xref: /titanic_41/usr/src/uts/common/fs/zfs/dmu_zfetch.c (revision 1e3934778d15dd08e911e1d050dd7a4949348d93)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/dnode.h>
28 #include <sys/dmu_objset.h>
29 #include <sys/dmu_zfetch.h>
30 #include <sys/dmu.h>
31 #include <sys/dbuf.h>
32 #include <sys/kstat.h>
33 
34 /*
35  * I'm against tune-ables, but these should probably exist as tweakable globals
36  * until we can get this working the way we want it to.
37  */
38 
39 int zfs_prefetch_disable = 0;
40 
41 /* max # of streams per zfetch */
42 uint32_t	zfetch_max_streams = 8;
43 /* min time before stream reclaim */
44 uint32_t	zfetch_min_sec_reap = 2;
45 /* max number of blocks to fetch at a time */
46 uint32_t	zfetch_block_cap = 256;
47 /* number of bytes in a array_read at which we stop prefetching (1Mb) */
48 uint64_t	zfetch_array_rd_sz = 1024 * 1024;
49 
50 /* forward decls for static routines */
51 static boolean_t	dmu_zfetch_colinear(zfetch_t *, zstream_t *);
52 static void		dmu_zfetch_dofetch(zfetch_t *, zstream_t *);
53 static uint64_t		dmu_zfetch_fetch(dnode_t *, uint64_t, uint64_t);
54 static uint64_t		dmu_zfetch_fetchsz(dnode_t *, uint64_t, uint64_t);
55 static boolean_t	dmu_zfetch_find(zfetch_t *, zstream_t *, int);
56 static int		dmu_zfetch_stream_insert(zfetch_t *, zstream_t *);
57 static zstream_t	*dmu_zfetch_stream_reclaim(zfetch_t *);
58 static void		dmu_zfetch_stream_remove(zfetch_t *, zstream_t *);
59 static int		dmu_zfetch_streams_equal(zstream_t *, zstream_t *);
60 
61 typedef struct zfetch_stats {
62 	kstat_named_t zfetchstat_hits;
63 	kstat_named_t zfetchstat_misses;
64 	kstat_named_t zfetchstat_colinear_hits;
65 	kstat_named_t zfetchstat_colinear_misses;
66 	kstat_named_t zfetchstat_stride_hits;
67 	kstat_named_t zfetchstat_stride_misses;
68 	kstat_named_t zfetchstat_reclaim_successes;
69 	kstat_named_t zfetchstat_reclaim_failures;
70 	kstat_named_t zfetchstat_stream_resets;
71 	kstat_named_t zfetchstat_stream_noresets;
72 	kstat_named_t zfetchstat_bogus_streams;
73 } zfetch_stats_t;
74 
75 static zfetch_stats_t zfetch_stats = {
76 	{ "hits",			KSTAT_DATA_UINT64 },
77 	{ "misses",			KSTAT_DATA_UINT64 },
78 	{ "colinear_hits",		KSTAT_DATA_UINT64 },
79 	{ "colinear_misses",		KSTAT_DATA_UINT64 },
80 	{ "stride_hits",		KSTAT_DATA_UINT64 },
81 	{ "stride_misses",		KSTAT_DATA_UINT64 },
82 	{ "reclaim_successes",		KSTAT_DATA_UINT64 },
83 	{ "reclaim_failures",		KSTAT_DATA_UINT64 },
84 	{ "streams_resets",		KSTAT_DATA_UINT64 },
85 	{ "streams_noresets",		KSTAT_DATA_UINT64 },
86 	{ "bogus_streams",		KSTAT_DATA_UINT64 },
87 };
88 
89 #define	ZFETCHSTAT_INCR(stat, val) \
90 	atomic_add_64(&zfetch_stats.stat.value.ui64, (val));
91 
92 #define	ZFETCHSTAT_BUMP(stat)		ZFETCHSTAT_INCR(stat, 1);
93 
94 kstat_t		*zfetch_ksp;
95 
96 /*
97  * Given a zfetch structure and a zstream structure, determine whether the
98  * blocks to be read are part of a co-linear pair of existing prefetch
99  * streams.  If a set is found, coalesce the streams, removing one, and
100  * configure the prefetch so it looks for a strided access pattern.
