xref: /titanic_41/usr/src/uts/common/fs/zfs/dmu.c (revision e4d060fb4c00d44cd578713eb9a921f594b733b8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/dmu.h>
27 #include <sys/dmu_impl.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/dbuf.h>
30 #include <sys/dnode.h>
31 #include <sys/zfs_context.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_traverse.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/dsl_synctask.h>
38 #include <sys/dsl_prop.h>
39 #include <sys/dmu_zfetch.h>
40 #include <sys/zfs_ioctl.h>
41 #include <sys/zap.h>
42 #include <sys/zio_checksum.h>
43 #ifdef _KERNEL
44 #include <sys/vmsystm.h>
45 #include <sys/zfs_znode.h>
46 #endif
47 
48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
49 	{	byteswap_uint8_array,	TRUE,	"unallocated"		},
50 	{	zap_byteswap,		TRUE,	"object directory"	},
51 	{	byteswap_uint64_array,	TRUE,	"object array"		},
52 	{	byteswap_uint8_array,	TRUE,	"packed nvlist"		},
53 	{	byteswap_uint64_array,	TRUE,	"packed nvlist size"	},
54 	{	byteswap_uint64_array,	TRUE,	"bplist"		},
55 	{	byteswap_uint64_array,	TRUE,	"bplist header"		},
56 	{	byteswap_uint64_array,	TRUE,	"SPA space map header"	},
57 	{	byteswap_uint64_array,	TRUE,	"SPA space map"		},
58 	{	byteswap_uint64_array,	TRUE,	"ZIL intent log"	},
59 	{	dnode_buf_byteswap,	TRUE,	"DMU dnode"		},
60 	{	dmu_objset_byteswap,	TRUE,	"DMU objset"		},
61 	{	byteswap_uint64_array,	TRUE,	"DSL directory"		},
62 	{	zap_byteswap,		TRUE,	"DSL directory child map"},
63 	{	zap_byteswap,		TRUE,	"DSL dataset snap map"	},
64 	{	zap_byteswap,		TRUE,	"DSL props"		},
65 	{	byteswap_uint64_array,	TRUE,	"DSL dataset"		},
66 	{	zfs_znode_byteswap,	TRUE,	"ZFS znode"		},
67 	{	zfs_oldacl_byteswap,	TRUE,	"ZFS V0 ACL"		},
68 	{	byteswap_uint8_array,	FALSE,	"ZFS plain file"	},
69 	{	zap_byteswap,		TRUE,	"ZFS directory"		},
70 	{	zap_byteswap,		TRUE,	"ZFS master node"	},
71 	{	zap_byteswap,		TRUE,	"ZFS delete queue"	},
72 	{	byteswap_uint8_array,	FALSE,	"zvol object"		},
73 	{	zap_byteswap,		TRUE,	"zvol prop"		},
74 	{	byteswap_uint8_array,	FALSE,	"other uint8[]"		},
75 	{	byteswap_uint64_array,	FALSE,	"other uint64[]"	},
76 	{	zap_byteswap,		TRUE,	"other ZAP"		},
77 	{	zap_byteswap,		TRUE,	"persistent error log"	},
78 	{	byteswap_uint8_array,	TRUE,	"SPA history"		},
79 	{	byteswap_uint64_array,	TRUE,	"SPA history offsets"	},
80 	{	zap_byteswap,		TRUE,	"Pool properties"	},
81 	{	zap_byteswap,		TRUE,	"DSL permissions"	},
82 	{	zfs_acl_byteswap,	TRUE,	"ZFS ACL"		},
83 	{	byteswap_uint8_array,	TRUE,	"ZFS SYSACL"		},
84 	{	byteswap_uint8_array,	TRUE,	"FUID table"		},
85 	{	byteswap_uint64_array,	TRUE,	"FUID table size"	},
86 	{	zap_byteswap,		TRUE,	"DSL dataset next clones"},
87 	{	zap_byteswap,		TRUE,	"scrub work queue"	},
88 	{	zap_byteswap,		TRUE,	"ZFS user/group used"	},
89 	{	zap_byteswap,		TRUE,	"ZFS user/group quota"	},
90 	{	zap_byteswap,		TRUE,	"snapshot refcount tags"},
91 	{	zap_byteswap,		TRUE,	"DDT ZAP algorithm"	},
92 	{	zap_byteswap,		TRUE,	"DDT statistics"	},
93 };
94 
95 int
96 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
97     void *tag, dmu_buf_t **dbp)
98 {
99 	dnode_t *dn;
100 	uint64_t blkid;
101 	dmu_buf_impl_t *db;
102 	int err;
103 
104 	err = dnode_hold(os, object, FTAG, &dn);
105 	if (err)
106 		return (err);
107 	blkid = dbuf_whichblock(dn, offset);
108 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
109 	db = dbuf_hold(dn, blkid, tag);
110 	rw_exit(&dn->dn_struct_rwlock);
111 	if (db == NULL) {
112 		err = EIO;
113 	} else {
114 		err = dbuf_read(db, NULL, DB_RF_CANFAIL);
115 		if (err) {
116 			dbuf_rele(db, tag);
117 			db = NULL;
118 		}
119 	}
120 
121 	dnode_rele(dn, FTAG);
122 	*dbp = &db->db;
123 	return (err);
124 }
125 
126 int
127 dmu_bonus_max(void)
128 {
129 	return (DN_MAX_BONUSLEN);
130 }
131 
132 int
133 dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx)
134 {
135 	dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
136 
137 	if (dn->dn_bonus != (dmu_buf_impl_t *)db)
138 		return (EINVAL);
139 	if (newsize < 0 || newsize > db->db_size)
140 		return (EINVAL);
141 	dnode_setbonuslen(dn, newsize, tx);
142 	return (0);
143 }
144 
145 /*
146  * returns ENOENT, EIO, or 0.
