1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/zfs_context.h> 26 #include <sys/dbuf.h> 27 #include <sys/dnode.h> 28 #include <sys/dmu.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dsl_dir.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/spa.h> 35 #include <sys/zio.h> 36 #include <sys/dmu_zfetch.h> 37 38 static int free_range_compar(const void *node1, const void *node2); 39 40 static kmem_cache_t *dnode_cache; 41 42 static dnode_phys_t dnode_phys_zero; 43 44 int zfs_default_bs = SPA_MINBLOCKSHIFT; 45 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 46 47 /* ARGSUSED */ 48 static int 49 dnode_cons(void *arg, void *unused, int kmflag) 50 { 51 int i; 52 dnode_t *dn = arg; 53 bzero(dn, sizeof (dnode_t)); 54 55 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 56 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 57 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 58 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 59 60 refcount_create(&dn->dn_holds); 61 refcount_create(&dn->dn_tx_holds); 62 63 for (i = 0; i < TXG_SIZE; i++) { 64 avl_create(&dn->dn_ranges[i], free_range_compar, 65 sizeof (free_range_t), 66 offsetof(struct free_range, fr_node)); 67 list_create(&dn->dn_dirty_records[i], 68 sizeof (dbuf_dirty_record_t), 69 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 70 } 71 72 list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t), 73 offsetof(dmu_buf_impl_t, db_link)); 74 75 return (0); 76 } 77 78 /* ARGSUSED */ 79 static void 80 dnode_dest(void *arg, void *unused) 81 { 82 int i; 83 dnode_t *dn = arg; 84 85 rw_destroy(&dn->dn_struct_rwlock); 86 mutex_destroy(&dn->dn_mtx); 87 mutex_destroy(&dn->dn_dbufs_mtx); 88 cv_destroy(&dn->dn_notxholds); 89 refcount_destroy(&dn->dn_holds); 90 refcount_destroy(&dn->dn_tx_holds); 91 92 for (i = 0; i < TXG_SIZE; i++) { 93 avl_destroy(&dn->dn_ranges[i]); 94 list_destroy(&dn->dn_dirty_records[i]); 95 } 96 97 list_destroy(&dn->dn_dbufs); 98 } 99 100 void 101 dnode_init(void) 102 { 103 dnode_cache = kmem_cache_create("dnode_t", 104 sizeof (dnode_t), 105 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 106 } 107 108 void 109 dnode_fini(void) 110 { 111 kmem_cache_destroy(dnode_cache); 112 } 113 114 115 #ifdef ZFS_DEBUG 116 void 117 dnode_verify(dnode_t *dn) 118 { 119 int drop_struct_lock = FALSE; 120 121 ASSERT(dn->dn_phys); 122 ASSERT(dn->dn_objset); 123 124 ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES); 125 126 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 127 return; 128 129 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 130 rw_enter(&dn->dn_struct_rwlock, RW_READER); 131 drop_struct_lock = TRUE; 132 } 133 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 134 int i; 135 ASSERT3U(dn->dn_indblkshift, >=, 0); 136 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 137 if (dn->dn_datablkshift) { 138 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 139 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 140 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 141 } 142 ASSERT3U(dn->dn_nlevels, <=, 30); 143 ASSERT3U(dn->dn_type, <=, DMU_OT_NUMTYPES); 144 ASSERT3U(dn->dn_nblkptr, >=, 1); 145 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 146 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 147 ASSERT3U(dn->dn_datablksz, ==, 148 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 149 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 150 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 151 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 152 for (i = 0; i < TXG_SIZE; i++) { 153 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 154 } 155 } 156 if (dn->dn_phys->dn_type != DMU_OT_NONE) 157 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 158 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 159 if (dn->dn_dbuf != NULL) { 160 ASSERT3P(dn->dn_phys, ==, 161 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 162 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 163 } 164 if (drop_struct_lock) 165 rw_exit(&dn->dn_struct_rwlock); 166 } 167 #endif 168 169 void 170 dnode_byteswap(dnode_phys_t *dnp) 171 { 172 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 173 int i; 174 175 if (dnp->dn_type == DMU_OT_NONE) { 176 bzero(dnp, sizeof (dnode_phys_t)); 177 return; 178 } 179 180 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 181 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 182 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 183 dnp->dn_used = BSWAP_64(dnp->dn_used); 184 185 /* 186 * dn_nblkptr is only one byte, so it's OK to read it in either 187 * byte order. We can't read dn_bouslen. 188 */ 189 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 190 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 191 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 192 buf64[i] = BSWAP_64(buf64[i]); 193 194 /* 195 * OK to check dn_bonuslen for zero, because it won't matter if 196 * we have the wrong byte order. This is necessary because the 197 * dnode dnode is smaller than a regular dnode. 198 */ 199 if (dnp->dn_bonuslen != 0) { 200 /* 201 * Note that the bonus length calculated here may be 202 * longer than the actual bonus buffer. This is because 203 * we always put the bonus buffer after the last block 204 * pointer (instead of packing it against the end of the 205 * dnode buffer). 