1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 */ 27 28 #include <sys/dmu.h> 29 #include <sys/dmu_objset.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dsl_dataset.h> 32 #include <sys/dsl_dir.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_synctask.h> 35 #include <sys/dsl_deleg.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/spa.h> 38 #include <sys/metaslab.h> 39 #include <sys/zap.h> 40 #include <sys/zio.h> 41 #include <sys/arc.h> 42 #include <sys/sunddi.h> 43 #include <sys/zfeature.h> 44 #include <sys/policy.h> 45 #include <sys/zfs_znode.h> 46 #include "zfs_namecheck.h" 47 #include "zfs_prop.h" 48 49 /* 50 * Filesystem and Snapshot Limits 51 * ------------------------------ 52 * 53 * These limits are used to restrict the number of filesystems and/or snapshots 54 * that can be created at a given level in the tree or below. A typical 55 * use-case is with a delegated dataset where the administrator wants to ensure 56 * that a user within the zone is not creating too many additional filesystems 57 * or snapshots, even though they're not exceeding their space quota. 58 * 59 * The filesystem and snapshot counts are stored as extensible properties. This 60 * capability is controlled by a feature flag and must be enabled to be used. 61 * Once enabled, the feature is not active until the first limit is set. At 62 * that point, future operations to create/destroy filesystems or snapshots 63 * will validate and update the counts. 64 * 65 * Because the count properties will not exist before the feature is active, 66 * the counts are updated when a limit is first set on an uninitialized 67 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 68 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 69 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 70 * snapshot count properties on a node indicate uninitialized counts on that 71 * node.) When first setting a limit on an uninitialized node, the code starts 72 * at the filesystem with the new limit and descends into all sub-filesystems 73 * to add the count properties. 74 * 75 * In practice this is lightweight since a limit is typically set when the 76 * filesystem is created and thus has no children. Once valid, changing the 77 * limit value won't require a re-traversal since the counts are already valid. 78 * When recursively fixing the counts, if a node with a limit is encountered 79 * during the descent, the counts are known to be valid and there is no need to 80 * descend into that filesystem's children. The counts on filesystems above the 81 * one with the new limit will still be uninitialized, unless a limit is 82 * eventually set on one of those filesystems. The counts are always recursively 83 * updated when a limit is set on a dataset, unless there is already a limit. 84 * When a new limit value is set on a filesystem with an existing limit, it is 85 * possible for the new limit to be less than the current count at that level 86 * since a user who can change the limit is also allowed to exceed the limit. 87 * 88 * Once the feature is active, then whenever a filesystem or snapshot is 89 * created, the code recurses up the tree, validating the new count against the 90 * limit at each initialized level. In practice, most levels will not have a 91 * limit set. If there is a limit at any initialized level up the tree, the 92 * check must pass or the creation will fail. Likewise, when a filesystem or 93 * snapshot is destroyed, the counts are recursively adjusted all the way up 94 * the initizized nodes in the tree. Renaming a filesystem into different point 95 * in the tree will first validate, then update the counts on each branch up to 96 * the common ancestor. A receive will also validate the counts and then update 97 * them. 98 * 99 * An exception to the above behavior is that the limit is not enforced if the 100 * user has permission to modify the limit. This is primarily so that 101 * recursive snapshots in the global zone always work. We want to prevent a 102 * denial-of-service in which a lower level delegated dataset could max out its 103 * limit and thus block recursive snapshots from being taken in the global zone. 104 * Because of this, it is possible for the snapshot count to be over the limit 105 * and snapshots taken in the global zone could cause a lower level dataset to 106 * hit or exceed its limit. The administrator taking the global zone recursive 107 * snapshot should be aware of this side-effect and behave accordingly. 108 * For consistency, the filesystem limit is also not enforced if the user can 109 * modify the limit. 110 * 111 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 112 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 113 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 114 * dsl_dir_init_fs_ss_count(). 115 * 116 * There is a special case when we receive a filesystem that already exists. In 117 * this case a temporary clone name of %X is created (see dmu_recv_begin). We 118 * never update the filesystem counts for temporary clones. 119 * 120 * Likewise, we do not update the snapshot counts for temporary snapshots, 121 * such as those created by zfs diff. 122 */ 123 124 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 125 126 /* ARGSUSED */ 127 static void 128 dsl_dir_evict(dmu_buf_t *db, void *arg) 129 { 130 dsl_dir_t *dd = arg; 131 dsl_pool_t *dp = dd->dd_pool; 132 int t; 133 134 for (t = 0; t < TXG_SIZE; t++) { 135 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 136 ASSERT(dd->dd_tempreserved[t] == 0); 137 ASSERT(dd->dd_space_towrite[t] == 0); 138 } 139 140 if (dd->dd_parent) 141 dsl_dir_rele(dd->dd_parent, dd); 142 143 spa_close(dd->dd_pool->dp_spa, dd); 144 145 /* 146 * The props callback list should have been cleaned up by 147 * objset_evict(). 148 */ 149 list_destroy(&dd->dd_prop_cbs); 150 mutex_destroy(&dd->dd_lock); 151 kmem_free(dd, sizeof (dsl_dir_t)); 152 } 153 154 int 155 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 156 const char *tail, void *tag, dsl_dir_t **ddp) 157 { 158 dmu_buf_t *dbuf; 159 dsl_dir_t *dd; 160 int err; 161 162 ASSERT(dsl_pool_config_held(dp)); 163 164 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 165 if (err != 0) 166 return (err); 167 dd = dmu_buf_get_user(dbuf); 168 #ifdef ZFS_DEBUG 169 { 170 dmu_object_info_t doi; 171 dmu_object_info_from_db(dbuf, &doi); 172 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 173 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 174 } 175 #endif 176 if (dd == NULL) { 177 dsl_dir_t *winner; 178 179 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 180 dd->dd_object = ddobj; 181 dd->dd_dbuf = dbuf; 182 dd->dd_pool = dp; 183 dd->dd_phys = dbuf->db_data; 184 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 185 186 list_create(&dd->dd_prop_cbs, sizeof (dsl_prop_cb_record_t), 187 offsetof(dsl_prop_cb_record_t, cbr_node)); 188 189 dsl_dir_snap_cmtime_update(dd); 190 191 if (dd->dd_phys->dd_parent_obj) { 192 err = dsl_dir_hold_obj(dp, dd->dd_phys->dd_parent_obj, 193 NULL, dd, &dd->dd_parent); 194 if (err != 0) 195 goto errout; 196 if (tail) { 197 #ifdef ZFS_DEBUG 198 uint64_t foundobj; 199 200 err = zap_lookup(dp->dp_meta_objset, 201 dd->dd_parent->dd_phys->dd_child_dir_zapobj, 202 tail, sizeof (foundobj), 1, &foundobj); 203 ASSERT(err || foundobj == ddobj); 204 #endif 205 (void) strcpy(dd->dd_myname, tail); 206 } else { 207 err = zap_value_search(dp->dp_meta_objset, 208 dd->dd_parent->dd_phys->dd_child_dir_zapobj, 209 ddobj, 0, dd->dd_myname); 210 } 211 if (err != 0) 212 goto errout; 213 } else { 214 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa)); 215 } 216 217 if (dsl_dir_is_clone(dd)) { 218 dmu_buf_t *origin_bonus; 219 dsl_dataset_phys_t *origin_phys; 220 221 /* 222 * We can't open the origin dataset, because 223 * that would require opening this dsl_dir. 224 * Just look at its phys directly instead. 