147  */
148 int
149 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
150 {
151 	dnode_t *dn;
152 	dmu_buf_impl_t *db;
153 	int error;
154 
155 	error = dnode_hold(os, object, FTAG, &dn);
156 	if (error)
157 		return (error);
158 
159 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
160 	if (dn->dn_bonus == NULL) {
161 		rw_exit(&dn->dn_struct_rwlock);
162 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
163 		if (dn->dn_bonus == NULL)
164 			dbuf_create_bonus(dn);
165 	}
166 	db = dn->dn_bonus;
167 	rw_exit(&dn->dn_struct_rwlock);
168 
169 	/* as long as the bonus buf is held, the dnode will be held */
170 	if (refcount_add(&db->db_holds, tag) == 1)
171 		VERIFY(dnode_add_ref(dn, db));
172 
173 	dnode_rele(dn, FTAG);
174 
175 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED));
176 
177 	*dbp = &db->db;
178 	return (0);
179 }
180 
181 /*
182  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
183  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
184  * and can induce severe lock contention when writing to several files
185  * whose dnodes are in the same block.
186  */
187 static int
188 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
189     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
190 {
191 	dsl_pool_t *dp = NULL;
192 	dmu_buf_t **dbp;
193 	uint64_t blkid, nblks, i;
194 	uint32_t dbuf_flags;
195 	int err;
196 	zio_t *zio;
197 	hrtime_t start;
198 
199 	ASSERT(length <= DMU_MAX_ACCESS);
200 
201 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
202 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
203 		dbuf_flags |= DB_RF_NOPREFETCH;
204 
205 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
206 	if (dn->dn_datablkshift) {
207 		int blkshift = dn->dn_datablkshift;
208 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
209 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
210 	} else {
211 		if (offset + length > dn->dn_datablksz) {
212 			zfs_panic_recover("zfs: accessing past end of object "
213 			    "%llx/%llx (size=%u access=%llu+%llu)",
214 			    (longlong_t)dn->dn_objset->
215 			    os_dsl_dataset->ds_object,
216 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
217 			    (longlong_t)offset, (longlong_t)length);
218 			rw_exit(&dn->dn_struct_rwlock);
219 			return (EIO);
220 		}
221 		nblks = 1;
222 	}
223 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
224 
225 	if (dn->dn_objset->os_dsl_dataset)
226 		dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool;
227 	if (dp && dsl_pool_sync_context(dp))
228 		start = gethrtime();
229 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
230 	blkid = dbuf_whichblock(dn, offset);
231 	for (i = 0; i < nblks; i++) {
232 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
233 		if (db == NULL) {
234 			rw_exit(&dn->dn_struct_rwlock);
235 			dmu_buf_rele_array(dbp, nblks, tag);
236 			zio_nowait(zio);
237 			return (EIO);
238 		}
239 		/* initiate async i/o */
240 		if (read) {
241 			(void) dbuf_read(db, zio, dbuf_flags);
242 		}
243 		dbp[i] = &db->db;
244 	}
245 	rw_exit(&dn->dn_struct_rwlock);
246 
247 	/* wait for async i/o */
248 	err = zio_wait(zio);
249 	/* track read overhead when we are in sync context */
250 	if (dp && dsl_pool_sync_context(dp))
251 		dp->dp_read_overhead += gethrtime() - start;
252 	if (err) {
253 		dmu_buf_rele_array(dbp, nblks, tag);
254 		return (err);
255 	}
256 
257 	/* wait for other io to complete */
258 	if (read) {
259 		for (i = 0; i < nblks; i++) {
260 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
261 			mutex_enter(&db->db_mtx);
262 			while (db->db_state == DB_READ ||
263 			    db->db_state == DB_FILL)
264 				cv_wait(&db->db_changed, &db->db_mtx);
265 			if (db->db_state == DB_UNCACHED)
266 				err = EIO;
267 			mutex_exit(&db->db_mtx);
268 			if (err) {
269 				dmu_buf_rele_array(dbp, nblks, tag);
270 				return (err);
271 			}
272 		}
273 	}
274 
275 	*numbufsp = nblks;
276 	*dbpp = dbp;
277 	return (0);
278 }
279 
280 static int
281 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
282     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
283 {
284 	dnode_t *dn;
285 	int err;
286 
287 	err = dnode_hold(os, object, FTAG, &dn);
288 	if (err)
289 		return (err);
290 
291 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
292 	    numbufsp, dbpp, DMU_READ_PREFETCH);
293 
294 	dnode_rele(dn, FTAG);
295 
296 	return (err);
297 }
298 
299 int
300 dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
301     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
302 {
303 	dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
304 	int err;
305 
306 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
307 	    numbufsp, dbpp, DMU_READ_PREFETCH);
308 
309 	return (err);
310 }
311 
312 void
313 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
314 {
315 	int i;
316 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
317 
318 	if (numbufs == 0)
319 		return;
320 
321 	for (i = 0; i < numbufs; i++) {
322 		if (dbp[i])
323 			dbuf_rele(dbp[i], tag);
324 	}
325 
326 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
327 }
328 
329 void
330 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
331 {
332 	dnode_t *dn;
333 	uint64_t blkid;
334 	int nblks, i, err;
335 
336 	if (zfs_prefetch_disable)
337 		return;
338 
339 	if (len == 0) {  /* they're interested in the bonus buffer */
340 		dn = os->os_meta_dnode;
341 
342 		if (object == 0 || object >= DN_MAX_OBJECT)
343 			return;
344 
345 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
346 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
347 		dbuf_prefetch(dn, blkid);
348 		rw_exit(&dn->dn_struct_rwlock);
349 		return;
350 	}
351 
352 	/*
353 	 * XXX - Note, if the dnode for the requested object is not
354 	 * already cached, we will do a *synchronous* read in the
355 	 * dnode_hold() call.  The same is true for any indirects.