206 */ 207 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 208 size_t len = DN_MAX_BONUSLEN - off; 209 ASSERT3U(dnp->dn_bonustype, <, DMU_OT_NUMTYPES); 210 dmu_ot[dnp->dn_bonustype].ot_byteswap(dnp->dn_bonus + off, len); 211 } 212 213 /* Swap SPILL block if we have one */ 214 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 215 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t)); 216 217 } 218 219 void 220 dnode_buf_byteswap(void *vbuf, size_t size) 221 { 222 dnode_phys_t *buf = vbuf; 223 int i; 224 225 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 226 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 227 228 size >>= DNODE_SHIFT; 229 for (i = 0; i < size; i++) { 230 dnode_byteswap(buf); 231 buf++; 232 } 233 } 234 235 static int 236 free_range_compar(const void *node1, const void *node2) 237 { 238 const free_range_t *rp1 = node1; 239 const free_range_t *rp2 = node2; 240 241 if (rp1->fr_blkid < rp2->fr_blkid) 242 return (-1); 243 else if (rp1->fr_blkid > rp2->fr_blkid) 244 return (1); 245 else return (0); 246 } 247 248 void 249 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 250 { 251 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 252 253 dnode_setdirty(dn, tx); 254 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 255 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN - 256 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 257 dn->dn_bonuslen = newsize; 258 if (newsize == 0) 259 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 260 else 261 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 262 rw_exit(&dn->dn_struct_rwlock); 263 } 264 265 void 266 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 267 { 268 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 269 dnode_setdirty(dn, tx); 270 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 271 dn->dn_bonustype = newtype; 272 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 273 rw_exit(&dn->dn_struct_rwlock); 274 } 275 276 void 277 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 278 { 279 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 280 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 281 dnode_setdirty(dn, tx); 282 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 283 dn->dn_have_spill = B_FALSE; 284 } 285 286 static void 287 dnode_setdblksz(dnode_t *dn, int size) 288 { 289 ASSERT3U(P2PHASE(size, SPA_MINBLOCKSIZE), ==, 0); 290 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 291 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 292 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 293 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 294 dn->dn_datablksz = size; 295 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 296 dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0; 297 } 298 299 static dnode_t * 300 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 301 uint64_t object) 302 { 303 dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 304 (void) dnode_cons(dn, NULL, 0); /* XXX */ 305 306 dn->dn_objset = os; 307 dn->dn_object = object; 308 dn->dn_dbuf = db; 309 dn->dn_phys = dnp; 310 311 if (dnp->dn_datablkszsec) 312 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 313 dn->dn_indblkshift = dnp->dn_indblkshift; 314 dn->dn_nlevels = dnp->dn_nlevels; 315 dn->dn_type = dnp->dn_type; 316 dn->dn_nblkptr = dnp->dn_nblkptr; 317 dn->dn_checksum = dnp->dn_checksum; 318 dn->dn_compress = dnp->dn_compress; 319 dn->dn_bonustype = dnp->dn_bonustype; 320 dn->dn_bonuslen = dnp->dn_bonuslen; 321 dn->dn_maxblkid = dnp->dn_maxblkid; 322 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 323 dn->dn_id_flags = 0; 324 325 dmu_zfetch_init(&dn->dn_zfetch, dn); 326 327 ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES); 328 mutex_enter(&os->os_lock); 329 list_insert_head(&os->os_dnodes, dn); 330 mutex_exit(&os->os_lock); 331 332 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 333 return (dn); 334 } 335 336 static void 337 dnode_destroy(dnode_t *dn) 338 { 339 objset_t *os = dn->dn_objset; 340 341 #ifdef ZFS_DEBUG 342 int i; 343 344 for (i = 0; i < TXG_SIZE; i++) { 345 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 346 ASSERT(NULL == list_head(&dn->dn_dirty_records[i])); 347 ASSERT(0 == avl_numnodes(&dn->dn_ranges[i])); 348 } 349 ASSERT(NULL == list_head(&dn->dn_dbufs)); 350 #endif 351 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 352 353 mutex_enter(&os->os_lock); 354 list_remove(&os->os_dnodes, dn); 355 mutex_exit(&os->os_lock); 356 357 if (dn->dn_dirtyctx_firstset) { 358 kmem_free(dn->dn_dirtyctx_firstset, 1); 359 dn->dn_dirtyctx_firstset = NULL; 360 } 361 dmu_zfetch_rele(&dn->dn_zfetch); 362 if (dn->dn_bonus) { 363 mutex_enter(&dn->dn_bonus->db_mtx); 364 dbuf_evict(dn->dn_bonus); 365 dn->dn_bonus = NULL; 366 } 367 kmem_cache_free(dnode_cache, dn); 368 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 369 } 370 371 void 372 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 373 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 374 { 375 int i; 376 377 if (blocksize == 0) 378 blocksize = 1 << zfs_default_bs; 379 else if (blocksize > SPA_MAXBLOCKSIZE) 380 blocksize = SPA_MAXBLOCKSIZE; 381 else 382 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 383 384 if (ibs == 0) 385 ibs = zfs_default_ibs; 386 387 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 388 389 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset, 390 dn->dn_object, tx->tx_txg, blocksize, ibs); 391 392 ASSERT(dn->dn_type == DMU_OT_NONE); 393 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 394 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 395 ASSERT(ot != DMU_OT_NONE); 396 ASSERT3U(ot, <, DMU_OT_NUMTYPES); 397 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 398 (bonustype == DMU_OT_SA && bonuslen == 0) || 399 (bonustype != DMU_OT_NONE && bonuslen != 0)); 400 ASSERT3U(bonustype, <, DMU_OT_NUMTYPES); 