1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/dmu.h> 28 #include <sys/dmu_impl.h> 29 #include <sys/dbuf.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */ 33 #include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */ 34 #include <sys/dsl_pool.h> 35 #include <sys/zap_impl.h> /* for fzap_default_block_shift */ 36 #include <sys/spa.h> 37 #include <sys/sa.h> 38 #include <sys/sa_impl.h> 39 #include <sys/zfs_context.h> 40 #include <sys/varargs.h> 41 42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, 43 uint64_t arg1, uint64_t arg2); 44 45 46 dmu_tx_t * 47 dmu_tx_create_dd(dsl_dir_t *dd) 48 { 49 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); 50 tx->tx_dir = dd; 51 if (dd != NULL) 52 tx->tx_pool = dd->dd_pool; 53 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), 54 offsetof(dmu_tx_hold_t, txh_node)); 55 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t), 56 offsetof(dmu_tx_callback_t, dcb_node)); 57 tx->tx_start = gethrtime(); 58 #ifdef ZFS_DEBUG 59 refcount_create(&tx->tx_space_written); 60 refcount_create(&tx->tx_space_freed); 61 #endif 62 return (tx); 63 } 64 65 dmu_tx_t * 66 dmu_tx_create(objset_t *os) 67 { 68 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir); 69 tx->tx_objset = os; 70 tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os_dsl_dataset); 71 return (tx); 72 } 73 74 dmu_tx_t * 75 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) 76 { 77 dmu_tx_t *tx = dmu_tx_create_dd(NULL); 78 79 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 80 tx->tx_pool = dp; 81 tx->tx_txg = txg; 82 tx->tx_anyobj = TRUE; 83 84 return (tx); 85 } 86 87 int 88 dmu_tx_is_syncing(dmu_tx_t *tx) 89 { 90 return (tx->tx_anyobj); 91 } 92 93 int 94 dmu_tx_private_ok(dmu_tx_t *tx) 95 { 96 return (tx->tx_anyobj); 97 } 98 99 static dmu_tx_hold_t * 100 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, 101 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) 102 { 103 dmu_tx_hold_t *txh; 104 dnode_t *dn = NULL; 105 int err; 106 107 if (object != DMU_NEW_OBJECT) { 108 err = dnode_hold(os, object, tx, &dn); 109 if (err) { 110 tx->tx_err = err; 111 return (NULL); 112 } 113 114 if (err == 0 && tx->tx_txg != 0) { 115 mutex_enter(&dn->dn_mtx); 116 /* 117 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a 118 * problem, but there's no way for it to happen (for 119 * now, at least). 120 */ 121 ASSERT(dn->dn_assigned_txg == 0); 122 dn->dn_assigned_txg = tx->tx_txg; 123 (void) refcount_add(&dn->dn_tx_holds, tx); 124 mutex_exit(&dn->dn_mtx); 125 } 126 } 127 128 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); 129 txh->txh_tx = tx; 130 txh->txh_dnode = dn; 131 #ifdef ZFS_DEBUG 132 txh->txh_type = type; 133 txh->txh_arg1 = arg1; 134 txh->txh_arg2 = arg2; 135 #endif 136 list_insert_tail(&tx->tx_holds, txh); 137 138 return (txh); 139 } 140 141 void 142 dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object) 143 { 144 /* 145 * If we're syncing, they can manipulate any object anyhow, and 146 * the hold on the dnode_t can cause problems. 147 */ 148 if (!dmu_tx_is_syncing(tx)) { 149 (void) dmu_tx_hold_object_impl(tx, os, 150 object, THT_NEWOBJECT, 0, 0); 151 } 152 } 153 154 static int 155 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) 156 { 157 int err; 158 dmu_buf_impl_t *db; 159 160 rw_enter(&dn->dn_struct_rwlock, RW_READER); 161 db = dbuf_hold_level(dn, level, blkid, FTAG); 162 rw_exit(&dn->dn_struct_rwlock); 163 if (db == NULL) 164 return (SET_ERROR(EIO)); 165 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH); 166 dbuf_rele(db, FTAG); 167 return (err); 168 } 169 170 static void 171 dmu_tx_count_twig(dmu_tx_hold_t *txh, dnode_t *dn, dmu_buf_impl_t *db, 172 int level, uint64_t blkid, boolean_t freeable, uint64_t *history) 173 { 174 objset_t *os = dn->dn_objset; 175 dsl_dataset_t *ds = os->os_dsl_dataset; 176 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 177 dmu_buf_impl_t *parent = NULL; 178 blkptr_t *bp = NULL; 179 uint64_t space; 180 181 if (level >= dn->dn_nlevels || history[level] == blkid) 182 return; 183 184 history[level] = blkid; 185 186 space = (level == 0) ? dn->dn_datablksz : (1ULL << dn->dn_indblkshift); 187 188 if (db == NULL || db == dn->dn_dbuf) { 189 ASSERT(level != 0); 190 db = NULL; 191 } else { 192 ASSERT(DB_DNODE(db) == dn); 193 ASSERT(db->db_level == level); 194 ASSERT(db->db.db_size == space); 195 ASSERT(db->db_blkid == blkid); 196 bp = db->db_blkptr; 197 parent = db->db_parent; 198 } 199 200 freeable = (bp && (freeable || 201 dsl_dataset_block_freeable(ds, bp, bp->blk_birth))); 202 203 if (freeable) 204 txh->txh_space_tooverwrite += space; 205 else 206 txh->txh_space_towrite += space; 207 if (bp) 208 txh->txh_space_tounref += bp_get_dsize(os->os_spa, bp); 209 210 dmu_tx_count_twig(txh, dn, parent, level + 1, 211 blkid >> epbs, freeable, history); 212 } 213 214 /* ARGSUSED */ 215 static void 216 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 217 { 218 dnode_t *dn = txh->txh_dnode; 219 uint64_t start, end, i; 220 int min_bs, max_bs, min_ibs, max_ibs, epbs, bits; 221 int err = 0; 222 223 if (len == 0) 224 return; 225 226 min_bs = SPA_MINBLOCKSHIFT; 227 max_bs = highbit64(txh->txh_tx->tx_objset->os_recordsize) - 1; 228 min_ibs = DN_MIN_INDBLKSHIFT; 229 max_ibs = DN_MAX_INDBLKSHIFT; 230 231 if (dn) { 232 uint64_t history[DN_MAX_LEVELS]; 233 int nlvls = dn->dn_nlevels; 234 int delta; 235 236 /* 237 * For i/o error checking, read the first and last level-0 238 * blocks (if they are not aligned), and all the level-1 blocks. 239 */ 240 if (dn->dn_maxblkid == 0) { 241 delta = dn->dn_datablksz; 242 start = (off < dn->dn_datablksz) ? 0 : 1; 243 end = (off+len <= dn->dn_datablksz) ? 