1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/dbuf.h> 28 #include <sys/dnode.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/spa.h> 36 #include <sys/zio.h> 37 #include <sys/dmu_zfetch.h> 38 39 static int free_range_compar(const void *node1, const void *node2); 40 41 static kmem_cache_t *dnode_cache; 42 43 static dnode_phys_t dnode_phys_zero; 44 45 int zfs_default_bs = SPA_MINBLOCKSHIFT; 46 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 47 48 /* ARGSUSED */ 49 static int 50 dnode_cons(void *arg, void *unused, int kmflag) 51 { 52 int i; 53 dnode_t *dn = arg; 54 bzero(dn, sizeof (dnode_t)); 55 56 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 57 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 58 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 59 refcount_create(&dn->dn_holds); 60 refcount_create(&dn->dn_tx_holds); 61 62 for (i = 0; i < TXG_SIZE; i++) { 63 avl_create(&dn->dn_ranges[i], free_range_compar, 64 sizeof (free_range_t), 65 offsetof(struct free_range, fr_node)); 66 list_create(&dn->dn_dirty_records[i], 67 sizeof (dbuf_dirty_record_t), 68 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 69 } 70 71 list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t), 72 offsetof(dmu_buf_impl_t, db_link)); 73 74 return (0); 75 } 76 77 /* ARGSUSED */ 78 static void 79 dnode_dest(void *arg, void *unused) 80 { 81 int i; 82 dnode_t *dn = arg; 83 84 rw_destroy(&dn->dn_struct_rwlock); 85 mutex_destroy(&dn->dn_mtx); 86 mutex_destroy(&dn->dn_dbufs_mtx); 87 refcount_destroy(&dn->dn_holds); 88 refcount_destroy(&dn->dn_tx_holds); 89 90 for (i = 0; i < TXG_SIZE; i++) { 91 avl_destroy(&dn->dn_ranges[i]); 92 list_destroy(&dn->dn_dirty_records[i]); 93 } 94 95 list_destroy(&dn->dn_dbufs); 96 } 97 98 void 99 dnode_init(void) 100 { 101 dnode_cache = kmem_cache_create("dnode_t", 102 sizeof (dnode_t), 103 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 104 } 105 106 void 107 dnode_fini(void) 108 { 109 kmem_cache_destroy(dnode_cache); 110 } 111 112 113 #ifdef ZFS_DEBUG 114 void 115 dnode_verify(dnode_t *dn) 116 { 117 int drop_struct_lock = FALSE; 118 119 ASSERT(dn->dn_phys); 120 ASSERT(dn->dn_objset); 121 122 ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES); 123 124 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 125 return; 126 127 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 128 rw_enter(&dn->dn_struct_rwlock, RW_READER); 129 drop_struct_lock = TRUE; 130 } 131 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 132 int i; 133 ASSERT3U(dn->dn_indblkshift, >=, 0); 134 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 135 if (dn->dn_datablkshift) { 136 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 137 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 138 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 139 } 140 ASSERT3U(dn->dn_nlevels, <=, 30); 141 ASSERT3U(dn->dn_type, <=, DMU_OT_NUMTYPES); 142 ASSERT3U(dn->dn_nblkptr, >=, 1); 143 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 144 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 145 ASSERT3U(dn->dn_datablksz, ==, 146 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 147 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 148 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 149 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 150 for (i = 0; i < TXG_SIZE; i++) { 151 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 152 } 153 } 154 if (dn->dn_phys->dn_type != DMU_OT_NONE) 155 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 156 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || dn->dn_dbuf != NULL); 157 if (dn->dn_dbuf != NULL) { 158 ASSERT3P(dn->dn_phys, ==, 159 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 160 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 161 } 162 if (drop_struct_lock) 163 rw_exit(&dn->dn_struct_rwlock); 164 } 165 #endif 166 167 void 168 dnode_byteswap(dnode_phys_t *dnp) 169 { 170 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 171 int i; 172 173 if (dnp->dn_type == DMU_OT_NONE) { 174 bzero(dnp, sizeof (dnode_phys_t)); 175 return; 176 } 177 178 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 179 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 180 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 181 dnp->dn_used = BSWAP_64(dnp->dn_used); 182 183 /* 184 * dn_nblkptr is only one byte, so it's OK to read it in either 185 * byte order. We can't read dn_bouslen. 186 */ 187 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 188 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 189 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 190 buf64[i] = BSWAP_64(buf64[i]); 191 192 /* 193 * OK to check dn_bonuslen for zero, because it won't matter if 194 * we have the wrong byte order. This is necessary because the 195 * dnode dnode is smaller than a regular dnode. 196 */ 197 if (dnp->dn_bonuslen != 0) { 198 /* 199 * Note that the bonus length calculated here may be 200 * longer than the actual bonus buffer. This is because 201 * we always put the bonus buffer after the last block 202 * pointer (instead of packing it against the end of the 203 * dnode buffer). 