1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/dmu.h> 26 #include <sys/dmu_impl.h> 27 #include <sys/dmu_tx.h> 28 #include <sys/dbuf.h> 29 #include <sys/dnode.h> 30 #include <sys/zfs_context.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_traverse.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_pool.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_prop.h> 38 #include <sys/dmu_zfetch.h> 39 #include <sys/zfs_ioctl.h> 40 #include <sys/zap.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/sa.h> 43 #ifdef _KERNEL 44 #include <sys/vmsystm.h> 45 #include <sys/zfs_znode.h> 46 #endif 47 48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 49 { byteswap_uint8_array, TRUE, "unallocated" }, 50 { zap_byteswap, TRUE, "object directory" }, 51 { byteswap_uint64_array, TRUE, "object array" }, 52 { byteswap_uint8_array, TRUE, "packed nvlist" }, 53 { byteswap_uint64_array, TRUE, "packed nvlist size" }, 54 { byteswap_uint64_array, TRUE, "bpobj" }, 55 { byteswap_uint64_array, TRUE, "bpobj header" }, 56 { byteswap_uint64_array, TRUE, "SPA space map header" }, 57 { byteswap_uint64_array, TRUE, "SPA space map" }, 58 { byteswap_uint64_array, TRUE, "ZIL intent log" }, 59 { dnode_buf_byteswap, TRUE, "DMU dnode" }, 60 { dmu_objset_byteswap, TRUE, "DMU objset" }, 61 { byteswap_uint64_array, TRUE, "DSL directory" }, 62 { zap_byteswap, TRUE, "DSL directory child map"}, 63 { zap_byteswap, TRUE, "DSL dataset snap map" }, 64 { zap_byteswap, TRUE, "DSL props" }, 65 { byteswap_uint64_array, TRUE, "DSL dataset" }, 66 { zfs_znode_byteswap, TRUE, "ZFS znode" }, 67 { zfs_oldacl_byteswap, TRUE, "ZFS V0 ACL" }, 68 { byteswap_uint8_array, FALSE, "ZFS plain file" }, 69 { zap_byteswap, TRUE, "ZFS directory" }, 70 { zap_byteswap, TRUE, "ZFS master node" }, 71 { zap_byteswap, TRUE, "ZFS delete queue" }, 72 { byteswap_uint8_array, FALSE, "zvol object" }, 73 { zap_byteswap, TRUE, "zvol prop" }, 74 { byteswap_uint8_array, FALSE, "other uint8[]" }, 75 { byteswap_uint64_array, FALSE, "other uint64[]" }, 76 { zap_byteswap, TRUE, "other ZAP" }, 77 { zap_byteswap, TRUE, "persistent error log" }, 78 { byteswap_uint8_array, TRUE, "SPA history" }, 79 { byteswap_uint64_array, TRUE, "SPA history offsets" }, 80 { zap_byteswap, TRUE, "Pool properties" }, 81 { zap_byteswap, TRUE, "DSL permissions" }, 82 { zfs_acl_byteswap, TRUE, "ZFS ACL" }, 83 { byteswap_uint8_array, TRUE, "ZFS SYSACL" }, 84 { byteswap_uint8_array, TRUE, "FUID table" }, 85 { byteswap_uint64_array, TRUE, "FUID table size" }, 86 { zap_byteswap, TRUE, "DSL dataset next clones"}, 87 { zap_byteswap, TRUE, "scan work queue" }, 88 { zap_byteswap, TRUE, "ZFS user/group used" }, 89 { zap_byteswap, TRUE, "ZFS user/group quota" }, 90 { zap_byteswap, TRUE, "snapshot refcount tags"}, 91 { zap_byteswap, TRUE, "DDT ZAP algorithm" }, 92 { zap_byteswap, TRUE, "DDT statistics" }, 93 { byteswap_uint8_array, TRUE, "System attributes" }, 94 { zap_byteswap, TRUE, "SA master node" }, 95 { zap_byteswap, TRUE, "SA attr registration" }, 96 { zap_byteswap, TRUE, "SA attr layouts" }, 97 { zap_byteswap, TRUE, "scan translations" }, 98 { byteswap_uint8_array, FALSE, "deduplicated block" }, 99 { zap_byteswap, TRUE, "DSL deadlist map" }, 100 { byteswap_uint64_array, TRUE, "DSL deadlist map hdr" }, 101 { zap_byteswap, TRUE, "DSL dir clones" }, 102 { byteswap_uint64_array, TRUE, "bpobj subobj" }, 103 }; 104 105 int 106 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 