xref: /titanic_41/usr/src/uts/common/fs/zfs/dmu.c (revision dffb1e383d7d573cd0feb963dd269c48fe3789fb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24  */
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 
28 #include <sys/dmu.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dbuf.h>
32 #include <sys/dnode.h>
33 #include <sys/zfs_context.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dmu_traverse.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dsl_pool.h>
39 #include <sys/dsl_synctask.h>
40 #include <sys/dsl_prop.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/zfs_ioctl.h>
43 #include <sys/zap.h>
44 #include <sys/zio_checksum.h>
45 #include <sys/zio_compress.h>
46 #include <sys/sa.h>
47 #ifdef _KERNEL
48 #include <sys/vmsystm.h>
49 #include <sys/zfs_znode.h>
50 #endif
51 
52 /*
53  * Enable/disable nopwrite feature.
54  */
55 int zfs_nopwrite_enabled = 1;
56 
57 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
58 	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
59 	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
60 	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
61 	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
62 	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
63 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
64 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
65 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
66 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
67 	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
68 	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
69 	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
70 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
71 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
72 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
73 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
74 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
75 	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
76 	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
77 	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
78 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
79 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
80 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
81 	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
82 	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
83 	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
84 	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
85 	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
86 	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
87 	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
88 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
89 	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
90 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
91 	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
92 	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
93 	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
94 	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
95 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
96 	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
97 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
98 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
99 	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
100 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
101 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
102 	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
103 	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
104 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
105 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
106 	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
107 	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
108 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
109 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
110 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
111 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
112 };
113 
114 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
115 	{	byteswap_uint8_array,	"uint8"		},
116 	{	byteswap_uint16_array,	"uint16"	},
117 	{	byteswap_uint32_array,	"uint32"	},
118 	{	byteswap_uint64_array,	"uint64"	},
119 	{	zap_byteswap,		"zap"		},
120 	{	dnode_buf_byteswap,	"dnode"		},
121 	{	dmu_objset_byteswap,	"objset"	},
122 	{	zfs_znode_byteswap,	"znode"		},
123 	{	zfs_oldacl_byteswap,	"oldacl"	},
124 	{	zfs_acl_byteswap,	"acl"		}
125 };
126 
127 int
128 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
129     void *tag, dmu_buf_t **dbp)
130 {
131 	dnode_t *dn;
132 	uint64_t blkid;
133 	dmu_buf_impl_t *db;
134 	int err;
135 
136 	err = dnode_hold(os, object, FTAG, &dn);
137 	if (err)
138 		return (err);
139 	blkid = dbuf_whichblock(dn, offset);
140 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
141 	db = dbuf_hold(dn, blkid, tag);
142 	rw_exit(&dn->dn_struct_rwlock);
143 	dnode_rele(dn, FTAG);
144 
145 	if (db == NULL) {
146 		*dbp = NULL;
147 		return (SET_ERROR(EIO));
148 	}
149 
150 	*dbp = &db->db;
151 	return (err);
152 }
153 
154 int
155 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
156     void *tag, dmu_buf_t **dbp, int flags)
157 {
158 	int err;
159 	int db_flags = DB_RF_CANFAIL;
160 
161 	if (flags & DMU_READ_NO_PREFETCH)
162 		db_flags |= DB_RF_NOPREFETCH;
163 
164 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
165 	if (err == 0) {
166 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
167 		err = dbuf_read(db, NULL, db_flags);
168 		if (err != 0) {
169 			dbuf_rele(db, tag);
170 			*dbp = NULL;
171 		}
172 	}
173 
174 	return (err);
175 }
176 
177 int
178 dmu_bonus_max(void)
179 {
180 	return (DN_MAX_BONUSLEN);
181 }
182 
183 int
184 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
185 {
186 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
187 	dnode_t *dn;
188 	int error;
189 
190 	DB_DNODE_ENTER(db);
191 	dn = DB_DNODE(db);
192 
193 	if (dn->dn_bonus != db) {
194 		error = SET_ERROR(EINVAL);
195 	} else if (newsize < 0 || newsize > db_fake->db_size) {
196 		error = SET_ERROR(EINVAL);
197 	} else {
198 		dnode_setbonuslen(dn, newsize, tx);
199 		error = 0;
200 	}
201 
202 	DB_DNODE_EXIT(db);
203 	return (error);
204 }
205 
206 int
207 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
208 {
209 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
210 	dnode_t *dn;
211 	int error;
212 
213 	DB_DNODE_ENTER(db);
214 	dn = DB_DNODE(db);
215 
216 	if (!DMU_OT_IS_VALID(type)) {
217 		error = SET_ERROR(EINVAL);
218 	} else if (dn->dn_bonus != db) {
219 		error = SET_ERROR(EINVAL);
220 	} else {
221 		dnode_setbonus_type(dn, type, tx);
222 		error = 0;
223 	}
224 
225 	DB_DNODE_EXIT(db);
226 	return (error);
227 }
228 
229 dmu_object_type_t
230 dmu_get_bonustype(dmu_buf_t *db_fake)
231 {
232 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
233 	dnode_t *dn;
234 	dmu_object_type_t type;
235 
236 	DB_DNODE_ENTER(db);
237 	dn = DB_DNODE(db);
238 	type = dn->dn_bonustype;
239 	DB_DNODE_EXIT(db);
240 
241 	return (type);
242 }
243 
244 int
245 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
246 {
247 	dnode_t *dn;
248 	int error;
249 
250 	error = dnode_hold(os, object, FTAG, &dn);
251 	dbuf_rm_spill(dn, tx);
252 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
253 	dnode_rm_spill(dn, tx);
254 	rw_exit(&dn->dn_struct_rwlock);
255 	dnode_rele(dn, FTAG);
256 	return (error);
257 }
258 
259 /*
260  * returns ENOENT, EIO, or 0.
261  */
262 int
263 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
264 {
265 	dnode_t *dn;
266 	dmu_buf_impl_t *db;
267 	int error;
268 
269 	error = dnode_hold(os, object, FTAG, &dn);
270 	if (error)
271 		return (error);
272 
273 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
274 	if (dn->dn_bonus == NULL) {
275 		rw_exit(&dn->dn_struct_rwlock);
276 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
277 		if (dn->dn_bonus == NULL)
278 			dbuf_create_bonus(dn);
279 	}
280 	db = dn->dn_bonus;
281 
282 	/* as long as the bonus buf is held, the dnode will be held */
283 	if (refcount_add(&db->db_holds, tag) == 1) {
284 		VERIFY(dnode_add_ref(dn, db));
285 		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
286 	}
287 
288 	/*
289 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
290 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
291 	 * a dnode hold for every dbuf.