0 : 1; 244 if (start == 0 && (off > 0 || len < dn->dn_datablksz)) { 245 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 246 if (err) 247 goto out; 248 delta -= off; 249 } 250 } else { 251 zio_t *zio = zio_root(dn->dn_objset->os_spa, 252 NULL, NULL, ZIO_FLAG_CANFAIL); 253 254 /* first level-0 block */ 255 start = off >> dn->dn_datablkshift; 256 if (P2PHASE(off, dn->dn_datablksz) || 257 len < dn->dn_datablksz) { 258 err = dmu_tx_check_ioerr(zio, dn, 0, start); 259 if (err) 260 goto out; 261 } 262 263 /* last level-0 block */ 264 end = (off+len-1) >> dn->dn_datablkshift; 265 if (end != start && end <= dn->dn_maxblkid && 266 P2PHASE(off+len, dn->dn_datablksz)) { 267 err = dmu_tx_check_ioerr(zio, dn, 0, end); 268 if (err) 269 goto out; 270 } 271 272 /* level-1 blocks */ 273 if (nlvls > 1) { 274 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 275 for (i = (start>>shft)+1; i < end>>shft; i++) { 276 err = dmu_tx_check_ioerr(zio, dn, 1, i); 277 if (err) 278 goto out; 279 } 280 } 281 282 err = zio_wait(zio); 283 if (err) 284 goto out; 285 delta = P2NPHASE(off, dn->dn_datablksz); 286 } 287 288 min_ibs = max_ibs = dn->dn_indblkshift; 289 if (dn->dn_maxblkid > 0) { 290 /* 291 * The blocksize can't change, 292 * so we can make a more precise estimate. 293 */ 294 ASSERT(dn->dn_datablkshift != 0); 295 min_bs = max_bs = dn->dn_datablkshift; 296 } else { 297 /* 298 * The blocksize can increase up to the recordsize, 299 * or if it is already more than the recordsize, 300 * up to the next power of 2. 301 */ 302 min_bs = highbit64(dn->dn_datablksz - 1); 303 max_bs = MAX(max_bs, highbit64(dn->dn_datablksz - 1)); 304 } 305 306 /* 307 * If this write is not off the end of the file 308 * we need to account for overwrites/unref. 309 */ 310 if (start <= dn->dn_maxblkid) { 311 for (int l = 0; l < DN_MAX_LEVELS; l++) 312 history[l] = -1ULL; 313 } 314 while (start <= dn->dn_maxblkid) { 315 dmu_buf_impl_t *db; 316 317 rw_enter(&dn->dn_struct_rwlock, RW_READER); 318 err = dbuf_hold_impl(dn, 0, start, FALSE, FTAG, &db); 319 rw_exit(&dn->dn_struct_rwlock); 320 321 if (err) { 322 txh->txh_tx->tx_err = err; 323 return; 324 } 325 326 dmu_tx_count_twig(txh, dn, db, 0, start, B_FALSE, 327 history); 328 dbuf_rele(db, FTAG); 329 if (++start > end) { 330 /* 331 * Account for new indirects appearing 332 * before this IO gets assigned into a txg. 333 */ 334 bits = 64 - min_bs; 335 epbs = min_ibs - SPA_BLKPTRSHIFT; 336 for (bits -= epbs * (nlvls - 1); 337 bits >= 0; bits -= epbs) 338 txh->txh_fudge += 1ULL << max_ibs; 339 goto out; 340 } 341 off += delta; 342 if (len >= delta) 343 len -= delta; 344 delta = dn->dn_datablksz; 345 } 346 } 347 348 /* 349 * 'end' is the last thing we will access, not one past. 350 * This way we won't overflow when accessing the last byte. 351 */ 352 start = P2ALIGN(off, 1ULL << max_bs); 353 end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1; 354 txh->txh_space_towrite += end - start + 1; 355 356 start >>= min_bs; 357 end >>= min_bs; 358 359 epbs = min_ibs - SPA_BLKPTRSHIFT; 360 361 /* 362 * The object contains at most 2^(64 - min_bs) blocks, 363 * and each indirect level maps 2^epbs. 364 */ 365 for (bits = 64 - min_bs; bits >= 0; bits -= epbs) { 366 start >>= epbs; 367 end >>= epbs; 368 ASSERT3U(end, >=, start); 369 txh->txh_space_towrite += (end - start + 1) << max_ibs; 370 if (start != 0) { 371 /* 372 * We also need a new blkid=0 indirect block 373 * to reference any existing file data. 374 */ 375 txh->txh_space_towrite += 1ULL << max_ibs; 376 } 377 } 378 379 out: 380 if (txh->txh_space_towrite + txh->txh_space_tooverwrite > 381 2 * DMU_MAX_ACCESS) 382 err = SET_ERROR(EFBIG); 383 384 if (err) 385 txh->txh_tx->tx_err = err; 386 } 387 388 static void 389 dmu_tx_count_dnode(dmu_tx_hold_t *txh) 390 { 391 dnode_t *dn = txh->txh_dnode; 392 dnode_t *mdn = DMU_META_DNODE(txh->txh_tx->tx_objset); 393 uint64_t space = mdn->dn_datablksz + 394 ((mdn->dn_nlevels-1) << mdn->dn_indblkshift); 395 396 if (dn && dn->dn_dbuf->db_blkptr && 397 dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 398 dn->dn_dbuf->db_blkptr, dn->dn_dbuf->db_blkptr->blk_birth)) { 399 txh->txh_space_tooverwrite += space; 400 txh->txh_space_tounref += space; 401 } else { 402 txh->txh_space_towrite += space; 403 if (dn && dn->dn_dbuf->db_blkptr) 404 txh->txh_space_tounref += space; 405 } 406 } 407 408 void 409 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) 410 { 411 dmu_tx_hold_t *txh; 412 413 ASSERT(tx->tx_txg == 0); 414 ASSERT(len < DMU_MAX_ACCESS); 415 ASSERT(len == 0 || UINT64_MAX - off >= len - 1); 416 417 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 418 object, THT_WRITE, off, len); 419 if (txh == NULL) 420 return; 421 422 dmu_tx_count_write(txh, off, len); 423 dmu_tx_count_dnode(txh); 424 } 425 426 static void 427 dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 428 { 429 uint64_t blkid, nblks, lastblk; 430 uint64_t space = 0, unref = 0, skipped = 0; 431 dnode_t *dn = txh->txh_dnode; 432 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 433 spa_t *spa = txh->txh_tx->tx_pool->dp_spa; 434 int epbs; 435 uint64_t l0span = 0, nl1blks = 0; 436 437 if (dn->dn_nlevels == 0) 438 return; 439 440 /* 441 * The struct_rwlock protects us against dn_nlevels 442 * changing, in case (against all odds) we manage to dirty & 443 * sync out the changes after we check for being dirty. 444 * Also, dbuf_hold_impl() wants us to have the struct_rwlock. 