 	kmem_free(tr_list, sizeof (list_t));
1321 }
1322 
1323 /*
1324  * This should be called from open context when we think we're going to write
1325  * or free space, for example when dirtying data. Be conservative; it's okay
1326  * to write less space or free more, but we don't want to write more or free
1327  * less than the amount specified.
1328  */
1329 void
1330 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1331 {
1332 	int64_t parent_space;
1333 	uint64_t est_used;
1334 
1335 	mutex_enter(&dd->dd_lock);
1336 	if (space > 0)
1337 		dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1338 
1339 	est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes;
1340 	parent_space = parent_delta(dd, est_used, space);
1341 	mutex_exit(&dd->dd_lock);
1342 
1343 	/* Make sure that we clean up dd_space_to* */
1344 	dsl_dir_dirty(dd, tx);
1345 
1346 	/* XXX this is potentially expensive and unnecessary... */
1347 	if (parent_space && dd->dd_parent)
1348 		dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
1349 }
1350 
1351 /* call from syncing context when we actually write/free space for this dd */
1352 void
1353 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1354     int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1355 {
1356 	int64_t accounted_delta;
1357 
1358 	/*
1359 	 * dsl_dataset_set_refreservation_sync_impl() calls this with
1360 	 * dd_lock held, so that it can atomically update
1361 	 * ds->ds_reserved and the dsl_dir accounting, so that
1362 	 * dsl_dataset_check_quota() can see dataset and dir accounting
1363 	 * consistently.
1364 	 */
1365 	boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1366 
1367 	ASSERT(dmu_tx_is_syncing(tx));
1368 	ASSERT(type < DD_USED_NUM);
1369 
1370 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1371 
1372 	if (needlock)
1373 		mutex_enter(&dd->dd_lock);
1374 	accounted_delta =
1375 	    parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1376 	ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1377 	ASSERT(compressed >= 0 ||
1378 	    dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1379 	ASSERT(uncompressed >= 0 ||
1380 	    dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1381 	dsl_dir_phys(dd)->dd_used_bytes += used;
1382 	dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1383 	dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1384 
1385 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1386 		ASSERT(used > 0 ||
1387 		    dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1388 		dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1389 #ifdef DEBUG
1390 		dd_used_t t;
1391 		uint64_t u = 0;
1392 		for (t = 0; t < DD_USED_NUM; t++)
1393 			u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1394 		ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1395 #endif
1396 	}
1397 	if (needlock)
1398 		mutex_exit(&dd->dd_lock);
1399 
1400 	if (dd->dd_parent != NULL) {
1401 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1402 		    accounted_delta, compressed, uncompressed, tx);
1403 		dsl_dir_transfer_space(dd->dd_parent,
1404 		    used - accounted_delta,
1405 		    DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1406 	}
1407 }
1408 
1409 void
1410 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1411     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1412 {
1413 	ASSERT(dmu_tx_is_syncing(tx));
1414 	ASSERT(oldtype < DD_USED_NUM);
1415 	ASSERT(newtype < DD_USED_NUM);
1416 
1417 	if (delta == 0 ||
1418 	    !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1419 		return;
1420 
1421 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1422 	mutex_enter(&dd->dd_lock);
1423 	ASSERT(delta > 0 ?
1424 	    dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1425 	    dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1426 	ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1427 	dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1428 	dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1429 	mutex_exit(&dd->dd_lock);
1430 }
1431 
1432 typedef struct dsl_dir_set_qr_arg {
1433 	const char *ddsqra_name;
1434 	zprop_source_t ddsqra_source;
1435 	uint64_t ddsqra_value;
1436 } dsl_dir_set_qr_arg_t;
1437 
1438 static int
1439 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1440 {
1441 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1442 	dsl_pool_t *dp = dmu_tx_pool(tx);
1443 	dsl_dataset_t *ds;
1444 	int error;
1445 	uint64_t towrite, newval;
1446 
1447 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1448 	if (error != 0)
1449 		return (error);
1450 
1451 	error = dsl_prop_predict(ds->ds_dir, "quota",
1452 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1453 	if (error != 0) {
1454 		dsl_dataset_rele(ds, FTAG);
1455 		return (error);
1456 	}
1457 
1458 	if (newval == 0) {
1459 		dsl_dataset_rele(ds, FTAG);
1460 		return (0);
1461 	}
1462 
1463 	mutex_enter(&ds->ds_dir->dd_lock);
1464 	/*
1465 	 * If we are doing the preliminary check in open context, and
1466 	 * there are pending changes, then don't fail it, since the
1467 	 * pending changes could under-estimate the amount of space to be
1468 	 * freed up.
