xref: /titanic_41/usr/src/uts/common/fs/zfs/dmu_zfetch.c (revision 5fbb41393be5d63f75952b1d72d4df2642d22557)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu_objset.h>
31 #include <sys/dmu_zfetch.h>
32 #include <sys/dmu.h>
33 #include <sys/dbuf.h>
34 
35 /*
36  * I'm against tune-ables, but these should probably exist as tweakable globals
37  * until we can get this working the way we want it to.
38  */
39 
40 int zfs_prefetch_disable = 0;
41 
42 /* max # of streams per zfetch */
43 uint32_t	zfetch_max_streams = 8;
44 /* min time before stream reclaim */
45 uint32_t	zfetch_min_sec_reap = 2;
46 /* max number of blocks to fetch at a time */
47 uint32_t	zfetch_block_cap = 256;
48 /* number of bytes in a array_read at which we stop prefetching (1Mb) */
49 uint64_t	zfetch_array_rd_sz = 1024 * 1024;
50 
51 /* forward decls for static routines */
52 static int		dmu_zfetch_colinear(zfetch_t *, zstream_t *);
53 static void		dmu_zfetch_dofetch(zfetch_t *, zstream_t *);
54 static uint64_t		dmu_zfetch_fetch(dnode_t *, uint64_t, uint64_t);
55 static uint64_t		dmu_zfetch_fetchsz(dnode_t *, uint64_t, uint64_t);
56 static int		dmu_zfetch_find(zfetch_t *, zstream_t *, int);
57 static int		dmu_zfetch_stream_insert(zfetch_t *, zstream_t *);
58 static zstream_t	*dmu_zfetch_stream_reclaim(zfetch_t *);
59 static void		dmu_zfetch_stream_remove(zfetch_t *, zstream_t *);
60 static int		dmu_zfetch_streams_equal(zstream_t *, zstream_t *);
61 
62 /*
63  * Given a zfetch structure and a zstream structure, determine whether the
64  * blocks to be read are part of a co-linear pair of existing prefetch
65  * streams.  If a set is found, coalesce the streams, removing one, and
66  * configure the prefetch so it looks for a strided access pattern.
67  *
68  * In other words: if we find two sequential access streams that are
69  * the same length and distance N appart, and this read is N from the
70  * last stream, then we are probably in a strided access pattern.  So
71  * combine the two sequential streams into a single strided stream.
72  *
73  * If no co-linear streams are found, return NULL.
74  */
75 static int
76 dmu_zfetch_colinear(zfetch_t *zf, zstream_t *zh)
77 {
78 	zstream_t	*z_walk;
79 	zstream_t	*z_comp;
80 
81 	if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
82 		return (0);
83 
84 	if (zh == NULL) {
85 		rw_exit(&zf->zf_rwlock);
86 		return (0);
87 	}
88 
89 	for (z_walk = list_head(&zf->zf_stream); z_walk;
90 	    z_walk = list_next(&zf->zf_stream, z_walk)) {
91 		for (z_comp = list_next(&zf->zf_stream, z_walk); z_comp;
92 		    z_comp = list_next(&zf->zf_stream, z_comp)) {
93 			int64_t		diff;
94 
95 			if (z_walk->zst_len != z_walk->zst_stride ||
96 			    z_comp->zst_len != z_comp->zst_stride) {
97 				continue;
98 			}
99 
100 			diff = z_comp->zst_offset - z_walk->zst_offset;
101 			if (z_comp->zst_offset + diff == zh->zst_offset) {
102 				z_walk->zst_offset = zh->zst_offset;
103 				z_walk->zst_direction = diff < 0 ? -1 : 1;