225 */ 226 err = dmu_bonus_hold(dp->dp_meta_objset, 227 dd->dd_phys->dd_origin_obj, FTAG, &origin_bonus); 228 if (err != 0) 229 goto errout; 230 origin_phys = origin_bonus->db_data; 231 dd->dd_origin_txg = 232 origin_phys->ds_creation_txg; 233 dmu_buf_rele(origin_bonus, FTAG); 234 } 235 236 winner = dmu_buf_set_user_ie(dbuf, dd, &dd->dd_phys, 237 dsl_dir_evict); 238 if (winner) { 239 if (dd->dd_parent) 240 dsl_dir_rele(dd->dd_parent, dd); 241 mutex_destroy(&dd->dd_lock); 242 kmem_free(dd, sizeof (dsl_dir_t)); 243 dd = winner; 244 } else { 245 spa_open_ref(dp->dp_spa, dd); 246 } 247 } 248 249 /* 250 * The dsl_dir_t has both open-to-close and instantiate-to-evict 251 * holds on the spa. We need the open-to-close holds because 252 * otherwise the spa_refcnt wouldn't change when we open a 253 * dir which the spa also has open, so we could incorrectly 254 * think it was OK to unload/export/destroy the pool. We need 255 * the instantiate-to-evict hold because the dsl_dir_t has a 256 * pointer to the dd_pool, which has a pointer to the spa_t. 257 */ 258 spa_open_ref(dp->dp_spa, tag); 259 ASSERT3P(dd->dd_pool, ==, dp); 260 ASSERT3U(dd->dd_object, ==, ddobj); 261 ASSERT3P(dd->dd_dbuf, ==, dbuf); 262 *ddp = dd; 263 return (0); 264 265 errout: 266 if (dd->dd_parent) 267 dsl_dir_rele(dd->dd_parent, dd); 268 mutex_destroy(&dd->dd_lock); 269 kmem_free(dd, sizeof (dsl_dir_t)); 270 dmu_buf_rele(dbuf, tag); 271 return (err); 272 } 273 274 void 275 dsl_dir_rele(dsl_dir_t *dd, void *tag) 276 { 277 dprintf_dd(dd, "%s\n", ""); 278 spa_close(dd->dd_pool->dp_spa, tag); 279 dmu_buf_rele(dd->dd_dbuf, tag); 280 } 281 282 /* buf must be long enough (MAXNAMELEN + strlen(MOS_DIR_NAME) + 1 should do) */ 283 void 284 dsl_dir_name(dsl_dir_t *dd, char *buf) 285 { 286 if (dd->dd_parent) { 287 dsl_dir_name(dd->dd_parent, buf); 288 (void) strcat(buf, "/"); 289 } else { 290 buf[0] = '\0'; 291 } 292 if (!MUTEX_HELD(&dd->dd_lock)) { 293 /* 294 * recursive mutex so that we can use 295 * dprintf_dd() with dd_lock held 296 */ 297 mutex_enter(&dd->dd_lock); 298 (void) strcat(buf, dd->dd_myname); 299 mutex_exit(&dd->dd_lock); 300 } else { 301 (void) strcat(buf, dd->dd_myname); 302 } 303 } 304 305 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 306 int 307 dsl_dir_namelen(dsl_dir_t *dd) 308 { 309 int result = 0; 310 311 if (dd->dd_parent) { 312 /* parent's name + 1 for the "/" */ 313 result = dsl_dir_namelen(dd->dd_parent) + 1; 314 } 315 316 if (!MUTEX_HELD(&dd->dd_lock)) { 317 /* see dsl_dir_name */ 318 mutex_enter(&dd->dd_lock); 319 result += strlen(dd->dd_myname); 320 mutex_exit(&dd->dd_lock); 321 } else { 322 result += strlen(dd->dd_myname); 323 } 324 325 return (result); 326 } 327 328 static int 329 getcomponent(const char *path, char *component, const char **nextp) 330 { 331 char *p; 332 333 if ((path == NULL) || (path[0] == '\0')) 334 return (SET_ERROR(ENOENT)); 335 /* This would be a good place to reserve some namespace... */ 336 p = strpbrk(path, "/@"); 337 if (p && (p[1] == '/' || p[1] == '@')) { 338 /* two separators in a row */ 339 return (SET_ERROR(EINVAL)); 340 } 341 if (p == NULL || p == path) { 342 /* 343 * if the first thing is an @ or /, it had better be an 344 * @ and it had better not have any more ats or slashes, 345 * and it had better have something after the @. 346 */ 347 if (p != NULL && 348 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 349 return (SET_ERROR(EINVAL)); 350 if (strlen(path) >= MAXNAMELEN) 351 return (SET_ERROR(ENAMETOOLONG)); 352 (void) strcpy(component, path); 353 p = NULL; 354 } else if (p[0] == '/') { 355 if (p - path >= MAXNAMELEN) 356 return (SET_ERROR(ENAMETOOLONG)); 357 (void) strncpy(component, path, p - path); 358 component[p - path] = '\0'; 359 p++; 360 } else if (p[0] == '@') { 361 /* 362 * if the next separator is an @, there better not be 363 * any more slashes. 364 */ 365 if (strchr(path, '/')) 366 return (SET_ERROR(EINVAL)); 367 if (p - path >= MAXNAMELEN) 368 return (SET_ERROR(ENAMETOOLONG)); 369 (void) strncpy(component, path, p - path); 370 component[p - path] = '\0'; 371 } else { 372 panic("invalid p=%p", (void *)p); 373 } 374 *nextp = p; 375 return (0); 376 } 377 378 /* 379 * Return the dsl_dir_t, and possibly the last component which couldn't 380 * be found in *tail. The name must be in the specified dsl_pool_t. This 381 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 382 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 383 * (*tail)[0] == '@' means that the last component is a snapshot. 384 */ 385 int 386 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag, 387 dsl_dir_t **ddp, const char **tailp) 388 { 389 char buf[MAXNAMELEN]; 390 const char *spaname, *next, *nextnext = NULL; 391 int err; 392 dsl_dir_t *dd; 393 uint64_t ddobj; 394 395 err = getcomponent(name, buf, &next); 396 if (err != 0) 397 return (err); 398 399 /* Make sure the name is in the specified pool. */ 400 spaname = spa_name(dp->dp_spa); 401 if (strcmp(buf, spaname) != 0) 402 return (SET_ERROR(EINVAL)); 403 404 ASSERT(dsl_pool_config_held(dp)); 405 406 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 407 if (err != 0) { 408 return (err); 409 } 410 411 while (next != NULL) { 412 dsl_dir_t *child_ds; 413 err = getcomponent(next, buf, &nextnext); 414 if (err != 0) 415 break; 416 ASSERT(next[0] != '\0'); 417 if (next[0] == '@') 418 break; 419 dprintf("looking up %s in obj%lld\n", 420 buf, dd->dd_phys->dd_child_dir_zapobj); 421 422 err = zap_lookup(dp->dp_meta_objset, 423 dd->dd_phys->dd_child_dir_zapobj, 424 buf, sizeof (ddobj), 1, &ddobj); 425 if (err != 0) { 426 if (err == ENOENT) 427 err = 0; 428 break; 429 } 430 431 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_ds); 432 if (err != 0) 433 break; 434 dsl_dir_rele(dd, tag); 435 dd = child_ds; 436 next = nextnext; 437 } 438 439 if (err != 0) { 440 dsl_dir_rele(dd, tag); 441 return (err); 442 } 443 444 /* 445 * It's an error if there's more than one component left, or 446 * tailp==NULL and there's any component left. 447 */ 448 if (next != NULL && 449 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 450 /* bad path name */ 451 dsl_dir_rele(dd, tag); 452 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 453 err = SET_ERROR(ENOENT); 454 } 455 if (tailp != NULL) 456 *tailp = next; 457 *ddp = dd; 458 return (err); 459 } 460 461 /* 462 * If the counts are already initialized for this filesystem and its 463 * descendants then do nothing, otherwise initialize the counts. 464 * 465 * The counts on this filesystem, and those below, may be uninitialized due to 466 * either the use of a pre-existing pool which did not support the 467 * filesystem/snapshot limit feature, or one in which the feature had not yet 468 * been enabled. 469 * 470 * Recursively descend the filesystem tree and update the filesystem/snapshot 471 * counts on each filesystem below, then update the cumulative count on the 472 * current filesystem. If the filesystem already has a count set on it, 473 * then we know that its counts, and the counts on the filesystems below it, 474 * are already correct, so we don't have to update this filesystem. 