445 */ 446 rw_enter(&dn->dn_struct_rwlock, RW_READER); 447 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 448 if (dn->dn_maxblkid == 0) { 449 if (off == 0 && len >= dn->dn_datablksz) { 450 blkid = 0; 451 nblks = 1; 452 } else { 453 rw_exit(&dn->dn_struct_rwlock); 454 return; 455 } 456 } else { 457 blkid = off >> dn->dn_datablkshift; 458 nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift; 459 460 if (blkid > dn->dn_maxblkid) { 461 rw_exit(&dn->dn_struct_rwlock); 462 return; 463 } 464 if (blkid + nblks > dn->dn_maxblkid) 465 nblks = dn->dn_maxblkid - blkid + 1; 466 467 } 468 l0span = nblks; /* save for later use to calc level > 1 overhead */ 469 if (dn->dn_nlevels == 1) { 470 int i; 471 for (i = 0; i < nblks; i++) { 472 blkptr_t *bp = dn->dn_phys->dn_blkptr; 473 ASSERT3U(blkid + i, <, dn->dn_nblkptr); 474 bp += blkid + i; 475 if (dsl_dataset_block_freeable(ds, bp, bp->blk_birth)) { 476 dprintf_bp(bp, "can free old%s", ""); 477 space += bp_get_dsize(spa, bp); 478 } 479 unref += BP_GET_ASIZE(bp); 480 } 481 nl1blks = 1; 482 nblks = 0; 483 } 484 485 lastblk = blkid + nblks - 1; 486 while (nblks) { 487 dmu_buf_impl_t *dbuf; 488 uint64_t ibyte, new_blkid; 489 int epb = 1 << epbs; 490 int err, i, blkoff, tochk; 491 blkptr_t *bp; 492 493 ibyte = blkid << dn->dn_datablkshift; 494 err = dnode_next_offset(dn, 495 DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0); 496 new_blkid = ibyte >> dn->dn_datablkshift; 497 if (err == ESRCH) { 498 skipped += (lastblk >> epbs) - (blkid >> epbs) + 1; 499 break; 500 } 501 if (err) { 502 txh->txh_tx->tx_err = err; 503 break; 504 } 505 if (new_blkid > lastblk) { 506 skipped += (lastblk >> epbs) - (blkid >> epbs) + 1; 507 break; 508 } 509 510 if (new_blkid > blkid) { 511 ASSERT((new_blkid >> epbs) > (blkid >> epbs)); 512 skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1; 513 nblks -= new_blkid - blkid; 514 blkid = new_blkid; 515 } 516 blkoff = P2PHASE(blkid, epb); 517 tochk = MIN(epb - blkoff, nblks); 518 519 err = dbuf_hold_impl(dn, 1, blkid >> epbs, FALSE, FTAG, &dbuf); 520 if (err) { 521 txh->txh_tx->tx_err = err; 522 break; 523 } 524 525 txh->txh_memory_tohold += dbuf->db.db_size; 526 527 /* 528 * We don't check memory_tohold against DMU_MAX_ACCESS because 529 * memory_tohold is an over-estimation (especially the >L1 530 * indirect blocks), so it could fail. Callers should have 531 * already verified that they will not be holding too much 532 * memory. 533 */ 534 535 err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL); 536 if (err != 0) { 537 txh->txh_tx->tx_err = err; 538 dbuf_rele(dbuf, FTAG); 539 break; 540 } 541 542 bp = dbuf->db.db_data; 543 bp += blkoff; 544 545 for (i = 0; i < tochk; i++) { 546 if (dsl_dataset_block_freeable(ds, &bp[i], 547 bp[i].blk_birth)) { 548 dprintf_bp(&bp[i], "can free old%s", ""); 549 space += bp_get_dsize(spa, &bp[i]); 550 } 551 unref += BP_GET_ASIZE(bp); 552 } 553 dbuf_rele(dbuf, FTAG); 554 555 ++nl1blks; 556 blkid += tochk; 557 nblks -= tochk; 558 } 559 rw_exit(&dn->dn_struct_rwlock); 560 561 /* 562 * Add in memory requirements of higher-level indirects. 563 * This assumes a worst-possible scenario for dn_nlevels and a 564 * worst-possible distribution of l1-blocks over the region to free. 565 */ 566 { 567 uint64_t blkcnt = 1 + ((l0span >> epbs) >> epbs); 568 int level = 2; 569 /* 570 * Here we don't use DN_MAX_LEVEL, but calculate it with the 571 * given datablkshift and indblkshift. This makes the 572 * difference between 19 and 8 on large files. 573 */ 574 int maxlevel = 2 + (DN_MAX_OFFSET_SHIFT - dn->dn_datablkshift) / 575 (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 576 577 while (level++ < maxlevel) { 578 txh->txh_memory_tohold += MAX(MIN(blkcnt, nl1blks), 1) 579 << dn->dn_indblkshift; 580 blkcnt = 1 + (blkcnt >> epbs); 581 } 582 } 583 584 /* account for new level 1 indirect blocks that might show up */ 585 if (skipped > 0) { 586 txh->txh_fudge += skipped << dn->dn_indblkshift; 587 skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs); 588 txh->txh_memory_tohold += skipped << dn->dn_indblkshift; 589 } 590 txh->txh_space_tofree += space; 591 txh->txh_space_tounref += unref; 592 } 593 594 /* 595 * This function marks the transaction as being a "net free". The end 596 * result is that refquotas will be disabled for this transaction, and 597 * this transaction will be able to use half of the pool space overhead 598 * (see dsl_pool_adjustedsize()). Therefore this function should only 599 * be called for transactions that we expect will not cause a net increase 600 * in the amount of space used (but it's OK if that is occasionally not true). 601 */ 602 void 603 dmu_tx_mark_netfree(dmu_tx_t *tx) 604 { 605 dmu_tx_hold_t *txh; 606 607 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 608 DMU_NEW_OBJECT, THT_FREE, 0, 0); 609 610 /* 611 * Pretend that this operation will free 1GB of space. This 612 * should be large enough to cancel out the largest write. 613 * We don't want to use something like UINT64_MAX, because that would 614 * cause overflows when doing math with these values (e.g. in 615 * dmu_tx_try_assign()). 616 */ 617 txh->txh_space_tofree = txh->txh_space_tounref = 1024 * 1024 * 1024; 618 } 619 620 void 621 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) 622 { 623 dmu_tx_hold_t *txh; 624 dnode_t *dn; 625 int err; 626 zio_t *zio; 627 628 ASSERT(tx->tx_txg == 0); 629 630 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 631 object, THT_FREE, off, len); 632 if (txh == NULL) 633 return; 634 dn = txh->txh_dnode; 635 dmu_tx_count_dnode(txh); 636 637 if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz) 638 return; 639 if (len == DMU_OBJECT_END) 640 len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off; 641 642 /* 643 * For i/o error checking, we read the first and last level-0 644 * blocks if they are not aligned, and all the level-1 blocks. 645 * 646 * Note: dbuf_free_range() assumes that we have not instantiated 647 * any level-0 dbufs that will be completely freed. Therefore we must 648 * exercise care to not read or count the first and last blocks 649 * if they are blocksize-aligned. 650 */ 651 if (dn->dn_datablkshift == 0) { 652 if (off != 0 || len < dn->dn_datablksz) 653 dmu_tx_count_write(txh, 0, dn->dn_datablksz); 654 } else { 655 /* first block will be modified if it is not aligned */ 656 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift)) 657 dmu_tx_count_write(txh, off, 1); 658 /* last block will be modified if it is not aligned */ 659 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift)) 660 dmu_tx_count_write(txh, off+len, 1); 661 } 662 663 /* 664 * Check level-1 blocks. 