292 	 */
293 	rw_exit(&dn->dn_struct_rwlock);
294 
295 	dnode_rele(dn, FTAG);
296 
297 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
298 
299 	*dbp = &db->db;
300 	return (0);
301 }
302 
303 /*
304  * returns ENOENT, EIO, or 0.
305  *
306  * This interface will allocate a blank spill dbuf when a spill blk
307  * doesn't already exist on the dnode.
308  *
309  * if you only want to find an already existing spill db, then
310  * dmu_spill_hold_existing() should be used.
311  */
312 int
313 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
314 {
315 	dmu_buf_impl_t *db = NULL;
316 	int err;
317 
318 	if ((flags & DB_RF_HAVESTRUCT) == 0)
319 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
320 
321 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
322 
323 	if ((flags & DB_RF_HAVESTRUCT) == 0)
324 		rw_exit(&dn->dn_struct_rwlock);
325 
326 	ASSERT(db != NULL);
327 	err = dbuf_read(db, NULL, flags);
328 	if (err == 0)
329 		*dbp = &db->db;
330 	else
331 		dbuf_rele(db, tag);
332 	return (err);
333 }
334 
335 int
336 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
337 {
338 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
339 	dnode_t *dn;
340 	int err;
341 
342 	DB_DNODE_ENTER(db);
343 	dn = DB_DNODE(db);
344 
345 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
346 		err = SET_ERROR(EINVAL);
347 	} else {
348 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
349 
350 		if (!dn->dn_have_spill) {
351 			err = SET_ERROR(ENOENT);
352 		} else {
353 			err = dmu_spill_hold_by_dnode(dn,
354 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
355 		}
356 
357 		rw_exit(&dn->dn_struct_rwlock);
358 	}
359 
360 	DB_DNODE_EXIT(db);
361 	return (err);
362 }
363 
364 int
365 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
366 {
367 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
368 	dnode_t *dn;
369 	int err;
370 
371 	DB_DNODE_ENTER(db);
372 	dn = DB_DNODE(db);
373 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
374 	DB_DNODE_EXIT(db);
375 
376 	return (err);
377 }
378 
379 /*
380  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
381  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
382  * and can induce severe lock contention when writing to several files
383  * whose dnodes are in the same block.
384  */
385 static int
386 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
387     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
388 {
389 	dmu_buf_t **dbp;
390 	uint64_t blkid, nblks, i;
391 	uint32_t dbuf_flags;
392 	int err;
393 	zio_t *zio;
394 
395 	ASSERT(length <= DMU_MAX_ACCESS);
396 
397 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
398 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
399 		dbuf_flags |= DB_RF_NOPREFETCH;
400 
401 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
402 	if (dn->dn_datablkshift) {
403 		int blkshift = dn->dn_datablkshift;
404 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
405 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
406 	} else {
407 		if (offset + length > dn->dn_datablksz) {
408 			zfs_panic_recover("zfs: accessing past end of object "
409 			    "%llx/%llx (size=%u access=%llu+%llu)",
410 			    (longlong_t)dn->dn_objset->
411 			    os_dsl_dataset->ds_object,
412 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
413 			    (longlong_t)offset, (longlong_t)length);
414 			rw_exit(&dn->dn_struct_rwlock);
415 			return (SET_ERROR(EIO));
416 		}
417 		nblks = 1;
418 	}
419 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
420 
421 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
422 	blkid = dbuf_whichblock(dn, offset);
423 	for (i = 0; i < nblks; i++) {
424 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
425 		if (db == NULL) {
426 			rw_exit(&dn->dn_struct_rwlock);
427 			dmu_buf_rele_array(dbp, nblks, tag);
428 			zio_nowait(zio);
429 			return (SET_ERROR(EIO));
430 		}
431 		/* initiate async i/o */
432 		if (read) {
433 			(void) dbuf_read(db, zio, dbuf_flags);
434 		}
435 		dbp[i] = &db->db;
436 	}
437 	rw_exit(&dn->dn_struct_rwlock);
438 
439 	/* wait for async i/o */
440 	err = zio_wait(zio);
441 	if (err) {
442 		dmu_buf_rele_array(dbp, nblks, tag);
443 		return (err);
444 	}
445 
446 	/* wait for other io to complete */
447 	if (read) {
448 		for (i = 0; i < nblks; i++) {
449 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
450 			mutex_enter(&db->db_mtx);
451 			while (db->db_state == DB_READ ||
452 			    db->db_state == DB_FILL)
453 				cv_wait(&db->db_changed, &db->db_mtx);
454 			if (db->db_state == DB_UNCACHED)
455 				err = SET_ERROR(EIO);
456 			mutex_exit(&db->db_mtx);
457 			if (err) {
458 				dmu_buf_rele_array(dbp, nblks, tag);
459 				return (err);
460 			}
461 		}
462 	}
463 
464 	*numbufsp = nblks;
465 	*dbpp = dbp;
466 	return (0);
467 }
468 
469 static int
470 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
471     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
472 {
473 	dnode_t *dn;
474 	int err;
475 
476 	err = dnode_hold(os, object, FTAG, &dn);
477 	if (err)
478 		return (err);
479 
480 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
481 	    numbufsp, dbpp, DMU_READ_PREFETCH);
482 
483 	dnode_rele(dn, FTAG);
484 
485 	return (err);
486 }
487 
488 int
489 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
490     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
491 {
492 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
493 	dnode_t *dn;
494 	int err;
495 
496 	DB_DNODE_ENTER(db);
497 	dn = DB_DNODE(db);
498 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
499 	    numbufsp, dbpp, DMU_READ_PREFETCH);
500 	DB_DNODE_EXIT(db);
501 
502 	return (err);
503 }
504 
505 void
506 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
507 {
508 	int i;
509 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
510 
511 	if (numbufs == 0)
512 		return;
513 
514 	for (i = 0; i < numbufs; i++) {
515 		if (dbp[i])
516 			dbuf_rele(dbp[i], tag);
517 	}
518 
519 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
520 }
521 
522 /*
523  * Issue prefetch i/os for the given blocks.
524  *
525  * Note: The assumption is that we *know* these blocks will be needed
526  * almost immediately.  Therefore, the prefetch i/os will be issued at
527  * ZIO_PRIORITY_SYNC_READ
528  *
529  * Note: indirect blocks and other metadata will be read synchronously,
530  * causing this function to block if they are not already cached.