356 	 */
357 	err = dnode_hold(os, object, FTAG, &dn);
358 	if (err != 0)
359 		return;
360 
361 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
362 	if (dn->dn_datablkshift) {
363 		int blkshift = dn->dn_datablkshift;
364 		nblks = (P2ROUNDUP(offset+len, 1<<blkshift) -
365 		    P2ALIGN(offset, 1<<blkshift)) >> blkshift;
366 	} else {
367 		nblks = (offset < dn->dn_datablksz);
368 	}
369 
370 	if (nblks != 0) {
371 		blkid = dbuf_whichblock(dn, offset);
372 		for (i = 0; i < nblks; i++)
373 			dbuf_prefetch(dn, blkid+i);
374 	}
375 
376 	rw_exit(&dn->dn_struct_rwlock);
377 
378 	dnode_rele(dn, FTAG);
379 }
380 
381 /*
382  * Get the next "chunk" of file data to free.  We traverse the file from
383  * the end so that the file gets shorter over time (if we crashes in the
384  * middle, this will leave us in a better state).  We find allocated file
385  * data by simply searching the allocated level 1 indirects.
386  */
387 static int
388 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit)
389 {
390 	uint64_t len = *start - limit;
391 	uint64_t blkcnt = 0;
392 	uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1));
393 	uint64_t iblkrange =
394 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
395 
396 	ASSERT(limit <= *start);
397 
398 	if (len <= iblkrange * maxblks) {
399 		*start = limit;
400 		return (0);
401 	}
402 	ASSERT(ISP2(iblkrange));
403 
404 	while (*start > limit && blkcnt < maxblks) {
405 		int err;
406 
407 		/* find next allocated L1 indirect */
408 		err = dnode_next_offset(dn,
409 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
410 
411 		/* if there are no more, then we are done */
412 		if (err == ESRCH) {
413 			*start = limit;
414 			return (0);
415 		} else if (err) {
416 			return (err);
417 		}
418 		blkcnt += 1;
419 
420 		/* reset offset to end of "next" block back */
421 		*start = P2ALIGN(*start, iblkrange);
422 		if (*start <= limit)
423 			*start = limit;
424 		else
425 			*start -= 1;
426 	}
427 	return (0);
428 }
429 
430 static int
431 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
432     uint64_t length, boolean_t free_dnode)
433 {
434 	dmu_tx_t *tx;
435 	uint64_t object_size, start, end, len;
436 	boolean_t trunc = (length == DMU_OBJECT_END);
437 	int align, err;
438 
439 	align = 1 << dn->dn_datablkshift;
440 	ASSERT(align > 0);
441 	object_size = align == 1 ? dn->dn_datablksz :
442 	    (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
443 
444 	end = offset + length;
445 	if (trunc || end > object_size)
446 		end = object_size;
447 	if (end <= offset)
448 		return (0);
449 	length = end - offset;
450 
451 	while (length) {
452 		start = end;
453 		/* assert(offset <= start) */
454 		err = get_next_chunk(dn, &start, offset);
455 		if (err)
456 			return (err);
457 		len = trunc ? DMU_OBJECT_END : end - start;
458 
459 		tx = dmu_tx_create(os);
460 		dmu_tx_hold_free(tx, dn->dn_object, start, len);
461 		err = dmu_tx_assign(tx, TXG_WAIT);
462 		if (err) {
463 			dmu_tx_abort(tx);
464 			return (err);
465 		}
466 
467 		dnode_free_range(dn, start, trunc ? -1 : len, tx);
468 
469 		if (start == 0 && free_dnode) {
470 			ASSERT(trunc);
471 			dnode_free(dn, tx);
472 		}
473 
474 		length -= end - start;
475 
476 		dmu_tx_commit(tx);
477 		end = start;
478 	}
479 	return (0);
480 }
481 
482 int
483 dmu_free_long_range(objset_t *os, uint64_t object,
484     uint64_t offset, uint64_t length)
485 {
486 	dnode_t *dn;
487 	int err;
488 
489 	err = dnode_hold(os, object, FTAG, &dn);
490 	if (err != 0)
491 		return (err);
492 	err = dmu_free_long_range_impl(os, dn, offset, length, FALSE);
493 	dnode_rele(dn, FTAG);
494 	return (err);
495 }
496 
497 int
498 dmu_free_object(objset_t *os, uint64_t object)
499 {
500 	dnode_t *dn;
501 	dmu_tx_t *tx;
502 	int err;
503 
504 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED,
505 	    FTAG, &dn);
506 	if (err != 0)
507 		return (err);
508 	if (dn->dn_nlevels == 1) {
509 		tx = dmu_tx_create(os);
510 		dmu_tx_hold_bonus(tx, object);
511 		dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END);
512 		err = dmu_tx_assign(tx, TXG_WAIT);
513 		if (err == 0) {
514 			dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
515 			dnode_free(dn, tx);
516 			dmu_tx_commit(tx);
517 		} else {
518 			dmu_tx_abort(tx);
519 		}
520 	} else {
521 		err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE);
522 	}
523 	dnode_rele(dn, FTAG);
524 	return (err);
525 }
526 
527 int
528 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
529     uint64_t size, dmu_tx_t *tx)
530 {
531 	dnode_t *dn;
532 	int err = dnode_hold(os, object, FTAG, &dn);
533 	if (err)
534 		return (err);
535 	ASSERT(offset < UINT64_MAX);
536 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
537 	dnode_free_range(dn, offset, size, tx);
538 	dnode_rele(dn, FTAG);
539 	return (0);
540 }
541 
542 int
543 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
544     void *buf, uint32_t flags)
545 {
546 	dnode_t *dn;
547 	dmu_buf_t **dbp;
548 	int numbufs, err;
549 
550 	err = dnode_hold(os, object, FTAG, &dn);
551 	if (err)
552 		return (err);
553 
554 	/*
555 	 * Deal with odd block sizes, where there can't be data past the first
556 	 * block.  If we ever do the tail block optimization, we will need to
557 	 * handle that here as well.