401 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 402 ASSERT(dn->dn_type == DMU_OT_NONE); 403 ASSERT3U(dn->dn_maxblkid, ==, 0); 404 ASSERT3U(dn->dn_allocated_txg, ==, 0); 405 ASSERT3U(dn->dn_assigned_txg, ==, 0); 406 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 407 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1); 408 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL); 409 410 for (i = 0; i < TXG_SIZE; i++) { 411 ASSERT3U(dn->dn_next_nlevels[i], ==, 0); 412 ASSERT3U(dn->dn_next_indblkshift[i], ==, 0); 413 ASSERT3U(dn->dn_next_bonuslen[i], ==, 0); 414 ASSERT3U(dn->dn_next_bonustype[i], ==, 0); 415 ASSERT3U(dn->dn_rm_spillblk[i], ==, 0); 416 ASSERT3U(dn->dn_next_blksz[i], ==, 0); 417 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 418 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 419 ASSERT3U(avl_numnodes(&dn->dn_ranges[i]), ==, 0); 420 } 421 422 dn->dn_type = ot; 423 dnode_setdblksz(dn, blocksize); 424 dn->dn_indblkshift = ibs; 425 dn->dn_nlevels = 1; 426 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 427 dn->dn_nblkptr = 1; 428 else 429 dn->dn_nblkptr = 1 + 430 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 431 dn->dn_bonustype = bonustype; 432 dn->dn_bonuslen = bonuslen; 433 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 434 dn->dn_compress = ZIO_COMPRESS_INHERIT; 435 dn->dn_dirtyctx = 0; 436 437 dn->dn_free_txg = 0; 438 if (dn->dn_dirtyctx_firstset) { 439 kmem_free(dn->dn_dirtyctx_firstset, 1); 440 dn->dn_dirtyctx_firstset = NULL; 441 } 442 443 dn->dn_allocated_txg = tx->tx_txg; 444 dn->dn_id_flags = 0; 445 446 dnode_setdirty(dn, tx); 447 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 448 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 449 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 450 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 451 } 452 453 void 454 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 455 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 456 { 457 int nblkptr; 458 459 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 460 ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE); 461 ASSERT3U(blocksize % SPA_MINBLOCKSIZE, ==, 0); 462 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 463 ASSERT(tx->tx_txg != 0); 464 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 465 (bonustype != DMU_OT_NONE && bonuslen != 0) || 466 (bonustype == DMU_OT_SA && bonuslen == 0)); 467 ASSERT3U(bonustype, <, DMU_OT_NUMTYPES); 468 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 469 470 /* clean up any unreferenced dbufs */ 471 dnode_evict_dbufs(dn); 472 473 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 474 dnode_setdirty(dn, tx); 475 if (dn->dn_datablksz != blocksize) { 476 /* change blocksize */ 477 ASSERT(dn->dn_maxblkid == 0 && 478 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 479 dnode_block_freed(dn, 0))); 480 dnode_setdblksz(dn, blocksize); 481 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 482 } 483 if (dn->dn_bonuslen != bonuslen) 484 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 485 486 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 487 nblkptr = 1; 488 else 489 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 490 if (dn->dn_bonustype != bonustype) 491 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 492 if (dn->dn_nblkptr != nblkptr) 493 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 494 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 495 dbuf_rm_spill(dn, tx); 496 dnode_rm_spill(dn, tx); 497 } 498 rw_exit(&dn->dn_struct_rwlock); 499 500 /* change type */ 501 dn->dn_type = ot; 502 503 /* change bonus size and type */ 504 mutex_enter(&dn->dn_mtx); 505 dn->dn_bonustype = bonustype; 506 dn->dn_bonuslen = bonuslen; 507 dn->dn_nblkptr = nblkptr; 508 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 509 dn->dn_compress = ZIO_COMPRESS_INHERIT; 510 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 511 512 /* fix up the bonus db_size */ 513 if (dn->dn_bonus) { 514 dn->dn_bonus->db.db_size = 515 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t); 516 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 517 } 518 519 dn->dn_allocated_txg = tx->tx_txg; 520 mutex_exit(&dn->dn_mtx); 521 } 522 523 void 524 dnode_special_close(dnode_t *dn) 525 { 526 /* 527 * Wait for final references to the dnode to clear. This can 528 * only happen if the arc is asyncronously evicting state that 529 * has a hold on this dnode while we are trying to evict this 530 * dnode. 531 */ 532 while (refcount_count(&dn->dn_holds) > 0) 533 delay(1); 534 dnode_destroy(dn); 535 } 536 537 dnode_t * 538 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object) 539 { 540 dnode_t *dn = dnode_create(os, dnp, NULL, object); 541 DNODE_VERIFY(dn); 542 return (dn); 543 } 544 545 static void 546 dnode_buf_pageout(dmu_buf_t *db, void *arg) 547 { 548 dnode_t **children_dnodes = arg; 549 int i; 550 int epb = db->db_size >> DNODE_SHIFT; 551 552 for (i = 0; i < epb; i++) { 553 dnode_t *dn = children_dnodes[i]; 554 int n; 555 556 if (dn == NULL) 557 continue; 558 #ifdef ZFS_DEBUG 559 /* 560 * If there are holds on this dnode, then there should 561 * be holds on the dnode's containing dbuf as well; thus 562 * it wouldn't be eligable for eviction and this function 563 * would not have been called. 564 */ 565 ASSERT(refcount_is_zero(&dn->dn_holds)); 566 ASSERT(list_head(&dn->dn_dbufs) == NULL); 567 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 568 569 for (n = 0; n < TXG_SIZE; n++) 570 ASSERT(!list_link_active(&dn->dn_dirty_link[n])); 571 #endif 572 children_dnodes[i] = NULL; 573 dnode_destroy(dn); 574 } 575 kmem_free(children_dnodes, epb * sizeof (dnode_t *)); 576 } 577 578 /* 579 * errors: 580 * EINVAL - invalid object number. 