531  */
532 void
533 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
534 {
535 	dnode_t *dn;
536 	uint64_t blkid;
537 	int nblks, err;
538 
539 	if (zfs_prefetch_disable)
540 		return;
541 
542 	if (len == 0) {  /* they're interested in the bonus buffer */
543 		dn = DMU_META_DNODE(os);
544 
545 		if (object == 0 || object >= DN_MAX_OBJECT)
546 			return;
547 
548 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
549 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
550 		dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
551 		rw_exit(&dn->dn_struct_rwlock);
552 		return;
553 	}
554 
555 	/*
556 	 * XXX - Note, if the dnode for the requested object is not
557 	 * already cached, we will do a *synchronous* read in the
558 	 * dnode_hold() call.  The same is true for any indirects.
559 	 */
560 	err = dnode_hold(os, object, FTAG, &dn);
561 	if (err != 0)
562 		return;
563 
564 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
565 	if (dn->dn_datablkshift) {
566 		int blkshift = dn->dn_datablkshift;
567 		nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
568 		    P2ALIGN(offset, 1 << blkshift)) >> blkshift;
569 	} else {
570 		nblks = (offset < dn->dn_datablksz);
571 	}
572 
573 	if (nblks != 0) {
574 		blkid = dbuf_whichblock(dn, offset);
575 		for (int i = 0; i < nblks; i++)
576 			dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
577 	}
578 
579 	rw_exit(&dn->dn_struct_rwlock);
580 
581 	dnode_rele(dn, FTAG);
582 }
583 
584 /*
585  * Get the next "chunk" of file data to free.  We traverse the file from
586  * the end so that the file gets shorter over time (if we crashes in the
587  * middle, this will leave us in a better state).  We find allocated file
588  * data by simply searching the allocated level 1 indirects.
589  *
590  * On input, *start should be the first offset that does not need to be
591  * freed (e.g. "offset + length").  On return, *start will be the first
592  * offset that should be freed.
593  */
594 static int
595 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
596 {
597 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
598 	/* bytes of data covered by a level-1 indirect block */
599 	uint64_t iblkrange =
600 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
601 
602 	ASSERT3U(minimum, <=, *start);
603 
604 	if (*start - minimum <= iblkrange * maxblks) {
605 		*start = minimum;
606 		return (0);
607 	}
608 	ASSERT(ISP2(iblkrange));
609 
610 	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
611 		int err;
612 
613 		/*
614 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
615 		 * indirect block at or before the input offset.  We must
616 		 * decrement *start so that it is at the end of the region
617 		 * to search.
618 		 */
619 		(*start)--;
620 		err = dnode_next_offset(dn,
621 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
622 
623 		/* if there are no indirect blocks before start, we are done */
624 		if (err == ESRCH) {
625 			*start = minimum;
626 			break;
627 		} else if (err != 0) {
628 			return (err);
629 		}
630 
631 		/* set start to the beginning of this L1 indirect */
632 		*start = P2ALIGN(*start, iblkrange);
633 	}
634 	if (*start < minimum)
635 		*start = minimum;
636 	return (0);
637 }
638 
639 static int
640 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
641     uint64_t length)
642 {
643 	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
644 	int err;
645 
646 	if (offset >= object_size)
647 		return (0);
648 
649 	if (length == DMU_OBJECT_END || offset + length > object_size)
650 		length = object_size - offset;
651 
652 	while (length != 0) {
653 		uint64_t chunk_end, chunk_begin;
654 
655 		chunk_end = chunk_begin = offset + length;
656 
657 		/* move chunk_begin backwards to the beginning of this chunk */
658 		err = get_next_chunk(dn, &chunk_begin, offset);
659 		if (err)
660 			return (err);
661 		ASSERT3U(chunk_begin, >=, offset);
662 		ASSERT3U(chunk_begin, <=, chunk_end);
663 
664 		dmu_tx_t *tx = dmu_tx_create(os);
665 		dmu_tx_hold_free(tx, dn->dn_object,
666 		    chunk_begin, chunk_end - chunk_begin);
667 		err = dmu_tx_assign(tx, TXG_WAIT);
668 		if (err) {
669 			dmu_tx_abort(tx);
670 			return (err);
671 		}
672 		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
673 		dmu_tx_commit(tx);
674 
675 		length -= chunk_end - chunk_begin;
676 	}
677 	return (0);
678 }
679 
680 int
681 dmu_free_long_range(objset_t *os, uint64_t object,
682     uint64_t offset, uint64_t length)
683 {
684 	dnode_t *dn;
685 	int err;
686 
687 	err = dnode_hold(os, object, FTAG, &dn);
688 	if (err != 0)
689 		return (err);
690 	err = dmu_free_long_range_impl(os, dn, offset, length);
691 
692 	/*
693 	 * It is important to zero out the maxblkid when freeing the entire
694 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
695 	 * will take the fast path, and (b) dnode_reallocate() can verify
696 	 * that the entire file has been freed.
697 	 */
698 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
699 		dn->dn_maxblkid = 0;
700 
701 	dnode_rele(dn, FTAG);
702 	return (err);
703 }
704 
705 int
706 dmu_free_long_object(objset_t *os, uint64_t object)
707 {
708 	dmu_tx_t *tx;
709 	int err;
710 
711 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
712 	if (err != 0)
713 		return (err);
714 
715 	tx = dmu_tx_create(os);
716 	dmu_tx_hold_bonus(tx, object);
717 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
718 	err = dmu_tx_assign(tx, TXG_WAIT);
719 	if (err == 0) {
720 		err = dmu_object_free(os, object, tx);
721 		dmu_tx_commit(tx);
722 	} else {
723 		dmu_tx_abort(tx);
724 	}
725 
726 	return (err);
727 }
728 
729 int
730 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
731     uint64_t size, dmu_tx_t *tx)
732 {
733 	dnode_t *dn;
734 	int err = dnode_hold(os, object, FTAG, &dn);
735 	if (err)
736 		return (err);
737 	ASSERT(offset < UINT64_MAX);
738 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
739 	dnode_free_range(dn, offset, size, tx);
740 	dnode_rele(dn, FTAG);
741 	return (0);
742 }
743 
744 int
745 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
746     void *buf, uint32_t flags)
747 {
748 	dnode_t *dn;
749 	dmu_buf_t **dbp;
750 	int numbufs, err;
751 
752 	err = dnode_hold(os, object, FTAG, &dn);
753 	if (err)
754 		return (err);
755 
756 	/*
757 	 * Deal with odd block sizes, where there can't be data past the first
758 	 * block.  If we ever do the tail block optimization, we will need to
759 	 * handle that here as well.