665 */ 666 if (dn->dn_nlevels > 1) { 667 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 668 SPA_BLKPTRSHIFT; 669 uint64_t start = off >> shift; 670 uint64_t end = (off + len) >> shift; 671 672 ASSERT(dn->dn_indblkshift != 0); 673 674 /* 675 * dnode_reallocate() can result in an object with indirect 676 * blocks having an odd data block size. In this case, 677 * just check the single block. 678 */ 679 if (dn->dn_datablkshift == 0) 680 start = end = 0; 681 682 zio = zio_root(tx->tx_pool->dp_spa, 683 NULL, NULL, ZIO_FLAG_CANFAIL); 684 for (uint64_t i = start; i <= end; i++) { 685 uint64_t ibyte = i << shift; 686 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0); 687 i = ibyte >> shift; 688 if (err == ESRCH) 689 break; 690 if (err) { 691 tx->tx_err = err; 692 return; 693 } 694 695 err = dmu_tx_check_ioerr(zio, dn, 1, i); 696 if (err) { 697 tx->tx_err = err; 698 return; 699 } 700 } 701 err = zio_wait(zio); 702 if (err) { 703 tx->tx_err = err; 704 return; 705 } 706 } 707 708 dmu_tx_count_free(txh, off, len); 709 } 710 711 void 712 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name) 713 { 714 dmu_tx_hold_t *txh; 715 dnode_t *dn; 716 dsl_dataset_phys_t *ds_phys; 717 uint64_t nblocks; 718 int epbs, err; 719 720 ASSERT(tx->tx_txg == 0); 721 722 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 723 object, THT_ZAP, add, (uintptr_t)name); 724 if (txh == NULL) 725 return; 726 dn = txh->txh_dnode; 727 728 dmu_tx_count_dnode(txh); 729 730 if (dn == NULL) { 731 /* 732 * We will be able to fit a new object's entries into one leaf 733 * block. So there will be at most 2 blocks total, 734 * including the header block. 735 */ 736 dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift); 737 return; 738 } 739 740 ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP); 741 742 if (dn->dn_maxblkid == 0 && !add) { 743 blkptr_t *bp; 744 745 /* 746 * If there is only one block (i.e. this is a micro-zap) 747 * and we are not adding anything, the accounting is simple. 748 */ 749 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 750 if (err) { 751 tx->tx_err = err; 752 return; 753 } 754 755 /* 756 * Use max block size here, since we don't know how much 757 * the size will change between now and the dbuf dirty call. 758 */ 759 bp = &dn->dn_phys->dn_blkptr[0]; 760 if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 761 bp, bp->blk_birth)) 762 txh->txh_space_tooverwrite += MZAP_MAX_BLKSZ; 763 else 764 txh->txh_space_towrite += MZAP_MAX_BLKSZ; 765 if (!BP_IS_HOLE(bp)) 766 txh->txh_space_tounref += MZAP_MAX_BLKSZ; 767 return; 768 } 769 770 if (dn->dn_maxblkid > 0 && name) { 771 /* 772 * access the name in this fat-zap so that we'll check 773 * for i/o errors to the leaf blocks, etc. 774 */ 775 err = zap_lookup(dn->dn_objset, dn->dn_object, name, 776 8, 0, NULL); 777 if (err == EIO) { 778 tx->tx_err = err; 779 return; 780 } 781 } 782 783 err = zap_count_write(dn->dn_objset, dn->dn_object, name, add, 784 &txh->txh_space_towrite, &txh->txh_space_tooverwrite); 785 786 /* 787 * If the modified blocks are scattered to the four winds, 788 * we'll have to modify an indirect twig for each. 789 */ 790 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 791 ds_phys = dsl_dataset_phys(dn->dn_objset->os_dsl_dataset); 792 for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs) 793 if (ds_phys->ds_prev_snap_obj) 794 txh->txh_space_towrite += 3 << dn->dn_indblkshift; 795 else 796 txh->txh_space_tooverwrite += 3 << dn->dn_indblkshift; 797 } 798 799 void 800 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) 801 { 802 dmu_tx_hold_t *txh; 803 804 ASSERT(tx->tx_txg == 0); 805 806 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 807 object, THT_BONUS, 0, 0); 808 if (txh) 809 dmu_tx_count_dnode(txh); 810 } 811 812 void 813 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) 814 { 815 dmu_tx_hold_t *txh; 816 ASSERT(tx->tx_txg == 0); 817 818 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 819 DMU_NEW_OBJECT, THT_SPACE, space, 0); 820 821 txh->txh_space_towrite += space; 822 } 823 824 int 825 dmu_tx_holds(dmu_tx_t *tx, uint64_t object) 826 { 827 dmu_tx_hold_t *txh; 828 int holds = 0; 829 830 /* 831 * By asserting that the tx is assigned, we're counting the 832 * number of dn_tx_holds, which is the same as the number of 833 * dn_holds. Otherwise, we'd be counting dn_holds, but 834 * dn_tx_holds could be 0. 835 */ 836 ASSERT(tx->tx_txg != 0); 837 838 /* if (tx->tx_anyobj == TRUE) */ 839 /* return (0); */ 840 841 for (txh = list_head(&tx->tx_holds); txh; 842 txh = list_next(&tx->tx_holds, txh)) { 843 if (txh->txh_dnode && txh->txh_dnode->dn_object == object) 844 holds++; 845 } 846 847 return (holds); 848 } 849 850 #ifdef ZFS_DEBUG 851 void 852 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) 853 { 854 dmu_tx_hold_t *txh; 855 int match_object = FALSE, match_offset = FALSE; 856 dnode_t *dn; 857 858 DB_DNODE_ENTER(db); 859 dn = DB_DNODE(db); 860 ASSERT(tx->tx_txg != 0); 861 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset); 862 ASSERT3U(dn->dn_object, ==, db->db.db_object); 863 864 if (tx->tx_anyobj) { 865 DB_DNODE_EXIT(db); 866 return; 867 } 868 869 /* XXX No checking on the meta dnode for now */ 870 if (db->db.db_object == DMU_META_DNODE_OBJECT) { 871 DB_DNODE_EXIT(db); 872 return; 873 } 874 875 for (txh = list_head(&tx->tx_holds); txh; 876 txh = list_next(&tx->tx_holds, txh)) { 877 ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg); 878 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) 879 match_object = TRUE; 880 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { 881 int datablkshift = dn->dn_datablkshift ? 