558 	 */
559 	if (dn->dn_maxblkid == 0) {
560 		int newsz = offset > dn->dn_datablksz ? 0 :
561 		    MIN(size, dn->dn_datablksz - offset);
562 		bzero((char *)buf + newsz, size - newsz);
563 		size = newsz;
564 	}
565 
566 	while (size > 0) {
567 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
568 		int i;
569 
570 		/*
571 		 * NB: we could do this block-at-a-time, but it's nice
572 		 * to be reading in parallel.
573 		 */
574 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
575 		    TRUE, FTAG, &numbufs, &dbp, flags);
576 		if (err)
577 			break;
578 
579 		for (i = 0; i < numbufs; i++) {
580 			int tocpy;
581 			int bufoff;
582 			dmu_buf_t *db = dbp[i];
583 
584 			ASSERT(size > 0);
585 
586 			bufoff = offset - db->db_offset;
587 			tocpy = (int)MIN(db->db_size - bufoff, size);
588 
589 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
590 
591 			offset += tocpy;
592 			size -= tocpy;
593 			buf = (char *)buf + tocpy;
594 		}
595 		dmu_buf_rele_array(dbp, numbufs, FTAG);
596 	}
597 	dnode_rele(dn, FTAG);
598 	return (err);
599 }
600 
601 void
602 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
603     const void *buf, dmu_tx_t *tx)
604 {
605 	dmu_buf_t **dbp;
606 	int numbufs, i;
607 
608 	if (size == 0)
609 		return;
610 
611 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
612 	    FALSE, FTAG, &numbufs, &dbp));
613 
614 	for (i = 0; i < numbufs; i++) {
615 		int tocpy;
616 		int bufoff;
617 		dmu_buf_t *db = dbp[i];
618 
619 		ASSERT(size > 0);
620 
621 		bufoff = offset - db->db_offset;
622 		tocpy = (int)MIN(db->db_size - bufoff, size);
623 
624 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
625 
626 		if (tocpy == db->db_size)
627 			dmu_buf_will_fill(db, tx);
628 		else
629 			dmu_buf_will_dirty(db, tx);
630 
631 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
632 
633 		if (tocpy == db->db_size)
634 			dmu_buf_fill_done(db, tx);
635 
636 		offset += tocpy;
637 		size -= tocpy;
638 		buf = (char *)buf + tocpy;
639 	}
640 	dmu_buf_rele_array(dbp, numbufs, FTAG);
641 }
642 
643 void
644 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
645     dmu_tx_t *tx)
646 {
647 	dmu_buf_t **dbp;
648 	int numbufs, i;
649 
650 	if (size == 0)
651 		return;
652 
653 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
654 	    FALSE, FTAG, &numbufs, &dbp));
655 
656 	for (i = 0; i < numbufs; i++) {
657 		dmu_buf_t *db = dbp[i];
658 
659 		dmu_buf_will_not_fill(db, tx);
660 	}
661 	dmu_buf_rele_array(dbp, numbufs, FTAG);
662 }
663 
664 /*
665  * DMU support for xuio
666  */
667 kstat_t *xuio_ksp = NULL;
668 
669 int
670 dmu_xuio_init(xuio_t *xuio, int nblk)
671 {
672 	dmu_xuio_t *priv;
673 	uio_t *uio = &xuio->xu_uio;
674 
675 	uio->uio_iovcnt = nblk;
676 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
677 
678 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
679 	priv->cnt = nblk;
680 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
681 	priv->iovp = uio->uio_iov;
682 	XUIO_XUZC_PRIV(xuio) = priv;
683 
684 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
685 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
686 	else
687 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
688 
689 	return (0);
690 }
691 
692 void
693 dmu_xuio_fini(xuio_t *xuio)
694 {
695 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
696 	int nblk = priv->cnt;
697 
698 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
699 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
700 	kmem_free(priv, sizeof (dmu_xuio_t));
701 
702 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
703 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
704 	else
705 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
706 }
707 
708 /*
709  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
710  * and increase priv->next by 1.
711  */
712 int
713 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
714 {
715 	struct iovec *iov;
716 	uio_t *uio = &xuio->xu_uio;
717 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
718 	int i = priv->next++;
719 
720 	ASSERT(i < priv->cnt);
721 	ASSERT(off + n <= arc_buf_size(abuf));
722 	iov = uio->uio_iov + i;
723 	iov->iov_base = (char *)abuf->b_data + off;
724 	iov->iov_len = n;
725 	priv->bufs[i] = abuf;
726 	return (0);
727 }
728 
729 int
730 dmu_xuio_cnt(xuio_t *xuio)
731 {
732 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
733 	return (priv->cnt);
734 }
735 
736 arc_buf_t *
737 dmu_xuio_arcbuf(xuio_t *xuio, int i)
738 {
739 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
740 
741 	ASSERT(i < priv->cnt);
742 	return (priv->bufs[i]);
743 }
744 
745 void
746 dmu_xuio_clear(xuio_t *xuio, int i)
747 {
748 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
749 
750 	ASSERT(i < priv->cnt);
751 	priv->bufs[i] = NULL;
752 }
753 
754 static void
755 xuio_stat_init(void)
756 {
757 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
758 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
759 	    KSTAT_FLAG_VIRTUAL);
760 	if (xuio_ksp != NULL) {
761 		xuio_ksp->ks_data = &xuio_stats;
762 		kstat_install(xuio_ksp);
763 	}
764 }
765 
766 static void
767 xuio_stat_fini(void)
768 {
769 	if (xuio_ksp != NULL) {
770 		kstat_delete(xuio_ksp);
771 		xuio_ksp = NULL;
772 	}
773 }
774 
775 void
776 xuio_stat_wbuf_copied()
777 {
778 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
779 }
780 
781 void
782 xuio_stat_wbuf_nocopy()
783 {
784 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
785 }
786 
787 #ifdef _KERNEL
788 int
789 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
790 {
791 	dmu_buf_t **dbp;
792 	int numbufs, i, err;
793 	xuio_t *xuio = NULL;
794 
795 	/*
796 	 * NB: we could do this block-at-a-time, but it's nice
797 	 * to be reading in parallel.