1469 	 */
1470 	towrite = dsl_dir_space_towrite(ds->ds_dir);
1471 	if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1472 	    (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1473 	    newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1474 		error = SET_ERROR(ENOSPC);
1475 	}
1476 	mutex_exit(&ds->ds_dir->dd_lock);
1477 	dsl_dataset_rele(ds, FTAG);
1478 	return (error);
1479 }
1480 
1481 static void
1482 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1483 {
1484 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1485 	dsl_pool_t *dp = dmu_tx_pool(tx);
1486 	dsl_dataset_t *ds;
1487 	uint64_t newval;
1488 
1489 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1490 
1491 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1492 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1493 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1494 		    &ddsqra->ddsqra_value, tx);
1495 
1496 		VERIFY0(dsl_prop_get_int_ds(ds,
1497 		    zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1498 	} else {
1499 		newval = ddsqra->ddsqra_value;
1500 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1501 		    zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1502 	}
1503 
1504 	dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1505 	mutex_enter(&ds->ds_dir->dd_lock);
1506 	dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1507 	mutex_exit(&ds->ds_dir->dd_lock);
1508 	dsl_dataset_rele(ds, FTAG);
1509 }
1510 
1511 int
1512 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1513 {
1514 	dsl_dir_set_qr_arg_t ddsqra;
1515 
1516 	ddsqra.ddsqra_name = ddname;
1517 	ddsqra.ddsqra_source = source;
1518 	ddsqra.ddsqra_value = quota;
1519 
1520 	return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1521 	    dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1522 }
1523 
1524 int
1525 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1526 {
1527 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1528 	dsl_pool_t *dp = dmu_tx_pool(tx);
1529 	dsl_dataset_t *ds;
1530 	dsl_dir_t *dd;
1531 	uint64_t newval, used, avail;
1532 	int error;
1533 
1534 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1535 	if (error != 0)
1536 		return (error);
1537 	dd = ds->ds_dir;
1538 
1539 	/*
1540 	 * If we are doing the preliminary check in open context, the
1541 	 * space estimates may be inaccurate.
1542 	 */
1543 	if (!dmu_tx_is_syncing(tx)) {
1544 		dsl_dataset_rele(ds, FTAG);
1545 		return (0);
1546 	}
1547 
1548 	error = dsl_prop_predict(ds->ds_dir,
1549 	    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1550 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1551 	if (error != 0) {
1552 		dsl_dataset_rele(ds, FTAG);
1553 		return (error);
1554 	}
1555 
1556 	mutex_enter(&dd->dd_lock);
1557 	used = dsl_dir_phys(dd)->dd_used_bytes;
1558 	mutex_exit(&dd->dd_lock);
1559 
1560 	if (dd->dd_parent) {
1561 		avail = dsl_dir_space_available(dd->dd_parent,
1562 		    NULL, 0, FALSE);
1563 	} else {
1564 		avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used;
1565 	}
1566 
1567 	if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1568 		uint64_t delta = MAX(used, newval) -
1569 		    MAX(used, dsl_dir_phys(dd)->dd_reserved);
1570 
1571 		if (delta > avail ||
1572 		    (dsl_dir_phys(dd)->dd_quota > 0 &&
1573 		    newval > dsl_dir_phys(dd)->dd_quota))
1574 			error = SET_ERROR(ENOSPC);
1575 	}
1576 
1577 	dsl_dataset_rele(ds, FTAG);
1578 	return (error);
1579 }
1580 
1581 void
1582 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1583 {
1584 	uint64_t used;
1585 	int64_t delta;
1586 
1587 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1588 
1589 	mutex_enter(&dd->dd_lock);
1590 	used = dsl_dir_phys(dd)->dd_used_bytes;
1591 	delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1592 	dsl_dir_phys(dd)->dd_reserved = value;
1593 
1594 	if (dd->dd_parent != NULL) {
1595 		/* Roll up this additional usage into our ancestors */
1596 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1597 		    delta, 0, 0, tx);
1598 	}
1599 	mutex_exit(&dd->dd_lock);
1600 }
1601 
1602 
1603 static void
1604 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1605 {
1606 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1607 	dsl_pool_t *dp = dmu_tx_pool(tx);