107 void *tag, dmu_buf_t **dbp, int flags) 108 { 109 dnode_t *dn; 110 uint64_t blkid; 111 dmu_buf_impl_t *db; 112 int err; 113 int db_flags = DB_RF_CANFAIL; 114 115 if (flags & DMU_READ_NO_PREFETCH) 116 db_flags |= DB_RF_NOPREFETCH; 117 118 err = dnode_hold(os, object, FTAG, &dn); 119 if (err) 120 return (err); 121 blkid = dbuf_whichblock(dn, offset); 122 rw_enter(&dn->dn_struct_rwlock, RW_READER); 123 db = dbuf_hold(dn, blkid, tag); 124 rw_exit(&dn->dn_struct_rwlock); 125 if (db == NULL) { 126 err = EIO; 127 } else { 128 err = dbuf_read(db, NULL, db_flags); 129 if (err) { 130 dbuf_rele(db, tag); 131 db = NULL; 132 } 133 } 134 135 dnode_rele(dn, FTAG); 136 *dbp = &db->db; 137 return (err); 138 } 139 140 int 141 dmu_bonus_max(void) 142 { 143 return (DN_MAX_BONUSLEN); 144 } 145 146 int 147 dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx) 148 { 149 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 150 151 if (dn->dn_bonus != (dmu_buf_impl_t *)db) 152 return (EINVAL); 153 if (newsize < 0 || newsize > db->db_size) 154 return (EINVAL); 155 dnode_setbonuslen(dn, newsize, tx); 156 return (0); 157 } 158 159 int 160 dmu_set_bonustype(dmu_buf_t *db, dmu_object_type_t type, dmu_tx_t *tx) 161 { 162 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 163 164 if (type > DMU_OT_NUMTYPES) 165 return (EINVAL); 166 167 if (dn->dn_bonus != (dmu_buf_impl_t *)db) 168 return (EINVAL); 169 170 dnode_setbonus_type(dn, type, tx); 171 return (0); 172 } 173 174 int 175 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 176 { 177 dnode_t *dn; 178 int error; 179 180 error = dnode_hold(os, object, FTAG, &dn); 181 dbuf_rm_spill(dn, tx); 182 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 183 dnode_rm_spill(dn, tx); 184 rw_exit(&dn->dn_struct_rwlock); 185 dnode_rele(dn, FTAG); 186 return (error); 187 } 188 189 /* 190 * returns ENOENT, EIO, or 0. 191 */ 192 int 193 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 194 { 195 dnode_t *dn; 196 dmu_buf_impl_t *db; 197 int error; 198 199 error = dnode_hold(os, object, FTAG, &dn); 200 if (error) 201 return (error); 202 203 rw_enter(&dn->dn_struct_rwlock, RW_READER); 204 if (dn->dn_bonus == NULL) { 205 rw_exit(&dn->dn_struct_rwlock); 206 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 207 if (dn->dn_bonus == NULL) 208 dbuf_create_bonus(dn); 209 } 210 db = dn->dn_bonus; 211 rw_exit(&dn->dn_struct_rwlock); 212 213 /* as long as the bonus buf is held, the dnode will be held */ 214 if (refcount_add(&db->db_holds, tag) == 1) 215 VERIFY(dnode_add_ref(dn, db)); 216 217 dnode_rele(dn, FTAG); 218 219 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 220 221 *dbp = &db->db; 222 return (0); 223 } 224 225 /* 226 * returns ENOENT, EIO, or 0. 227 * 228 * This interface will allocate a blank spill dbuf when a spill blk 229 * doesn't already exist on the dnode. 230 * 231 * if you only want to find an already existing spill db, then 232 * dmu_spill_hold_existing() should be used. 233 */ 234 int 235 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 236 { 237 dmu_buf_impl_t *db = NULL; 238 int err; 239 240 if ((flags & DB_RF_HAVESTRUCT) == 0) 241 rw_enter(&dn->dn_struct_rwlock, RW_READER); 242 243 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 244 245 if ((flags & DB_RF_HAVESTRUCT) == 0) 246 rw_exit(&dn->dn_struct_rwlock); 247 248 ASSERT(db != NULL); 249 err = dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | flags); 