882 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; 883 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 884 int shift = datablkshift + epbs * db->db_level; 885 uint64_t beginblk = shift >= 64 ? 0 : 886 (txh->txh_arg1 >> shift); 887 uint64_t endblk = shift >= 64 ? 0 : 888 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); 889 uint64_t blkid = db->db_blkid; 890 891 /* XXX txh_arg2 better not be zero... */ 892 893 dprintf("found txh type %x beginblk=%llx endblk=%llx\n", 894 txh->txh_type, beginblk, endblk); 895 896 switch (txh->txh_type) { 897 case THT_WRITE: 898 if (blkid >= beginblk && blkid <= endblk) 899 match_offset = TRUE; 900 /* 901 * We will let this hold work for the bonus 902 * or spill buffer so that we don't need to 903 * hold it when creating a new object. 904 */ 905 if (blkid == DMU_BONUS_BLKID || 906 blkid == DMU_SPILL_BLKID) 907 match_offset = TRUE; 908 /* 909 * They might have to increase nlevels, 910 * thus dirtying the new TLIBs. Or the 911 * might have to change the block size, 912 * thus dirying the new lvl=0 blk=0. 913 */ 914 if (blkid == 0) 915 match_offset = TRUE; 916 break; 917 case THT_FREE: 918 /* 919 * We will dirty all the level 1 blocks in 920 * the free range and perhaps the first and 921 * last level 0 block. 922 */ 923 if (blkid >= beginblk && (blkid <= endblk || 924 txh->txh_arg2 == DMU_OBJECT_END)) 925 match_offset = TRUE; 926 break; 927 case THT_SPILL: 928 if (blkid == DMU_SPILL_BLKID) 929 match_offset = TRUE; 930 break; 931 case THT_BONUS: 932 if (blkid == DMU_BONUS_BLKID) 933 match_offset = TRUE; 934 break; 935 case THT_ZAP: 936 match_offset = TRUE; 937 break; 938 case THT_NEWOBJECT: 939 match_object = TRUE; 940 break; 941 default: 942 ASSERT(!"bad txh_type"); 943 } 944 } 945 if (match_object && match_offset) { 946 DB_DNODE_EXIT(db); 947 return; 948 } 949 } 950 DB_DNODE_EXIT(db); 951 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", 952 (u_longlong_t)db->db.db_object, db->db_level, 953 (u_longlong_t)db->db_blkid); 954 } 955 #endif 956 957 /* 958 * If we can't do 10 iops, something is wrong. Let us go ahead 959 * and hit zfs_dirty_data_max. 960 */ 961 hrtime_t zfs_delay_max_ns = MSEC2NSEC(100); 962 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */ 963 964 /* 965 * We delay transactions when we've determined that the backend storage 966 * isn't able to accommodate the rate of incoming writes. 967 * 968 * If there is already a transaction waiting, we delay relative to when 969 * that transaction finishes waiting. This way the calculated min_time 970 * is independent of the number of threads concurrently executing 971 * transactions. 972 * 973 * If we are the only waiter, wait relative to when the transaction 974 * started, rather than the current time. This credits the transaction for 975 * "time already served", e.g. reading indirect blocks. 976 * 977 * The minimum time for a transaction to take is calculated as: 978 * min_time = scale * (dirty - min) / (max - dirty) 979 * min_time is then capped at zfs_delay_max_ns. 980 * 981 * The delay has two degrees of freedom that can be adjusted via tunables. 982 * The percentage of dirty data at which we start to delay is defined by 983 * zfs_delay_min_dirty_percent. This should typically be at or above 984 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to 985 * delay after writing at full speed has failed to keep up with the incoming 986 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly 987 * speaking, this variable determines the amount of delay at the midpoint of 988 * the curve. 989 * 990 * delay 991 * 10ms +-------------------------------------------------------------*+ 992 * | *| 993 * 9ms + *+ 994 * | *| 995 * 8ms + *+ 996 * | * | 997 * 7ms + * + 998 * | * | 999 * 6ms + * + 1000 * | * | 1001 * 5ms + * + 1002 * | * | 1003 * 4ms + * + 1004 * | * | 1005 * 3ms + * + 1006 * | * | 1007 * 2ms + (midpoint) * + 1008 * | | ** | 1009 * 1ms + v *** + 1010 * | zfs_delay_scale ----------> ******** | 1011 * 0 +-------------------------------------*********----------------+ 1012 * 0% <- zfs_dirty_data_max -> 100% 1013 * 1014 * Note that since the delay is added to the outstanding time remaining on the 1015 * most recent transaction, the delay is effectively the inverse of IOPS. 1016 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve 1017 * was chosen such that small changes in the amount of accumulated dirty data 1018 * in the first 3/4 of the curve yield relatively small differences in the 1019 * amount of delay. 1020 * 1021 * The effects can be easier to understand when the amount of delay is 1022 * represented on a log scale: 1023 * 1024 * delay 1025 * 100ms +-------------------------------------------------------------++ 1026 * + + 1027 * | | 1028 * + *+ 1029 * 10ms + *+ 1030 * + ** + 1031 * | (midpoint) ** | 1032 * + | ** + 1033 * 1ms + v **** + 1034 * + zfs_delay_scale ----------> ***** + 1035 * | **** | 1036 * + **** + 1037 * 100us + ** + 1038 * + * + 1039 * | * | 1040 * + * + 1041 * 10us + * + 1042 * + + 1043 * | | 1044 * + + 1045 * +--------------------------------------------------------------+ 1046 * 0% <- zfs_dirty_data_max -> 100% 1047 * 1048 * Note here that only as the amount of dirty data approaches its limit does 1049 * the delay start to increase rapidly. The goal of a properly tuned system 1050 * should be to keep the amount of dirty data out of that range by first 1051 * ensuring that the appropriate limits are set for the I/O scheduler to reach 1052 * optimal throughput on the backend storage, and then by changing the value 1053 * of zfs_delay_scale to increase the steepness of the curve. 