204 */ 205 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 206 size_t len = DN_MAX_BONUSLEN - off; 207 ASSERT3U(dnp->dn_bonustype, <, DMU_OT_NUMTYPES); 208 dmu_ot[dnp->dn_bonustype].ot_byteswap(dnp->dn_bonus + off, len); 209 } 210 } 211 212 void 213 dnode_buf_byteswap(void *vbuf, size_t size) 214 { 215 dnode_phys_t *buf = vbuf; 216 int i; 217 218 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 219 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 220 221 size >>= DNODE_SHIFT; 222 for (i = 0; i < size; i++) { 223 dnode_byteswap(buf); 224 buf++; 225 } 226 } 227 228 static int 229 free_range_compar(const void *node1, const void *node2) 230 { 231 const free_range_t *rp1 = node1; 232 const free_range_t *rp2 = node2; 233 234 if (rp1->fr_blkid < rp2->fr_blkid) 235 return (-1); 236 else if (rp1->fr_blkid > rp2->fr_blkid) 237 return (1); 238 else return (0); 239 } 240 241 void 242 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 243 { 244 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 245 246 dnode_setdirty(dn, tx); 247 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 248 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN - 249 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 250 dn->dn_bonuslen = newsize; 251 if (newsize == 0) 252 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 253 else 254 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 255 rw_exit(&dn->dn_struct_rwlock); 256 } 257 258 static void 259 dnode_setdblksz(dnode_t *dn, int size) 260 { 261 ASSERT3U(P2PHASE(size, SPA_MINBLOCKSIZE), ==, 0); 262 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 263 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 264 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 265 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 266 dn->dn_datablksz = size; 267 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 268 dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0; 269 } 270 271 static dnode_t * 272 dnode_create(objset_impl_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 273 uint64_t object) 274 { 275 dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 276 (void) dnode_cons(dn, NULL, 0); /* XXX */ 277 278 dn->dn_objset = os; 279 dn->dn_object = object; 280 dn->dn_dbuf = db; 281 dn->dn_phys = dnp; 282 283 if (dnp->dn_datablkszsec) 284 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 285 dn->dn_indblkshift = dnp->dn_indblkshift; 286 dn->dn_nlevels = dnp->dn_nlevels; 287 dn->dn_type = dnp->dn_type; 288 dn->dn_nblkptr = dnp->dn_nblkptr; 289 dn->dn_checksum = dnp->dn_checksum; 290 dn->dn_compress = dnp->dn_compress; 291 dn->dn_bonustype = dnp->dn_bonustype; 292 dn->dn_bonuslen = dnp->dn_bonuslen; 293 dn->dn_maxblkid = dnp->dn_maxblkid; 294 295 dmu_zfetch_init(&dn->dn_zfetch, dn); 296 297 ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES); 298 mutex_enter(&os->os_lock); 299 list_insert_head(&os->os_dnodes, dn); 300 mutex_exit(&os->os_lock); 301 302 arc_space_consume(sizeof (dnode_t)); 303 return (dn); 304 } 305 306 static void 307 dnode_destroy(dnode_t *dn) 308 { 309 objset_impl_t *os = dn->dn_objset; 310 311 #ifdef ZFS_DEBUG 312 int i; 313 314 for (i = 0; i < TXG_SIZE; i++) { 315 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 316 ASSERT(NULL == list_head(&dn->dn_dirty_records[i])); 317 ASSERT(0 == avl_numnodes(&dn->dn_ranges[i])); 318 } 319 ASSERT(NULL == list_head(&dn->dn_dbufs)); 320 #endif 321 322 mutex_enter(&os->os_lock); 323 list_remove(&os->os_dnodes, dn); 324 mutex_exit(&os->os_lock); 325 326 if (dn->dn_dirtyctx_firstset) { 327 kmem_free(dn->dn_dirtyctx_firstset, 1); 328 dn->dn_dirtyctx_firstset = NULL; 329 } 330 dmu_zfetch_rele(&dn->dn_zfetch); 331 if (dn->dn_bonus) { 332 mutex_enter(&dn->dn_bonus->db_mtx); 333 dbuf_evict(dn->dn_bonus); 334 dn->dn_bonus = NULL; 335 } 336 kmem_cache_free(dnode_cache, dn); 337 arc_space_return(sizeof (dnode_t)); 338 } 339 340 void 341 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 342 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 343 { 344 int i; 345 346 if (blocksize == 0) 347 blocksize = 1 << zfs_default_bs; 348 else if (blocksize > SPA_MAXBLOCKSIZE) 349 blocksize = SPA_MAXBLOCKSIZE; 350 else 351 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 352 353 if (ibs == 0) 354 ibs = zfs_default_ibs; 355 356 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 357 358 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset, 359 dn->dn_object, tx->tx_txg, blocksize, ibs); 360 361 ASSERT(dn->dn_type == DMU_OT_NONE); 362 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 363 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 364 ASSERT(ot != DMU_OT_NONE); 365 ASSERT3U(ot, <, DMU_OT_NUMTYPES); 366 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 367 (bonustype != DMU_OT_NONE && bonuslen != 0)); 368 ASSERT3U(bonustype, <, DMU_OT_NUMTYPES); 369 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 370 ASSERT(dn->dn_type == DMU_OT_NONE); 371 ASSERT3U(dn->dn_maxblkid, ==, 0); 372 ASSERT3U(dn->dn_allocated_txg, ==, 0); 373 ASSERT3U(dn->dn_assigned_txg, ==, 0); 374 