1608 	dsl_dataset_t *ds;
1609 	uint64_t newval;
1610 
1611 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1612 
1613 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1614 		dsl_prop_set_sync_impl(ds,
1615 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1616 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1617 		    &ddsqra->ddsqra_value, tx);
1618 
1619 		VERIFY0(dsl_prop_get_int_ds(ds,
1620 		    zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1621 	} else {
1622 		newval = ddsqra->ddsqra_value;
1623 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1624 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1625 		    (longlong_t)newval);
1626 	}
1627 
1628 	dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1629 	dsl_dataset_rele(ds, FTAG);
1630 }
1631 
1632 int
1633 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1634     uint64_t reservation)
1635 {
1636 	dsl_dir_set_qr_arg_t ddsqra;
1637 
1638 	ddsqra.ddsqra_name = ddname;
1639 	ddsqra.ddsqra_source = source;
1640 	ddsqra.ddsqra_value = reservation;
1641 
1642 	return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1643 	    dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1644 }
1645 
1646 static dsl_dir_t *
1647 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1648 {
1649 	for (; ds1; ds1 = ds1->dd_parent) {
1650 		dsl_dir_t *dd;
1651 		for (dd = ds2; dd; dd = dd->dd_parent) {
1652 			if (ds1 == dd)
1653 				return (dd);
1654 		}
1655 	}
1656 	return (NULL);
1657 }
1658 
1659 /*
1660  * If delta is applied to dd, how much of that delta would be applied to
1661  * ancestor?  Syncing context only.
1662  */
1663 static int64_t
1664 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1665 {
1666 	if (dd == ancestor)
1667 		return (delta);
1668 
1669 	mutex_enter(&dd->dd_lock);
1670 	delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1671 	mutex_exit(&dd->dd_lock);
1672 	return (would_change(dd->dd_parent, delta, ancestor));
1673 }
1674 
1675 typedef struct dsl_dir_rename_arg {
1676 	const char *ddra_oldname;
1677 	const char *ddra_newname;
1678 	cred_t *ddra_cred;
1679 } dsl_dir_rename_arg_t;
1680 
1681 /* ARGSUSED */
1682 static int
1683 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1684 {
1685 	int *deltap = arg;
1686 	char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1687 
1688 	dsl_dataset_name(ds, namebuf);
1689 
1690 	if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN)
1691 		return (SET_ERROR(ENAMETOOLONG));
1692 	return (0);
1693 }
1694 
1695 static int
1696 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1697 {
1698 	dsl_dir_rename_arg_t *ddra = arg;
1699 	dsl_pool_t *dp = dmu_tx_pool(tx);
1700 	dsl_dir_t *dd, *newparent;
1701 	const char *mynewname;
1702 	int error;
1703 	int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname);
1704 
1705 	/* target dir should exist */
1706 	error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1707 	if (error != 0)
1708 		return (error);
1709 
1710 	/* new parent should exist */
1711 	error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1712 	    &newparent, &mynewname);
1713 	if (error != 0) {
1714 		dsl_dir_rele(dd, FTAG);
1715 		return (error);
1716 	}
1717 
1718 	/* can't rename to different pool */
1719 	if (dd->dd_pool != newparent->dd_pool) {
1720 		dsl_dir_rele(newparent, FTAG);
1721 		dsl_dir_rele(dd, FTAG);
1722 		return (SET_ERROR(ENXIO));
1723 	}
1724 
1725 	/* new name should not already exist */
1726 	if (mynewname == NULL) {
1727 		dsl_dir_rele(newparent, FTAG);
1728 		dsl_dir_rele(dd, FTAG);
1729 		return (SET_ERROR(EEXIST));
1730 	}
1731 
1732 	/* if the name length is growing, validate child name lengths */
1733 	if (delta > 0) {
1734 		error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1735 		    &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1736 		if (error != 0) {
1737 			dsl_dir_rele(newparent, FTAG);
1738 			dsl_dir_rele(dd, FTAG);
1739 			return (error);
1740 		}
1741 	}
1742 
1743 	if (dmu_tx_is_syncing(tx)) {
1744 		if (spa_feature_is_active(dp->dp_spa,
1745 		    SPA_FEATURE_FS_SS_LIMIT)) {
1746 			/*
1747 			 * Although this is the check function and we don't
1748 			 * normally make on-disk changes in check functions,
1749 			 * we need to do that here.