104 				z_walk->zst_stride =
105 				    diff * z_walk->zst_direction;
106 				z_walk->zst_ph_offset =
107 				    zh->zst_offset + z_walk->zst_stride;
108 				dmu_zfetch_stream_remove(zf, z_comp);
109 				mutex_destroy(&z_comp->zst_lock);
110 				kmem_free(z_comp, sizeof (zstream_t));
111 
112 				dmu_zfetch_dofetch(zf, z_walk);
113 
114 				rw_exit(&zf->zf_rwlock);
115 				return (1);
116 			}
117 
118 			diff = z_walk->zst_offset - z_comp->zst_offset;
119 			if (z_walk->zst_offset + diff == zh->zst_offset) {
120 				z_walk->zst_offset = zh->zst_offset;
121 				z_walk->zst_direction = diff < 0 ? -1 : 1;
122 				z_walk->zst_stride =
123 				    diff * z_walk->zst_direction;
124 				z_walk->zst_ph_offset =
125 				    zh->zst_offset + z_walk->zst_stride;
126 				dmu_zfetch_stream_remove(zf, z_comp);
127 				mutex_destroy(&z_comp->zst_lock);
128 				kmem_free(z_comp, sizeof (zstream_t));
129 
130 				dmu_zfetch_dofetch(zf, z_walk);
131 
132 				rw_exit(&zf->zf_rwlock);
133 				return (1);
134 			}
135 		}
136 	}
137 
138 	rw_exit(&zf->zf_rwlock);
139 	return (0);
140 }
141 
142 /*
143  * Given a zstream_t, determine the bounds of the prefetch.  Then call the
144  * routine that actually prefetches the individual blocks.
145  */
146 static void
147 dmu_zfetch_dofetch(zfetch_t *zf, zstream_t *zs)
148 {
149 	uint64_t	prefetch_tail;
150 	uint64_t	prefetch_limit;
151 	uint64_t	prefetch_ofst;
152 	uint64_t	prefetch_len;
153 	uint64_t	blocks_fetched;
154 
155 	zs->zst_stride = MAX((int64_t)zs->zst_stride, zs->zst_len);
156 	zs->zst_cap = MIN(zfetch_block_cap, 2 * zs->zst_cap);
157 
158 	prefetch_tail = MAX((int64_t)zs->zst_ph_offset,
159 	    (int64_t)(zs->zst_offset + zs->zst_stride));
160 	/*
161 	 * XXX: use a faster division method?
162 	 */
163 	prefetch_limit = zs->zst_offset + zs->zst_len +
164 	    (zs->zst_cap * zs->zst_stride) / zs->zst_len;
165 
166 	while (prefetch_tail < prefetch_limit) {
167 		prefetch_ofst = zs->zst_offset + zs->zst_direction *
168 		    (prefetch_tail - zs->zst_offset);
169 
170 		prefetch_len = zs->zst_len;
171 
172 		/*
173 		 * Don't prefetch beyond the end of the file, if working
174 		 * backwards.
175 		 */
176 		if ((zs->zst_direction == ZFETCH_BACKWARD) &&
177 		    (prefetch_ofst > prefetch_tail)) {
178 			prefetch_len += prefetch_ofst;
179 			prefetch_ofst = 0;
180 		}
181 
182 		/* don't prefetch more than we're supposed to */
183 		if (prefetch_len > zs->zst_len)
184 			break;
185 
186 		blocks_fetched = dmu_zfetch_fetch(zf->zf_dnode,
187 		    prefetch_ofst, zs->zst_len);
188 
189 		prefetch_tail += zs->zst_stride;
190 		/* stop if we've run out of stuff to prefetch */
191 		if (blocks_fetched < zs->zst_len)
192 			break;
193 	}
194 	zs->zst_ph_offset = prefetch_tail;
195 	zs->zst_last = lbolt;
196 }
197 
198 /*
199  * This takes a pointer to a zfetch structure and a dnode.  It performs the
200  * necessary setup for the zfetch structure, grokking data from the
201  * associated dnode.