581 * EIO - i/o error. 582 * succeeds even for free dnodes. 583 */ 584 int 585 dnode_hold_impl(objset_t *os, uint64_t object, int flag, 586 void *tag, dnode_t **dnp) 587 { 588 int epb, idx, err; 589 int drop_struct_lock = FALSE; 590 int type; 591 uint64_t blk; 592 dnode_t *mdn, *dn; 593 dmu_buf_impl_t *db; 594 dnode_t **children_dnodes; 595 596 /* 597 * If you are holding the spa config lock as writer, you shouldn't 598 * be asking the DMU to do *anything* unless it's the root pool 599 * which may require us to read from the root filesystem while 600 * holding some (not all) of the locks as writer. 601 */ 602 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 603 (spa_is_root(os->os_spa) && 604 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER) && 605 !spa_config_held(os->os_spa, SCL_ZIO, RW_WRITER))); 606 607 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) { 608 dn = (object == DMU_USERUSED_OBJECT) ? 609 os->os_userused_dnode : os->os_groupused_dnode; 610 if (dn == NULL) 611 return (ENOENT); 612 type = dn->dn_type; 613 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 614 return (ENOENT); 615 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 616 return (EEXIST); 617 DNODE_VERIFY(dn); 618 (void) refcount_add(&dn->dn_holds, tag); 619 *dnp = dn; 620 return (0); 621 } 622 623 if (object == 0 || object >= DN_MAX_OBJECT) 624 return (EINVAL); 625 626 mdn = os->os_meta_dnode; 627 628 DNODE_VERIFY(mdn); 629 630 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 631 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 632 drop_struct_lock = TRUE; 633 } 634 635 blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t)); 636 637 db = dbuf_hold(mdn, blk, FTAG); 638 if (drop_struct_lock) 639 rw_exit(&mdn->dn_struct_rwlock); 640 if (db == NULL) 641 return (EIO); 642 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 643 if (err) { 644 dbuf_rele(db, FTAG); 645 return (err); 646 } 647 648 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 649 epb = db->db.db_size >> DNODE_SHIFT; 650 651 idx = object & (epb-1); 652 653 children_dnodes = dmu_buf_get_user(&db->db); 654 if (children_dnodes == NULL) { 655 dnode_t **winner; 656 children_dnodes = kmem_zalloc(epb * sizeof (dnode_t *), 657 KM_SLEEP); 658 if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL, 659 dnode_buf_pageout)) { 660 kmem_free(children_dnodes, epb * sizeof (dnode_t *)); 661 children_dnodes = winner; 662 } 663 } 664 665 if ((dn = children_dnodes[idx]) == NULL) { 666 dnode_phys_t *dnp = (dnode_phys_t *)db->db.db_data+idx; 667 dnode_t *winner; 668 669 dn = dnode_create(os, dnp, db, object); 670 winner = atomic_cas_ptr(&children_dnodes[idx], NULL, dn); 671 if (winner != NULL) { 672 dnode_destroy(dn); 673 dn = winner; 674 } 675 } 676 677 mutex_enter(&dn->dn_mtx); 678 type = dn->dn_type; 679 if (dn->dn_free_txg || 680 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) || 681 ((flag & DNODE_MUST_BE_FREE) && 682 (type != DMU_OT_NONE || (dn->dn_id_flags & DN_ID_SYNC)))) { 683 mutex_exit(&dn->dn_mtx); 684 dbuf_rele(db, FTAG); 685 return (type == DMU_OT_NONE ? ENOENT : EEXIST); 686 } 687 if (flag & DNODE_MUST_BE_FREE) { 688 ASSERT(refcount_is_zero(&dn->dn_holds)); 689 ASSERT(!(dn->dn_id_flags & DN_ID_SYNC)); 690 } 691 mutex_exit(&dn->dn_mtx); 692 693 if (refcount_add(&dn->dn_holds, tag) == 1) 694 dbuf_add_ref(db, dn); 695 696 DNODE_VERIFY(dn); 697 ASSERT3P(dn->dn_dbuf, ==, db); 698 ASSERT3U(dn->dn_object, ==, object); 699 dbuf_rele(db, FTAG); 700 701 *dnp = dn; 702 return (0); 703 } 704 705 /* 706 * Return held dnode if the object is allocated, NULL if not. 707 */ 708 int 709 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 710 { 711 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp)); 712 } 713 714 /* 715 * Can only add a reference if there is already at least one 716 * reference on the dnode. Returns FALSE if unable to add a 717 * new reference. 718 */ 719 boolean_t 720 dnode_add_ref(dnode_t *dn, void *tag) 721 { 722 mutex_enter(&dn->dn_mtx); 723 if (refcount_is_zero(&dn->dn_holds)) { 724 mutex_exit(&dn->dn_mtx); 725 return (FALSE); 726 } 727 VERIFY(1 < refcount_add(&dn->dn_holds, tag)); 728 mutex_exit(&dn->dn_mtx); 729 return (TRUE); 730 } 731 732 void 733 dnode_rele(dnode_t *dn, void *tag) 734 { 735 uint64_t refs; 736 737 mutex_enter(&dn->dn_mtx); 738 refs = refcount_remove(&dn->dn_holds, tag); 739 mutex_exit(&dn->dn_mtx); 740 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 741 if (refs == 0 && dn->dn_dbuf) 742 dbuf_rele(dn->dn_dbuf, dn); 743 } 744 745 void 746 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 747 { 748 objset_t *os = dn->dn_objset; 749 uint64_t txg = tx->tx_txg; 750 751 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 752 dsl_dataset_dirty(os->os_dsl_dataset, tx); 753 return; 754 } 755 756 DNODE_VERIFY(dn); 757 758 #ifdef ZFS_DEBUG 759 mutex_enter(&dn->dn_mtx); 760 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 761 /* ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); */ 762 mutex_exit(&dn->dn_mtx); 763 #endif 764 765 /* 766 * Determine old uid/gid when necessary 767 */ 768 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 769 770 mutex_enter(&os->os_lock); 771 772 /* 773 * If we are already marked dirty, we're done. 774 */ 775 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 776 mutex_exit(&os->os_lock); 777 return; 778 } 779 780 ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs)); 781 ASSERT(dn->dn_datablksz != 0); 782 ASSERT3U(dn->dn_next_bonuslen[txg&TXG_MASK], ==, 0); 783 ASSERT3U(dn->dn_next_blksz[txg&TXG_MASK], ==, 0); 784 ASSERT3U(dn->dn_next_bonustype[txg&TXG_MASK], ==, 0); 785 786 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 787 dn->dn_object, txg); 788 789 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) { 790 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn); 791 } else { 792 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn); 793 } 794 795 mutex_exit(&os->os_lock); 796 797 /* 798 * The dnode maintains a hold on its containing dbuf as 799 * long as there are holds on it. Each instantiated child 800 * dbuf maintaines a hold on the dnode. When the last child 801 * drops its hold, the dnode will drop its hold on the 802 * containing dbuf. We add a "dirty hold" here so that the 803 * dnode will hang around after we finish processing its 804 * children. 805 */ 806 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 807 808 (void) dbuf_dirty(dn->dn_dbuf, tx); 809 810 dsl_dataset_dirty(os->os_dsl_dataset, tx); 811 } 812 813 void 814 dnode_free(dnode_t *dn, dmu_tx_t *tx) 815 { 816 int txgoff = tx->tx_txg & TXG_MASK; 817 818 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg); 819 820 /* we should be the only holder... hopefully */ 821 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */ 822 823 mutex_enter(&dn->dn_mtx); 824 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 825 mutex_exit(&dn->dn_mtx); 826 return; 827 } 828 dn->dn_free_txg = tx->tx_txg; 829 mutex_exit(&dn->dn_mtx); 830 831 /* 832 * If the dnode is already dirty, it needs to be moved from 833 * the dirty list to the free list. 834 */ 835 mutex_enter(&dn->dn_objset->os_lock); 836 if (list_link_active(&dn->dn_dirty_link[txgoff])) { 837 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn); 838 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn); 839 mutex_exit(&dn->dn_objset->os_lock); 840 } else { 841 mutex_exit(&dn->dn_objset->os_lock); 842 dnode_setdirty(dn, tx); 843 } 844 } 845 846 /* 847 * Try to change the block size for the indicated dnode. This can only 848 * succeed if there are no blocks allocated or dirty beyond first block 849 */ 850 int 851 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 852 { 853 dmu_buf_impl_t *db, *db_next; 854 int err; 855 856 if (size == 0) 857 size = SPA_MINBLOCKSIZE; 858 if (size > SPA_MAXBLOCKSIZE) 859 size = SPA_MAXBLOCKSIZE; 860 else 861 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 862 863 if (ibs == dn->dn_indblkshift) 864 ibs = 0; 865 866 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 867 return (0); 868 869 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 870 871 /* Check for any allocated blocks beyond the first */ 872 if (dn->dn_phys->dn_maxblkid != 0) 873 goto fail; 874 875 mutex_enter(&dn->dn_dbufs_mtx); 876 for (db = list_head(&dn->dn_dbufs); db; db = db_next) { 877 db_next = list_next(&dn->dn_dbufs, db); 878 879 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 880 db->db_blkid != DMU_SPILL_BLKID) { 881 mutex_exit(&dn->dn_dbufs_mtx); 882 goto fail; 883 } 884 } 885 mutex_exit(&dn->dn_dbufs_mtx); 886 887 if (ibs && dn->dn_nlevels != 1) 888 goto fail; 889 890 /* resize the old block */ 891 err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db); 892 if (err == 0) 893 dbuf_new_size(db, size, tx); 894 else if (err != ENOENT) 895 goto fail; 896 897 dnode_setdblksz(dn, size); 898 dnode_setdirty(dn, tx); 899 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 900 if (ibs) { 901 dn->dn_indblkshift = ibs; 902 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 903 } 904 /* rele after we have fixed the blocksize in the dnode */ 905 if (db) 906 dbuf_rele(db, FTAG); 907 908 rw_exit(&dn->dn_struct_rwlock); 909 return (0); 910 911 fail: 912 rw_exit(&dn->dn_struct_rwlock); 913 return (ENOTSUP); 914 } 915 916 /* read-holding callers must not rely on the lock being continuously held */ 917 void 918 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read) 919 { 920 uint64_t txgoff = tx->tx_txg & TXG_MASK; 921 int epbs, new_nlevels; 922 uint64_t sz; 923 924 ASSERT(blkid != DMU_BONUS_BLKID); 925 926 ASSERT(have_read ? 927 RW_READ_HELD(&dn->dn_struct_rwlock) : 928 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 929 930 /* 931 * if we have a read-lock, check to see if we need to do any work 932 * before upgrading to a write-lock. 933 */ 934 if (have_read) { 935 if (blkid <= dn->dn_maxblkid) 936 return; 937 938 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 939 rw_exit(&dn->dn_struct_rwlock); 940 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 941 } 942 } 943 944 if (blkid <= dn->dn_maxblkid) 945 goto out; 946 947 dn->dn_maxblkid = blkid; 948 949 /* 950 * Compute the number of levels necessary to support the new maxblkid. 