1054 */ 1055 static void 1056 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty) 1057 { 1058 dsl_pool_t *dp = tx->tx_pool; 1059 uint64_t delay_min_bytes = 1060 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 1061 hrtime_t wakeup, min_tx_time, now; 1062 1063 if (dirty <= delay_min_bytes) 1064 return; 1065 1066 /* 1067 * The caller has already waited until we are under the max. 1068 * We make them pass us the amount of dirty data so we don't 1069 * have to handle the case of it being >= the max, which could 1070 * cause a divide-by-zero if it's == the max. 1071 */ 1072 ASSERT3U(dirty, <, zfs_dirty_data_max); 1073 1074 now = gethrtime(); 1075 min_tx_time = zfs_delay_scale * 1076 (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty); 1077 if (now > tx->tx_start + min_tx_time) 1078 return; 1079 1080 min_tx_time = MIN(min_tx_time, zfs_delay_max_ns); 1081 1082 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty, 1083 uint64_t, min_tx_time); 1084 1085 mutex_enter(&dp->dp_lock); 1086 wakeup = MAX(tx->tx_start + min_tx_time, 1087 dp->dp_last_wakeup + min_tx_time); 1088 dp->dp_last_wakeup = wakeup; 1089 mutex_exit(&dp->dp_lock); 1090 1091 #ifdef _KERNEL 1092 mutex_enter(&curthread->t_delay_lock); 1093 while (cv_timedwait_hires(&curthread->t_delay_cv, 1094 &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns, 1095 CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0) 1096 continue; 1097 mutex_exit(&curthread->t_delay_lock); 1098 #else 1099 hrtime_t delta = wakeup - gethrtime(); 1100 struct timespec ts; 1101 ts.tv_sec = delta / NANOSEC; 1102 ts.tv_nsec = delta % NANOSEC; 1103 (void) nanosleep(&ts, NULL); 1104 #endif 1105 } 1106 1107 static int 1108 dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how) 1109 { 1110 dmu_tx_hold_t *txh; 1111 spa_t *spa = tx->tx_pool->dp_spa; 1112 uint64_t memory, asize, fsize, usize; 1113 uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge; 1114 1115 ASSERT0(tx->tx_txg); 1116 1117 if (tx->tx_err) 1118 return (tx->tx_err); 1119 1120 if (spa_suspended(spa)) { 1121 /* 1122 * If the user has indicated a blocking failure mode 1123 * then return ERESTART which will block in dmu_tx_wait(). 1124 * Otherwise, return EIO so that an error can get 1125 * propagated back to the VOP calls. 1126 * 1127 * Note that we always honor the txg_how flag regardless 1128 * of the failuremode setting. 1129 */ 1130 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && 1131 txg_how != TXG_WAIT) 1132 return (SET_ERROR(EIO)); 1133 1134 return (SET_ERROR(ERESTART)); 1135 } 1136 1137 if (!tx->tx_waited && 1138 dsl_pool_need_dirty_delay(tx->tx_pool)) { 1139 tx->tx_wait_dirty = B_TRUE; 1140 return (SET_ERROR(ERESTART)); 1141 } 1142 1143 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); 1144 tx->tx_needassign_txh = NULL; 1145 1146 /* 1147 * NB: No error returns are allowed after txg_hold_open, but 1148 * before processing the dnode holds, due to the 1149 * dmu_tx_unassign() logic. 1150 */ 1151 1152 towrite = tofree = tooverwrite = tounref = tohold = fudge = 0; 1153 for (txh = list_head(&tx->tx_holds); txh; 1154 txh = list_next(&tx->tx_holds, txh)) { 1155 dnode_t *dn = txh->txh_dnode; 1156 if (dn != NULL) { 1157 mutex_enter(&dn->dn_mtx); 1158 if (dn->dn_assigned_txg == tx->tx_txg - 1) { 1159 mutex_exit(&dn->dn_mtx); 1160 tx->tx_needassign_txh = txh; 1161 return (SET_ERROR(ERESTART)); 1162 } 1163 if (dn->dn_assigned_txg == 0) 1164 dn->dn_assigned_txg = tx->tx_txg; 1165 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1166 (void) refcount_add(&dn->dn_tx_holds, tx); 1167 mutex_exit(&dn->dn_mtx); 1168 } 1169 towrite += txh->txh_space_towrite; 1170 tofree += txh->txh_space_tofree; 1171 tooverwrite += txh->txh_space_tooverwrite; 1172 tounref += txh->txh_space_tounref; 1173 tohold += txh->txh_memory_tohold; 1174 fudge += txh->txh_fudge; 1175 } 1176 1177 /* 1178 * If a snapshot has been taken since we made our estimates, 1179 * assume that we won't be able to free or overwrite anything. 1180 */ 1181 if (tx->tx_objset && 1182 dsl_dataset_prev_snap_txg(tx->tx_objset->os_dsl_dataset) > 1183 tx->tx_lastsnap_txg) { 1184 towrite += tooverwrite; 1185 tooverwrite = tofree = 0; 1186 } 1187 1188 /* needed allocation: worst-case estimate of write space */ 1189 asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite); 1190 /* freed space estimate: worst-case overwrite + free estimate */ 1191 fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree; 1192 /* convert unrefd space to worst-case estimate */ 1193 usize = spa_get_asize(tx->tx_pool->dp_spa, tounref); 1194 /* calculate memory footprint estimate */ 1195 memory = towrite + tooverwrite + tohold; 1196 1197 #ifdef ZFS_DEBUG 1198 /* 1199 * Add in 'tohold' to account for our dirty holds on this memory 1200 * XXX - the "fudge" factor is to account for skipped blocks that 1201 * we missed because dnode_next_offset() misses in-core-only blocks. 1202 */ 1203 tx->tx_space_towrite = asize + 1204 spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge); 1205 tx->tx_space_tofree = tofree; 1206 tx->tx_space_tooverwrite = tooverwrite; 1207 tx->tx_space_tounref = tounref; 1208 #endif 1209 1210 if (tx->tx_dir && asize != 0) { 1211 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory, 1212 asize, fsize, usize, &tx->tx_tempreserve_cookie, tx); 1213 if (err) 1214 return (err); 1215 } 1216 1217 return (0); 1218 } 1219 1220 static void 1221 dmu_tx_unassign(dmu_tx_t *tx) 1222 { 1223 dmu_tx_hold_t *txh; 1224 1225 if (tx->tx_txg == 0) 1226 return; 1227 1228 txg_rele_to_quiesce(&tx->tx_txgh); 1229 1230 /* 1231 * Walk the transaction's hold list, removing the hold on the 1232 * associated dnode, and notifying waiters if the refcount drops to 0. 1233 */ 1234 for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh; 1235 txh = list_next(&tx->tx_holds, txh)) { 1236 dnode_t *dn = txh->txh_dnode; 1237 1238 if (dn == NULL) 1239 continue; 1240 mutex_enter(&dn->dn_mtx); 1241 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1242 1243 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1244 dn->dn_assigned_txg = 0; 1245 cv_broadcast(&dn->dn_notxholds); 1246 } 1247 mutex_exit(&dn->dn_mtx); 1248 } 1249 1250 txg_rele_to_sync(&tx->tx_txgh); 1251 1252 tx->tx_lasttried_txg = tx->tx_txg; 1253 tx->tx_txg = 0; 1254 } 1255 1256 /* 1257 * Assign tx to a transaction group. txg_how can be one of: 1258 * 1259 * (1) TXG_WAIT. If the current open txg is full, waits until there's 1260 * a new one. This should be used when you're not holding locks. 