475 */ 476 static void 477 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 478 { 479 uint64_t my_fs_cnt = 0; 480 uint64_t my_ss_cnt = 0; 481 dsl_pool_t *dp = dd->dd_pool; 482 objset_t *os = dp->dp_meta_objset; 483 zap_cursor_t *zc; 484 zap_attribute_t *za; 485 dsl_dataset_t *ds; 486 487 ASSERT(spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 488 ASSERT(dsl_pool_config_held(dp)); 489 ASSERT(dmu_tx_is_syncing(tx)); 490 491 dsl_dir_zapify(dd, tx); 492 493 /* 494 * If the filesystem count has already been initialized then we 495 * don't need to recurse down any further. 496 */ 497 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 498 return; 499 500 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 501 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 502 503 /* Iterate my child dirs */ 504 for (zap_cursor_init(zc, os, dd->dd_phys->dd_child_dir_zapobj); 505 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 506 dsl_dir_t *chld_dd; 507 uint64_t count; 508 509 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 510 &chld_dd)); 511 512 /* 513 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and 514 * temporary datasets. 515 */ 516 if (chld_dd->dd_myname[0] == '$' || 517 chld_dd->dd_myname[0] == '%') { 518 dsl_dir_rele(chld_dd, FTAG); 519 continue; 520 } 521 522 my_fs_cnt++; /* count this child */ 523 524 dsl_dir_init_fs_ss_count(chld_dd, tx); 525 526 VERIFY0(zap_lookup(os, chld_dd->dd_object, 527 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 528 my_fs_cnt += count; 529 VERIFY0(zap_lookup(os, chld_dd->dd_object, 530 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 531 my_ss_cnt += count; 532 533 dsl_dir_rele(chld_dd, FTAG); 534 } 535 zap_cursor_fini(zc); 536 /* Count my snapshots (we counted children's snapshots above) */ 537 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 538 dd->dd_phys->dd_head_dataset_obj, FTAG, &ds)); 539 540 for (zap_cursor_init(zc, os, ds->ds_phys->ds_snapnames_zapobj); 541 zap_cursor_retrieve(zc, za) == 0; 542 zap_cursor_advance(zc)) { 543 /* Don't count temporary snapshots */ 544 if (za->za_name[0] != '%') 545 my_ss_cnt++; 546 } 547 548 dsl_dataset_rele(ds, FTAG); 549 550 kmem_free(zc, sizeof (zap_cursor_t)); 551 kmem_free(za, sizeof (zap_attribute_t)); 552 553 /* we're in a sync task, update counts */ 554 dmu_buf_will_dirty(dd->dd_dbuf, tx); 555 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 556 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 557 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 558 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 559 } 560 561 static int 562 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 563 { 564 char *ddname = (char *)arg; 565 dsl_pool_t *dp = dmu_tx_pool(tx); 566 dsl_dataset_t *ds; 567 dsl_dir_t *dd; 568 int error; 569 570 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 571 if (error != 0) 572 return (error); 573 574 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 575 dsl_dataset_rele(ds, FTAG); 576 return (SET_ERROR(ENOTSUP)); 577 } 578 579 dd = ds->ds_dir; 580 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 581 dsl_dir_is_zapified(dd) && 582 zap_contains(dp->dp_meta_objset, dd->dd_object, 583 DD_FIELD_FILESYSTEM_COUNT) == 0) { 584 dsl_dataset_rele(ds, FTAG); 585 return (SET_ERROR(EALREADY)); 586 } 587 588 dsl_dataset_rele(ds, FTAG); 589 return (0); 590 } 591 592 static void 593 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 594 { 595 char *ddname = (char *)arg; 596 dsl_pool_t *dp = dmu_tx_pool(tx); 597 dsl_dataset_t *ds; 598 spa_t *spa; 599 600 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 601 602 spa = dsl_dataset_get_spa(ds); 603 604 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 605 /* 606 * Since the feature was not active and we're now setting a 607 * limit, increment the feature-active counter so that the 608 * feature becomes active for the first time. 609 * 610 * We are already in a sync task so we can update the MOS. 611 */ 612 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 613 } 614 615 /* 616 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 617 * we need to ensure the counts are correct. Descend down the tree from 618 * this point and update all of the counts to be accurate. 619 */ 620 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 621 622 dsl_dataset_rele(ds, FTAG); 623 } 624 625 /* 626 * Make sure the feature is enabled and activate it if necessary. 627 * Since we're setting a limit, ensure the on-disk counts are valid. 628 * This is only called by the ioctl path when setting a limit value. 629 * 630 * We do not need to validate the new limit, since users who can change the 631 * limit are also allowed to exceed the limit. 632 */ 633 int 634 dsl_dir_activate_fs_ss_limit(const char *ddname) 635 { 636 int error; 637 638 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 639 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0); 640 641 if (error == EALREADY) 642 error = 0; 643 644 return (error); 645 } 646 647 /* 648 * Used to determine if the filesystem_limit or snapshot_limit should be 649 * enforced. We allow the limit to be exceeded if the user has permission to 650 * write the property value. We pass in the creds that we got in the open 651 * context since we will always be the GZ root in syncing context. We also have 652 * to handle the case where we are allowed to change the limit on the current 653 * dataset, but there may be another limit in the tree above. 654 * 655 * We can never modify these two properties within a non-global zone. In 656 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 657 * can't use that function since we are already holding the dp_config_rwlock. 658 * In addition, we already have the dd and dealing with snapshots is simplified 659 * in this code. 660 */ 661 662 typedef enum { 663 ENFORCE_ALWAYS, 664 ENFORCE_NEVER, 665 ENFORCE_ABOVE 666 } enforce_res_t; 667 668 static enforce_res_t 669 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr) 670 { 671 enforce_res_t enforce = ENFORCE_ALWAYS; 672 uint64_t obj; 673 dsl_dataset_t *ds; 674 uint64_t zoned; 675 676 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 677 prop == ZFS_PROP_SNAPSHOT_LIMIT); 678 679 #ifdef _KERNEL 680 if (crgetzoneid(cr) != GLOBAL_ZONEID) 681 return (ENFORCE_ALWAYS); 682 683 if (secpolicy_zfs(cr) == 0) 684 return (ENFORCE_NEVER); 685 #endif 686 687 if ((obj = dd->dd_phys->dd_head_dataset_obj) == 0) 688 return (ENFORCE_ALWAYS); 689 690 ASSERT(dsl_pool_config_held(dd->dd_pool)); 691 692 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 693 return (ENFORCE_ALWAYS); 694 695 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) { 696 /* Only root can access zoned fs's from the GZ */ 697 enforce = ENFORCE_ALWAYS; 698 } else { 699 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 700 enforce = ENFORCE_ABOVE; 701 } 702 703 dsl_dataset_rele(ds, FTAG); 704 return (enforce); 705 } 706 707 /* 708 * Check if adding additional child filesystem(s) would exceed any filesystem 709 * limits or adding additional snapshot(s) would exceed any snapshot limits. 710 * The prop argument indicates which limit to check. 711 * 712 * Note that all filesystem limits up to the root (or the highest 713 * initialized) filesystem or the given ancestor must be satisfied. 