798 	 */
799 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
800 	    &numbufs, &dbp);
801 	if (err)
802 		return (err);
803 
804 	if (uio->uio_extflg == UIO_XUIO)
805 		xuio = (xuio_t *)uio;
806 
807 	for (i = 0; i < numbufs; i++) {
808 		int tocpy;
809 		int bufoff;
810 		dmu_buf_t *db = dbp[i];
811 
812 		ASSERT(size > 0);
813 
814 		bufoff = uio->uio_loffset - db->db_offset;
815 		tocpy = (int)MIN(db->db_size - bufoff, size);
816 
817 		if (xuio) {
818 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
819 			arc_buf_t *dbuf_abuf = dbi->db_buf;
820 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
821 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
822 			if (!err) {
823 				uio->uio_resid -= tocpy;
824 				uio->uio_loffset += tocpy;
825 			}
826 
827 			if (abuf == dbuf_abuf)
828 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
829 			else
830 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
831 		} else {
832 			err = uiomove((char *)db->db_data + bufoff, tocpy,
833 			    UIO_READ, uio);
834 		}
835 		if (err)
836 			break;
837 
838 		size -= tocpy;
839 	}
840 	dmu_buf_rele_array(dbp, numbufs, FTAG);
841 
842 	return (err);
843 }
844 
845 int
846 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
847     dmu_tx_t *tx)
848 {
849 	dmu_buf_t **dbp;
850 	int numbufs, i;
851 	int err = 0;
852 
853 	if (size == 0)
854 		return (0);
855 
856 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size,
857 	    FALSE, FTAG, &numbufs, &dbp);
858 	if (err)
859 		return (err);
860 
861 	for (i = 0; i < numbufs; i++) {
862 		int tocpy;
863 		int bufoff;
864 		dmu_buf_t *db = dbp[i];
865 
866 		ASSERT(size > 0);
867 
868 		bufoff = uio->uio_loffset - db->db_offset;
869 		tocpy = (int)MIN(db->db_size - bufoff, size);
870 
871 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
872 
873 		if (tocpy == db->db_size)
874 			dmu_buf_will_fill(db, tx);
875 		else
876 			dmu_buf_will_dirty(db, tx);
877 
878 		/*
879 		 * XXX uiomove could block forever (eg. nfs-backed
880 		 * pages).  There needs to be a uiolockdown() function
881 		 * to lock the pages in memory, so that uiomove won't
882 		 * block.
883 		 */
884 		err = uiomove((char *)db->db_data + bufoff, tocpy,
885 		    UIO_WRITE, uio);
886 
887 		if (tocpy == db->db_size)
888 			dmu_buf_fill_done(db, tx);
889 
890 		if (err)
891 			break;
892 
893 		size -= tocpy;
894 	}
895 	dmu_buf_rele_array(dbp, numbufs, FTAG);
896 	return (err);
897 }
898 
899 int
900 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
901     page_t *pp, dmu_tx_t *tx)
902 {
903 	dmu_buf_t **dbp;
904 	int numbufs, i;
905 	int err;
906 
907 	if (size == 0)
908 		return (0);
909 
910 	err = dmu_buf_hold_array(os, object, offset, size,
911 	    FALSE, FTAG, &numbufs, &dbp);
912 	if (err)
913 		return (err);
914 
915 	for (i = 0; i < numbufs; i++) {
916 		int tocpy, copied, thiscpy;
917 		int bufoff;
918 		dmu_buf_t *db = dbp[i];
919 		caddr_t va;
920 
921 		ASSERT(size > 0);
922 		ASSERT3U(db->db_size, >=, PAGESIZE);
923 
924 		bufoff = offset - db->db_offset;
925 		tocpy = (int)MIN(db->db_size - bufoff, size);
926 
927 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
928 
929 		if (tocpy == db->db_size)
930 			dmu_buf_will_fill(db, tx);
931 		else
932 			dmu_buf_will_dirty(db, tx);
933 
934 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
935 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
936 			thiscpy = MIN(PAGESIZE, tocpy - copied);
937 			va = zfs_map_page(pp, S_READ);
938 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
939 			zfs_unmap_page(pp, va);
940 			pp = pp->p_next;
941 			bufoff += PAGESIZE;
942 		}
943 
944 		if (tocpy == db->db_size)
945 			dmu_buf_fill_done(db, tx);
946 
947 		offset += tocpy;
948 		size -= tocpy;
949 	}
950 	dmu_buf_rele_array(dbp, numbufs, FTAG);
951 	return (err);
952 }
953 #endif
954 
955 /*
956  * Allocate a loaned anonymous arc buffer.
957  */
958 arc_buf_t *
959 dmu_request_arcbuf(dmu_buf_t *handle, int size)
960 {
961 	dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode;
962 
963 	return (arc_loan_buf(dn->dn_objset->os_spa, size));
964 }
965 
966 /*
967  * Free a loaned arc buffer.