101  *
102  * In other words: if we find two sequential access streams that are
103  * the same length and distance N appart, and this read is N from the
104  * last stream, then we are probably in a strided access pattern.  So
105  * combine the two sequential streams into a single strided stream.
106  *
107  * Returns whether co-linear streams were found.
108  */
109 static boolean_t
110 dmu_zfetch_colinear(zfetch_t *zf, zstream_t *zh)
111 {
112 	zstream_t	*z_walk;
113 	zstream_t	*z_comp;
114 
115 	if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
116 		return (0);
117 
118 	if (zh == NULL) {
119 		rw_exit(&zf->zf_rwlock);
120 		return (0);
121 	}
122 
123 	for (z_walk = list_head(&zf->zf_stream); z_walk;
124 	    z_walk = list_next(&zf->zf_stream, z_walk)) {
125 		for (z_comp = list_next(&zf->zf_stream, z_walk); z_comp;
126 		    z_comp = list_next(&zf->zf_stream, z_comp)) {
127 			int64_t		diff;
128 
129 			if (z_walk->zst_len != z_walk->zst_stride ||
130 			    z_comp->zst_len != z_comp->zst_stride) {
131 				continue;
132 			}
133 
134 			diff = z_comp->zst_offset - z_walk->zst_offset;
135 			if (z_comp->zst_offset + diff == zh->zst_offset) {
136 				z_walk->zst_offset = zh->zst_offset;
137 				z_walk->zst_direction = diff < 0 ? -1 : 1;
138 				z_walk->zst_stride =
139 				    diff * z_walk->zst_direction;
140 				z_walk->zst_ph_offset =
141 				    zh->zst_offset + z_walk->zst_stride;
142 				dmu_zfetch_stream_remove(zf, z_comp);
143 				mutex_destroy(&z_comp->zst_lock);
144 				kmem_free(z_comp, sizeof (zstream_t));
145 
146 				dmu_zfetch_dofetch(zf, z_walk);
147 
148 				rw_exit(&zf->zf_rwlock);
149 				return (1);
150 			}
151 
152 			diff = z_walk->zst_offset - z_comp->zst_offset;
153 			if (z_walk->zst_offset + diff == zh->zst_offset) {
154 				z_walk->zst_offset = zh->zst_offset;
155 				z_walk->zst_direction = diff < 0 ? -1 : 1;
156 				z_walk->zst_stride =
157 				    diff * z_walk->zst_direction;
158 				z_walk->zst_ph_offset =
159 				    zh->zst_offset + z_walk->zst_stride;
160 				dmu_zfetch_stream_remove(zf, z_comp);
161 				mutex_destroy(&z_comp->zst_lock);
162 				kmem_free(z_comp, sizeof (zstream_t));
163 
164 				dmu_zfetch_dofetch(zf, z_walk);
165 
166 				rw_exit(&zf->zf_rwlock);
167 				return (1);
168 			}
169 		}
170 	}
171 
172 	rw_exit(&zf->zf_rwlock);
173 	return (0);
174 }
175 
176 /*
177  * Given a zstream_t, determine the bounds of the prefetch.  Then call the
178  * routine that actually prefetches the individual blocks.
179  */
180 static void
181 dmu_zfetch_dofetch(zfetch_t *zf, zstream_t *zs)
182 {
183 	uint64_t	prefetch_tail;
184 	uint64_t	prefetch_limit;
185 	uint64_t	prefetch_ofst;
186 	uint64_t	prefetch_len;
187 	uint64_t	blocks_fetched;
188 
189 	zs->zst_stride = MAX((int64_t)zs->zst_stride, zs->zst_len);
190 	zs->zst_cap = MIN(zfetch_block_cap, 2 * zs->zst_cap);
191 
192 	prefetch_tail = MAX((int64_t)zs->zst_ph_offset,
193 	    (int64_t)(zs->zst_offset + zs->zst_stride));
194 	/*
195 	 * XXX: use a faster division method?