714 */ 715 int 716 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 717 dsl_dir_t *ancestor, cred_t *cr) 718 { 719 objset_t *os = dd->dd_pool->dp_meta_objset; 720 uint64_t limit, count; 721 char *count_prop; 722 enforce_res_t enforce; 723 int err = 0; 724 725 ASSERT(dsl_pool_config_held(dd->dd_pool)); 726 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 727 prop == ZFS_PROP_SNAPSHOT_LIMIT); 728 729 /* 730 * If we're allowed to change the limit, don't enforce the limit 731 * e.g. this can happen if a snapshot is taken by an administrative 732 * user in the global zone (i.e. a recursive snapshot by root). 733 * However, we must handle the case of delegated permissions where we 734 * are allowed to change the limit on the current dataset, but there 735 * is another limit in the tree above. 736 */ 737 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr); 738 if (enforce == ENFORCE_NEVER) 739 return (0); 740 741 /* 742 * e.g. if renaming a dataset with no snapshots, count adjustment 743 * is 0. 744 */ 745 if (delta == 0) 746 return (0); 747 748 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 749 /* 750 * We don't enforce the limit for temporary snapshots. This is 751 * indicated by a NULL cred_t argument. 752 */ 753 if (cr == NULL) 754 return (0); 755 756 count_prop = DD_FIELD_SNAPSHOT_COUNT; 757 } else { 758 count_prop = DD_FIELD_FILESYSTEM_COUNT; 759 } 760 761 /* 762 * If an ancestor has been provided, stop checking the limit once we 763 * hit that dir. We need this during rename so that we don't overcount 764 * the check once we recurse up to the common ancestor. 765 */ 766 if (ancestor == dd) 767 return (0); 768 769 /* 770 * If we hit an uninitialized node while recursing up the tree, we can 771 * stop since we know there is no limit here (or above). The counts are 772 * not valid on this node and we know we won't touch this node's counts. 773 */ 774 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object, 775 count_prop, sizeof (count), 1, &count) == ENOENT) 776 return (0); 777 778 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 779 B_FALSE); 780 if (err != 0) 781 return (err); 782 783 /* Is there a limit which we've hit? */ 784 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 785 return (SET_ERROR(EDQUOT)); 786 787 if (dd->dd_parent != NULL) 788 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 789 ancestor, cr); 790 791 return (err); 792 } 793 794 /* 795 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 796 * parents. When a new filesystem/snapshot is created, increment the count on 797 * all parents, and when a filesystem/snapshot is destroyed, decrement the 798 * count. 799 */ 800 void 801 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 802 dmu_tx_t *tx) 803 { 804 int err; 805 objset_t *os = dd->dd_pool->dp_meta_objset; 806 uint64_t count; 807 808 ASSERT(dsl_pool_config_held(dd->dd_pool)); 809 ASSERT(dmu_tx_is_syncing(tx)); 810 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 811 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 812 813 /* 814 * When we receive an incremental stream into a filesystem that already 815 * exists, a temporary clone is created. We don't count this temporary 816 * clone, whose name begins with a '%'. We also ignore hidden ($FREE, 817 * $MOS & $ORIGIN) objsets. 818 */ 819 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') && 820 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0) 821 return; 822 823 /* 824 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 825 */ 826 if (delta == 0) 827 return; 828 829 /* 830 * If we hit an uninitialized node while recursing up the tree, we can 831 * stop since we know the counts are not valid on this node and we 832 * know we shouldn't touch this node's counts. An uninitialized count 833 * on the node indicates that either the feature has not yet been 834 * activated or there are no limits on this part of the tree. 835 */ 836 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 837 prop, sizeof (count), 1, &count)) == ENOENT) 838 return; 839 VERIFY0(err); 840 841 count += delta; 842 /* Use a signed verify to make sure we're not neg. */ 843 VERIFY3S(count, >=, 0); 844 845 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 846 tx)); 847 848 /* Roll up this additional count into our ancestors */ 849 if (dd->dd_parent != NULL) 850 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 851 } 852 853 uint64_t 854 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 855 dmu_tx_t *tx) 856 { 857 objset_t *mos = dp->dp_meta_objset; 858 uint64_t ddobj; 859 dsl_dir_phys_t *ddphys; 860 dmu_buf_t *dbuf; 861 862 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 863 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 864 if (pds) { 865 VERIFY(0 == zap_add(mos, pds->dd_phys->dd_child_dir_zapobj, 866 name, sizeof (uint64_t), 1, &ddobj, tx)); 867 } else { 868 /* it's the root dir */ 869 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 870 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 871 } 872 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 873 dmu_buf_will_dirty(dbuf, tx); 874 ddphys = dbuf->db_data; 875 876 ddphys->dd_creation_time = gethrestime_sec(); 877 if (pds) { 878 ddphys->dd_parent_obj = pds->dd_object; 879 880 /* update the filesystem counts */ 881 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 882 } 883 ddphys->dd_props_zapobj = zap_create(mos, 884 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 885 ddphys->dd_child_dir_zapobj = zap_create(mos, 886 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 887 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 888 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 889 dmu_buf_rele(dbuf, FTAG); 890 891 return (ddobj); 892 } 893 894 boolean_t 895 dsl_dir_is_clone(dsl_dir_t *dd) 896 { 897 return (dd->dd_phys->dd_origin_obj && 898 (dd->dd_pool->dp_origin_snap == NULL || 899 dd->dd_phys->dd_origin_obj != 900 dd->dd_pool->dp_origin_snap->ds_object)); 901 } 902 903 void 904 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 905 { 906 mutex_enter(&dd->dd_lock); 907 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED, 908 dd->dd_phys->dd_used_bytes); 909 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, dd->dd_phys->dd_quota); 910 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 911 dd->dd_phys->dd_reserved); 912 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, 913 dd->dd_phys->dd_compressed_bytes == 0 ? 