202  */
203 void
204 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
205 {
206 	if (zf == NULL) {
207 		return;
208 	}
209 
210 	zf->zf_dnode = dno;
211 	zf->zf_stream_cnt = 0;
212 	zf->zf_alloc_fail = 0;
213 
214 	list_create(&zf->zf_stream, sizeof (zstream_t),
215 	    offsetof(zstream_t, zst_node));
216 
217 	rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
218 }
219 
220 /*
221  * This function computes the actual size, in blocks, that can be prefetched,
222  * and fetches it.
223  */
224 static uint64_t
225 dmu_zfetch_fetch(dnode_t *dn, uint64_t blkid, uint64_t nblks)
226 {
227 	uint64_t	fetchsz;
228 	uint64_t	i;
229 
230 	fetchsz = dmu_zfetch_fetchsz(dn, blkid, nblks);
231 
232 	for (i = 0; i < fetchsz; i++) {
233 		dbuf_prefetch(dn, blkid + i);
234 	}
235 
236 	return (fetchsz);
237 }
238 
239 /*
240  * this function returns the number of blocks that would be prefetched, based
241  * upon the supplied dnode, blockid, and nblks.  This is used so that we can
242  * update streams in place, and then prefetch with their old value after the
243  * fact.  This way, we can delay the prefetch, but subsequent accesses to the
244  * stream won't result in the same data being prefetched multiple times.
245  */
246 static uint64_t
247 dmu_zfetch_fetchsz(dnode_t *dn, uint64_t blkid, uint64_t nblks)
248 {
249 	uint64_t	fetchsz;
250 
251 	if (blkid > dn->dn_maxblkid) {
252 		return (0);
253 	}
254 
255 	/* compute fetch size */
256 	if (blkid + nblks + 1 > dn->dn_maxblkid) {
257 		fetchsz = (dn->dn_maxblkid - blkid) + 1;
258 		ASSERT(blkid + fetchsz - 1 <= dn->dn_maxblkid);
259 	} else {
260 		fetchsz = nblks;
261 	}
262 
263 
264 	return (fetchsz);
265 }
266 
267 /*
268  * given a zfetch and a zsearch structure, see if there is an associated zstream
269  * for this block read.  If so, it starts a prefetch for the stream it
270  * located and returns true, otherwise it returns false
271  */
272 static int
273 dmu_zfetch_find(zfetch_t *zf, zstream_t *zh, int prefetched)
274 {
275 	zstream_t	*zs;
276 	int64_t		diff;
277 	int		reset = !prefetched;
278 	int		rc = 0;
279 
280 	if (zh == NULL)
281 		return (0);
282 
283 	/*
284 	 * XXX: This locking strategy is a bit coarse; however, it's impact has
285 	 * yet to be tested.  If this turns out to be an issue, it can be
286 	 * modified in a number of different ways.
287 	 */
288 
289 	rw_enter(&zf->zf_rwlock, RW_READER);
290 top:
291 
292 	for (zs = list_head(&zf->zf_stream); zs;
293 	    zs = list_next(&zf->zf_stream, zs)) {
294 
295 		/*
296 		 * XXX - should this be an assert?
297 		 */
298 		if (zs->zst_len == 0) {
299 			/* bogus stream */
300 			continue;
301 		}
302 
303 		/*
304 		 * We hit this case when we are in a strided prefetch stream:
305 		 * we will read "len" blocks before "striding".
306 		 */
307 		if (zh->zst_offset >= zs->zst_offset &&
308 		    zh->zst_offset < zs->zst_offset + zs->zst_len) {
309 			/* already fetched */
310 			rc = 1;
311 			goto out;
312 		}
313 
314 		/*
315 		 * This is the forward sequential read case: we increment
316 		 * len by one each time we hit here, so we will enter this
317 		 * case on every read.