1750 			 *
1751 			 * Ensure this portion of the tree's counts have been
1752 			 * initialized in case the new parent has limits set.
1753 			 */
1754 			dsl_dir_init_fs_ss_count(dd, tx);
1755 		}
1756 	}
1757 
1758 	if (newparent != dd->dd_parent) {
1759 		/* is there enough space? */
1760 		uint64_t myspace =
1761 		    MAX(dsl_dir_phys(dd)->dd_used_bytes,
1762 		    dsl_dir_phys(dd)->dd_reserved);
1763 		objset_t *os = dd->dd_pool->dp_meta_objset;
1764 		uint64_t fs_cnt = 0;
1765 		uint64_t ss_cnt = 0;
1766 
1767 		if (dsl_dir_is_zapified(dd)) {
1768 			int err;
1769 
1770 			err = zap_lookup(os, dd->dd_object,
1771 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1772 			    &fs_cnt);
1773 			if (err != ENOENT && err != 0) {
1774 				dsl_dir_rele(newparent, FTAG);
1775 				dsl_dir_rele(dd, FTAG);
1776 				return (err);
1777 			}
1778 
1779 			/*
1780 			 * have to add 1 for the filesystem itself that we're
1781 			 * moving
1782 			 */
1783 			fs_cnt++;
1784 
1785 			err = zap_lookup(os, dd->dd_object,
1786 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1787 			    &ss_cnt);
1788 			if (err != ENOENT && err != 0) {
1789 				dsl_dir_rele(newparent, FTAG);
1790 				dsl_dir_rele(dd, FTAG);
1791 				return (err);
1792 			}
1793 		}
1794 
1795 		/* no rename into our descendant */
1796 		if (closest_common_ancestor(dd, newparent) == dd) {
1797 			dsl_dir_rele(newparent, FTAG);
1798 			dsl_dir_rele(dd, FTAG);
1799 			return (SET_ERROR(EINVAL));
1800 		}
1801 
1802 		error = dsl_dir_transfer_possible(dd->dd_parent,
1803 		    newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1804 		if (error != 0) {
1805 			dsl_dir_rele(newparent, FTAG);
1806 			dsl_dir_rele(dd, FTAG);
1807 			return (error);
1808 		}
1809 	}
1810 
1811 	dsl_dir_rele(newparent, FTAG);
1812 	dsl_dir_rele(dd, FTAG);
1813 	return (0);
1814 }
1815 
1816 static void
1817 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1818 {
1819 	dsl_dir_rename_arg_t *ddra = arg;
1820 	dsl_pool_t *dp = dmu_tx_pool(tx);
1821 	dsl_dir_t *dd, *newparent;
1822 	const char *mynewname;
1823 	int error;
1824 	objset_t *mos = dp->dp_meta_objset;
1825 
1826 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
1827 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
1828 	    &mynewname));
1829 
1830 	/* Log this before we change the name. */
1831 	spa_history_log_internal_dd(dd, "rename", tx,
1832 	    "-> %s", ddra->ddra_newname);
1833 
1834 	if (newparent != dd->dd_parent) {
1835 		objset_t *os = dd->dd_pool->dp_meta_objset;
1836 		uint64_t fs_cnt = 0;
1837 		uint64_t ss_cnt = 0;
1838 
1839 		/*
1840 		 * We already made sure the dd counts were initialized in the
1841 		 * check function.