968  */
969 void
970 dmu_return_arcbuf(arc_buf_t *buf)
971 {
972 	arc_return_buf(buf, FTAG);
973 	VERIFY(arc_buf_remove_ref(buf, FTAG) == 1);
974 }
975 
976 /*
977  * When possible directly assign passed loaned arc buffer to a dbuf.
978  * If this is not possible copy the contents of passed arc buf via
979  * dmu_write().
980  */
981 void
982 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
983     dmu_tx_t *tx)
984 {
985 	dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode;
986 	dmu_buf_impl_t *db;
987 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
988 	uint64_t blkid;
989 
990 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
991 	blkid = dbuf_whichblock(dn, offset);
992 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
993 	rw_exit(&dn->dn_struct_rwlock);
994 
995 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
996 		dbuf_assign_arcbuf(db, buf, tx);
997 		dbuf_rele(db, FTAG);
998 	} else {
999 		dbuf_rele(db, FTAG);
1000 		dmu_write(dn->dn_objset, dn->dn_object, offset, blksz,
1001 		    buf->b_data, tx);
1002 		dmu_return_arcbuf(buf);
1003 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1004 	}
1005 }
1006 
1007 typedef struct {
1008 	dbuf_dirty_record_t	*dsa_dr;
1009 	dmu_sync_cb_t		*dsa_done;
1010 	zgd_t			*dsa_zgd;
1011 	dmu_tx_t		*dsa_tx;
1012 } dmu_sync_arg_t;
1013 
1014 /* ARGSUSED */
1015 static void
1016 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1017 {
1018 	dmu_sync_arg_t *dsa = varg;
1019 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1020 	dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
1021 	blkptr_t *bp = zio->io_bp;
1022 
1023 	if (zio->io_error == 0) {
1024 		if (BP_IS_HOLE(bp)) {
1025 			/*
1026 			 * A block of zeros may compress to a hole, but the
1027 			 * block size still needs to be known for replay.
1028 			 */
1029 			BP_SET_LSIZE(bp, db->db_size);
1030 		} else {
1031 			ASSERT(BP_GET_TYPE(bp) == dn->dn_type);
1032 			ASSERT(BP_GET_LEVEL(bp) == 0);
1033 			bp->blk_fill = 1;
1034 		}
1035 	}
1036 }
1037 
1038 static void
1039 dmu_sync_late_arrival_ready(zio_t *zio)
1040 {
1041 	dmu_sync_ready(zio, NULL, zio->io_private);
1042 }
1043 
1044 /* ARGSUSED */
1045 static void
1046 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1047 {
1048 	dmu_sync_arg_t *dsa = varg;
1049 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1050 	dmu_buf_impl_t *db = dr->dr_dbuf;
1051 
1052 	mutex_enter(&db->db_mtx);
1053 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1054 	if (zio->io_error == 0) {
1055 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1056 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1057 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1058 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1059 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1060 	} else {
1061 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1062 	}
1063 	cv_broadcast(&db->db_changed);
1064 	mutex_exit(&db->db_mtx);
1065 
1066 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1067 
1068 	kmem_free(dsa, sizeof (*dsa));
1069 }
1070 
1071 static void
1072 dmu_sync_late_arrival_done(zio_t *zio)
1073 {
1074 	blkptr_t *bp = zio->io_bp;
1075 	dmu_sync_arg_t *dsa = zio->io_private;
1076 
1077 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1078 		ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1079 		ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1080 		zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1081 	}
1082 
1083 	dmu_tx_commit(dsa->dsa_tx);
1084 
1085 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1086 
1087 	kmem_free(dsa, sizeof (*dsa));
1088 }
1089 
1090 static int
1091 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1092     zio_prop_t *zp, zbookmark_t *zb)
1093 {
1094 	dmu_sync_arg_t *dsa;
1095 	dmu_tx_t *tx;
1096 
1097 	tx = dmu_tx_create(os);
1098 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1099 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1100 		dmu_tx_abort(tx);
1101 		return (EIO);	/* Make zl_get_data do txg_waited_synced() */
1102 	}
1103 
1104 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1105 	dsa->dsa_dr = NULL;
1106 	dsa->dsa_done = done;
1107 	dsa->dsa_zgd = zgd;
1108 	dsa->dsa_tx = tx;
1109 
1110 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1111 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1112 	    dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa,
1113 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1114 
1115 	return (0);
1116 }
1117 
1118 /*
1119  * Intent log support: sync the block associated with db to disk.
1120  * N.B. and XXX: the caller is responsible for making sure that the
1121  * data isn't changing while dmu_sync() is writing it.
1122  *
1123  * Return values:
1124  *
1125  *	EEXIST: this txg has already been synced, so there's nothing to to.
1126  *		The caller should not log the write.
1127  *
1128  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1129  *		The caller should not log the write.
1130  *
1131  *	EALREADY: this block is already in the process of being synced.
1132  *		The caller should track its progress (somehow).
1133  *
1134  *	EIO: could not do the I/O.
1135  *		The caller should do a txg_wait_synced().
1136  *
1137  *	0: the I/O has been initiated.
1138  *		The caller should log this blkptr in the done callback.
1139  *		It is possible that the I/O will fail, in which case
1140  *		the error will be reported to the done callback and
1141  *		propagated to pio from zio_done().
1142  */
1143 int
1144 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1145 {
1146 	blkptr_t *bp = zgd->zgd_bp;
1147 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1148 	objset_t *os = db->db_objset;
1149 	dsl_dataset_t *ds = os->os_dsl_dataset;
1150 	dbuf_dirty_record_t *dr;
1151 	dmu_sync_arg_t *dsa;
1152 	zbookmark_t zb;
1153 	zio_prop_t zp;
1154 
1155 	ASSERT(pio != NULL);
1156 	ASSERT(BP_IS_HOLE(bp));
1157 	ASSERT(txg != 0);
1158 
1159 	SET_BOOKMARK(&zb, ds->ds_object,
1160 	    db->db.db_object, db->db_level, db->db_blkid);
1161 
1162 	dmu_write_policy(os, db->db_dnode, db->db_level, WP_DMU_SYNC, &zp);
1163 
1164 	/*
1165 	 * If we're frozen (running ziltest), we always need to generate a bp.