196 	 */
197 	prefetch_limit = zs->zst_offset + zs->zst_len +
198 	    (zs->zst_cap * zs->zst_stride) / zs->zst_len;
199 
200 	while (prefetch_tail < prefetch_limit) {
201 		prefetch_ofst = zs->zst_offset + zs->zst_direction *
202 		    (prefetch_tail - zs->zst_offset);
203 
204 		prefetch_len = zs->zst_len;
205 
206 		/*
207 		 * Don't prefetch beyond the end of the file, if working
208 		 * backwards.
209 		 */
210 		if ((zs->zst_direction == ZFETCH_BACKWARD) &&
211 		    (prefetch_ofst > prefetch_tail)) {
212 			prefetch_len += prefetch_ofst;
213 			prefetch_ofst = 0;
214 		}
215 
216 		/* don't prefetch more than we're supposed to */
217 		if (prefetch_len > zs->zst_len)
218 			break;
219 
220 		blocks_fetched = dmu_zfetch_fetch(zf->zf_dnode,
221 		    prefetch_ofst, zs->zst_len);
222 
223 		prefetch_tail += zs->zst_stride;
224 		/* stop if we've run out of stuff to prefetch */
225 		if (blocks_fetched < zs->zst_len)
226 			break;
227 	}
228 	zs->zst_ph_offset = prefetch_tail;
229 	zs->zst_last = ddi_get_lbolt();
230 }
231 
232 void
233 zfetch_init(void)
234 {
235 
236 	zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
237 	    KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
238 	    KSTAT_FLAG_VIRTUAL);
239 
240 	if (zfetch_ksp != NULL) {
241 		zfetch_ksp->ks_data = &zfetch_stats;
242 		kstat_install(zfetch_ksp);
243 	}
244 }
245 
246 void
247 zfetch_fini(void)
248 {
249 	if (zfetch_ksp != NULL) {
250 		kstat_delete(zfetch_ksp);
251 		zfetch_ksp = NULL;
252 	}
253 }
254 
255 /*
256  * This takes a pointer to a zfetch structure and a dnode.  It performs the
257  * necessary setup for the zfetch structure, grokking data from the
258  * associated dnode.
259  */
260 void
261 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
262 {
263 	if (zf == NULL) {
264 		return;
265 	}
266 
267 	zf->zf_dnode = dno;
268 	zf->zf_stream_cnt = 0;
269 	zf->zf_alloc_fail = 0;
270 
271 	list_create(&zf->zf_stream, sizeof (zstream_t),
272 	    offsetof(zstream_t, zst_node));
273 
274 	rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
275 }
276 
277 /*
278  * This function computes the actual size, in blocks, that can be prefetched,
279  * and fetches it.
280  */
281 static uint64_t
282 dmu_zfetch_fetch(dnode_t *dn, uint64_t blkid, uint64_t nblks)
283 {
284 	uint64_t	fetchsz;
285 	uint64_t	i;
286 
287 	fetchsz = dmu_zfetch_fetchsz(dn, blkid, nblks);
288 
289 	for (i = 0; i < fetchsz; i++) {
290 		dbuf_prefetch(dn, blkid + i);
291 	}
292 
293 	return (fetchsz);
294 }
295 
296 /*
297  * this function returns the number of blocks that would be prefetched, based
298  * upon the supplied dnode, blockid, and nblks.  This is used so that we can
299  * update streams in place, and then prefetch with their old value after the
300  * fact.  This way, we can delay the prefetch, but subsequent accesses to the
301  * stream won't result in the same data being prefetched multiple times.