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 375 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1); 376 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL); 377 378 for (i = 0; i < TXG_SIZE; i++) { 379 ASSERT3U(dn->dn_next_nlevels[i], ==, 0); 380 ASSERT3U(dn->dn_next_indblkshift[i], ==, 0); 381 ASSERT3U(dn->dn_next_bonuslen[i], ==, 0); 382 ASSERT3U(dn->dn_next_blksz[i], ==, 0); 383 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 384 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 385 ASSERT3U(avl_numnodes(&dn->dn_ranges[i]), ==, 0); 386 } 387 388 dn->dn_type = ot; 389 dnode_setdblksz(dn, blocksize); 390 dn->dn_indblkshift = ibs; 391 dn->dn_nlevels = 1; 392 dn->dn_nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 393 dn->dn_bonustype = bonustype; 394 dn->dn_bonuslen = bonuslen; 395 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 396 dn->dn_compress = ZIO_COMPRESS_INHERIT; 397 dn->dn_dirtyctx = 0; 398 399 dn->dn_free_txg = 0; 400 if (dn->dn_dirtyctx_firstset) { 401 kmem_free(dn->dn_dirtyctx_firstset, 1); 402 dn->dn_dirtyctx_firstset = NULL; 403 } 404 405 dn->dn_allocated_txg = tx->tx_txg; 406 407 dnode_setdirty(dn, tx); 408 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 409 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 410 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 411 } 412 413 void 414 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 415 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 416 { 417 int i, old_nblkptr; 418 dmu_buf_impl_t *db = NULL; 419 420 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 421 ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE); 422 ASSERT3U(blocksize % SPA_MINBLOCKSIZE, ==, 0); 423 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 424 ASSERT(tx->tx_txg != 0); 425 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 426 (bonustype != DMU_OT_NONE && bonuslen != 0)); 427 ASSERT3U(bonustype, <, DMU_OT_NUMTYPES); 428 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 429 430 for (i = 0; i < TXG_SIZE; i++) 431 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 432 433 /* clean up any unreferenced dbufs */ 434 dnode_evict_dbufs(dn); 435 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL); 436 437 /* 438 * XXX I should really have a generation number to tell if we 439 * need to do this... 440 */ 441 if (blocksize != dn->dn_datablksz || 442 dn->dn_bonustype != bonustype || dn->dn_bonuslen != bonuslen) { 443 /* free all old data */ 444 dnode_free_range(dn, 0, -1ULL, tx); 445 } 446 447 /* change blocksize */ 448 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 449 if (blocksize != dn->dn_datablksz && 450 (!BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 451 list_head(&dn->dn_dbufs) != NULL)) { 452 db = dbuf_hold(dn, 0, FTAG); 453 dbuf_new_size(db, blocksize, tx); 454 } 455 dnode_setdblksz(dn, blocksize); 456 dnode_setdirty(dn, tx); 457 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 458 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 459 rw_exit(&dn->dn_struct_rwlock); 460 if (db) 461 dbuf_rele(db, FTAG); 462 463 /* change type */ 464 dn->dn_type = ot; 465 466 /* change bonus size and type */ 467 mutex_enter(&dn->dn_mtx); 468 old_nblkptr = dn->dn_nblkptr; 469 dn->dn_bonustype = bonustype; 470 dn->dn_bonuslen = bonuslen; 471 dn->dn_nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 472 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 473 dn->dn_compress = ZIO_COMPRESS_INHERIT; 474 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 475 476 /* XXX - for now, we can't make nblkptr smaller */ 477 ASSERT3U(dn->dn_nblkptr, >=, old_nblkptr); 478 479 /* fix up the bonus db_size if dn_nblkptr has changed */ 480 if (dn->dn_bonus && dn->dn_bonuslen != old_nblkptr) { 481 dn->dn_bonus->db.db_size = 482 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t); 483 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 484 } 485 486 dn->dn_allocated_txg = tx->tx_txg; 487 mutex_exit(&dn->dn_mtx); 488 } 489 490 void 491 dnode_special_close(dnode_t *dn) 492 { 493 /* 494 * Wait for final references to the dnode to clear. This can 495 * only happen if the arc is asyncronously evicting state that 496 * has a hold on this dnode while we are trying to evict this 497 * dnode. 498 */ 499 while (refcount_count(&dn->dn_holds) > 0) 500 delay(1); 501 dnode_destroy(dn); 502 } 503 504 dnode_t * 505 dnode_special_open(objset_impl_t *os, dnode_phys_t *dnp, uint64_t object) 506 { 507 dnode_t *dn = dnode_create(os, dnp, NULL, object); 508 DNODE_VERIFY(dn); 509 return (dn); 510 } 511 512 static void 513 dnode_buf_pageout(dmu_buf_t *db, void *arg) 514 { 515 dnode_t **children_dnodes = arg; 516 int i; 517 int epb = db->db_size >> DNODE_SHIFT; 518 519 for (i = 0; i < epb; i++) { 520 dnode_t *dn = children_dnodes[i]; 521 int n; 522 523 if (dn == NULL) 524 continue; 525 #ifdef ZFS_DEBUG 526 /* 527 * If there are holds on this dnode, then there should 528 * be holds on the dnode's containing dbuf as well; thus 529 * it wouldn't be eligable for eviction and this function 530 * would not have been called. 