951 */ 952 new_nlevels = 1; 953 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 954 for (sz = dn->dn_nblkptr; 955 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 956 new_nlevels++; 957 958 if (new_nlevels > dn->dn_nlevels) { 959 int old_nlevels = dn->dn_nlevels; 960 dmu_buf_impl_t *db; 961 list_t *list; 962 dbuf_dirty_record_t *new, *dr, *dr_next; 963 964 dn->dn_nlevels = new_nlevels; 965 966 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 967 dn->dn_next_nlevels[txgoff] = new_nlevels; 968 969 /* dirty the left indirects */ 970 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 971 new = dbuf_dirty(db, tx); 972 dbuf_rele(db, FTAG); 973 974 /* transfer the dirty records to the new indirect */ 975 mutex_enter(&dn->dn_mtx); 976 mutex_enter(&new->dt.di.dr_mtx); 977 list = &dn->dn_dirty_records[txgoff]; 978 for (dr = list_head(list); dr; dr = dr_next) { 979 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 980 if (dr->dr_dbuf->db_level != new_nlevels-1 && 981 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 982 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 983 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 984 list_remove(&dn->dn_dirty_records[txgoff], dr); 985 list_insert_tail(&new->dt.di.dr_children, dr); 986 dr->dr_parent = new; 987 } 988 } 989 mutex_exit(&new->dt.di.dr_mtx); 990 mutex_exit(&dn->dn_mtx); 991 } 992 993 out: 994 if (have_read) 995 rw_downgrade(&dn->dn_struct_rwlock); 996 } 997 998 void 999 dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx) 1000 { 1001 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK]; 1002 avl_index_t where; 1003 free_range_t *rp; 1004 free_range_t rp_tofind; 1005 uint64_t endblk = blkid + nblks; 1006 1007 ASSERT(MUTEX_HELD(&dn->dn_mtx)); 1008 ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */ 1009 1010 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 1011 blkid, nblks, tx->tx_txg); 1012 rp_tofind.fr_blkid = blkid; 1013 rp = avl_find(tree, &rp_tofind, &where); 1014 if (rp == NULL) 1015 rp = avl_nearest(tree, where, AVL_BEFORE); 1016 if (rp == NULL) 1017 rp = avl_nearest(tree, where, AVL_AFTER); 1018 1019 while (rp && (rp->fr_blkid <= blkid + nblks)) { 1020 uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks; 1021 free_range_t *nrp = AVL_NEXT(tree, rp); 1022 1023 if (blkid <= rp->fr_blkid && endblk >= fr_endblk) { 1024 /* clear this entire range */ 1025 avl_remove(tree, rp); 1026 kmem_free(rp, sizeof (free_range_t)); 1027 } else if (blkid <= rp->fr_blkid && 1028 endblk > rp->fr_blkid && endblk < fr_endblk) { 1029 /* clear the beginning of this range */ 1030 rp->fr_blkid = endblk; 1031 rp->fr_nblks = fr_endblk - endblk; 1032 } else if (blkid > rp->fr_blkid && blkid < fr_endblk && 1033 endblk >= fr_endblk) { 1034 /* clear the end of this range */ 1035 rp->fr_nblks = blkid - rp->fr_blkid; 1036 } else if (blkid > rp->fr_blkid && endblk < fr_endblk) { 1037 /* clear a chunk out of this range */ 1038 free_range_t *new_rp = 1039 kmem_alloc(sizeof (free_range_t), KM_SLEEP); 1040 1041 new_rp->fr_blkid = endblk; 1042 new_rp->fr_nblks = fr_endblk - endblk; 1043 avl_insert_here(tree, new_rp, rp, AVL_AFTER); 1044 rp->fr_nblks = blkid - rp->fr_blkid; 1045 } 1046 /* there may be no overlap */ 1047 rp = nrp; 1048 } 1049 } 1050 1051 void 1052 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 1053 { 1054 dmu_buf_impl_t *db; 1055 uint64_t blkoff, blkid, nblks; 1056 int blksz, blkshift, head, tail; 1057 int trunc = FALSE; 1058 int epbs; 1059 1060 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1061 blksz = dn->dn_datablksz; 1062 blkshift = dn->dn_datablkshift; 1063 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1064 1065 if (len == -1ULL) { 1066 len = UINT64_MAX - off; 1067 trunc = TRUE; 1068 } 1069 1070 /* 1071 * First, block align the region to free: 1072 */ 1073 if (ISP2(blksz)) { 1074 head = P2NPHASE(off, blksz); 1075 blkoff = P2PHASE(off, blksz); 1076 if ((off >> blkshift) > dn->dn_maxblkid) 1077 goto out; 1078 } else { 1079 ASSERT(dn->dn_maxblkid == 0); 1080 if (off == 0 && len >= blksz) { 1081 /* Freeing the whole block; fast-track this request */ 1082 blkid = 0; 1083 nblks = 1; 1084 goto done; 1085 } else if (off >= blksz) { 1086 /* Freeing past end-of-data */ 1087 goto out; 1088 } else { 1089 /* Freeing part of the block. */ 1090 head = blksz - off; 1091 ASSERT3U(head, >, 0); 1092 } 1093 blkoff = off; 1094 } 1095 /* zero out any partial block data at the start of the range */ 1096 if (head) { 1097 ASSERT3U(blkoff + head, ==, blksz); 1098 if (len < head) 1099 head = len; 1100 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE, 1101 FTAG, &db) == 0) { 1102 caddr_t data; 1103 1104 /* don't dirty if it isn't on disk and isn't dirty */ 1105 if (db->db_last_dirty || 1106 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1107 rw_exit(&dn->dn_struct_rwlock); 1108 dbuf_will_dirty(db, tx); 1109 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1110 data = db->db.db_data; 1111 bzero(data + blkoff, head); 1112 } 1113 dbuf_rele(db, FTAG); 1114 } 1115 off += head; 1116 len -= head; 1117 } 1118 1119 /* If the range was less than one block, we're done */ 1120 if (len == 0) 1121 goto out; 1122 1123 /* If the remaining range is past end of file, we're done */ 1124 if ((off >> blkshift) > dn->dn_maxblkid) 1125 goto out; 1126 1127 ASSERT(ISP2(blksz)); 1128 if (trunc) 1129 tail = 0; 1130 else 1131 tail = P2PHASE(len, blksz); 1132 1133 ASSERT3U(P2PHASE(off, blksz), ==, 0); 1134 /* zero out any partial block data at the end of the range */ 1135 if (tail) { 1136 if (len < tail) 1137 tail = len; 1138 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len), 1139 TRUE, FTAG, &db) == 0) { 1140 /* don't dirty if not on disk and not dirty */ 1141 if (db->db_last_dirty || 1142 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1143 rw_exit(&dn->dn_struct_rwlock); 1144 dbuf_will_dirty(db, tx); 1145 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1146 bzero(db->db.db_data, tail); 1147 } 1148 dbuf_rele(db, FTAG); 1149 } 1150 len -= tail; 1151 } 1152 1153 /* If the range did not include a full block, we are done */ 1154 if (len == 0) 1155 goto out; 1156 1157 ASSERT(IS_P2ALIGNED(off, blksz)); 1158 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 1159 blkid = off >> blkshift; 1160 nblks = len >> blkshift; 1161 if (trunc) 1162 nblks += 1; 1163 1164 /* 1165 * Read in and mark all the level-1 indirects dirty, 1166 * so that they will stay in memory until syncing phase. 