100 : 914 (dd->dd_phys->dd_uncompressed_bytes * 100 / 915 dd->dd_phys->dd_compressed_bytes)); 916 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 917 dd->dd_phys->dd_uncompressed_bytes); 918 if (dd->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN) { 919 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 920 dd->dd_phys->dd_used_breakdown[DD_USED_SNAP]); 921 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 922 dd->dd_phys->dd_used_breakdown[DD_USED_HEAD]); 923 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 924 dd->dd_phys->dd_used_breakdown[DD_USED_REFRSRV]); 925 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 926 dd->dd_phys->dd_used_breakdown[DD_USED_CHILD] + 927 dd->dd_phys->dd_used_breakdown[DD_USED_CHILD_RSRV]); 928 } 929 mutex_exit(&dd->dd_lock); 930 931 if (dsl_dir_is_zapified(dd)) { 932 uint64_t count; 933 objset_t *os = dd->dd_pool->dp_meta_objset; 934 935 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 936 sizeof (count), 1, &count) == 0) { 937 dsl_prop_nvlist_add_uint64(nv, 938 ZFS_PROP_FILESYSTEM_COUNT, count); 939 } 940 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 941 sizeof (count), 1, &count) == 0) { 942 dsl_prop_nvlist_add_uint64(nv, 943 ZFS_PROP_SNAPSHOT_COUNT, count); 944 } 945 } 946 947 if (dsl_dir_is_clone(dd)) { 948 dsl_dataset_t *ds; 949 char buf[MAXNAMELEN]; 950 951 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 952 dd->dd_phys->dd_origin_obj, FTAG, &ds)); 953 dsl_dataset_name(ds, buf); 954 dsl_dataset_rele(ds, FTAG); 955 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 956 } 957 } 958 959 void 960 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 961 { 962 dsl_pool_t *dp = dd->dd_pool; 963 964 ASSERT(dd->dd_phys); 965 966 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 967 /* up the hold count until we can be written out */ 968 dmu_buf_add_ref(dd->dd_dbuf, dd); 969 } 970 } 971 972 static int64_t 973 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 974 { 975 uint64_t old_accounted = MAX(used, dd->dd_phys->dd_reserved); 976 uint64_t new_accounted = MAX(used + delta, dd->dd_phys->dd_reserved); 977 return (new_accounted - old_accounted); 978 } 979 980 void 981 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 982 { 983 ASSERT(dmu_tx_is_syncing(tx)); 984 985 mutex_enter(&dd->dd_lock); 986 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]); 987 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg, 988 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024); 989 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0; 990 mutex_exit(&dd->dd_lock); 991 992 /* release the hold from dsl_dir_dirty */ 993 dmu_buf_rele(dd->dd_dbuf, dd); 994 } 995 996 static uint64_t 997 dsl_dir_space_towrite(dsl_dir_t *dd) 998 { 999 uint64_t space = 0; 1000 int i; 1001 1002 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1003 1004 for (i = 0; i < TXG_SIZE; i++) { 1005 space += dd->dd_space_towrite[i&TXG_MASK]; 1006 ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0); 1007 } 1008 return (space); 1009 } 1010 1011 /* 1012 * How much space would dd have available if ancestor had delta applied 1013 * to it? If ondiskonly is set, we're only interested in what's 1014 * on-disk, not estimated pending changes. 1015 */ 1016 uint64_t 1017 dsl_dir_space_available(dsl_dir_t *dd, 1018 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1019 { 1020 uint64_t parentspace, myspace, quota, used; 1021 1022 /* 1023 * If there are no restrictions otherwise, assume we have 1024 * unlimited space available. 1025 */ 1026 quota = UINT64_MAX; 1027 parentspace = UINT64_MAX; 1028 1029 if (dd->dd_parent != NULL) { 1030 parentspace = dsl_dir_space_available(dd->dd_parent, 1031 ancestor, delta, ondiskonly); 1032 } 1033 1034 mutex_enter(&dd->dd_lock); 1035 if (dd->dd_phys->dd_quota != 0) 1036 quota = dd->dd_phys->dd_quota; 1037 used = dd->dd_phys->dd_used_bytes; 1038 if (!ondiskonly) 1039 used += dsl_dir_space_towrite(dd); 1040 1041 if (dd->dd_parent == NULL) { 1042 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE); 1043 quota = MIN(quota, poolsize); 1044 } 1045 1046 if (dd->dd_phys->dd_reserved > used && parentspace != UINT64_MAX) { 1047 /* 1048 * We have some space reserved, in addition to what our 1049 * parent gave us. 1050 */ 1051 parentspace += dd->dd_phys->dd_reserved - used; 1052 } 1053 1054 if (dd == ancestor) { 1055 ASSERT(delta <= 0); 1056 ASSERT(used >= -delta); 1057 used += delta; 1058 if (parentspace != UINT64_MAX) 1059 parentspace -= delta; 1060 } 1061 1062 if (used > quota) { 1063 /* over quota */ 1064 myspace = 0; 1065 } else { 1066 /* 1067 * the lesser of the space provided by our parent and 1068 * the space left in our quota 1069 */ 1070 myspace = MIN(parentspace, quota - used); 1071 } 1072 1073 mutex_exit(&dd->dd_lock); 1074 1075 return (myspace); 1076 } 1077 1078 struct tempreserve { 1079 list_node_t tr_node; 1080 dsl_dir_t *tr_ds; 1081 uint64_t tr_size; 1082 }; 1083 1084 static int 1085 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1086 boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list, 1087 dmu_tx_t *tx, boolean_t first) 1088 { 1089 uint64_t txg = tx->tx_txg; 1090 uint64_t est_inflight, used_on_disk, quota, parent_rsrv; 1091 uint64_t deferred = 0; 1092 struct tempreserve *tr; 1093 int retval = EDQUOT; 1094 int txgidx = txg & TXG_MASK; 1095 int i; 1096 uint64_t ref_rsrv = 0; 1097 1098 ASSERT3U(txg, !=, 0); 1099 ASSERT3S(asize, >, 0); 1100 1101 mutex_enter(&dd->dd_lock); 1102 1103 /* 1104 * Check against the dsl_dir's quota. We don't add in the delta 1105 * when checking for over-quota because they get one free hit. 1106 */ 1107 est_inflight = dsl_dir_space_towrite(dd); 1108 for (i = 0; i < TXG_SIZE; i++) 1109 est_inflight += dd->dd_tempreserved[i]; 1110 used_on_disk = dd->dd_phys->dd_used_bytes; 1111 1112 /* 1113 * On the first iteration, fetch the dataset's used-on-disk and 1114 * refreservation values. Also, if checkrefquota is set, test if 1115 * allocating this space would exceed the dataset's refquota. 1116 */ 1117 if (first && tx->tx_objset) { 1118 int error; 1119 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1120 1121 error = dsl_dataset_check_quota(ds, checkrefquota, 1122 asize, est_inflight, &used_on_disk, &ref_rsrv); 1123 if (error) { 1124 mutex_exit(&dd->dd_lock); 1125 return (error); 1126 } 1127 } 1128 1129 /* 1130 * If this transaction will result in a net free of space, 1131 * we want to let it through. 1132 */ 1133 if (ignorequota || netfree || dd->dd_phys->dd_quota == 0) 1134 quota = UINT64_MAX; 1135 else 1136 quota = dd->dd_phys->dd_quota; 1137 1138 /* 1139 * Adjust the quota against the actual pool size at the root 1140 * minus any outstanding deferred frees. 1141 * To ensure that it's possible to remove files from a full 1142 * pool without inducing transient overcommits, we throttle 1143 * netfree transactions against a quota that is slightly larger, 1144 * but still within the pool's allocation slop. In cases where 1145 * we're very close to full, this will allow a steady trickle of 1146 * removes to get through. 1147 */ 1148 if (dd->dd_parent == NULL) { 1149 spa_t *spa = dd->dd_pool->dp_spa; 1150 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree); 1151 deferred = metaslab_class_get_deferred(spa_normal_class(spa)); 1152 if (poolsize - deferred < quota) { 1153 quota = poolsize - deferred; 1154 retval = ENOSPC; 1155 } 1156 } 1157 1158 /* 1159 * If they are requesting more space, and our current estimate 1160 * is over quota, they get to try again unless the actual 1161 * on-disk is over quota and there are no pending changes (which 1162 * may free up space for us). 1163 */ 1164 if (used_on_disk + est_inflight >= quota) { 1165 if (est_inflight > 0 || used_on_disk < quota || 1166 (retval == ENOSPC && used_on_disk < quota + deferred)) 1167 retval = ERESTART; 1168 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1169 "quota=%lluK tr=%lluK err=%d\n", 1170 used_on_disk>>10, est_inflight>>10, 1171 quota>>10, asize>>10, retval); 1172 mutex_exit(&dd->dd_lock); 1173 return (SET_ERROR(retval)); 1174 } 1175 1176 /* We need to up our estimated delta before dropping dd_lock */ 1177 dd->dd_tempreserved[txgidx] += asize; 1178 1179 parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1180 asize - ref_rsrv); 1181 mutex_exit(&dd->dd_lock); 1182 1183 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1184 tr->tr_ds = dd; 1185 tr->tr_size = asize; 1186 list_insert_tail(tr_list, tr); 1187 1188 /* see if it's OK with our parent */ 1189 if (dd->dd_parent && parent_rsrv) { 1190 boolean_t ismos = (dd->dd_phys->dd_head_dataset_obj == 0); 1191 1192 return (dsl_dir_tempreserve_impl(dd->dd_parent, 1193 parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE)); 1194 } else { 1195 return (0); 1196 } 1197 } 1198 1199 /* 1200 * Reserve space in this dsl_dir, to be used in this tx's txg. 1201 * After the space has been dirtied (and dsl_dir_willuse_space() 1202 * has been called), the reservation should be canceled, using 1203 * dsl_dir_tempreserve_clear(). 