318 		 */
319 		if (zh->zst_offset == zs->zst_offset + zs->zst_len) {
320 
321 			reset = !prefetched && zs->zst_len > 1;
322 
323 			mutex_enter(&zs->zst_lock);
324 
325 			if (zh->zst_offset != zs->zst_offset + zs->zst_len) {
326 				mutex_exit(&zs->zst_lock);
327 				goto top;
328 			}
329 			zs->zst_len += zh->zst_len;
330 			diff = zs->zst_len - zfetch_block_cap;
331 			if (diff > 0) {
332 				zs->zst_offset += diff;
333 				zs->zst_len = zs->zst_len > diff ?
334 				    zs->zst_len - diff : 0;
335 			}
336 			zs->zst_direction = ZFETCH_FORWARD;
337 
338 			break;
339 
340 		/*
341 		 * Same as above, but reading backwards through the file.
342 		 */
343 		} else if (zh->zst_offset == zs->zst_offset - zh->zst_len) {
344 			/* backwards sequential access */
345 
346 			reset = !prefetched && zs->zst_len > 1;
347 
348 			mutex_enter(&zs->zst_lock);
349 
350 			if (zh->zst_offset != zs->zst_offset - zh->zst_len) {
351 				mutex_exit(&zs->zst_lock);
352 				goto top;
353 			}
354 
355 			zs->zst_offset = zs->zst_offset > zh->zst_len ?
356 			    zs->zst_offset - zh->zst_len : 0;
357 			zs->zst_ph_offset = zs->zst_ph_offset > zh->zst_len ?
358 			    zs->zst_ph_offset - zh->zst_len : 0;
359 			zs->zst_len += zh->zst_len;
360 
361 			diff = zs->zst_len - zfetch_block_cap;
362 			if (diff > 0) {
363 				zs->zst_ph_offset = zs->zst_ph_offset > diff ?
364 				    zs->zst_ph_offset - diff : 0;
365 				zs->zst_len = zs->zst_len > diff ?
366 				    zs->zst_len - diff : zs->zst_len;
367 			}
368 			zs->zst_direction = ZFETCH_BACKWARD;
369 
370 			break;
371 
372 		} else if ((zh->zst_offset - zs->zst_offset - zs->zst_stride <
373 		    zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
374 			/* strided forward access */
375 
376 			mutex_enter(&zs->zst_lock);
377 
378 			if ((zh->zst_offset - zs->zst_offset - zs->zst_stride >=
379 			    zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
380 				mutex_exit(&zs->zst_lock);
381 				goto top;
382 			}
383 
384 			zs->zst_offset += zs->zst_stride;
385 			zs->zst_direction = ZFETCH_FORWARD;
386 
387 			break;
388 
389 		} else if ((zh->zst_offset - zs->zst_offset + zs->zst_stride <
390 		    zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
391 			/* strided reverse access */
392 
393 			mutex_enter(&zs->zst_lock);
394 
395 			if ((zh->zst_offset - zs->zst_offset + zs->zst_stride >=
396 			    zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
397 				mutex_exit(&zs->zst_lock);
398 				goto top;
399 			}
400 
401 			zs->zst_offset = zs->zst_offset > zs->zst_stride ?
402 			    zs->zst_offset - zs->zst_stride : 0;
403 			zs->zst_ph_offset = (zs->zst_ph_offset >
404 			    (2 * zs->zst_stride)) ?
405 			    (zs->zst_ph_offset - (2 * zs->zst_stride)) : 0;
406 			zs->zst_direction = ZFETCH_BACKWARD;
407 
408 			break;
409 		}
410 	}
411 
412 	if (zs) {
413 		if (reset) {
414 			zstream_t *remove = zs;
415 
416 			rc = 0;
417 			mutex_exit(&zs->zst_lock);
418 			rw_exit(&zf->zf_rwlock);
419 			rw_enter(&zf->zf_rwlock, RW_WRITER);
420 			/*
421 			 * Relocate the stream, in case someone removes
422 			 * it while we were acquiring the WRITER lock.