760 	 */
761 	if (dn->dn_maxblkid == 0) {
762 		int newsz = offset > dn->dn_datablksz ? 0 :
763 		    MIN(size, dn->dn_datablksz - offset);
764 		bzero((char *)buf + newsz, size - newsz);
765 		size = newsz;
766 	}
767 
768 	while (size > 0) {
769 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
770 		int i;
771 
772 		/*
773 		 * NB: we could do this block-at-a-time, but it's nice
774 		 * to be reading in parallel.
775 		 */
776 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
777 		    TRUE, FTAG, &numbufs, &dbp, flags);
778 		if (err)
779 			break;
780 
781 		for (i = 0; i < numbufs; i++) {
782 			int tocpy;
783 			int bufoff;
784 			dmu_buf_t *db = dbp[i];
785 
786 			ASSERT(size > 0);
787 
788 			bufoff = offset - db->db_offset;
789 			tocpy = (int)MIN(db->db_size - bufoff, size);
790 
791 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
792 
793 			offset += tocpy;
794 			size -= tocpy;
795 			buf = (char *)buf + tocpy;
796 		}
797 		dmu_buf_rele_array(dbp, numbufs, FTAG);
798 	}
799 	dnode_rele(dn, FTAG);
800 	return (err);
801 }
802 
803 void
804 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
805     const void *buf, dmu_tx_t *tx)
806 {
807 	dmu_buf_t **dbp;
808 	int numbufs, i;
809 
810 	if (size == 0)
811 		return;
812 
813 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
814 	    FALSE, FTAG, &numbufs, &dbp));
815 
816 	for (i = 0; i < numbufs; i++) {
817 		int tocpy;
818 		int bufoff;
819 		dmu_buf_t *db = dbp[i];
820 
821 		ASSERT(size > 0);
822 
823 		bufoff = offset - db->db_offset;
824 		tocpy = (int)MIN(db->db_size - bufoff, size);
825 
826 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
827 
828 		if (tocpy == db->db_size)
829 			dmu_buf_will_fill(db, tx);
830 		else
831 			dmu_buf_will_dirty(db, tx);
832 
833 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
834 
835 		if (tocpy == db->db_size)
836 			dmu_buf_fill_done(db, tx);
837 
838 		offset += tocpy;
839 		size -= tocpy;
840 		buf = (char *)buf + tocpy;
841 	}
842 	dmu_buf_rele_array(dbp, numbufs, FTAG);
843 }
844 
845 void
846 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
847     dmu_tx_t *tx)
848 {
849 	dmu_buf_t **dbp;
850 	int numbufs, i;
851 
852 	if (size == 0)
853 		return;
854 
855 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
856 	    FALSE, FTAG, &numbufs, &dbp));
857 
858 	for (i = 0; i < numbufs; i++) {
859 		dmu_buf_t *db = dbp[i];
860 
861 		dmu_buf_will_not_fill(db, tx);
862 	}
863 	dmu_buf_rele_array(dbp, numbufs, FTAG);
864 }
865 
866 void
867 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
868     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
869     int compressed_size, int byteorder, dmu_tx_t *tx)
870 {
871 	dmu_buf_t *db;
872 
873 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
874 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
875 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
876 	    FTAG, &db));
877 
878 	dmu_buf_write_embedded(db,
879 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
880 	    uncompressed_size, compressed_size, byteorder, tx);
881 
882 	dmu_buf_rele(db, FTAG);
883 }
884 
885 /*
886  * DMU support for xuio
887  */
888 kstat_t *xuio_ksp = NULL;
889 
890 int
891 dmu_xuio_init(xuio_t *xuio, int nblk)
892 {
893 	dmu_xuio_t *priv;
894 	uio_t *uio = &xuio->xu_uio;
895 
896 	uio->uio_iovcnt = nblk;
897 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
898 
899 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
900 	priv->cnt = nblk;
901 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
902 	priv->iovp = uio->uio_iov;
903 	XUIO_XUZC_PRIV(xuio) = priv;
904 
905 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
906 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
907 	else
908 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
909 
910 	return (0);
911 }
912 
913 void
914 dmu_xuio_fini(xuio_t *xuio)
915 {
916 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
917 	int nblk = priv->cnt;
918 
919 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
920 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
921 	kmem_free(priv, sizeof (dmu_xuio_t));
922 
923 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
924 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
925 	else
926 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
927 }
928 
929 /*
930  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
931  * and increase priv->next by 1.
932  */
933 int
934 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
935 {
936 	struct iovec *iov;
937 	uio_t *uio = &xuio->xu_uio;
938 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
939 	int i = priv->next++;
940 
941 	ASSERT(i < priv->cnt);
942 	ASSERT(off + n <= arc_buf_size(abuf));
943 	iov = uio->uio_iov + i;
944 	iov->iov_base = (char *)abuf->b_data + off;
945 	iov->iov_len = n;
946 	priv->bufs[i] = abuf;
947 	return (0);
948 }
949 
950 int
951 dmu_xuio_cnt(xuio_t *xuio)
952 {
953 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
954 	return (priv->cnt);
955 }
956 
957 arc_buf_t *
958 dmu_xuio_arcbuf(xuio_t *xuio, int i)
959 {
960 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
961 
962 	ASSERT(i < priv->cnt);
963 	return (priv->bufs[i]);
964 }
965 
966 void
967 dmu_xuio_clear(xuio_t *xuio, int i)
968 {
969 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
970 
971 	ASSERT(i < priv->cnt);
972 	priv->bufs[i] = NULL;
973 }
974 
975 static void
976 xuio_stat_init(void)
977 {
978 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
979 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
980 	    KSTAT_FLAG_VIRTUAL);
981 	if (xuio_ksp != NULL) {
982 		xuio_ksp->ks_data = &xuio_stats;
983 		kstat_install(xuio_ksp);
984 	}
985 }
986 
987 static void
988 xuio_stat_fini(void)
989 {
990 	if (xuio_ksp != NULL) {
991 		kstat_delete(xuio_ksp);
992 		xuio_ksp = NULL;
993 	}
994 }
995 
996 void
997 xuio_stat_wbuf_copied()
998 {
999 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1000 }
1001 
1002 void
1003 xuio_stat_wbuf_nocopy()
1004 {
1005 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1006 }
1007 
1008 #ifdef _KERNEL
1009 int
1010 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1011 {
1012 	dmu_buf_t **dbp;
1013 	int numbufs, i, err;
1014 	xuio_t *xuio = NULL;
1015 
1016 	/*
1017 	 * NB: we could do this block-at-a-time, but it's nice
1018 	 * to be reading in parallel.