1166 	 */
1167 	if (txg > spa_freeze_txg(os->os_spa))
1168 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1169 
1170 	/*
1171 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1172 	 * and us.  If we determine that this txg is not yet syncing,
1173 	 * but it begins to sync a moment later, that's OK because the
1174 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1175 	 */
1176 	mutex_enter(&db->db_mtx);
1177 
1178 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1179 		/*
1180 		 * This txg has already synced.  There's nothing to do.
1181 		 */
1182 		mutex_exit(&db->db_mtx);
1183 		return (EEXIST);
1184 	}
1185 
1186 	if (txg <= spa_syncing_txg(os->os_spa)) {
1187 		/*
1188 		 * This txg is currently syncing, so we can't mess with
1189 		 * the dirty record anymore; just write a new log block.
1190 		 */
1191 		mutex_exit(&db->db_mtx);
1192 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1193 	}
1194 
1195 	dr = db->db_last_dirty;
1196 	while (dr && dr->dr_txg != txg)
1197 		dr = dr->dr_next;
1198 
1199 	if (dr == NULL) {
1200 		/*
1201 		 * There's no dr for this dbuf, so it must have been freed.
1202 		 * There's no need to log writes to freed blocks, so we're done.
1203 		 */
1204 		mutex_exit(&db->db_mtx);
1205 		return (ENOENT);
1206 	}
1207 
1208 	ASSERT(dr->dr_txg == txg);
1209 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1210 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1211 		/*
1212 		 * We have already issued a sync write for this buffer,
1213 		 * or this buffer has already been synced.  It could not
1214 		 * have been dirtied since, or we would have cleared the state.
1215 		 */
1216 		mutex_exit(&db->db_mtx);
1217 		return (EALREADY);
1218 	}
1219 
1220 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1221 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1222 	mutex_exit(&db->db_mtx);
1223 
1224 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1225 	dsa->dsa_dr = dr;
1226 	dsa->dsa_done = done;
1227 	dsa->dsa_zgd = zgd;
1228 	dsa->dsa_tx = NULL;
1229 
1230 	zio_nowait(arc_write(pio, os->os_spa, txg,
1231 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp,
1232 	    dmu_sync_ready, dmu_sync_done, dsa,
1233 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1234 
1235 	return (0);
1236 }
1237 
1238 int
1239 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1240 	dmu_tx_t *tx)
1241 {
1242 	dnode_t *dn;
1243 	int err;
1244 
1245 	err = dnode_hold(os, object, FTAG, &dn);
1246 	if (err)
1247 		return (err);
1248 	err = dnode_set_blksz(dn, size, ibs, tx);
1249 	dnode_rele(dn, FTAG);
1250 	return (err);
1251 }
1252 
1253 void
1254 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1255 	dmu_tx_t *tx)
1256 {
1257 	dnode_t *dn;
1258 
1259 	/* XXX assumes dnode_hold will not get an i/o error */
1260 	(void) dnode_hold(os, object, FTAG, &dn);
1261 	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1262 	dn->dn_checksum = checksum;
1263 	dnode_setdirty(dn, tx);
1264 	dnode_rele(dn, FTAG);
1265 }
1266 
1267 void
1268 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1269 	dmu_tx_t *tx)
1270 {
1271 	dnode_t *dn;
1272 
1273 	/* XXX assumes dnode_hold will not get an i/o error */
1274 	(void) dnode_hold(os, object, FTAG, &dn);
1275 	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1276 	dn->dn_compress = compress;
1277 	dnode_setdirty(dn, tx);
1278 	dnode_rele(dn, FTAG);
1279 }
1280 
1281 int zfs_mdcomp_disable = 0;
1282 
1283 void
1284 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1285 {
1286 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1287 	boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata);
1288 	enum zio_checksum checksum = os->os_checksum;
1289 	enum zio_compress compress = os->os_compress;
1290 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1291 	boolean_t dedup;
1292 	boolean_t dedup_verify = os->os_dedup_verify;
1293 	int copies = os->os_copies;
1294 
1295 	/*
1296 	 * Determine checksum setting.
1297 	 */
1298 	if (ismd) {
1299 		/*
1300 		 * Metadata always gets checksummed.  If the data
1301 		 * checksum is multi-bit correctable, and it's not a
1302 		 * ZBT-style checksum, then it's suitable for metadata
1303 		 * as well.  Otherwise, the metadata checksum defaults
1304 		 * to fletcher4.
1305 		 */
1306 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1307 		    zio_checksum_table[checksum].ci_eck)
1308 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1309 	} else {
1310 		checksum = zio_checksum_select(dn->dn_checksum, checksum);
1311 	}
1312 
1313 	/*
1314 	 * Determine compression setting.
1315 	 */
1316 	if (ismd) {
1317 		/*
1318 		 * XXX -- we should design a compression algorithm
1319 		 * that specializes in arrays of bps.
1320 		 */
1321 		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1322 		    ZIO_COMPRESS_LZJB;
1323 	} else {
1324 		compress = zio_compress_select(dn->dn_compress, compress);
1325 	}
1326 
1327 	/*
1328 	 * Determine dedup setting.  If we are in dmu_sync(), we won't
1329 	 * actually dedup now because that's all done in syncing context;
1330 	 * but we do want to use the dedup checkum.  If the checksum is not
1331 	 * strong enough to ensure unique signatures, force dedup_verify.