1261 * It will only fail if we're truly out of space (or over quota). 1262 * 1263 * (2) TXG_NOWAIT. If we can't assign into the current open txg without 1264 * blocking, returns immediately with ERESTART. This should be used 1265 * whenever you're holding locks. On an ERESTART error, the caller 1266 * should drop locks, do a dmu_tx_wait(tx), and try again. 1267 * 1268 * (3) TXG_WAITED. Like TXG_NOWAIT, but indicates that dmu_tx_wait() 1269 * has already been called on behalf of this operation (though 1270 * most likely on a different tx). 1271 */ 1272 int 1273 dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how) 1274 { 1275 int err; 1276 1277 ASSERT(tx->tx_txg == 0); 1278 ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT || 1279 txg_how == TXG_WAITED); 1280 ASSERT(!dsl_pool_sync_context(tx->tx_pool)); 1281 1282 /* If we might wait, we must not hold the config lock. */ 1283 ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool)); 1284 1285 if (txg_how == TXG_WAITED) 1286 tx->tx_waited = B_TRUE; 1287 1288 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { 1289 dmu_tx_unassign(tx); 1290 1291 if (err != ERESTART || txg_how != TXG_WAIT) 1292 return (err); 1293 1294 dmu_tx_wait(tx); 1295 } 1296 1297 txg_rele_to_quiesce(&tx->tx_txgh); 1298 1299 return (0); 1300 } 1301 1302 void 1303 dmu_tx_wait(dmu_tx_t *tx) 1304 { 1305 spa_t *spa = tx->tx_pool->dp_spa; 1306 dsl_pool_t *dp = tx->tx_pool; 1307 1308 ASSERT(tx->tx_txg == 0); 1309 ASSERT(!dsl_pool_config_held(tx->tx_pool)); 1310 1311 if (tx->tx_wait_dirty) { 1312 /* 1313 * dmu_tx_try_assign() has determined that we need to wait 1314 * because we've consumed much or all of the dirty buffer 1315 * space. 1316 */ 1317 mutex_enter(&dp->dp_lock); 1318 while (dp->dp_dirty_total >= zfs_dirty_data_max) 1319 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock); 1320 uint64_t dirty = dp->dp_dirty_total; 1321 mutex_exit(&dp->dp_lock); 1322 1323 dmu_tx_delay(tx, dirty); 1324 1325 tx->tx_wait_dirty = B_FALSE; 1326 1327 /* 1328 * Note: setting tx_waited only has effect if the caller 1329 * used TX_WAIT. Otherwise they are going to destroy 1330 * this tx and try again. The common case, zfs_write(), 1331 * uses TX_WAIT. 1332 */ 1333 tx->tx_waited = B_TRUE; 1334 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) { 1335 /* 1336 * If the pool is suspended we need to wait until it 1337 * is resumed. Note that it's possible that the pool 1338 * has become active after this thread has tried to 1339 * obtain a tx. If that's the case then tx_lasttried_txg 1340 * would not have been set. 1341 */ 1342 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); 1343 } else if (tx->tx_needassign_txh) { 1344 /* 1345 * A dnode is assigned to the quiescing txg. Wait for its 1346 * transaction to complete. 1347 */ 1348 dnode_t *dn = tx->tx_needassign_txh->txh_dnode; 1349 1350 mutex_enter(&dn->dn_mtx); 1351 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) 1352 cv_wait(&dn->dn_notxholds, &dn->dn_mtx); 1353 mutex_exit(&dn->dn_mtx); 1354 tx->tx_needassign_txh = NULL; 1355 } else { 1356 txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1); 1357 } 1358 } 1359 1360 void 1361 dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta) 1362 { 1363 #ifdef ZFS_DEBUG 1364 if (tx->tx_dir == NULL || delta == 0) 1365 return; 1366 1367 if (delta > 0) { 1368 ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=, 1369 tx->tx_space_towrite); 1370 (void) refcount_add_many(&tx->tx_space_written, delta, NULL); 1371 } else { 1372 (void) refcount_add_many(&tx->tx_space_freed, -delta, NULL); 1373 } 1374 #endif 1375 } 1376 1377 void 1378 dmu_tx_commit(dmu_tx_t *tx) 1379 { 1380 dmu_tx_hold_t *txh; 1381 1382 ASSERT(tx->tx_txg != 0); 1383 1384 /* 1385 * Go through the transaction's hold list and remove holds on 1386 * associated dnodes, notifying waiters if no holds remain. 1387 */ 1388 while (txh = list_head(&tx->tx_holds)) { 1389 dnode_t *dn = txh->txh_dnode; 1390 1391 list_remove(&tx->tx_holds, txh); 1392 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1393 if (dn == NULL) 1394 continue; 1395 mutex_enter(&dn->dn_mtx); 1396 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1397 1398 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1399 dn->dn_assigned_txg = 0; 1400 cv_broadcast(&dn->dn_notxholds); 1401 } 1402 mutex_exit(&dn->dn_mtx); 1403 dnode_rele(dn, tx); 1404 } 1405 1406 if (tx->tx_tempreserve_cookie) 1407 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); 1408 1409 if (!list_is_empty(&tx->tx_callbacks)) 1410 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks); 1411 1412 if (tx->tx_anyobj == FALSE) 1413 txg_rele_to_sync(&tx->tx_txgh); 1414 1415 list_destroy(&tx->tx_callbacks); 1416 list_destroy(&tx->tx_holds); 1417 #ifdef ZFS_DEBUG 1418 dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n", 1419 tx->tx_space_towrite, refcount_count(&tx->tx_space_written), 1420 tx->tx_space_tofree, refcount_count(&tx->tx_space_freed)); 1421 refcount_destroy_many(&tx->tx_space_written, 1422 refcount_count(&tx->tx_space_written)); 1423 refcount_destroy_many(&tx->tx_space_freed, 1424 refcount_count(&tx->tx_space_freed)); 1425 #endif 1426 kmem_free(tx, sizeof (dmu_tx_t)); 1427 } 1428 1429 void 1430 dmu_tx_abort(dmu_tx_t *tx) 1431 { 1432 dmu_tx_hold_t *txh; 1433 1434 ASSERT(tx->tx_txg == 0); 1435 1436 while (txh = list_head(&tx->tx_holds)) { 1437 dnode_t *dn = txh->txh_dnode; 1438 1439 list_remove(&tx->tx_holds, txh); 1440 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1441 if (dn != NULL) 1442 dnode_rele(dn, tx); 1443 } 1444 1445 /* 1446 * Call any registered callbacks with an error code. 1447 */ 1448 if (!list_is_empty(&tx->tx_callbacks)) 1449 dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED); 1450 1451 list_destroy(&tx->tx_callbacks); 1452 list_destroy(&tx->tx_holds); 1453 #ifdef ZFS_DEBUG 1454 refcount_destroy_many(&tx->tx_space_written, 1455 refcount_count(&tx->tx_space_written)); 1456 refcount_destroy_many(&tx->tx_space_freed, 1457 refcount_count(&tx->tx_space_freed)); 1458 #endif 1459 kmem_free(tx, sizeof (dmu_tx_t)); 1460 } 1461 1462 uint64_t 1463 dmu_tx_get_txg(dmu_tx_t *tx) 1464 { 1465 ASSERT(tx->tx_txg != 0); 1466 return (tx->tx_txg); 1467 } 1468 1469 dsl_pool_t * 1470 dmu_tx_pool(dmu_tx_t *tx) 1471 { 1472 ASSERT(tx->tx_pool != NULL); 1473 return (tx->tx_pool); 1474 } 1475 1476 1477 void 1478 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data) 1479 { 1480 dmu_tx_callback_t *dcb; 1481 1482 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP); 1483 1484 dcb->dcb_func = func; 1485 dcb->dcb_data = data; 1486 1487 list_insert_tail(&tx->tx_callbacks, dcb); 1488 } 1489 1490 /* 1491 * Call all the commit callbacks on a list, with a given error code. 1492 */ 1493 void 1494 dmu_tx_do_callbacks(list_t *cb_list, int error) 1495 { 1496 dmu_tx_callback_t *dcb; 1497 1498 while (dcb = list_head(cb_list)) { 1499 list_remove(cb_list, dcb); 1500 dcb->dcb_func(dcb->dcb_data, error); 1501 kmem_free(dcb, sizeof (dmu_tx_callback_t)); 1502 } 1503 } 1504 1505 /* 1506 * Interface to hold a bunch of attributes. 1507 * used for creating new files. 1508 * attrsize is the total size of all attributes 1509 * to be added during object creation 1510 * 1511 * For updating/adding a single attribute dmu_tx_hold_sa() should be used. 1512 */ 1513 1514 /* 1515 * hold necessary attribute name for attribute registration. 1516 * should be a very rare case where this is needed. If it does 1517 * happen it would only happen on the first write to the file system. 1518 */ 1519 static void 1520 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx) 1521 { 1522 int i; 1523 1524 if (!sa->sa_need_attr_registration) 1525 return; 1526 1527 for (i = 0; i != sa->sa_num_attrs; i++) { 1528 if (!sa->sa_attr_table[i].sa_registered) { 1529 if (sa->sa_reg_attr_obj) 1530 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj, 1531 B_TRUE, sa->sa_attr_table[i].sa_name); 1532 else 1533 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 1534 B_TRUE, sa->sa_attr_table[i].sa_name); 1535 } 1536 } 1537 } 1538 1539 1540 void 1541 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object) 1542 { 1543 dnode_t *dn; 1544 dmu_tx_hold_t *txh; 1545 1546 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, 1547 THT_SPILL, 0, 0); 1548 1549 dn = txh->txh_dnode; 1550 1551 if (dn == NULL) 1552 return; 1553 1554 /* If blkptr doesn't exist then add space to towrite */ 1555 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 1556 txh->txh_space_towrite += SPA_OLD_MAXBLOCKSIZE; 1557 } else { 1558 blkptr_t *bp; 1559 1560 bp = &dn->dn_phys->dn_spill; 1561 if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 1562 bp, bp->blk_birth)) 1563 txh->txh_space_tooverwrite += SPA_OLD_MAXBLOCKSIZE; 1564 else 1565 txh->txh_space_towrite += SPA_OLD_MAXBLOCKSIZE; 1566 if (!BP_IS_HOLE(bp)) 1567 txh->txh_space_tounref += SPA_OLD_MAXBLOCKSIZE; 1568 } 1569 } 1570 1571 void 1572 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize) 1573 { 1574 sa_os_t *sa = tx->tx_objset->os_sa; 1575 1576 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1577 1578 if (tx->tx_objset->os_sa->sa_master_obj == 0) 1579 return; 1580 1581 if (tx->tx_objset->os_sa->sa_layout_attr_obj) 1582 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); 1583 else { 1584 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); 1585 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); 1586 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1587 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1588 } 1589 1590 dmu_tx_sa_registration_hold(sa, tx); 1591 1592 if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill) 1593 return; 1594 1595 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, 1596 THT_SPILL, 0, 0); 1597 } 1598 1599 /* 1600 * Hold SA attribute 1601 * 1602 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size) 1603 * 1604 * variable_size is the total size of all variable sized attributes 1605 * passed to this function. It is not the total size of all 1606 * variable size attributes that *may* exist on this object. 1607 */ 1608 void 1609 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow) 1610 { 1611 uint64_t object; 1612 sa_os_t *sa = tx->tx_objset->os_sa; 1613 1614 ASSERT(hdl != NULL); 1615 1616 object = sa_handle_object(hdl); 1617 1618 dmu_tx_hold_bonus(tx, object); 1619 1620 if (tx->tx_objset->os_sa->sa_master_obj == 0) 1621 return; 1622 1623 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 || 1624 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) { 1625 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); 1626 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); 1627 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1628 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1629 } 1630 1631 dmu_tx_sa_registration_hold(sa, tx); 1632 1633 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj) 1634 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); 1635 1636 if (sa->sa_force_spill || may_grow || hdl->sa_spill) { 1637 ASSERT(tx->tx_txg == 0); 1638 dmu_tx_hold_spill(tx, object); 1639 } else { 1640 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus; 1641 dnode_t *dn; 1642 1643 DB_DNODE_ENTER(db); 1644 dn = DB_DNODE(db); 1645 if (dn->dn_have_spill) { 1646 ASSERT(tx->tx_txg == 0); 1647 dmu_tx_hold_spill(tx, object); 1648 } 1649 DB_DNODE_EXIT(db); 1650 } 1651 } 1652