1019 	 */
1020 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
1021 	    &numbufs, &dbp);
1022 	if (err)
1023 		return (err);
1024 
1025 	if (uio->uio_extflg == UIO_XUIO)
1026 		xuio = (xuio_t *)uio;
1027 
1028 	for (i = 0; i < numbufs; i++) {
1029 		int tocpy;
1030 		int bufoff;
1031 		dmu_buf_t *db = dbp[i];
1032 
1033 		ASSERT(size > 0);
1034 
1035 		bufoff = uio->uio_loffset - db->db_offset;
1036 		tocpy = (int)MIN(db->db_size - bufoff, size);
1037 
1038 		if (xuio) {
1039 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1040 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1041 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1042 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1043 			if (!err) {
1044 				uio->uio_resid -= tocpy;
1045 				uio->uio_loffset += tocpy;
1046 			}
1047 
1048 			if (abuf == dbuf_abuf)
1049 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1050 			else
1051 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1052 		} else {
1053 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1054 			    UIO_READ, uio);
1055 		}
1056 		if (err)
1057 			break;
1058 
1059 		size -= tocpy;
1060 	}
1061 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1062 
1063 	return (err);
1064 }
1065 
1066 static int
1067 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1068 {
1069 	dmu_buf_t **dbp;
1070 	int numbufs;
1071 	int err = 0;
1072 	int i;
1073 
1074 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1075 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1076 	if (err)
1077 		return (err);
1078 
1079 	for (i = 0; i < numbufs; i++) {
1080 		int tocpy;
1081 		int bufoff;
1082 		dmu_buf_t *db = dbp[i];
1083 
1084 		ASSERT(size > 0);
1085 
1086 		bufoff = uio->uio_loffset - db->db_offset;
1087 		tocpy = (int)MIN(db->db_size - bufoff, size);
1088 
1089 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1090 
1091 		if (tocpy == db->db_size)
1092 			dmu_buf_will_fill(db, tx);
1093 		else
1094 			dmu_buf_will_dirty(db, tx);
1095 
1096 		/*
1097 		 * XXX uiomove could block forever (eg. nfs-backed
1098 		 * pages).  There needs to be a uiolockdown() function
1099 		 * to lock the pages in memory, so that uiomove won't
1100 		 * block.
1101 		 */
1102 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1103 		    UIO_WRITE, uio);
1104 
1105 		if (tocpy == db->db_size)
1106 			dmu_buf_fill_done(db, tx);
1107 
1108 		if (err)
1109 			break;
1110 
1111 		size -= tocpy;
1112 	}
1113 
1114 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1115 	return (err);
1116 }
1117 
1118 int
1119 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1120     dmu_tx_t *tx)
1121 {
1122 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1123 	dnode_t *dn;
1124 	int err;
1125 
1126 	if (size == 0)
1127 		return (0);
1128 
1129 	DB_DNODE_ENTER(db);
1130 	dn = DB_DNODE(db);
1131 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1132 	DB_DNODE_EXIT(db);
1133 
1134 	return (err);
1135 }
1136 
1137 int
1138 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1139     dmu_tx_t *tx)
1140 {
1141 	dnode_t *dn;
1142 	int err;
1143 
1144 	if (size == 0)
1145 		return (0);
1146 
1147 	err = dnode_hold(os, object, FTAG, &dn);
1148 	if (err)
1149 		return (err);
1150 
1151 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1152 
1153 	dnode_rele(dn, FTAG);
1154 
1155 	return (err);
1156 }
1157 
1158 int
1159 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1160     page_t *pp, dmu_tx_t *tx)
1161 {
1162 	dmu_buf_t **dbp;
1163 	int numbufs, i;
1164 	int err;
1165 
1166 	if (size == 0)
1167 		return (0);
1168 
1169 	err = dmu_buf_hold_array(os, object, offset, size,
1170 	    FALSE, FTAG, &numbufs, &dbp);
1171 	if (err)
1172 		return (err);
1173 
1174 	for (i = 0; i < numbufs; i++) {
1175 		int tocpy, copied, thiscpy;
1176 		int bufoff;
1177 		dmu_buf_t *db = dbp[i];
1178 		caddr_t va;
1179 
1180 		ASSERT(size > 0);
1181 		ASSERT3U(db->db_size, >=, PAGESIZE);
1182 
1183 		bufoff = offset - db->db_offset;
1184 		tocpy = (int)MIN(db->db_size - bufoff, size);
1185 
1186 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1187 
1188 		if (tocpy == db->db_size)
1189 			dmu_buf_will_fill(db, tx);
1190 		else
1191 			dmu_buf_will_dirty(db, tx);
1192 
1193 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1194 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1195 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1196 			va = zfs_map_page(pp, S_READ);
1197 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1198 			zfs_unmap_page(pp, va);
1199 			pp = pp->p_next;
1200 			bufoff += PAGESIZE;
1201 		}
1202 
1203 		if (tocpy == db->db_size)
1204 			dmu_buf_fill_done(db, tx);
1205 
1206 		offset += tocpy;
1207 		size -= tocpy;
1208 	}
1209 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1210 	return (err);
1211 }
1212 #endif
1213 
1214 /*
1215  * Allocate a loaned anonymous arc buffer.
1216  */
1217 arc_buf_t *
1218 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1219 {
1220 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1221 
1222 	return (arc_loan_buf(db->db_objset->os_spa, size));
1223 }
1224 
1225 /*
1226  * Free a loaned arc buffer.
1227  */
1228 void
1229 dmu_return_arcbuf(arc_buf_t *buf)
1230 {
1231 	arc_return_buf(buf, FTAG);
1232 	VERIFY(arc_buf_remove_ref(buf, FTAG));
1233 }
1234 
1235 /*
1236  * When possible directly assign passed loaned arc buffer to a dbuf.
1237  * If this is not possible copy the contents of passed arc buf via
1238  * dmu_write().
1239  */
1240 void
1241 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1242     dmu_tx_t *tx)
1243 {
1244 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1245 	dnode_t *dn;
1246 	dmu_buf_impl_t *db;
1247 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1248 	uint64_t blkid;
1249 
1250 	DB_DNODE_ENTER(dbuf);
1251 	dn = DB_DNODE(dbuf);
1252 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1253 	blkid = dbuf_whichblock(dn, offset);
1254 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1255 	rw_exit(&dn->dn_struct_rwlock);
1256 	DB_DNODE_EXIT(dbuf);
1257 
1258 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1259 		dbuf_assign_arcbuf(db, buf, tx);
1260 		dbuf_rele(db, FTAG);
1261 	} else {
1262 		objset_t *os;
1263 		uint64_t object;
1264 
1265 		DB_DNODE_ENTER(dbuf);
1266 		dn = DB_DNODE(dbuf);
1267 		os = dn->dn_objset;
1268 		object = dn->dn_object;
1269 		DB_DNODE_EXIT(dbuf);
1270 
1271 		dbuf_rele(db, FTAG);
1272 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1273 		dmu_return_arcbuf(buf);
1274 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1275 	}
1276 }
1277 
1278 typedef struct {
1279 	dbuf_dirty_record_t	*dsa_dr;
1280 	dmu_sync_cb_t		*dsa_done;
1281 	zgd_t			*dsa_zgd;
1282 	dmu_tx_t		*dsa_tx;
1283 } dmu_sync_arg_t;
1284 
1285 /* ARGSUSED */
1286 static void
1287 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1288 {
1289 	dmu_sync_arg_t *dsa = varg;
1290 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1291 	blkptr_t *bp = zio->io_bp;
1292 
1293 	if (zio->io_error == 0) {
1294 		if (BP_IS_HOLE(bp)) {
1295 			/*
1296 			 * A block of zeros may compress to a hole, but the
1297 			 * block size still needs to be known for replay.