302  */
303 static uint64_t
304 dmu_zfetch_fetchsz(dnode_t *dn, uint64_t blkid, uint64_t nblks)
305 {
306 	uint64_t	fetchsz;
307 
308 	if (blkid > dn->dn_maxblkid) {
309 		return (0);
310 	}
311 
312 	/* compute fetch size */
313 	if (blkid + nblks + 1 > dn->dn_maxblkid) {
314 		fetchsz = (dn->dn_maxblkid - blkid) + 1;
315 		ASSERT(blkid + fetchsz - 1 <= dn->dn_maxblkid);
316 	} else {
317 		fetchsz = nblks;
318 	}
319 
320 
321 	return (fetchsz);
322 }
323 
324 /*
325  * given a zfetch and a zstream structure, see if there is an associated zstream
326  * for this block read.  If so, it starts a prefetch for the stream it
327  * located and returns true, otherwise it returns false
328  */
329 static boolean_t
330 dmu_zfetch_find(zfetch_t *zf, zstream_t *zh, int prefetched)
331 {
332 	zstream_t	*zs;
333 	int64_t		diff;
334 	int		reset = !prefetched;
335 	int		rc = 0;
336 
337 	if (zh == NULL)
338 		return (0);
339 
340 	/*
341 	 * XXX: This locking strategy is a bit coarse; however, it's impact has
342 	 * yet to be tested.  If this turns out to be an issue, it can be
343 	 * modified in a number of different ways.
344 	 */
345 
346 	rw_enter(&zf->zf_rwlock, RW_READER);
347 top:
348 
349 	for (zs = list_head(&zf->zf_stream); zs;
350 	    zs = list_next(&zf->zf_stream, zs)) {
351 
352 		/*
353 		 * XXX - should this be an assert?
354 		 */
355 		if (zs->zst_len == 0) {
356 			/* bogus stream */
357 			ZFETCHSTAT_BUMP(zfetchstat_bogus_streams);
358 			continue;
359 		}
360 
361 		/*
362 		 * We hit this case when we are in a strided prefetch stream:
363 		 * we will read "len" blocks before "striding".
364 		 */
365 		if (zh->zst_offset >= zs->zst_offset &&
366 		    zh->zst_offset < zs->zst_offset + zs->zst_len) {
367 			if (prefetched) {
368 				/* already fetched */
369 				ZFETCHSTAT_BUMP(zfetchstat_stride_hits);
370 				rc = 1;
371 				goto out;
372 			} else {
373 				ZFETCHSTAT_BUMP(zfetchstat_stride_misses);
374 			}
375 		}
376 
377 		/*
378 		 * This is the forward sequential read case: we increment
379 		 * len by one each time we hit here, so we will enter this
380 		 * case on every read.
381 		 */
382 		if (zh->zst_offset == zs->zst_offset + zs->zst_len) {
383 
384 			reset = !prefetched && zs->zst_len > 1;
385 
386 			mutex_enter(&zs->zst_lock);
387 
388 			if (zh->zst_offset != zs->zst_offset + zs->zst_len) {
389 				mutex_exit(&zs->zst_lock);
390 				goto top;
391 			}
392 			zs->zst_len += zh->zst_len;
393 			diff = zs->zst_len - zfetch_block_cap;
394 			if (diff > 0) {
395 				zs->zst_offset += diff;
396 				zs->zst_len = zs->zst_len > diff ?
397 				    zs->zst_len - diff : 0;
398 			}
399 			zs->zst_direction = ZFETCH_FORWARD;
400 
401 			break;
402 
403 		/*
404 		 * Same as above, but reading backwards through the file.
405 		 */
406 		} else if (zh->zst_offset == zs->zst_offset - zh->zst_len) {
407 			/* backwards sequential access */
408 
409 			reset = !prefetched && zs->zst_len > 1;
410 
411 			mutex_enter(&zs->zst_lock);
412 
413 			if (zh->zst_offset != zs->zst_offset - zh->zst_len) {
414 				mutex_exit(&zs->zst_lock);
415 				goto top;
416 			}
417 
418 			zs->zst_offset = zs->zst_offset > zh->zst_len ?