1204 */ 1205 int 1206 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1207 uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx) 1208 { 1209 int err; 1210 list_t *tr_list; 1211 1212 if (asize == 0) { 1213 *tr_cookiep = NULL; 1214 return (0); 1215 } 1216 1217 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1218 list_create(tr_list, sizeof (struct tempreserve), 1219 offsetof(struct tempreserve, tr_node)); 1220 ASSERT3S(asize, >, 0); 1221 ASSERT3S(fsize, >=, 0); 1222 1223 err = arc_tempreserve_space(lsize, tx->tx_txg); 1224 if (err == 0) { 1225 struct tempreserve *tr; 1226 1227 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1228 tr->tr_size = lsize; 1229 list_insert_tail(tr_list, tr); 1230 } else { 1231 if (err == EAGAIN) { 1232 /* 1233 * If arc_memory_throttle() detected that pageout 1234 * is running and we are low on memory, we delay new 1235 * non-pageout transactions to give pageout an 1236 * advantage. 1237 * 1238 * It is unfortunate to be delaying while the caller's 1239 * locks are held. 1240 */ 1241 txg_delay(dd->dd_pool, tx->tx_txg, 1242 MSEC2NSEC(10), MSEC2NSEC(10)); 1243 err = SET_ERROR(ERESTART); 1244 } 1245 } 1246 1247 if (err == 0) { 1248 err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize, 1249 FALSE, asize > usize, tr_list, tx, TRUE); 1250 } 1251 1252 if (err != 0) 1253 dsl_dir_tempreserve_clear(tr_list, tx); 1254 else 1255 *tr_cookiep = tr_list; 1256 1257 return (err); 1258 } 1259 1260 /* 1261 * Clear a temporary reservation that we previously made with 1262 * dsl_dir_tempreserve_space(). 1263 */ 1264 void 1265 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1266 { 1267 int txgidx = tx->tx_txg & TXG_MASK; 1268 list_t *tr_list = tr_cookie; 1269 struct tempreserve *tr; 1270 1271 ASSERT3U(tx->tx_txg, !=, 0); 1272 1273 if (tr_cookie == NULL) 1274 return; 1275 1276 while ((tr = list_head(tr_list)) != NULL) { 1277 if (tr->tr_ds) { 1278 mutex_enter(&tr->tr_ds->dd_lock); 1279 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1280 tr->tr_size); 1281 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1282 mutex_exit(&tr->tr_ds->dd_lock); 1283 } else { 1284 arc_tempreserve_clear(tr->tr_size); 1285 } 1286 list_remove(tr_list, tr); 1287 kmem_free(tr, sizeof (struct tempreserve)); 1288 } 1289 1290 kmem_free(tr_list, sizeof (list_t)); 1291 } 1292 1293 /* 1294 * This should be called from open context when we think we're going to write 1295 * or free space, for example when dirtying data. Be conservative; it's okay 1296 * to write less space or free more, but we don't want to write more or free 1297 * less than the amount specified. 1298 */ 1299 void 1300 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1301 { 1302 int64_t parent_space; 1303 uint64_t est_used; 1304 1305 mutex_enter(&dd->dd_lock); 1306 if (space > 0) 1307 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1308 1309 est_used = dsl_dir_space_towrite(dd) + dd->dd_phys->dd_used_bytes; 1310 parent_space = parent_delta(dd, est_used, space); 1311 mutex_exit(&dd->dd_lock); 1312 1313 /* Make sure that we clean up dd_space_to* */ 1314 dsl_dir_dirty(dd, tx); 1315 1316 /* XXX this is potentially expensive and unnecessary... */ 1317 if (parent_space && dd->dd_parent) 1318 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx); 1319 } 1320 1321 /* call from syncing context when we actually write/free space for this dd */ 1322 void 1323 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1324 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1325 { 1326 int64_t accounted_delta; 1327 1328 /* 1329 * dsl_dataset_set_refreservation_sync_impl() calls this with 1330 * dd_lock held, so that it can atomically update 1331 * ds->ds_reserved and the dsl_dir accounting, so that 1332 * dsl_dataset_check_quota() can see dataset and dir accounting 1333 * consistently. 1334 */ 1335 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1336 1337 ASSERT(dmu_tx_is_syncing(tx)); 1338 ASSERT(type < DD_USED_NUM); 1339 1340 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1341 1342 if (needlock) 1343 mutex_enter(&dd->dd_lock); 1344 accounted_delta = parent_delta(dd, dd->dd_phys->dd_used_bytes, used); 1345 ASSERT(used >= 0 || dd->dd_phys->dd_used_bytes >= -used); 1346 ASSERT(compressed >= 0 || 1347 dd->dd_phys->dd_compressed_bytes >= -compressed); 1348 ASSERT(uncompressed >= 0 || 1349 dd->dd_phys->dd_uncompressed_bytes >= -uncompressed); 1350 dd->dd_phys->dd_used_bytes += used; 1351 dd->dd_phys->dd_uncompressed_bytes += uncompressed; 1352 dd->dd_phys->dd_compressed_bytes += compressed; 1353 1354 if (dd->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1355 ASSERT(used > 0 || 1356 dd->dd_phys->dd_used_breakdown[type] >= -used); 1357 dd->dd_phys->dd_used_breakdown[type] += used; 1358 #ifdef DEBUG 1359 dd_used_t t; 1360 uint64_t u = 0; 1361 for (t = 0; t < DD_USED_NUM; t++) 1362 u += dd->dd_phys->dd_used_breakdown[t]; 1363 ASSERT3U(u, ==, dd->dd_phys->dd_used_bytes); 1364 #endif 1365 } 1366 if (needlock) 1367 mutex_exit(&dd->dd_lock); 1368 1369 if (dd->dd_parent != NULL) { 1370 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1371 accounted_delta, compressed, uncompressed, tx); 1372 dsl_dir_transfer_space(dd->dd_parent, 1373 used - accounted_delta, 1374 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1375 } 1376 } 1377 1378 void 1379 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1380 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1381 { 1382 ASSERT(dmu_tx_is_syncing(tx)); 1383 ASSERT(oldtype < DD_USED_NUM); 1384 ASSERT(newtype < DD_USED_NUM); 1385 1386 if (delta == 0 || !(dd->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1387 return; 1388 1389 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1390 mutex_enter(&dd->dd_lock); 1391 ASSERT(delta > 0 ? 