1298 			 */
1299 			BP_SET_LSIZE(bp, db->db_size);
1300 		} else if (!BP_IS_EMBEDDED(bp)) {
1301 			ASSERT(BP_GET_LEVEL(bp) == 0);
1302 			bp->blk_fill = 1;
1303 		}
1304 	}
1305 }
1306 
1307 static void
1308 dmu_sync_late_arrival_ready(zio_t *zio)
1309 {
1310 	dmu_sync_ready(zio, NULL, zio->io_private);
1311 }
1312 
1313 /* ARGSUSED */
1314 static void
1315 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1316 {
1317 	dmu_sync_arg_t *dsa = varg;
1318 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1319 	dmu_buf_impl_t *db = dr->dr_dbuf;
1320 
1321 	mutex_enter(&db->db_mtx);
1322 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1323 	if (zio->io_error == 0) {
1324 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1325 		if (dr->dt.dl.dr_nopwrite) {
1326 			blkptr_t *bp = zio->io_bp;
1327 			blkptr_t *bp_orig = &zio->io_bp_orig;
1328 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1329 
1330 			ASSERT(BP_EQUAL(bp, bp_orig));
1331 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1332 			ASSERT(zio_checksum_table[chksum].ci_dedup);
1333 		}
1334 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1335 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1336 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1337 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1338 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1339 	} else {
1340 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1341 	}
1342 	cv_broadcast(&db->db_changed);
1343 	mutex_exit(&db->db_mtx);
1344 
1345 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1346 
1347 	kmem_free(dsa, sizeof (*dsa));
1348 }
1349 
1350 static void
1351 dmu_sync_late_arrival_done(zio_t *zio)
1352 {
1353 	blkptr_t *bp = zio->io_bp;
1354 	dmu_sync_arg_t *dsa = zio->io_private;
1355 	blkptr_t *bp_orig = &zio->io_bp_orig;
1356 
1357 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1358 		/*
1359 		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1360 		 * then there is nothing to do here. Otherwise, free the
1361 		 * newly allocated block in this txg.
1362 		 */
1363 		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1364 			ASSERT(BP_EQUAL(bp, bp_orig));
1365 		} else {
1366 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1367 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1368 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1369 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1370 		}
1371 	}
1372 
1373 	dmu_tx_commit(dsa->dsa_tx);
1374 
1375 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1376 
1377 	kmem_free(dsa, sizeof (*dsa));
1378 }
1379 
1380 static int
1381 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1382     zio_prop_t *zp, zbookmark_t *zb)
1383 {
1384 	dmu_sync_arg_t *dsa;
1385 	dmu_tx_t *tx;
1386 
1387 	tx = dmu_tx_create(os);
1388 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1389 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1390 		dmu_tx_abort(tx);
1391 		/* Make zl_get_data do txg_waited_synced() */
1392 		return (SET_ERROR(EIO));
1393 	}
1394 
1395 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1396 	dsa->dsa_dr = NULL;
1397 	dsa->dsa_done = done;
1398 	dsa->dsa_zgd = zgd;
1399 	dsa->dsa_tx = tx;
1400 
1401 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1402 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1403 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1404 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1405 
1406 	return (0);
1407 }
1408 
1409 /*
1410  * Intent log support: sync the block associated with db to disk.
1411  * N.B. and XXX: the caller is responsible for making sure that the
1412  * data isn't changing while dmu_sync() is writing it.
1413  *
1414  * Return values:
1415  *
1416  *	EEXIST: this txg has already been synced, so there's nothing to do.
1417  *		The caller should not log the write.
1418  *
1419  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1420  *		The caller should not log the write.
1421  *
1422  *	EALREADY: this block is already in the process of being synced.
1423  *		The caller should track its progress (somehow).
1424  *
1425  *	EIO: could not do the I/O.
1426  *		The caller should do a txg_wait_synced().
1427  *
1428  *	0: the I/O has been initiated.
1429  *		The caller should log this blkptr in the done callback.
1430  *		It is possible that the I/O will fail, in which case
1431  *		the error will be reported to the done callback and
1432  *		propagated to pio from zio_done().
1433  */
1434 int
1435 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1436 {
1437 	blkptr_t *bp = zgd->zgd_bp;
1438 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1439 	objset_t *os = db->db_objset;
1440 	dsl_dataset_t *ds = os->os_dsl_dataset;
1441 	dbuf_dirty_record_t *dr;
1442 	dmu_sync_arg_t *dsa;
1443 	zbookmark_t zb;
1444 	zio_prop_t zp;
1445 	dnode_t *dn;
1446 
1447 	ASSERT(pio != NULL);
1448 	ASSERT(txg != 0);
1449 
1450 	SET_BOOKMARK(&zb, ds->ds_object,
1451 	    db->db.db_object, db->db_level, db->db_blkid);
1452 
1453 	DB_DNODE_ENTER(db);
1454 	dn = DB_DNODE(db);
1455 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1456 	DB_DNODE_EXIT(db);
1457 
1458 	/*
1459 	 * If we're frozen (running ziltest), we always need to generate a bp.
1460 	 */
1461 	if (txg > spa_freeze_txg(os->os_spa))
1462 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1463 
1464 	/*
1465 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1466 	 * and us.  If we determine that this txg is not yet syncing,
1467 	 * but it begins to sync a moment later, that's OK because the
1468 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1469 	 */
1470 	mutex_enter(&db->db_mtx);
1471 
1472 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1473 		/*
1474 		 * This txg has already synced.  There's nothing to do.
1475 		 */
1476 		mutex_exit(&db->db_mtx);
1477 		return (SET_ERROR(EEXIST));
1478 	}
1479 
1480 	if (txg <= spa_syncing_txg(os->os_spa)) {
1481 		/*
1482 		 * This txg is currently syncing, so we can't mess with
1483 		 * the dirty record anymore; just write a new log block.