1842 		 */
1843 		if (spa_feature_is_active(dp->dp_spa,
1844 		    SPA_FEATURE_FS_SS_LIMIT)) {
1845 			VERIFY0(zap_lookup(os, dd->dd_object,
1846 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1847 			    &fs_cnt));
1848 			/* add 1 for the filesystem itself that we're moving */
1849 			fs_cnt++;
1850 
1851 			VERIFY0(zap_lookup(os, dd->dd_object,
1852 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1853 			    &ss_cnt));
1854 		}
1855 
1856 		dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
1857 		    DD_FIELD_FILESYSTEM_COUNT, tx);
1858 		dsl_fs_ss_count_adjust(newparent, fs_cnt,
1859 		    DD_FIELD_FILESYSTEM_COUNT, tx);
1860 
1861 		dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
1862 		    DD_FIELD_SNAPSHOT_COUNT, tx);
1863 		dsl_fs_ss_count_adjust(newparent, ss_cnt,
1864 		    DD_FIELD_SNAPSHOT_COUNT, tx);
1865 
1866 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1867 		    -dsl_dir_phys(dd)->dd_used_bytes,
1868 		    -dsl_dir_phys(dd)->dd_compressed_bytes,
1869 		    -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1870 		dsl_dir_diduse_space(newparent, DD_USED_CHILD,
1871 		    dsl_dir_phys(dd)->dd_used_bytes,
1872 		    dsl_dir_phys(dd)->dd_compressed_bytes,
1873 		    dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1874 
1875 		if (dsl_dir_phys(dd)->dd_reserved >
1876 		    dsl_dir_phys(dd)->dd_used_bytes) {
1877 			uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
1878 			    dsl_dir_phys(dd)->dd_used_bytes;
1879 
1880 			dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1881 			    -unused_rsrv, 0, 0, tx);
1882 			dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
1883 			    unused_rsrv, 0, 0, tx);
1884 		}
1885 	}
1886 
1887 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1888 
1889 	/* remove from old parent zapobj */
1890 	error = zap_remove(mos,
1891 	    dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
1892 	    dd->dd_myname, tx);
1893 	ASSERT0(error);
1894 
1895 	(void) strcpy(dd->dd_myname, mynewname);
1896 	dsl_dir_rele(dd->dd_parent, dd);
1897 	dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
1898 	VERIFY0(dsl_dir_hold_obj(dp,
1899 	    newparent->dd_object, NULL, dd, &dd->dd_parent));
1900 
1901 	/* add to new parent zapobj */
1902 	VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
1903 	    dd->dd_myname, 8, 1, &dd->dd_object, tx));
1904 
1905 	dsl_prop_notify_all(dd);
1906 
1907 	dsl_dir_rele(newparent, FTAG);
1908 	dsl_dir_rele(dd, FTAG);
1909 }
1910 
1911 int
1912 dsl_dir_rename(const char *oldname, const char *newname)
1913 {
1914 	dsl_dir_rename_arg_t ddra;
1915 
1916 	ddra.ddra_oldname = oldname;
1917 	ddra.ddra_newname = newname;
1918 	ddra.ddra_cred = CRED();
1919 
1920 	return (dsl_sync_task(oldname,
1921 	    dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
1922 	    3, ZFS_SPACE_CHECK_RESERVED));
1923 }
1924 
1925 int
1926 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
1927     uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
1928 {
1929 	dsl_dir_t *ancestor;
1930 	int64_t adelta;
1931 	uint64_t avail;
1932 	int err;
1933 
1934 	ancestor = closest_common_ancestor(sdd, tdd);
1935 	adelta = would_change(sdd, -space, ancestor);
1936 	avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
1937 	if (avail < space)
1938 		return (SET_ERROR(ENOSPC));
1939 
1940 	err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
1941 	    ancestor, cr);
1942 	if (err != 0)
1943 		return (err);
1944 	err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
1945 	    ancestor, cr);
1946 	if (err != 0)
1947 		return (err);
1948 
1949 	return (0);
1950 }
1951 
1952 timestruc_t
1953 dsl_dir_snap_cmtime(dsl_dir_t *dd)
1954 {
1955 	timestruc_t t;
1956 
1957 	mutex_enter(&dd->dd_lock);
1958 	t = dd->dd_snap_cmtime;
1959 	mutex_exit(&dd->dd_lock);
1960 
1961 	return (t);
1962 }
1963 
1964 void
1965 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
1966 {
1967 	timestruc_t t;
1968 
1969 	gethrestime(&t);
1970 	mutex_enter(&dd->dd_lock);
1971 	dd->dd_snap_cmtime = t;
1972 	mutex_exit(&dd->dd_lock);
1973 }
1974 
1975 void
1976 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
1977 {
1978 	objset_t *mos = dd->dd_pool->dp_meta_objset;
1979 	dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
1980 }
1981 
1982 boolean_t
1983 dsl_dir_is_zapified(dsl_dir_t *dd)
1984 {
1985 	dmu_object_info_t doi;
1986 
1987 	dmu_object_info_from_db(dd->dd_dbuf, &doi);
1988 	return (doi.doi_type == DMU_OTN_ZAP_METADATA);
1989 }
1990