531 */ 532 ASSERT(refcount_is_zero(&dn->dn_holds)); 533 ASSERT(list_head(&dn->dn_dbufs) == NULL); 534 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 535 536 for (n = 0; n < TXG_SIZE; n++) 537 ASSERT(!list_link_active(&dn->dn_dirty_link[n])); 538 #endif 539 children_dnodes[i] = NULL; 540 dnode_destroy(dn); 541 } 542 kmem_free(children_dnodes, epb * sizeof (dnode_t *)); 543 } 544 545 /* 546 * errors: 547 * EINVAL - invalid object number. 548 * EIO - i/o error. 549 * succeeds even for free dnodes. 550 */ 551 int 552 dnode_hold_impl(objset_impl_t *os, uint64_t object, int flag, 553 void *tag, dnode_t **dnp) 554 { 555 int epb, idx, err; 556 int drop_struct_lock = FALSE; 557 int type; 558 uint64_t blk; 559 dnode_t *mdn, *dn; 560 dmu_buf_impl_t *db; 561 dnode_t **children_dnodes; 562 563 if (object == 0 || object >= DN_MAX_OBJECT) 564 return (EINVAL); 565 566 mdn = os->os_meta_dnode; 567 568 DNODE_VERIFY(mdn); 569 570 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 571 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 572 drop_struct_lock = TRUE; 573 } 574 575 blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t)); 576 577 db = dbuf_hold(mdn, blk, FTAG); 578 if (drop_struct_lock) 579 rw_exit(&mdn->dn_struct_rwlock); 580 if (db == NULL) 581 return (EIO); 582 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 583 if (err) { 584 dbuf_rele(db, FTAG); 585 return (err); 586 } 587 588 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 589 epb = db->db.db_size >> DNODE_SHIFT; 590 591 idx = object & (epb-1); 592 593 children_dnodes = dmu_buf_get_user(&db->db); 594 if (children_dnodes == NULL) { 595 dnode_t **winner; 596 children_dnodes = kmem_zalloc(epb * sizeof (dnode_t *), 597 KM_SLEEP); 598 if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL, 599 dnode_buf_pageout)) { 600 kmem_free(children_dnodes, epb * sizeof (dnode_t *)); 601 children_dnodes = winner; 602 } 603 } 604 605 if ((dn = children_dnodes[idx]) == NULL) { 606 dnode_phys_t *dnp = (dnode_phys_t *)db->db.db_data+idx; 607 dnode_t *winner; 608 609 dn = dnode_create(os, dnp, db, object); 610 winner = atomic_cas_ptr(&children_dnodes[idx], NULL, dn); 611 if (winner != NULL) { 612 dnode_destroy(dn); 613 dn = winner; 614 } 615 } 616 617 mutex_enter(&dn->dn_mtx); 618 type = dn->dn_type; 619 if (dn->dn_free_txg || 620 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) || 621 ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)) { 622 mutex_exit(&dn->dn_mtx); 623 dbuf_rele(db, FTAG); 624 return (type == DMU_OT_NONE ? ENOENT : EEXIST); 625 } 626 mutex_exit(&dn->dn_mtx); 627 628 if (refcount_add(&dn->dn_holds, tag) == 1) 629 dbuf_add_ref(db, dn); 630 631 DNODE_VERIFY(dn); 632 ASSERT3P(dn->dn_dbuf, ==, db); 633 ASSERT3U(dn->dn_object, ==, object); 634 dbuf_rele(db, FTAG); 635 636 *dnp = dn; 637 return (0); 638 } 639 640 /* 641 * Return held dnode if the object is allocated, NULL if not. 642 */ 643 int 644 dnode_hold(objset_impl_t *os, uint64_t object, void *tag, dnode_t **dnp) 645 { 646 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp)); 647 } 648 649 /* 650 * Can only add a reference if there is already at least one 651 * reference on the dnode. Returns FALSE if unable to add a 652 * new reference. 653 */ 654 boolean_t 655 dnode_add_ref(dnode_t *dn, void *tag) 656 { 657 mutex_enter(&dn->dn_mtx); 658 if (refcount_is_zero(&dn->dn_holds)) { 659 mutex_exit(&dn->dn_mtx); 660 return (FALSE); 661 } 662 VERIFY(1 < refcount_add(&dn->dn_holds, tag)); 663 mutex_exit(&dn->dn_mtx); 664 return (TRUE); 665 } 666 667 void 668 dnode_rele(dnode_t *dn, void *tag) 669 { 670 uint64_t refs; 671 672 mutex_enter(&dn->dn_mtx); 673 refs = refcount_remove(&dn->dn_holds, tag); 674 mutex_exit(&dn->dn_mtx); 675 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 676 if (refs == 0 && dn->dn_dbuf) 677 dbuf_rele(dn->dn_dbuf, dn); 678 } 679 680 void 681 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 682 { 683 objset_impl_t *os = dn->dn_objset; 684 uint64_t txg = tx->tx_txg; 685 686 if (dn->dn_object == DMU_META_DNODE_OBJECT) 687 return; 688 689 DNODE_VERIFY(dn); 690 691 #ifdef ZFS_DEBUG 692 mutex_enter(&dn->dn_mtx); 693 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 694 /* ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); */ 695 mutex_exit(&dn->dn_mtx); 696 #endif 697 698 mutex_enter(&os->os_lock); 699 700 /* 701 * If we are already marked dirty, we're done. 702 */ 703 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 704 mutex_exit(&os->os_lock); 705 return; 706 } 707 708 ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs)); 709 ASSERT(dn->dn_datablksz != 0); 710 ASSERT3U(dn->dn_next_bonuslen[txg&TXG_MASK], ==, 0); 711 ASSERT3U(dn->dn_next_blksz[txg&TXG_MASK], ==, 0); 712 713 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 714 dn->dn_object, txg); 715 716 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) { 717 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn); 718 } else { 719 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn); 720 } 721 722 mutex_exit(&os->os_lock); 723 724 /* 725 * The dnode maintains a hold on its containing dbuf as 726 * long as there are holds on it. Each instantiated child 727 * dbuf maintaines a hold on the dnode. When the last child 728 * drops its hold, the dnode will drop its hold on the 729 * containing dbuf. We add a "dirty hold" here so that the 730 * dnode will hang around after we finish processing its 731 * children. 