1484 		 */
1485 		mutex_exit(&db->db_mtx);
1486 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1487 	}
1488 
1489 	dr = db->db_last_dirty;
1490 	while (dr && dr->dr_txg != txg)
1491 		dr = dr->dr_next;
1492 
1493 	if (dr == NULL) {
1494 		/*
1495 		 * There's no dr for this dbuf, so it must have been freed.
1496 		 * There's no need to log writes to freed blocks, so we're done.
1497 		 */
1498 		mutex_exit(&db->db_mtx);
1499 		return (SET_ERROR(ENOENT));
1500 	}
1501 
1502 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1503 
1504 	/*
1505 	 * Assume the on-disk data is X, the current syncing data is Y,
1506 	 * and the current in-memory data is Z (currently in dmu_sync).
1507 	 * X and Z are identical but Y is has been modified. Normally,
1508 	 * when X and Z are the same we will perform a nopwrite but if Y
1509 	 * is different we must disable nopwrite since the resulting write
1510 	 * of Y to disk can free the block containing X. If we allowed a
1511 	 * nopwrite to occur the block pointing to Z would reference a freed
1512 	 * block. Since this is a rare case we simplify this by disabling
1513 	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1514 	 * a previous transaction.
1515 	 */
1516 	if (dr->dr_next)
1517 		zp.zp_nopwrite = B_FALSE;
1518 
1519 	ASSERT(dr->dr_txg == txg);
1520 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1521 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1522 		/*
1523 		 * We have already issued a sync write for this buffer,
1524 		 * or this buffer has already been synced.  It could not
1525 		 * have been dirtied since, or we would have cleared the state.
1526 		 */
1527 		mutex_exit(&db->db_mtx);
1528 		return (SET_ERROR(EALREADY));
1529 	}
1530 
1531 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1532 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1533 	mutex_exit(&db->db_mtx);
1534 
1535 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1536 	dsa->dsa_dr = dr;
1537 	dsa->dsa_done = done;
1538 	dsa->dsa_zgd = zgd;
1539 	dsa->dsa_tx = NULL;
1540 
1541 	zio_nowait(arc_write(pio, os->os_spa, txg,
1542 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1543 	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1544 	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1545 	    ZIO_FLAG_CANFAIL, &zb));
1546 
1547 	return (0);
1548 }
1549 
1550 int
1551 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1552 	dmu_tx_t *tx)
1553 {
1554 	dnode_t *dn;
1555 	int err;
1556 
1557 	err = dnode_hold(os, object, FTAG, &dn);
1558 	if (err)
1559 		return (err);
1560 	err = dnode_set_blksz(dn, size, ibs, tx);
1561 	dnode_rele(dn, FTAG);
1562 	return (err);
1563 }
1564 
1565 void
1566 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1567 	dmu_tx_t *tx)
1568 {
1569 	dnode_t *dn;
1570 
1571 	/*
1572 	 * Send streams include each object's checksum function.  This
1573 	 * check ensures that the receiving system can understand the
1574 	 * checksum function transmitted.
1575 	 */
1576 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1577 
1578 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1579 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1580 	dn->dn_checksum = checksum;
1581 	dnode_setdirty(dn, tx);
1582 	dnode_rele(dn, FTAG);
1583 }
1584 
1585 void
1586 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1587 	dmu_tx_t *tx)
1588 {
1589 	dnode_t *dn;
1590 
1591 	/*
1592 	 * Send streams include each object's compression function.  This
1593 	 * check ensures that the receiving system can understand the
1594 	 * compression function transmitted.
1595 	 */
1596 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1597 
1598 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1599 	dn->dn_compress = compress;
1600 	dnode_setdirty(dn, tx);
1601 	dnode_rele(dn, FTAG);
1602 }
1603 
1604 int zfs_mdcomp_disable = 0;
1605 
1606 /*
1607  * When the "redundant_metadata" property is set to "most", only indirect
1608  * blocks of this level and higher will have an additional ditto block.
1609  */
1610 int zfs_redundant_metadata_most_ditto_level = 2;
1611 
1612 void
1613 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1614 {
1615 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1616 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1617 	    (wp & WP_SPILL));
1618 	enum zio_checksum checksum = os->os_checksum;
1619 	enum zio_compress compress = os->os_compress;
1620 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1621 	boolean_t dedup = B_FALSE;
1622 	boolean_t nopwrite = B_FALSE;
1623 	boolean_t dedup_verify = os->os_dedup_verify;
1624 	int copies = os->os_copies;
1625 
1626 	/*
1627 	 * We maintain different write policies for each of the following
1628 	 * types of data:
1629 	 *	 1. metadata
1630 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1631 	 *	 3. all other level 0 blocks
1632 	 */
1633 	if (ismd) {
1634 		/*
1635 		 * XXX -- we should design a compression algorithm
1636 		 * that specializes in arrays of bps.
1637 		 */
1638 		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1639 		    ZIO_COMPRESS_LZJB;
1640 
1641 		/*
1642 		 * Metadata always gets checksummed.  If the data
1643 		 * checksum is multi-bit correctable, and it's not a
1644 		 * ZBT-style checksum, then it's suitable for metadata
1645 		 * as well.  Otherwise, the metadata checksum defaults
1646 		 * to fletcher4.
1647 		 */
1648 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1649 		    zio_checksum_table[checksum].ci_eck)
1650 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1651 
1652 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1653 		    (os->os_redundant_metadata ==
1654 		    ZFS_REDUNDANT_METADATA_MOST &&
1655 		    (level >= zfs_redundant_metadata_most_ditto_level ||
1656 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1657 			copies++;
1658 	} else if (wp & WP_NOFILL) {
1659 		ASSERT(level == 0);
1660 
1661 		/*
1662 		 * If we're writing preallocated blocks, we aren't actually
1663 		 * writing them so don't set any policy properties.  These
1664 		 * blocks are currently only used by an external subsystem
1665 		 * outside of zfs (i.e. dump) and not written by the zio
1666 		 * pipeline.
1667 		 */
1668 		compress = ZIO_COMPRESS_OFF;
1669 		checksum = ZIO_CHECKSUM_NOPARITY;
1670 	} else {
1671 		compress = zio_compress_select(dn->dn_compress, compress);
1672 
1673 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1674 		    zio_checksum_select(dn->dn_checksum, checksum) :
1675 		    dedup_checksum;
1676 
1677 		/*
1678 		 * Determine dedup setting.  If we are in dmu_sync(),
1679 		 * we won't actually dedup now because that's all
1680 		 * done in syncing context; but we do want to use the
1681 		 * dedup checkum.  If the checksum is not strong
1682 		 * enough to ensure unique signatures, force
1683 		 * dedup_verify.