423 			 */
424 			for (zs = list_head(&zf->zf_stream); zs;
425 			    zs = list_next(&zf->zf_stream, zs)) {
426 				if (zs == remove) {
427 					dmu_zfetch_stream_remove(zf, zs);
428 					mutex_destroy(&zs->zst_lock);
429 					kmem_free(zs, sizeof (zstream_t));
430 					break;
431 				}
432 			}
433 		} else {
434 			rc = 1;
435 			dmu_zfetch_dofetch(zf, zs);
436 			mutex_exit(&zs->zst_lock);
437 		}
438 	}
439 out:
440 	rw_exit(&zf->zf_rwlock);
441 	return (rc);
442 }
443 
444 /*
445  * Clean-up state associated with a zfetch structure.  This frees allocated
446  * structure members, empties the zf_stream tree, and generally makes things
447  * nice.  This doesn't free the zfetch_t itself, that's left to the caller.
448  */
449 void
450 dmu_zfetch_rele(zfetch_t *zf)
451 {
452 	zstream_t	*zs;
453 	zstream_t	*zs_next;
454 
455 	ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
456 
457 	for (zs = list_head(&zf->zf_stream); zs; zs = zs_next) {
458 		zs_next = list_next(&zf->zf_stream, zs);
459 
460 		list_remove(&zf->zf_stream, zs);
461 		mutex_destroy(&zs->zst_lock);
462 		kmem_free(zs, sizeof (zstream_t));
463 	}
464 	list_destroy(&zf->zf_stream);
465 	rw_destroy(&zf->zf_rwlock);
466 
467 	zf->zf_dnode = NULL;
468 }
469 
470 /*
471  * Given a zfetch and zstream structure, insert the zstream structure into the
472  * AVL tree contained within the zfetch structure.  Peform the appropriate
473  * book-keeping.  It is possible that another thread has inserted a stream which
474  * matches one that we are about to insert, so we must be sure to check for this
475  * case.  If one is found, return failure, and let the caller cleanup the
476  * duplicates.
477  */
478 static int
479 dmu_zfetch_stream_insert(zfetch_t *zf, zstream_t *zs)
480 {
481 	zstream_t	*zs_walk;
482 	zstream_t	*zs_next;
483 
484 	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
485 
486 	for (zs_walk = list_head(&zf->zf_stream); zs_walk; zs_walk = zs_next) {
487 		zs_next = list_next(&zf->zf_stream, zs_walk);
488 
489 		if (dmu_zfetch_streams_equal(zs_walk, zs)) {
490 		    return (0);
491 		}
492 	}
493 
494 	list_insert_head(&zf->zf_stream, zs);
495 	zf->zf_stream_cnt++;
496 
497 	return (1);
498 }
499 
500 
501 /*
502  * Walk the list of zstreams in the given zfetch, find an old one (by time), and
503  * reclaim it for use by the caller.
504  */
505 static zstream_t *
506 dmu_zfetch_stream_reclaim(zfetch_t *zf)
507 {
508 	zstream_t	*zs;
509 
510 	if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
511 		return (0);
512 
513 	for (zs = list_head(&zf->zf_stream); zs;
514 	    zs = list_next(&zf->zf_stream, zs)) {
515 
516 		if (((lbolt - zs->zst_last) / hz) > zfetch_min_sec_reap)
517 			break;
518 	}
519 
520 	if (zs) {
521 		dmu_zfetch_stream_remove(zf, zs);
522 		mutex_destroy(&zs->zst_lock);
523 		bzero(zs, sizeof (zstream_t));
524 	} else {
525 		zf->zf_alloc_fail++;
526 	}
527 	rw_exit(&zf->zf_rwlock);
528 
529 	return (zs);
530 }
531 
532 /*
533  * Given a zfetch and zstream structure, remove the zstream structure from its
534  * container in the zfetch structure.  Perform the appropriate book-keeping.