1167 * Always dirty the first and last indirect to make sure 1168 * we dirty all the partial indirects. 1169 */ 1170 if (dn->dn_nlevels > 1) { 1171 uint64_t i, first, last; 1172 int shift = epbs + dn->dn_datablkshift; 1173 1174 first = blkid >> epbs; 1175 if (db = dbuf_hold_level(dn, 1, first, FTAG)) { 1176 dbuf_will_dirty(db, tx); 1177 dbuf_rele(db, FTAG); 1178 } 1179 if (trunc) 1180 last = dn->dn_maxblkid >> epbs; 1181 else 1182 last = (blkid + nblks - 1) >> epbs; 1183 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) { 1184 dbuf_will_dirty(db, tx); 1185 dbuf_rele(db, FTAG); 1186 } 1187 for (i = first + 1; i < last; i++) { 1188 uint64_t ibyte = i << shift; 1189 int err; 1190 1191 err = dnode_next_offset(dn, 1192 DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0); 1193 i = ibyte >> shift; 1194 if (err == ESRCH || i >= last) 1195 break; 1196 ASSERT(err == 0); 1197 db = dbuf_hold_level(dn, 1, i, FTAG); 1198 if (db) { 1199 dbuf_will_dirty(db, tx); 1200 dbuf_rele(db, FTAG); 1201 } 1202 } 1203 } 1204 done: 1205 /* 1206 * Add this range to the dnode range list. 1207 * We will finish up this free operation in the syncing phase. 1208 */ 1209 mutex_enter(&dn->dn_mtx); 1210 dnode_clear_range(dn, blkid, nblks, tx); 1211 { 1212 free_range_t *rp, *found; 1213 avl_index_t where; 1214 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK]; 1215 1216 /* Add new range to dn_ranges */ 1217 rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP); 1218 rp->fr_blkid = blkid; 1219 rp->fr_nblks = nblks; 1220 found = avl_find(tree, rp, &where); 1221 ASSERT(found == NULL); 1222 avl_insert(tree, rp, where); 1223 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 1224 blkid, nblks, tx->tx_txg); 1225 } 1226 mutex_exit(&dn->dn_mtx); 1227 1228 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 1229 dnode_setdirty(dn, tx); 1230 out: 1231 if (trunc && dn->dn_maxblkid >= (off >> blkshift)) 1232 dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0); 1233 1234 rw_exit(&dn->dn_struct_rwlock); 1235 } 1236 1237 static boolean_t 1238 dnode_spill_freed(dnode_t *dn) 1239 { 1240 int i; 1241 1242 mutex_enter(&dn->dn_mtx); 1243 for (i = 0; i < TXG_SIZE; i++) { 1244 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 1245 break; 1246 } 1247 mutex_exit(&dn->dn_mtx); 1248 return (i < TXG_SIZE); 1249 } 1250 1251 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 1252 uint64_t 1253 dnode_block_freed(dnode_t *dn, uint64_t blkid) 1254 { 1255 free_range_t range_tofind; 1256 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 1257 int i; 1258 1259 if (blkid == DMU_BONUS_BLKID) 1260 return (FALSE); 1261 1262 /* 1263 * If we're in the process of opening the pool, dp will not be 1264 * set yet, but there shouldn't be anything dirty. 1265 */ 1266 if (dp == NULL) 1267 return (FALSE); 1268 1269 if (dn->dn_free_txg) 1270 return (TRUE); 1271 1272 if (blkid == DMU_SPILL_BLKID) 1273 return (dnode_spill_freed(dn)); 1274 1275 range_tofind.fr_blkid = blkid; 1276 mutex_enter(&dn->dn_mtx); 1277 for (i = 0; i < TXG_SIZE; i++) { 1278 free_range_t *range_found; 1279 avl_index_t idx; 1280 1281 range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx); 1282 if (range_found) { 1283 ASSERT(range_found->fr_nblks > 0); 1284 break; 1285 } 1286 range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE); 1287 if (range_found && 1288 range_found->fr_blkid + range_found->fr_nblks > blkid) 1289 break; 1290 } 1291 mutex_exit(&dn->dn_mtx); 1292 return (i < TXG_SIZE); 1293 } 1294 1295 /* call from syncing context when we actually write/free space for this dnode */ 1296 void 1297 dnode_diduse_space(dnode_t *dn, int64_t delta) 1298 { 1299 uint64_t space; 1300 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 1301 dn, dn->dn_phys, 1302 (u_longlong_t)dn->dn_phys->dn_used, 1303 (longlong_t)delta); 1304 1305 mutex_enter(&dn->dn_mtx); 1306 space = DN_USED_BYTES(dn->dn_phys); 1307 if (delta > 0) { 1308 ASSERT3U(space + delta, >=, space); /* no overflow */ 1309 } else { 1310 ASSERT3U(space, >=, -delta); /* no underflow */ 1311 } 1312 space += delta; 1313 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 1314 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 1315 ASSERT3U(P2PHASE(space, 1<<DEV_BSHIFT), ==, 0); 1316 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 1317 } else { 1318 dn->dn_phys->dn_used = space; 1319 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 1320 } 1321 mutex_exit(&dn->dn_mtx); 1322 } 1323 1324 /* 1325 * Call when we think we're going to write/free space in open context. 1326 * Be conservative (ie. OK to write less than this or free more than 1327 * this, but don't write more or free less). 1328 */ 1329 void 1330 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx) 1331 { 1332 objset_t *os = dn->dn_objset; 1333 dsl_dataset_t *ds = os->os_dsl_dataset; 1334 1335 if (space > 0) 1336 space = spa_get_asize(os->os_spa, space); 1337 1338 if (ds) 1339 dsl_dir_willuse_space(ds->ds_dir, space, tx); 1340 1341 dmu_tx_willuse_space(tx, space); 1342 } 1343 1344 /* 1345 * This function scans a block at the indicated "level" looking for 1346 * a hole or data (depending on 'flags'). If level > 0, then we are 1347 * scanning an indirect block looking at its pointers. If level == 0, 1348 * then we are looking at a block of dnodes. If we don't find what we 1349 * are looking for in the block, we return ESRCH. Otherwise, return 1350 * with *offset pointing to the beginning (if searching forwards) or 1351 * end (if searching backwards) of the range covered by the block 1352 * pointer we matched on (or dnode). 