419 			    zs->zst_offset - zh->zst_len : 0;
420 			zs->zst_ph_offset = zs->zst_ph_offset > zh->zst_len ?
421 			    zs->zst_ph_offset - zh->zst_len : 0;
422 			zs->zst_len += zh->zst_len;
423 
424 			diff = zs->zst_len - zfetch_block_cap;
425 			if (diff > 0) {
426 				zs->zst_ph_offset = zs->zst_ph_offset > diff ?
427 				    zs->zst_ph_offset - diff : 0;
428 				zs->zst_len = zs->zst_len > diff ?
429 				    zs->zst_len - diff : zs->zst_len;
430 			}
431 			zs->zst_direction = ZFETCH_BACKWARD;
432 
433 			break;
434 
435 		} else if ((zh->zst_offset - zs->zst_offset - zs->zst_stride <
436 		    zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
437 			/* strided forward access */
438 
439 			mutex_enter(&zs->zst_lock);
440 
441 			if ((zh->zst_offset - zs->zst_offset - zs->zst_stride >=
442 			    zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
443 				mutex_exit(&zs->zst_lock);
444 				goto top;
445 			}
446 
447 			zs->zst_offset += zs->zst_stride;
448 			zs->zst_direction = ZFETCH_FORWARD;
449 
450 			break;
451 
452 		} else if ((zh->zst_offset - zs->zst_offset + zs->zst_stride <
453 		    zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
454 			/* strided reverse access */
455 
456 			mutex_enter(&zs->zst_lock);
457 
458 			if ((zh->zst_offset - zs->zst_offset + zs->zst_stride >=
459 			    zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
460 				mutex_exit(&zs->zst_lock);
461 				goto top;
462 			}
463 
464 			zs->zst_offset = zs->zst_offset > zs->zst_stride ?
465 			    zs->zst_offset - zs->zst_stride : 0;
466 			zs->zst_ph_offset = (zs->zst_ph_offset >
467 			    (2 * zs->zst_stride)) ?
468 			    (zs->zst_ph_offset - (2 * zs->zst_stride)) : 0;
469 			zs->zst_direction = ZFETCH_BACKWARD;
470 
471 			break;
472 		}
473 	}
474 
475 	if (zs) {
476 		if (reset) {
477 			zstream_t *remove = zs;
478 
479 			ZFETCHSTAT_BUMP(zfetchstat_stream_resets);
480 			rc = 0;
481 			mutex_exit(&zs->zst_lock);
482 			rw_exit(&zf->zf_rwlock);
483 			rw_enter(&zf->zf_rwlock, RW_WRITER);
484 			/*
485 			 * Relocate the stream, in case someone removes
486 			 * it while we were acquiring the WRITER lock.
487 			 */
488 			for (zs = list_head(&zf->zf_stream); zs;
489 			    zs = list_next(&zf->zf_stream, zs)) {
490 				if (zs == remove) {
491 					dmu_zfetch_stream_remove(zf, zs);
492 					mutex_destroy(&zs->zst_lock);
493 					kmem_free(zs, sizeof (zstream_t));
494 					break;
495 				}
496 			}
497 		} else {
498 			ZFETCHSTAT_BUMP(zfetchstat_stream_noresets);
499 			rc = 1;
500 			dmu_zfetch_dofetch(zf, zs);
501 			mutex_exit(&zs->zst_lock);
502 		}
503 	}
504 out:
505 	rw_exit(&zf->zf_rwlock);
506 	return (rc);
507 }
508 
509 /*
510  * Clean-up state associated with a zfetch structure.  This frees allocated
511  * structure members, empties the zf_stream tree, and generally makes things
512  * nice.  This doesn't free the zfetch_t itself, that's left to the caller.