1332 	 */
1333 	dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF);
1334 	if (dedup) {
1335 		checksum = dedup_checksum;
1336 		if (!zio_checksum_table[checksum].ci_dedup)
1337 			dedup_verify = 1;
1338 	}
1339 
1340 	if (wp & WP_DMU_SYNC)
1341 		dedup = 0;
1342 
1343 	if (wp & WP_NOFILL) {
1344 		ASSERT(!ismd && level == 0);
1345 		checksum = ZIO_CHECKSUM_OFF;
1346 		compress = ZIO_COMPRESS_OFF;
1347 		dedup = B_FALSE;
1348 	}
1349 
1350 	zp->zp_checksum = checksum;
1351 	zp->zp_compress = compress;
1352 	zp->zp_type = type;
1353 	zp->zp_level = level;
1354 	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1355 	zp->zp_dedup = dedup;
1356 	zp->zp_dedup_verify = dedup && dedup_verify;
1357 }
1358 
1359 int
1360 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1361 {
1362 	dnode_t *dn;
1363 	int i, err;
1364 
1365 	err = dnode_hold(os, object, FTAG, &dn);
1366 	if (err)
1367 		return (err);
1368 	/*
1369 	 * Sync any current changes before
1370 	 * we go trundling through the block pointers.
1371 	 */
1372 	for (i = 0; i < TXG_SIZE; i++) {
1373 		if (list_link_active(&dn->dn_dirty_link[i]))
1374 			break;
1375 	}
1376 	if (i != TXG_SIZE) {
1377 		dnode_rele(dn, FTAG);
1378 		txg_wait_synced(dmu_objset_pool(os), 0);
1379 		err = dnode_hold(os, object, FTAG, &dn);
1380 		if (err)
1381 			return (err);
1382 	}
1383 
1384 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1385 	dnode_rele(dn, FTAG);
1386 
1387 	return (err);
1388 }
1389 
1390 void
1391 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1392 {
1393 	dnode_phys_t *dnp;
1394 
1395 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1396 	mutex_enter(&dn->dn_mtx);
1397 
1398 	dnp = dn->dn_phys;
1399 
1400 	doi->doi_data_block_size = dn->dn_datablksz;
1401 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1402 	    1ULL << dn->dn_indblkshift : 0;
1403 	doi->doi_type = dn->dn_type;
1404 	doi->doi_bonus_type = dn->dn_bonustype;
1405 	doi->doi_bonus_size = dn->dn_bonuslen;
1406 	doi->doi_indirection = dn->dn_nlevels;
1407 	doi->doi_checksum = dn->dn_checksum;
1408 	doi->doi_compress = dn->dn_compress;
1409 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1410 	doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz;
1411 	doi->doi_fill_count = 0;
1412 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1413 		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1414 
1415 	mutex_exit(&dn->dn_mtx);
1416 	rw_exit(&dn->dn_struct_rwlock);
1417 }
1418 
1419 /*
1420  * Get information on a DMU object.
1421  * If doi is NULL, just indicates whether the object exists.
1422  */
1423 int
1424 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1425 {
1426 	dnode_t *dn;
1427 	int err = dnode_hold(os, object, FTAG, &dn);
1428 
1429 	if (err)
1430 		return (err);
1431 
1432 	if (doi != NULL)
1433 		dmu_object_info_from_dnode(dn, doi);
1434 
1435 	dnode_rele(dn, FTAG);
1436 	return (0);
1437 }
1438 
1439 /*
1440  * As above, but faster; can be used when you have a held dbuf in hand.
1441  */
1442 void
1443 dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi)
1444 {
1445 	dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi);
1446 }
1447 
1448 /*
1449  * Faster still when you only care about the size.
1450  * This is specifically optimized for zfs_getattr().
1451  */
1452 void
1453 dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512)
1454 {
1455 	dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
1456 
1457 	*blksize = dn->dn_datablksz;
1458 	/* add 1 for dnode space */
1459 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1460 	    SPA_MINBLOCKSHIFT) + 1;
1461 }
1462 
1463 void
1464 byteswap_uint64_array(void *vbuf, size_t size)
1465 {
1466 	uint64_t *buf = vbuf;
1467 	size_t count = size >> 3;
1468 	int i;
1469 
1470 	ASSERT((size & 7) == 0);
1471 
1472 	for (i = 0; i < count; i++)
1473 		buf[i] = BSWAP_64(buf[i]);
1474 }
1475 
1476 void
1477 byteswap_uint32_array(void *vbuf, size_t size)
1478 {
1479 	uint32_t *buf = vbuf;
1480 	size_t count = size >> 2;
1481 	int i;
1482 
1483 	ASSERT((size & 3) == 0);
1484 
1485 	for (i = 0; i < count; i++)
1486 		buf[i] = BSWAP_32(buf[i]);
1487 }
1488 
1489 void
1490 byteswap_uint16_array(void *vbuf, size_t size)
1491 {
1492 	uint16_t *buf = vbuf;
1493 	size_t count = size >> 1;
1494 	int i;
1495 
1496 	ASSERT((size & 1) == 0);
1497 
1498 	for (i = 0; i < count; i++)
1499 		buf[i] = BSWAP_16(buf[i]);
1500 }
1501 
1502 /* ARGSUSED */
1503 void
1504 byteswap_uint8_array(void *vbuf, size_t size)
1505 {
1506 }
1507 
1508 void
1509 dmu_init(void)
1510 {
1511 	dbuf_init();
1512 	dnode_init();
1513 	zfetch_init();
1514 	arc_init();
1515 	l2arc_init();
1516 	xuio_stat_init();
1517 }
1518 
1519 void
1520 dmu_fini(void)
1521 {
1522 	arc_fini();
1523 	zfetch_fini();
1524 	dnode_fini();
1525 	dbuf_fini();
1526 	l2arc_fini();
1527 	xuio_stat_fini();
1528 }
1529