1353 * 1354 * The basic search algorithm used below by dnode_next_offset() is to 1355 * use this function to search up the block tree (widen the search) until 1356 * we find something (i.e., we don't return ESRCH) and then search back 1357 * down the tree (narrow the search) until we reach our original search 1358 * level. 1359 */ 1360 static int 1361 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 1362 int lvl, uint64_t blkfill, uint64_t txg) 1363 { 1364 dmu_buf_impl_t *db = NULL; 1365 void *data = NULL; 1366 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 1367 uint64_t epb = 1ULL << epbs; 1368 uint64_t minfill, maxfill; 1369 boolean_t hole; 1370 int i, inc, error, span; 1371 1372 dprintf("probing object %llu offset %llx level %d of %u\n", 1373 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 1374 1375 hole = ((flags & DNODE_FIND_HOLE) != 0); 1376 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 1377 ASSERT(txg == 0 || !hole); 1378 1379 if (lvl == dn->dn_phys->dn_nlevels) { 1380 error = 0; 1381 epb = dn->dn_phys->dn_nblkptr; 1382 data = dn->dn_phys->dn_blkptr; 1383 } else { 1384 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl); 1385 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db); 1386 if (error) { 1387 if (error != ENOENT) 1388 return (error); 1389 if (hole) 1390 return (0); 1391 /* 1392 * This can only happen when we are searching up 1393 * the block tree for data. We don't really need to 1394 * adjust the offset, as we will just end up looking 1395 * at the pointer to this block in its parent, and its 1396 * going to be unallocated, so we will skip over it. 1397 */ 1398 return (ESRCH); 1399 } 1400 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT); 1401 if (error) { 1402 dbuf_rele(db, FTAG); 1403 return (error); 1404 } 1405 data = db->db.db_data; 1406 } 1407 1408 if (db && txg && 1409 (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) { 1410 /* 1411 * This can only happen when we are searching up the tree 1412 * and these conditions mean that we need to keep climbing. 1413 */ 1414 error = ESRCH; 1415 } else if (lvl == 0) { 1416 dnode_phys_t *dnp = data; 1417 span = DNODE_SHIFT; 1418 ASSERT(dn->dn_type == DMU_OT_DNODE); 1419 1420 for (i = (*offset >> span) & (blkfill - 1); 1421 i >= 0 && i < blkfill; i += inc) { 1422 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 1423 break; 1424 *offset += (1ULL << span) * inc; 1425 } 1426 if (i < 0 || i == blkfill) 1427 error = ESRCH; 1428 } else { 1429 blkptr_t *bp = data; 1430 uint64_t start = *offset; 1431 span = (lvl - 1) * epbs + dn->dn_datablkshift; 1432 minfill = 0; 1433 maxfill = blkfill << ((lvl - 1) * epbs); 1434 1435 if (hole) 1436 maxfill--; 1437 else 1438 minfill++; 1439 1440 *offset = *offset >> span; 1441 for (i = BF64_GET(*offset, 0, epbs); 1442 i >= 0 && i < epb; i += inc) { 1443 if (bp[i].blk_fill >= minfill && 1444 bp[i].blk_fill <= maxfill && 1445 (hole || bp[i].blk_birth > txg)) 1446 break; 1447 if (inc > 0 || *offset > 0) 1448 *offset += inc; 1449 } 1450 *offset = *offset << span; 1451 if (inc < 0) { 1452 /* traversing backwards; position offset at the end */ 1453 ASSERT3U(*offset, <=, start); 1454 *offset = MIN(*offset + (1ULL << span) - 1, start); 1455 } else if (*offset < start) { 1456 *offset = start; 1457 } 1458 if (i < 0 || i >= epb) 1459 error = ESRCH; 1460 } 1461 1462 if (db) 1463 dbuf_rele(db, FTAG); 1464 1465 return (error); 1466 } 1467 1468 /* 1469 * Find the next hole, data, or sparse region at or after *offset. 1470 * The value 'blkfill' tells us how many items we expect to find 1471 * in an L0 data block; this value is 1 for normal objects, 1472 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 1473 * DNODES_PER_BLOCK when searching for sparse regions thereof. 1474 * 1475 * Examples: 1476 * 1477 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 1478 * Finds the next/previous hole/data in a file. 1479 * Used in dmu_offset_next(). 1480 * 1481 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 1482 * Finds the next free/allocated dnode an objset's meta-dnode. 1483 * Only finds objects that have new contents since txg (ie. 1484 * bonus buffer changes and content removal are ignored). 1485 * Used in dmu_object_next(). 1486 * 1487 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 1488 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 1489 * Used in dmu_object_alloc(). 1490 */ 1491 int 1492 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 1493 int minlvl, uint64_t blkfill, uint64_t txg) 1494 { 1495 uint64_t initial_offset = *offset; 1496 int lvl, maxlvl; 1497 int error = 0; 1498 1499 if (!(flags & DNODE_FIND_HAVELOCK)) 1500 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1501 1502 if (dn->dn_phys->dn_nlevels == 0) { 1503 error = ESRCH; 1504 goto out; 1505 } 1506 1507 if (dn->dn_datablkshift == 0) { 1508 if (*offset < dn->dn_datablksz) { 1509 if (flags & DNODE_FIND_HOLE) 1510 *offset = dn->dn_datablksz; 1511 } else { 1512 error = ESRCH; 1513 } 1514 goto out; 1515 } 1516 1517 maxlvl = dn->dn_phys->dn_nlevels; 1518 1519 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 1520 error = dnode_next_offset_level(dn, 1521 flags, offset, lvl, blkfill, txg); 1522 if (error != ESRCH) 1523 break; 1524 } 1525 1526 while (error == 0 && --lvl >= minlvl) { 1527 error = dnode_next_offset_level(dn, 1528 flags, offset, lvl, blkfill, txg); 1529 } 1530 1531 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 1532 initial_offset < *offset : initial_offset > *offset)) 1533 error = ESRCH; 1534 out: 1535 if (!(flags & DNODE_FIND_HAVELOCK)) 1536 rw_exit(&dn->dn_struct_rwlock); 1537 1538 return (error); 1539 } 1540