513  */
514 void
515 dmu_zfetch_rele(zfetch_t *zf)
516 {
517 	zstream_t	*zs;
518 	zstream_t	*zs_next;
519 
520 	ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
521 
522 	for (zs = list_head(&zf->zf_stream); zs; zs = zs_next) {
523 		zs_next = list_next(&zf->zf_stream, zs);
524 
525 		list_remove(&zf->zf_stream, zs);
526 		mutex_destroy(&zs->zst_lock);
527 		kmem_free(zs, sizeof (zstream_t));
528 	}
529 	list_destroy(&zf->zf_stream);
530 	rw_destroy(&zf->zf_rwlock);
531 
532 	zf->zf_dnode = NULL;
533 }
534 
535 /*
536  * Given a zfetch and zstream structure, insert the zstream structure into the
537  * AVL tree contained within the zfetch structure.  Peform the appropriate
538  * book-keeping.  It is possible that another thread has inserted a stream which
539  * matches one that we are about to insert, so we must be sure to check for this
540  * case.  If one is found, return failure, and let the caller cleanup the
541  * duplicates.
542  */
543 static int
544 dmu_zfetch_stream_insert(zfetch_t *zf, zstream_t *zs)
545 {
546 	zstream_t	*zs_walk;
547 	zstream_t	*zs_next;
548 
549 	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
550 
551 	for (zs_walk = list_head(&zf->zf_stream); zs_walk; zs_walk = zs_next) {
552 		zs_next = list_next(&zf->zf_stream, zs_walk);
553 
554 		if (dmu_zfetch_streams_equal(zs_walk, zs)) {
555 			return (0);
556 		}
557 	}
558 
559 	list_insert_head(&zf->zf_stream, zs);
560 	zf->zf_stream_cnt++;
561 	return (1);
562 }
563 
564 
565 /*
566  * Walk the list of zstreams in the given zfetch, find an old one (by time), and
567  * reclaim it for use by the caller.
568  */
569 static zstream_t *
570 dmu_zfetch_stream_reclaim(zfetch_t *zf)
571 {
572 	zstream_t	*zs;
573 
574 	if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
575 		return (0);
576 
577 	for (zs = list_head(&zf->zf_stream); zs;
578 	    zs = list_next(&zf->zf_stream, zs)) {
579 
580 		if (((ddi_get_lbolt() - zs->zst_last)/hz) > zfetch_min_sec_reap)
581 			break;
582 	}
583 
584 	if (zs) {
585 		dmu_zfetch_stream_remove(zf, zs);
586 		mutex_destroy(&zs->zst_lock);
587 		bzero(zs, sizeof (zstream_t));
588 	} else {
589 		zf->zf_alloc_fail++;
590 	}
591 	rw_exit(&zf->zf_rwlock);
592 
593 	return (zs);
594 }
595 
596 /*
597  * Given a zfetch and zstream structure, remove the zstream structure from its
598  * container in the zfetch structure.  Perform the appropriate book-keeping.
599  */
600 static void
601 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
602 {
603 	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
604 
605 	list_remove(&zf->zf_stream, zs);
606 	zf->zf_stream_cnt--;
607 }
608 
609 static int
610 dmu_zfetch_streams_equal(zstream_t *zs1, zstream_t *zs2)
611 {
612 	if (zs1->zst_offset != zs2->zst_offset)
613 		return (0);
614 
615 	if (zs1->zst_len != zs2->zst_len)
616 		return (0);
617 
618 	if (zs1->zst_stride != zs2->zst_stride)
619 		return (0);
620 
621 	if (zs1->zst_ph_offset != zs2->zst_ph_offset)
622 		return (0);
623 
624 	if (zs1->zst_cap != zs2->zst_cap)
625 		return (0);
626 
627 	if (zs1->zst_direction != zs2->zst_direction)
628 		return (0);
629 
630 	return (1);
631 }
632 
633 /*
634  * This is the prefetch entry point.  It calls all of the other dmu_zfetch
635  * routines to create, delete, find, or operate upon prefetch streams.