1392 dd->dd_phys->dd_used_breakdown[oldtype] >= delta : 1393 dd->dd_phys->dd_used_breakdown[newtype] >= -delta); 1394 ASSERT(dd->dd_phys->dd_used_bytes >= ABS(delta)); 1395 dd->dd_phys->dd_used_breakdown[oldtype] -= delta; 1396 dd->dd_phys->dd_used_breakdown[newtype] += delta; 1397 mutex_exit(&dd->dd_lock); 1398 } 1399 1400 typedef struct dsl_dir_set_qr_arg { 1401 const char *ddsqra_name; 1402 zprop_source_t ddsqra_source; 1403 uint64_t ddsqra_value; 1404 } dsl_dir_set_qr_arg_t; 1405 1406 static int 1407 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1408 { 1409 dsl_dir_set_qr_arg_t *ddsqra = arg; 1410 dsl_pool_t *dp = dmu_tx_pool(tx); 1411 dsl_dataset_t *ds; 1412 int error; 1413 uint64_t towrite, newval; 1414 1415 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1416 if (error != 0) 1417 return (error); 1418 1419 error = dsl_prop_predict(ds->ds_dir, "quota", 1420 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1421 if (error != 0) { 1422 dsl_dataset_rele(ds, FTAG); 1423 return (error); 1424 } 1425 1426 if (newval == 0) { 1427 dsl_dataset_rele(ds, FTAG); 1428 return (0); 1429 } 1430 1431 mutex_enter(&ds->ds_dir->dd_lock); 1432 /* 1433 * If we are doing the preliminary check in open context, and 1434 * there are pending changes, then don't fail it, since the 1435 * pending changes could under-estimate the amount of space to be 1436 * freed up. 1437 */ 1438 towrite = dsl_dir_space_towrite(ds->ds_dir); 1439 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1440 (newval < ds->ds_dir->dd_phys->dd_reserved || 1441 newval < ds->ds_dir->dd_phys->dd_used_bytes + towrite)) { 1442 error = SET_ERROR(ENOSPC); 1443 } 1444 mutex_exit(&ds->ds_dir->dd_lock); 1445 dsl_dataset_rele(ds, FTAG); 1446 return (error); 1447 } 1448 1449 static void 1450 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1451 { 1452 dsl_dir_set_qr_arg_t *ddsqra = arg; 1453 dsl_pool_t *dp = dmu_tx_pool(tx); 1454 dsl_dataset_t *ds; 1455 uint64_t newval; 1456 1457 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1458 1459 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1460 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1461 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1462 &ddsqra->ddsqra_value, tx); 1463 1464 VERIFY0(dsl_prop_get_int_ds(ds, 1465 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1466 } else { 1467 newval = ddsqra->ddsqra_value; 1468 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1469 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1470 } 1471 1472 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1473 mutex_enter(&ds->ds_dir->dd_lock); 1474 ds->ds_dir->dd_phys->dd_quota = newval; 1475 mutex_exit(&ds->ds_dir->dd_lock); 1476 dsl_dataset_rele(ds, FTAG); 1477 } 1478 1479 int 1480 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1481 { 1482 dsl_dir_set_qr_arg_t ddsqra; 1483 1484 ddsqra.ddsqra_name = ddname; 1485 ddsqra.ddsqra_source = source; 1486 ddsqra.ddsqra_value = quota; 1487 1488 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1489 dsl_dir_set_quota_sync, &ddsqra, 0)); 1490 } 1491 1492 int 1493 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1494 { 1495 dsl_dir_set_qr_arg_t *ddsqra = arg; 1496 dsl_pool_t *dp = dmu_tx_pool(tx); 1497 dsl_dataset_t *ds; 1498 dsl_dir_t *dd; 1499 uint64_t newval, used, avail; 1500 int error; 1501 1502 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1503 if (error != 0) 1504 return (error); 1505 dd = ds->ds_dir; 1506 1507 /* 1508 * If we are doing the preliminary check in open context, the 1509 * space estimates may be inaccurate. 1510 */ 1511 if (!dmu_tx_is_syncing(tx)) { 1512 dsl_dataset_rele(ds, FTAG); 1513 return (0); 1514 } 1515 1516 error = dsl_prop_predict(ds->ds_dir, 1517 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1518 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1519 if (error != 0) { 1520 dsl_dataset_rele(ds, FTAG); 1521 return (error); 1522 } 1523 1524 mutex_enter(&dd->dd_lock); 1525 used = dd->dd_phys->dd_used_bytes; 1526 mutex_exit(&dd->dd_lock); 1527 1528 if (dd->dd_parent) { 1529 avail = dsl_dir_space_available(dd->dd_parent, 1530 NULL, 0, FALSE); 1531 } else { 1532 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used; 1533 } 1534 1535 if (MAX(used, newval) > MAX(used, dd->dd_phys->dd_reserved)) { 1536 uint64_t delta = MAX(used, newval) - 1537 MAX(used, dd->dd_phys->dd_reserved); 1538 1539 if (delta > avail || 1540 (dd->dd_phys->dd_quota > 0 && 1541 newval > dd->dd_phys->dd_quota)) 1542 error = SET_ERROR(ENOSPC); 1543 } 1544 1545 dsl_dataset_rele(ds, FTAG); 1546 return (error); 1547 } 1548 1549 void 1550 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1551 { 1552 uint64_t used; 1553 int64_t delta; 1554 1555 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1556 1557 mutex_enter(&dd->dd_lock); 1558 used = dd->dd_phys->dd_used_bytes; 1559 delta = MAX(used, value) - MAX(used, dd->dd_phys->dd_reserved); 1560 dd->dd_phys->dd_reserved = value; 1561 1562 if (dd->dd_parent != NULL) { 1563 /* Roll up this additional usage into our ancestors */ 1564 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1565 delta, 0, 0, tx); 1566 } 1567 mutex_exit(&dd->dd_lock); 1568 } 1569 1570 1571 static void 1572 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1573 { 1574 dsl_dir_set_qr_arg_t *ddsqra = arg; 1575 dsl_pool_t *dp = dmu_tx_pool(tx); 1576 dsl_dataset_t *ds; 1577 uint64_t newval; 1578 1579 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1580 1581 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1582 dsl_prop_set_sync_impl(ds, 1583 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1584 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1585 &ddsqra->ddsqra_value, tx); 1586 1587 VERIFY0(dsl_prop_get_int_ds(ds, 1588 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1589 } else { 1590 newval = ddsqra->ddsqra_value; 1591 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1592 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1593 (longlong_t)newval); 1594 } 1595 1596 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1597 dsl_dataset_rele(ds, FTAG); 1598 } 1599 1600 int 1601 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1602 uint64_t reservation) 1603 { 1604 dsl_dir_set_qr_arg_t ddsqra; 1605 1606 ddsqra.ddsqra_name = ddname; 1607 ddsqra.ddsqra_source = source; 1608 ddsqra.ddsqra_value = reservation; 1609 1610 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1611 dsl_dir_set_reservation_sync, &ddsqra, 0)); 1612 } 1613 1614 static dsl_dir_t * 1615 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1616 { 1617 for (; ds1; ds1 = ds1->dd_parent) { 1618 dsl_dir_t *dd; 1619 for (dd = ds2; dd; dd = dd->dd_parent) { 1620 if (ds1 == dd) 1621 return (dd); 1622 } 1623 } 1624 return (NULL); 1625 } 1626 1627 /* 1628 * If delta is applied to dd, how much of that delta would be applied to 1629 * ancestor? Syncing context only. 1630 */ 1631 static int64_t 1632 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1633 { 1634 if (dd == ancestor) 1635 return (delta); 1636 1637 mutex_enter(&dd->dd_lock); 1638 delta = parent_delta(dd, dd->dd_phys->dd_used_bytes, delta); 1639 mutex_exit(&dd->dd_lock); 1640 return (would_change(dd->dd_parent, delta, ancestor)); 1641 } 1642 1643 typedef struct dsl_dir_rename_arg { 1644 const char *ddra_oldname; 1645 const char *ddra_newname; 1646 cred_t *ddra_cred; 1647 } dsl_dir_rename_arg_t; 1648 1649 /* ARGSUSED */ 1650 static int 1651 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1652 { 1653 int *deltap = arg; 1654 char namebuf[MAXNAMELEN]; 1655 1656 dsl_dataset_name(ds, namebuf); 1657 1658 if (strlen(namebuf) + *deltap >= MAXNAMELEN) 1659 return (SET_ERROR(ENAMETOOLONG)); 1660 return (0); 1661 } 1662 1663 static int 1664 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1665 { 1666 dsl_dir_rename_arg_t *ddra = arg; 1667 dsl_pool_t *dp = dmu_tx_pool(tx); 1668 dsl_dir_t *dd, *newparent; 1669 const char *mynewname; 1670 int error; 1671 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname); 1672 1673 /* target dir should exist */ 1674 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1675 if (error != 0) 1676 return (error); 1677 1678 /* new parent should exist */ 1679 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1680 &newparent, &mynewname); 1681 if (error != 0) { 1682 dsl_dir_rele(dd, FTAG); 1683 return (error); 1684 } 1685 1686 /* can't rename