1684 		 */
1685 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1686 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1687 			if (!zio_checksum_table[checksum].ci_dedup)
1688 				dedup_verify = B_TRUE;
1689 		}
1690 
1691 		/*
1692 		 * Enable nopwrite if we have a cryptographically secure
1693 		 * checksum that has no known collisions (i.e. SHA-256)
1694 		 * and compression is enabled.  We don't enable nopwrite if
1695 		 * dedup is enabled as the two features are mutually exclusive.
1696 		 */
1697 		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1698 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1699 	}
1700 
1701 	zp->zp_checksum = checksum;
1702 	zp->zp_compress = compress;
1703 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1704 	zp->zp_level = level;
1705 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1706 	zp->zp_dedup = dedup;
1707 	zp->zp_dedup_verify = dedup && dedup_verify;
1708 	zp->zp_nopwrite = nopwrite;
1709 }
1710 
1711 int
1712 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1713 {
1714 	dnode_t *dn;
1715 	int i, err;
1716 
1717 	err = dnode_hold(os, object, FTAG, &dn);
1718 	if (err)
1719 		return (err);
1720 	/*
1721 	 * Sync any current changes before
1722 	 * we go trundling through the block pointers.
1723 	 */
1724 	for (i = 0; i < TXG_SIZE; i++) {
1725 		if (list_link_active(&dn->dn_dirty_link[i]))
1726 			break;
1727 	}
1728 	if (i != TXG_SIZE) {
1729 		dnode_rele(dn, FTAG);
1730 		txg_wait_synced(dmu_objset_pool(os), 0);
1731 		err = dnode_hold(os, object, FTAG, &dn);
1732 		if (err)
1733 			return (err);
1734 	}
1735 
1736 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1737 	dnode_rele(dn, FTAG);
1738 
1739 	return (err);
1740 }
1741 
1742 void
1743 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1744 {
1745 	dnode_phys_t *dnp;
1746 
1747 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1748 	mutex_enter(&dn->dn_mtx);
1749 
1750 	dnp = dn->dn_phys;
1751 
1752 	doi->doi_data_block_size = dn->dn_datablksz;
1753 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1754 	    1ULL << dn->dn_indblkshift : 0;
1755 	doi->doi_type = dn->dn_type;
1756 	doi->doi_bonus_type = dn->dn_bonustype;
1757 	doi->doi_bonus_size = dn->dn_bonuslen;
1758 	doi->doi_indirection = dn->dn_nlevels;
1759 	doi->doi_checksum = dn->dn_checksum;
1760 	doi->doi_compress = dn->dn_compress;
1761 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1762 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1763 	doi->doi_fill_count = 0;
1764 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1765 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1766 
1767 	mutex_exit(&dn->dn_mtx);
1768 	rw_exit(&dn->dn_struct_rwlock);
1769 }
1770 
1771 /*
1772  * Get information on a DMU object.
1773  * If doi is NULL, just indicates whether the object exists.
1774  */
1775 int
1776 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1777 {
1778 	dnode_t *dn;
1779 	int err = dnode_hold(os, object, FTAG, &dn);
1780 
1781 	if (err)
1782 		return (err);
1783 
1784 	if (doi != NULL)
1785 		dmu_object_info_from_dnode(dn, doi);
1786 
1787 	dnode_rele(dn, FTAG);
1788 	return (0);
1789 }
1790 
1791 /*
1792  * As above, but faster; can be used when you have a held dbuf in hand.
1793  */
1794 void
1795 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1796 {
1797 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1798 
1799 	DB_DNODE_ENTER(db);
1800 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1801 	DB_DNODE_EXIT(db);
1802 }
1803 
1804 /*
1805  * Faster still when you only care about the size.
1806  * This is specifically optimized for zfs_getattr().
1807  */
1808 void
1809 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1810     u_longlong_t *nblk512)
1811 {
1812 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1813 	dnode_t *dn;
1814 
1815 	DB_DNODE_ENTER(db);
1816 	dn = DB_DNODE(db);
1817 
1818 	*blksize = dn->dn_datablksz;
1819 	/* add 1 for dnode space */
1820 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1821 	    SPA_MINBLOCKSHIFT) + 1;
1822 	DB_DNODE_EXIT(db);
1823 }
1824 
1825 void
1826 byteswap_uint64_array(void *vbuf, size_t size)
1827 {
1828 	uint64_t *buf = vbuf;
1829 	size_t count = size >> 3;
1830 	int i;
1831 
1832 	ASSERT((size & 7) == 0);
1833 
1834 	for (i = 0; i < count; i++)
1835 		buf[i] = BSWAP_64(buf[i]);
1836 }
1837 
1838 void
1839 byteswap_uint32_array(void *vbuf, size_t size)
1840 {
1841 	uint32_t *buf = vbuf;
1842 	size_t count = size >> 2;
1843 	int i;
1844 
1845 	ASSERT((size & 3) == 0);
1846 
1847 	for (i = 0; i < count; i++)
1848 		buf[i] = BSWAP_32(buf[i]);
1849 }
1850 
1851 void
1852 byteswap_uint16_array(void *vbuf, size_t size)
1853 {
1854 	uint16_t *buf = vbuf;
1855 	size_t count = size >> 1;
1856 	int i;
1857 
1858 	ASSERT((size & 1) == 0);
1859 
1860 	for (i = 0; i < count; i++)
1861 		buf[i] = BSWAP_16(buf[i]);
1862 }
1863 
1864 /* ARGSUSED */
1865 void
1866 byteswap_uint8_array(void *vbuf, size_t size)
1867 {
1868 }
1869 
1870 void
1871 dmu_init(void)
1872 {
1873 	zfs_dbgmsg_init();
1874 	sa_cache_init();
1875 	xuio_stat_init();
1876 	dmu_objset_init();
1877 	dnode_init();
1878 	dbuf_init();
1879 	zfetch_init();
1880 	l2arc_init();
1881 	arc_init();
1882 }
1883 
1884 void
1885 dmu_fini(void)
1886 {
1887 	arc_fini(); /* arc depends on l2arc, so arc must go first */
1888 	l2arc_fini();
1889 	zfetch_fini();
1890 	dbuf_fini();
1891 	dnode_fini();
1892 	dmu_objset_fini();
1893 	xuio_stat_fini();
1894 	sa_cache_fini();
1895 	zfs_dbgmsg_fini();
1896 }
1897