636  */
637 void
638 dmu_zfetch(zfetch_t *zf, uint64_t offset, uint64_t size, int prefetched)
639 {
640 	zstream_t	zst;
641 	zstream_t	*newstream;
642 	boolean_t	fetched;
643 	int		inserted;
644 	unsigned int	blkshft;
645 	uint64_t	blksz;
646 
647 	if (zfs_prefetch_disable)
648 		return;
649 
650 	/* files that aren't ln2 blocksz are only one block -- nothing to do */
651 	if (!zf->zf_dnode->dn_datablkshift)
652 		return;
653 
654 	/* convert offset and size, into blockid and nblocks */
655 	blkshft = zf->zf_dnode->dn_datablkshift;
656 	blksz = (1 << blkshft);
657 
658 	bzero(&zst, sizeof (zstream_t));
659 	zst.zst_offset = offset >> blkshft;
660 	zst.zst_len = (P2ROUNDUP(offset + size, blksz) -
661 	    P2ALIGN(offset, blksz)) >> blkshft;
662 
663 	fetched = dmu_zfetch_find(zf, &zst, prefetched);
664 	if (fetched) {
665 		ZFETCHSTAT_BUMP(zfetchstat_hits);
666 	} else {
667 		ZFETCHSTAT_BUMP(zfetchstat_misses);
668 		fetched = dmu_zfetch_colinear(zf, &zst);
669 		if (fetched) {
670 			ZFETCHSTAT_BUMP(zfetchstat_colinear_hits);
671 		} else {
672 			ZFETCHSTAT_BUMP(zfetchstat_colinear_misses);
673 		}
674 	}
675 
676 	if (!fetched) {
677 		newstream = dmu_zfetch_stream_reclaim(zf);
678 
679 		/*
680 		 * we still couldn't find a stream, drop the lock, and allocate
681 		 * one if possible.  Otherwise, give up and go home.
682 		 */
683 		if (newstream) {
684 			ZFETCHSTAT_BUMP(zfetchstat_reclaim_successes);
685 		} else {
686 			uint64_t	maxblocks;
687 			uint32_t	max_streams;
688 			uint32_t	cur_streams;
689 
690 			ZFETCHSTAT_BUMP(zfetchstat_reclaim_failures);
691 			cur_streams = zf->zf_stream_cnt;
692 			maxblocks = zf->zf_dnode->dn_maxblkid;
693 
694 			max_streams = MIN(zfetch_max_streams,
695 			    (maxblocks / zfetch_block_cap));
696 			if (max_streams == 0) {
697 				max_streams++;
698 			}
699 
700 			if (cur_streams >= max_streams) {
701 				return;
702 			}
703 			newstream = kmem_zalloc(sizeof (zstream_t), KM_SLEEP);
704 		}
705 
706 		newstream->zst_offset = zst.zst_offset;
707 		newstream->zst_len = zst.zst_len;
708 		newstream->zst_stride = zst.zst_len;
709 		newstream->zst_ph_offset = zst.zst_len + zst.zst_offset;
710 		newstream->zst_cap = zst.zst_len;
711 		newstream->zst_direction = ZFETCH_FORWARD;
712 		newstream->zst_last = ddi_get_lbolt();
713 
714 		mutex_init(&newstream->zst_lock, NULL, MUTEX_DEFAULT, NULL);
715 
716 		rw_enter(&zf->zf_rwlock, RW_WRITER);
717 		inserted = dmu_zfetch_stream_insert(zf, newstream);
718 		rw_exit(&zf->zf_rwlock);
719 
720 		if (!inserted) {
721 			mutex_destroy(&newstream->zst_lock);
722 			kmem_free(newstream, sizeof (zstream_t));
723 		}
724 	}
725 }
726