732 */ 733 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 734 735 (void) dbuf_dirty(dn->dn_dbuf, tx); 736 737 dsl_dataset_dirty(os->os_dsl_dataset, tx); 738 } 739 740 void 741 dnode_free(dnode_t *dn, dmu_tx_t *tx) 742 { 743 int txgoff = tx->tx_txg & TXG_MASK; 744 745 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg); 746 747 /* we should be the only holder... hopefully */ 748 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */ 749 750 mutex_enter(&dn->dn_mtx); 751 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 752 mutex_exit(&dn->dn_mtx); 753 return; 754 } 755 dn->dn_free_txg = tx->tx_txg; 756 mutex_exit(&dn->dn_mtx); 757 758 /* 759 * If the dnode is already dirty, it needs to be moved from 760 * the dirty list to the free list. 761 */ 762 mutex_enter(&dn->dn_objset->os_lock); 763 if (list_link_active(&dn->dn_dirty_link[txgoff])) { 764 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn); 765 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn); 766 mutex_exit(&dn->dn_objset->os_lock); 767 } else { 768 mutex_exit(&dn->dn_objset->os_lock); 769 dnode_setdirty(dn, tx); 770 } 771 } 772 773 /* 774 * Try to change the block size for the indicated dnode. This can only 775 * succeed if there are no blocks allocated or dirty beyond first block 776 */ 777 int 778 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 779 { 780 dmu_buf_impl_t *db, *db_next; 781 int err; 782 783 if (size == 0) 784 size = SPA_MINBLOCKSIZE; 785 if (size > SPA_MAXBLOCKSIZE) 786 size = SPA_MAXBLOCKSIZE; 787 else 788 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 789 790 if (ibs == dn->dn_indblkshift) 791 ibs = 0; 792 793 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 794 return (0); 795 796 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 797 798 /* Check for any allocated blocks beyond the first */ 799 if (dn->dn_phys->dn_maxblkid != 0) 800 goto fail; 801 802 mutex_enter(&dn->dn_dbufs_mtx); 803 for (db = list_head(&dn->dn_dbufs); db; db = db_next) { 804 db_next = list_next(&dn->dn_dbufs, db); 805 806 if (db->db_blkid != 0 && db->db_blkid != DB_BONUS_BLKID) { 807 mutex_exit(&dn->dn_dbufs_mtx); 808 goto fail; 809 } 810 } 811 mutex_exit(&dn->dn_dbufs_mtx); 812 813 if (ibs && dn->dn_nlevels != 1) 814 goto fail; 815 816 /* resize the old block */ 817 err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db); 818 if (err == 0) 819 dbuf_new_size(db, size, tx); 820 else if (err != ENOENT) 821 goto fail; 822 823 dnode_setdblksz(dn, size); 824 dnode_setdirty(dn, tx); 825 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 826 if (ibs) { 827 dn->dn_indblkshift = ibs; 828 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 829 } 830 /* rele after we have fixed the blocksize in the dnode */ 831 if (db) 832 dbuf_rele(db, FTAG); 833 834 rw_exit(&dn->dn_struct_rwlock); 835 return (0); 836 837 fail: 838 rw_exit(&dn->dn_struct_rwlock); 839 return (ENOTSUP); 840 } 841 842 /* read-holding callers must not rely on the lock being continuously held */ 843 void 844 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read) 845 { 846 uint64_t txgoff = tx->tx_txg & TXG_MASK; 847 int epbs, new_nlevels; 848 uint64_t sz; 849 850 ASSERT(blkid != DB_BONUS_BLKID); 851 852 ASSERT(have_read ? 853 RW_READ_HELD(&dn->dn_struct_rwlock) : 854 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 855 856 /* 857 * if we have a read-lock, check to see if we need to do any work 858 * before upgrading to a write-lock. 859 */ 860 if (have_read) { 861 if (blkid <= dn->dn_maxblkid) 862 return; 863 864 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 865 rw_exit(&dn->dn_struct_rwlock); 866 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 867 } 868 } 869 870 if (blkid <= dn->dn_maxblkid) 871 goto out; 872 873 dn->dn_maxblkid = blkid; 874 875 /* 876 * Compute the number of levels necessary to support the new maxblkid. 877 */ 878 new_nlevels = 1; 879 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 880 for (sz = dn->dn_nblkptr; 881 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 882 new_nlevels++; 883 884 if (new_nlevels > dn->dn_nlevels) { 885 int old_nlevels = dn->dn_nlevels; 886 dmu_buf_impl_t *db; 887 list_t *list; 888 dbuf_dirty_record_t *new, *dr, *dr_next; 889 890 dn->dn_nlevels = new_nlevels; 891 892 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 893 dn->dn_next_nlevels[txgoff] = new_nlevels; 894 895 /* dirty the left indirects */ 896 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 897 new = dbuf_dirty(db, tx); 898 dbuf_rele(db, FTAG); 899 900 /* transfer the dirty records to the new indirect */ 901 mutex_enter(&dn->dn_mtx); 902 mutex_enter(&new->dt.di.dr_mtx); 903 list = &dn->dn_dirty_records[txgoff]; 904 for (dr = list_head(list); dr; dr = dr_next) { 905 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 906 if (dr->dr_dbuf->db_level != new_nlevels-1 && 907 