to different pool */ 1687 if (dd->dd_pool != newparent->dd_pool) { 1688 dsl_dir_rele(newparent, FTAG); 1689 dsl_dir_rele(dd, FTAG); 1690 return (SET_ERROR(ENXIO)); 1691 } 1692 1693 /* new name should not already exist */ 1694 if (mynewname == NULL) { 1695 dsl_dir_rele(newparent, FTAG); 1696 dsl_dir_rele(dd, FTAG); 1697 return (SET_ERROR(EEXIST)); 1698 } 1699 1700 /* if the name length is growing, validate child name lengths */ 1701 if (delta > 0) { 1702 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 1703 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1704 if (error != 0) { 1705 dsl_dir_rele(newparent, FTAG); 1706 dsl_dir_rele(dd, FTAG); 1707 return (error); 1708 } 1709 } 1710 1711 if (dmu_tx_is_syncing(tx)) { 1712 if (spa_feature_is_enabled(dp->dp_spa, 1713 SPA_FEATURE_FS_SS_LIMIT)) { 1714 /* 1715 * Although this is the check function and we don't 1716 * normally make on-disk changes in check functions, 1717 * we need to do that here. 1718 * 1719 * Ensure this portion of the tree's counts have been 1720 * initialized in case the new parent has limits set. 1721 */ 1722 dsl_dir_init_fs_ss_count(dd, tx); 1723 } 1724 } 1725 1726 if (newparent != dd->dd_parent) { 1727 /* is there enough space? */ 1728 uint64_t myspace = 1729 MAX(dd->dd_phys->dd_used_bytes, dd->dd_phys->dd_reserved); 1730 objset_t *os = dd->dd_pool->dp_meta_objset; 1731 uint64_t fs_cnt = 0; 1732 uint64_t ss_cnt = 0; 1733 1734 if (dsl_dir_is_zapified(dd)) { 1735 int err; 1736 1737 err = zap_lookup(os, dd->dd_object, 1738 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1739 &fs_cnt); 1740 if (err != ENOENT && err != 0) 1741 return (err); 1742 1743 /* 1744 * have to add 1 for the filesystem itself that we're 1745 * moving 1746 */ 1747 fs_cnt++; 1748 1749 err = zap_lookup(os, dd->dd_object, 1750 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1751 &ss_cnt); 1752 if (err != ENOENT && err != 0) 1753 return (err); 1754 } 1755 1756 /* no rename into our descendant */ 1757 if (closest_common_ancestor(dd, newparent) == dd) { 1758 dsl_dir_rele(newparent, FTAG); 1759 dsl_dir_rele(dd, FTAG); 1760 return (SET_ERROR(EINVAL)); 1761 } 1762 1763 error = dsl_dir_transfer_possible(dd->dd_parent, 1764 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred); 1765 if (error != 0) { 1766 dsl_dir_rele(newparent, FTAG); 1767 dsl_dir_rele(dd, FTAG); 1768 return (error); 1769 } 1770 } 1771 1772 dsl_dir_rele(newparent, FTAG); 1773 dsl_dir_rele(dd, FTAG); 1774 return (0); 1775 } 1776 1777 static void 1778 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 1779 { 1780 dsl_dir_rename_arg_t *ddra = arg; 1781 dsl_pool_t *dp = dmu_tx_pool(tx); 1782 dsl_dir_t *dd, *newparent; 1783 const char *mynewname; 1784 int error; 1785 objset_t *mos = dp->dp_meta_objset; 1786 1787 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 1788 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 1789 &mynewname)); 1790 1791 /* Log this before we change the name. */ 1792 spa_history_log_internal_dd(dd, "rename", tx, 1793 "-> %s", ddra->ddra_newname); 1794 1795 if (newparent != dd->dd_parent) { 1796 objset_t *os = dd->dd_pool->dp_meta_objset; 1797 uint64_t fs_cnt = 0; 1798 uint64_t ss_cnt = 0; 1799 1800 /* 1801 * We already made sure the dd counts were initialized in the 1802 * check function. 1803 */ 1804 if (spa_feature_is_enabled(dp->dp_spa, 1805 SPA_FEATURE_FS_SS_LIMIT)) { 1806 VERIFY0(zap_lookup(os, dd->dd_object, 1807 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1808 &fs_cnt)); 1809 /* add 1 for the filesystem itself that we're moving */ 1810 fs_cnt++; 1811 1812 VERIFY0(zap_lookup(os, dd->dd_object, 1813 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1814 &ss_cnt)); 1815 } 1816 1817 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 1818 DD_FIELD_FILESYSTEM_COUNT, tx); 1819 dsl_fs_ss_count_adjust(newparent, fs_cnt, 1820 DD_FIELD_FILESYSTEM_COUNT, tx); 1821 1822 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 1823 DD_FIELD_SNAPSHOT_COUNT, tx); 1824 dsl_fs_ss_count_adjust(newparent, ss_cnt, 1825 DD_FIELD_SNAPSHOT_COUNT, tx); 1826 1827 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1828 -dd->dd_phys->dd_used_bytes, 1829 -dd->dd_phys->dd_compressed_bytes, 1830 -dd->dd_phys->dd_uncompressed_bytes, tx); 1831 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 1832 dd->dd_phys->dd_used_bytes, 1833 dd->dd_phys->dd_compressed_bytes, 1834 dd->dd_phys->dd_uncompressed_bytes, tx); 1835 1836 if (dd->dd_phys->dd_reserved > dd->dd_phys->dd_used_bytes) { 1837 uint64_t unused_rsrv = dd->dd_phys->dd_reserved - 1838 dd->dd_phys->dd_used_bytes; 1839 1840 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1841 -unused_rsrv, 0, 0, tx); 1842 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 1843 unused_rsrv, 0, 0, tx); 1844 } 1845 } 1846 1847 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1848 1849 /* remove from old parent zapobj */ 1850 error = zap_remove(mos, dd->dd_parent->dd_phys->dd_child_dir_zapobj, 1851 dd->dd_myname, tx); 1852 ASSERT0(error); 1853 1854 (void) strcpy(dd->dd_myname, mynewname); 1855 dsl_dir_rele(dd->dd_parent, dd); 1856 dd->dd_phys->dd_parent_obj = newparent->dd_object; 1857 VERIFY0(dsl_dir_hold_obj(dp, 1858 newparent->dd_object, NULL, dd, &dd->dd_parent)); 1859 1860 /* add to new parent zapobj */ 1861 VERIFY0(zap_add(mos, newparent->dd_phys->dd_child_dir_zapobj, 1862 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 1863 1864 dsl_prop_notify_all(dd); 1865 1866 dsl_dir_rele(newparent, FTAG); 1867 dsl_dir_rele(dd, FTAG); 1868 } 1869 1870 int 1871 dsl_dir_rename(const char *oldname, const char *newname) 1872 { 1873 dsl_dir_rename_arg_t ddra; 1874 1875 ddra.ddra_oldname = oldname; 1876 ddra.ddra_newname = newname; 1877 ddra.ddra_cred = CRED(); 1878 1879 return (dsl_sync_task(oldname, 1880 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 3)); 1881 } 1882 1883 int 1884 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 1885 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr) 1886 { 1887 dsl_dir_t *ancestor; 1888 int64_t adelta; 1889 uint64_t avail; 1890 int err; 1891 1892 ancestor = closest_common_ancestor(sdd, tdd); 1893 adelta = would_change(sdd, -space, ancestor); 1894 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 1895 if (avail < space) 1896 return (SET_ERROR(ENOSPC)); 1897 1898 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 1899 ancestor, cr); 1900 if (err != 0) 1901 return (err); 1902 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 1903 ancestor, cr); 1904 if (err != 0) 1905 return (err); 1906 1907 return (0); 1908 } 1909 1910 timestruc_t 1911 dsl_dir_snap_cmtime(dsl_dir_t *dd) 1912 { 1913 timestruc_t t; 1914 1915 mutex_enter(&dd->dd_lock); 1916 t = dd->dd_snap_cmtime; 1917 mutex_exit(&dd->dd_lock); 1918 1919 return (t); 1920 } 1921 1922 void 1923 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 1924 { 1925 timestruc_t t; 1926 1927 gethrestime(&t); 1928 mutex_enter(&dd->dd_lock); 1929 dd->dd_snap_cmtime = t; 1930 mutex_exit(&dd->dd_lock); 1931 } 1932 1933 void 1934 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 1935 { 1936 objset_t *mos = dd->dd_pool->dp_meta_objset; 1937 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 1938 } 1939 1940 boolean_t 1941 dsl_dir_is_zapified(dsl_dir_t *dd) 1942 { 1943 dmu_object_info_t doi; 1944 1945 dmu_object_info_from_db(dd->dd_dbuf, &doi); 1946 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 1947 } 1948