535  */
536 static void
537 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
538 {
539 	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
540 
541 	list_remove(&zf->zf_stream, zs);
542 	zf->zf_stream_cnt--;
543 }
544 
545 static int
546 dmu_zfetch_streams_equal(zstream_t *zs1, zstream_t *zs2)
547 {
548 	if (zs1->zst_offset != zs2->zst_offset)
549 		return (0);
550 
551 	if (zs1->zst_len != zs2->zst_len)
552 		return (0);
553 
554 	if (zs1->zst_stride != zs2->zst_stride)
555 		return (0);
556 
557 	if (zs1->zst_ph_offset != zs2->zst_ph_offset)
558 		return (0);
559 
560 	if (zs1->zst_cap != zs2->zst_cap)
561 		return (0);
562 
563 	if (zs1->zst_direction != zs2->zst_direction)
564 		return (0);
565 
566 	return (1);
567 }
568 
569 /*
570  * This is the prefetch entry point.  It calls all of the other dmu_zfetch
571  * routines to create, delete, find, or operate upon prefetch streams.
572  */
573 void
574 dmu_zfetch(zfetch_t *zf, uint64_t offset, uint64_t size, int prefetched)
575 {
576 	zstream_t	zst;
577 	zstream_t	*newstream;
578 	int		fetched;
579 	int		inserted;
580 	unsigned int	blkshft;
581 	uint64_t	blksz;
582 
583 	if (zfs_prefetch_disable)
584 		return;
585 
586 	/* files that aren't ln2 blocksz are only one block -- nothing to do */
587 	if (!zf->zf_dnode->dn_datablkshift)
588 		return;
589 
590 	/* convert offset and size, into blockid and nblocks */
591 	blkshft = zf->zf_dnode->dn_datablkshift;
592 	blksz = (1 << blkshft);
593 
594 	bzero(&zst, sizeof (zstream_t));
595 	zst.zst_offset = offset >> blkshft;
596 	zst.zst_len = (P2ROUNDUP(offset + size, blksz) -
597 	    P2ALIGN(offset, blksz)) >> blkshft;
598 
599 	fetched = dmu_zfetch_find(zf, &zst, prefetched);
600 	if (!fetched) {
601 		fetched = dmu_zfetch_colinear(zf, &zst);
602 	}
603 
604 	if (!fetched) {
605 		newstream = dmu_zfetch_stream_reclaim(zf);
606 
607 		/*
608 		 * we still couldn't find a stream, drop the lock, and allocate
609 		 * one if possible.  Otherwise, give up and go home.
610 		 */
611 		if (newstream == NULL) {
612 			uint64_t	maxblocks;
613 			uint32_t	max_streams;
614 			uint32_t	cur_streams;
615 
616 			cur_streams = zf->zf_stream_cnt;
617 			maxblocks = zf->zf_dnode->dn_maxblkid;
618 
619 			max_streams = MIN(zfetch_max_streams,
620 			    (maxblocks / zfetch_block_cap));
621 			if (max_streams == 0) {
622 				max_streams++;
623 			}
624 
625 			if (cur_streams >= max_streams) {
626 				return;
627 			}
628 
629 			newstream = kmem_zalloc(sizeof (zstream_t), KM_SLEEP);
630 		}
631 
632 		newstream->zst_offset = zst.zst_offset;
633 		newstream->zst_len = zst.zst_len;
634 		newstream->zst_stride = zst.zst_len;
635 		newstream->zst_ph_offset = zst.zst_len + zst.zst_offset;
636 		newstream->zst_cap = zst.zst_len;
637 		newstream->zst_direction = ZFETCH_FORWARD;
638 		newstream->zst_last = lbolt;
639 
640 		mutex_init(&newstream->zst_lock, NULL, MUTEX_DEFAULT, NULL);
641 
642 		rw_enter(&zf->zf_rwlock, RW_WRITER);
643 		inserted = dmu_zfetch_stream_insert(zf, newstream);
644 		rw_exit(&zf->zf_rwlock);
645 
646 		if (!inserted) {
647 			mutex_destroy(&newstream->zst_lock);
648 			kmem_free(newstream, sizeof (zstream_t));
649 		}
650 	}
651 }
652