dr->dr_dbuf->db_blkid != DB_BONUS_BLKID) { 908 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 909 list_remove(&dn->dn_dirty_records[txgoff], dr); 910 list_insert_tail(&new->dt.di.dr_children, dr); 911 dr->dr_parent = new; 912 } 913 } 914 mutex_exit(&new->dt.di.dr_mtx); 915 mutex_exit(&dn->dn_mtx); 916 } 917 918 out: 919 if (have_read) 920 rw_downgrade(&dn->dn_struct_rwlock); 921 } 922 923 void 924 dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx) 925 { 926 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK]; 927 avl_index_t where; 928 free_range_t *rp; 929 free_range_t rp_tofind; 930 uint64_t endblk = blkid + nblks; 931 932 ASSERT(MUTEX_HELD(&dn->dn_mtx)); 933 ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */ 934 935 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 936 blkid, nblks, tx->tx_txg); 937 rp_tofind.fr_blkid = blkid; 938 rp = avl_find(tree, &rp_tofind, &where); 939 if (rp == NULL) 940 rp = avl_nearest(tree, where, AVL_BEFORE); 941 if (rp == NULL) 942 rp = avl_nearest(tree, where, AVL_AFTER); 943 944 while (rp && (rp->fr_blkid <= blkid + nblks)) { 945 uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks; 946 free_range_t *nrp = AVL_NEXT(tree, rp); 947 948 if (blkid <= rp->fr_blkid && endblk >= fr_endblk) { 949 /* clear this entire range */ 950 avl_remove(tree, rp); 951 kmem_free(rp, sizeof (free_range_t)); 952 } else if (blkid <= rp->fr_blkid && 953 endblk > rp->fr_blkid && endblk < fr_endblk) { 954 /* clear the beginning of this range */ 955 rp->fr_blkid = endblk; 956 rp->fr_nblks = fr_endblk - endblk; 957 } else if (blkid > rp->fr_blkid && blkid < fr_endblk && 958 endblk >= fr_endblk) { 959 /* clear the end of this range */ 960 rp->fr_nblks = blkid - rp->fr_blkid; 961 } else if (blkid > rp->fr_blkid && endblk < fr_endblk) { 962 /* clear a chunk out of this range */ 963 free_range_t *new_rp = 964 kmem_alloc(sizeof (free_range_t), KM_SLEEP); 965 966 new_rp->fr_blkid = endblk; 967 new_rp->fr_nblks = fr_endblk - endblk; 968 avl_insert_here(tree, new_rp, rp, AVL_AFTER); 969 rp->fr_nblks = blkid - rp->fr_blkid; 970 } 971 /* there may be no overlap */ 972 rp = nrp; 973 } 974 } 975 976 void 977 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 978 { 979 dmu_buf_impl_t *db; 980 uint64_t blkoff, blkid, nblks; 981 int blksz, blkshift, head, tail; 982 int trunc = FALSE; 983 int epbs; 984 985 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 986 blksz = dn->dn_datablksz; 987 blkshift = dn->dn_datablkshift; 988 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 989 990 if (len == -1ULL) { 991 len = UINT64_MAX - off; 992 trunc = TRUE; 993 } 994 995 /* 996 * First, block align the region to free: 997 */ 998 if (ISP2(blksz)) { 999 head = P2NPHASE(off, blksz); 1000 blkoff = P2PHASE(off, blksz); 1001 if ((off >> blkshift) > dn->dn_maxblkid) 1002 goto out; 1003 } else { 1004 ASSERT(dn->dn_maxblkid == 0); 1005 if (off == 0 && len >= blksz) { 1006 /* Freeing the whole block; fast-track this request */ 1007 blkid = 0; 1008 nblks = 1; 1009 goto done; 1010 } else if (off >= blksz) { 1011 /* Freeing past end-of-data */ 1012 goto out; 1013 } else { 1014 /* Freeing part of the block. */ 1015 head = blksz - off; 1016 ASSERT3U(head, >, 0); 1017 } 1018 blkoff = off; 1019 } 1020 /* zero out any partial block data at the start of the range */ 1021 if (head) { 1022 ASSERT3U(blkoff + head, ==, blksz); 1023 if (len < head) 1024 head = len; 1025 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE, 1026 FTAG, &db) == 0) { 1027 caddr_t data; 1028 1029 /* don't dirty if it isn't on disk and isn't dirty */ 1030 if (db->db_last_dirty || 1031 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1032 rw_exit(&dn->dn_struct_rwlock); 1033 dbuf_will_dirty(db, tx); 1034 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1035 data = db->db.db_data; 1036 bzero(data + blkoff, head); 1037 } 1038 dbuf_rele(db, FTAG); 1039 } 1040 off += head; 1041 len -= head; 1042 } 1043 1044 /* If the range was less than one block, we're done */ 1045 if (len == 0) 1046 goto out; 1047 1048 /* If the remaining range is past end of file, we're done */ 1049 if ((off >> blkshift) > dn->dn_maxblkid) 1050 goto out; 1051 1052 ASSERT(ISP2(blksz)); 1053 if (trunc) 1054 tail = 0; 1055 else 1056 tail = P2PHASE(len, blksz); 1057 1058 ASSERT3U(P2PHASE(off, blksz), ==, 0); 1059 /* zero out any partial block data at the end of the range */ 1060 if (tail) { 1061 if (len < tail) 1062 tail = len; 1063 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len), 1064 TRUE, FTAG, &db) == 0) { 1065 /* don't dirty if not on disk and not dirty */ 1066 if (db->db_last_dirty || 1067 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1068 rw_exit(&dn->dn_struct_rwlock); 1069 dbuf_will_dirty(db, tx); 1070 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1071 bzero(db->db.db_data, tail); 1072 } 1073 dbuf_rele(db, FTAG); 1074 } 1075 len -= tail; 1076 } 1077 1078 /* If the range did not include a full block, we are done */ 1079 if (len == 0) 1080 goto out; 1081 1082 ASSERT(IS_P2ALIGNED(off, blksz)); 1083 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 1084 blkid = off >> blkshift; 1085 nblks = len >> blkshift; 1086 if (trunc) 1087 nblks += 1; 1088 1089 /* 1090 * Read in and mark all the level-1 indirects dirty, 1091 * so that they will stay in memory until syncing phase. 1092 * Always dirty the first and last indirect to make sure 1093 * we dirty all the partial indirects. 1094 */ 1095 if (dn->dn_nlevels > 1) { 1096 uint64_t i, first, last; 1097 int shift = epbs + dn->dn_datablkshift; 1098 1099 first = blkid >> epbs; 1100 if (db = dbuf_hold_level(dn, 1, first, FTAG)) { 1101 dbuf_will_dirty(db, tx); 1102 dbuf_rele(db, FTAG); 1103 } 1104 if (trunc) 1105 last = dn->dn_maxblkid >> epbs; 1106 else 1107 last = (blkid + nblks - 1) >> epbs; 1108 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) { 1109 dbuf_will_dirty(db, tx); 1110 dbuf_rele(db, FTAG); 1111 } 1112 for (i = first + 1; i < last; i++) { 1113 uint64_t ibyte = i << shift; 1114 int err; 1115 1116 err = dnode_next_offset(dn, 1117 DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0); 1118 i = ibyte >> shift; 1119 if (err == ESRCH || i >= last) 1120 break; 1121 ASSERT(err == 0); 1122 db = dbuf_hold_level(dn, 1, i, FTAG); 1123 if (db) { 1124 dbuf_will_dirty(db, tx); 1125 dbuf_rele(db, FTAG); 1126 } 1127 } 1128 } 1129 done: 1130 /* 1131 * Add this range to the dnode range list. 1132 * We will finish up this free operation in the syncing phase. 1133 */ 1134 mutex_enter(&dn->dn_mtx); 1135 dnode_clear_range(dn, blkid, nblks, tx); 1136 { 1137 free_range_t *rp, *found; 1138 avl_index_t where; 1139 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK]; 1140 1141 /* Add new range to dn_ranges */ 1142 rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP); 1143 rp->fr_blkid = blkid; 1144 rp->fr_nblks = nblks; 1145 found = avl_find(tree, rp, &where); 1146 ASSERT(found == NULL); 1147 avl_insert(tree, rp, where); 1148 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 1149 blkid, nblks, tx->tx_txg); 1150 } 1151 mutex_exit(&dn->dn_mtx); 1152 1153 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 1154 dnode_setdirty(dn, tx); 1155 out: 1156 if (trunc && dn->dn_maxblkid >= (off >> blkshift)) 1157 dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0); 1158 1159 rw_exit(&dn->dn_struct_rwlock); 1160 } 1161 1162 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 1163 uint64_t 1164 dnode_block_freed(dnode_t *dn, uint64_t blkid) 1165 { 1166 free_range_t range_tofind; 1167 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 1168 int i; 1169 1170 if (blkid == DB_BONUS_BLKID) 1171 return (FALSE); 1172 1173 /* 1174 * If we're in the process of opening the pool, dp will not be 1175 * set yet, but there shouldn't be anything dirty. 1176 */ 1177 if (dp == NULL) 1178 return (FALSE); 1179 1180 if (dn->dn_free_txg) 1181 return (TRUE); 1182 1183 /* 1184 * If dn_datablkshift is not set, then there's only a single 1185 * block, in which case there will never be a free range so it 1186 * won't matter. 1187 */ 1188 range_tofind.fr_blkid = blkid; 1189 mutex_enter(&dn->dn_mtx); 1190 for (i = 0; i < TXG_SIZE; i++) { 1191 free_range_t *range_found; 1192 avl_index_t idx; 1193 1194 range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx); 1195 if (range_found) { 1196 ASSERT(range_found->fr_nblks > 0); 1197 break; 1198 } 1199 range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE); 1200 if (range_found && 1201 range_found->fr_blkid + range_found->fr_nblks > blkid) 1202 break; 1203 } 1204 mutex_exit(&dn->dn_mtx); 1205 return (i < TXG_SIZE); 1206 } 1207 1208 /* call from syncing context when we actually write/free space for this dnode */ 1209 void 1210 dnode_diduse_space(dnode_t *dn, int64_t delta) 1211 { 1212 uint64_t space; 1213 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 1214 dn, dn->dn_phys, 1215 (u_longlong_t)dn->dn_phys->dn_used, 1216 (longlong_t)delta); 1217 1218 mutex_enter(&dn->dn_mtx); 1219 space = DN_USED_BYTES(dn->dn_phys); 1220 if (delta > 0) { 1221 ASSERT3U(space + delta, >=, space); /* no overflow */ 1222 } else { 1223 ASSERT3U(space, >=, -delta); /* no underflow */ 1224 } 1225 space += delta; 1226 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 1227 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 1228 ASSERT3U(P2PHASE(space, 1<<DEV_BSHIFT), ==, 0); 1229 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 1230 } else { 1231 dn->dn_phys->dn_used = space; 1232 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 1233 } 1234 mutex_exit(&dn->dn_mtx); 1235 } 1236 1237 /* 1238 * Call when we think we're going to write/free space in open context. 1239 * Be conservative (ie. OK to write less than this or free more than 1240 * this, but don't write more or free less). 1241 */ 1242 void 1243 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx) 1244 { 1245 objset_impl_t *os = dn->dn_objset; 1246 dsl_dataset_t *ds = os->os_dsl_dataset; 1247 1248 if (space > 0) 1249 space = spa_get_asize(os->os_spa, space); 1250 1251 if (ds) 1252 dsl_dir_willuse_space(ds->ds_dir, space, tx); 1253 1254 dmu_tx_willuse_space(tx, space); 1255 } 1256 1257 static int 1258 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 1259 int lvl, uint64_t blkfill, uint64_t txg) 1260 { 1261 dmu_buf_impl_t *db = NULL; 1262 void *data = NULL; 1263 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 1264 uint64_t epb = 1ULL << epbs; 1265 uint64_t minfill, maxfill; 1266 boolean_t hole; 1267 int i, inc, error, span; 1268 1269 dprintf("probing object %llu offset %llx level %d of %u\n", 1270 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 1271 1272 hole = flags & DNODE_FIND_HOLE; 1273 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 1274 ASSERT(txg == 0 || !hole); 1275 1276 if (lvl == dn->dn_phys->dn_nlevels) { 1277 error = 0; 1278 epb = dn->dn_phys->dn_nblkptr; 1279 data = dn->dn_phys->dn_blkptr; 1280 } else { 1281 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl); 1282 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db); 1283 if (error) { 1284 if (error != ENOENT) 1285 return (error); 1286 if (hole) 1287 return (0); 1288 /* 1289 * This can only happen when we are searching up 1290 * the block tree for data. We don't really need to 1291 * adjust the offset, as we will just end up looking 1292 * at the pointer to this block in its parent, and its 1293 * going to be unallocated, so we will skip over it. 1294 */ 1295 return (ESRCH); 1296 } 1297 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT); 1298 if (error) { 1299 dbuf_rele(db, FTAG); 1300 return (error); 1301 } 1302 data = db->db.db_data; 1303 } 1304 1305 if (db && txg && 1306 (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) { 1307 /* 1308 * This can only happen when we are searching up the tree 1309 * and these conditions mean that we need to keep climbing. 1310 */ 1311 error = ESRCH; 1312 } else if (lvl == 0) { 1313 dnode_phys_t *dnp = data; 1314 span = DNODE_SHIFT; 1315 ASSERT(dn->dn_type == DMU_OT_DNODE); 1316 1317 for (i = (*offset >> span) & (blkfill - 1); 1318 i >= 0 && i < blkfill; i += inc) { 1319 boolean_t newcontents = B_TRUE; 1320 if (txg) { 1321 int j; 1322 newcontents = B_FALSE; 1323 for (j = 0; j < dnp[i].dn_nblkptr; j++) { 1324 if (dnp[i].dn_blkptr[j].blk_birth > txg) 1325 newcontents = B_TRUE; 1326 } 1327 } 1328 if (!dnp[i].dn_type == hole && newcontents) 1329 break; 1330 *offset += (1ULL << span) * inc; 1331 } 1332 if (i < 0 || i == blkfill) 1333 error = ESRCH; 1334 } else { 1335 blkptr_t *bp = data; 1336 span = (lvl - 1) * epbs + dn->dn_datablkshift; 1337 minfill = 0; 1338 maxfill = blkfill << ((lvl - 1) * epbs); 1339 1340 if (hole) 1341 maxfill--; 1342 else 1343 minfill++; 1344 1345 for (i = (*offset >> span) & ((1ULL << epbs) - 1); 1346 i >= 0 && i < epb; i += inc) { 1347 if (bp[i].blk_fill >= minfill && 1348 bp[i].blk_fill <= maxfill && 1349 (hole || bp[i].blk_birth > txg)) 1350 break; 1351 if (inc < 0 && *offset < (1ULL << span)) 1352 *offset = 0; 1353 else 1354 *offset += (1ULL << span) * inc; 1355 } 1356 if (i < 0 || i == epb) 1357 error = ESRCH; 1358 } 1359 1360 if (db) 1361 dbuf_rele(db, FTAG); 1362 1363 return (error); 1364 } 1365 1366 /* 1367 * Find the next hole, data, or sparse region at or after *offset. 1368 * The value 'blkfill' tells us how many items we expect to find 1369 * in an L0 data block; this value is 1 for normal objects, 1370 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 1371 * DNODES_PER_BLOCK when searching for sparse regions thereof. 1372 * 1373 * Examples: 1374 * 1375 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 1376 * Finds the next/previous hole/data in a file. 1377 * Used in dmu_offset_next(). 1378 * 1379 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 1380 * Finds the next free/allocated dnode an objset's meta-dnode. 1381 * Only finds objects that have new contents since txg (ie. 1382 * bonus buffer changes and content removal are ignored). 1383 * Used in dmu_object_next(). 1384 * 1385 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 1386 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 1387 * Used in dmu_object_alloc(). 1388 */ 1389 int 1390 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 1391 int minlvl, uint64_t blkfill, uint64_t txg) 1392 { 1393 uint64_t initial_offset = *offset; 1394 int lvl, maxlvl; 1395 int error = 0; 1396 1397 if (!(flags & DNODE_FIND_HAVELOCK)) 1398 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1399 1400 if (dn->dn_phys->dn_nlevels == 0) { 1401 error = ESRCH; 1402 goto out; 1403 } 1404 1405 if (dn->dn_datablkshift == 0) { 1406 if (*offset < dn->dn_datablksz) { 1407 if (flags & DNODE_FIND_HOLE) 1408 *offset = dn->dn_datablksz; 1409 } else { 1410 error = ESRCH; 1411 } 1412 goto out; 1413 } 1414 1415 maxlvl = dn->dn_phys->dn_nlevels; 1416 1417 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 1418 error = dnode_next_offset_level(dn, 1419 flags, offset, lvl, blkfill, txg); 1420 if (error != ESRCH) 1421 break; 1422 } 1423 1424 while (error == 0 && --lvl >= minlvl) { 1425 error = dnode_next_offset_level(dn, 1426 flags, offset, lvl, blkfill, txg); 1427 } 1428 1429 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 1430 initial_offset < *offset : initial_offset > *offset)) 1431 error = ESRCH; 1432 out: 1433 if (!(flags & DNODE_FIND_HAVELOCK)) 1434 rw_exit(&dn->dn_struct_rwlock); 1435 1436 return (error); 1437 } 1438