250 *dbp = &db->db; 251 return (err); 252 } 253 254 int 255 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 256 { 257 dnode_t *dn = ((dmu_buf_impl_t *)bonus)->db_dnode; 258 int err; 259 260 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) 261 return (EINVAL); 262 rw_enter(&dn->dn_struct_rwlock, RW_READER); 263 264 if (!dn->dn_have_spill) { 265 rw_exit(&dn->dn_struct_rwlock); 266 return (ENOENT); 267 } 268 err = dmu_spill_hold_by_dnode(dn, DB_RF_HAVESTRUCT, tag, dbp); 269 rw_exit(&dn->dn_struct_rwlock); 270 return (err); 271 } 272 273 int 274 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 275 { 276 return (dmu_spill_hold_by_dnode(((dmu_buf_impl_t *)bonus)->db_dnode, 277 0, tag, dbp)); 278 } 279 280 /* 281 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 282 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 283 * and can induce severe lock contention when writing to several files 284 * whose dnodes are in the same block. 285 */ 286 static int 287 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 288 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 289 { 290 dsl_pool_t *dp = NULL; 291 dmu_buf_t **dbp; 292 uint64_t blkid, nblks, i; 293 uint32_t dbuf_flags; 294 int err; 295 zio_t *zio; 296 hrtime_t start; 297 298 ASSERT(length <= DMU_MAX_ACCESS); 299 300 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 301 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 302 dbuf_flags |= DB_RF_NOPREFETCH; 303 304 rw_enter(&dn->dn_struct_rwlock, RW_READER); 305 if (dn->dn_datablkshift) { 306 int blkshift = dn->dn_datablkshift; 307 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 308 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 309 } else { 310 if (offset + length > dn->dn_datablksz) { 311 zfs_panic_recover("zfs: accessing past end of object " 312 "%llx/%llx (size=%u access=%llu+%llu)", 313 (longlong_t)dn->dn_objset-> 314 os_dsl_dataset->ds_object, 315 (longlong_t)dn->dn_object, dn->dn_datablksz, 316 (longlong_t)offset, (longlong_t)length); 317 rw_exit(&dn->dn_struct_rwlock); 318 return (EIO); 319 } 320 nblks = 1; 321 } 322 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 323 324 if (dn->dn_objset->os_dsl_dataset) 325 dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool; 326 if (dp && dsl_pool_sync_context(dp)) 327 start = gethrtime(); 328 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 329 blkid = dbuf_whichblock(dn, offset); 330 for (i = 0; i < nblks; i++) { 331 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 332 if (db == NULL) { 333 rw_exit(&dn->dn_struct_rwlock); 334 dmu_buf_rele_array(dbp, nblks, tag); 335 zio_nowait(zio); 336 return (EIO); 337 } 338 /* initiate async i/o */ 339 if (read) { 340 (void) dbuf_read(db, zio, dbuf_flags); 341 } 342 dbp[i] = &db->db; 343 } 344 rw_exit(&dn->dn_struct_rwlock); 345 346 /* wait for async i/o */ 347 err = zio_wait(zio); 348 /* track read overhead when we are in sync context */ 349 if (dp && dsl_pool_sync_context(dp)) 350 dp->dp_read_overhead += gethrtime() - start; 351 if (err) { 352 dmu_buf_rele_array(dbp, nblks, tag); 353 return (err); 354 } 355 356 /* wait for other io to complete */ 357 if (read) { 358 for (i = 0; i < nblks; i++) { 359 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 360 mutex_enter(&db->db_mtx); 361 while (db->db_state == DB_READ || 362 db->db_state == DB_FILL) 363 cv_wait(&db->db_changed, &db->db_mtx); 364 if (db->db_state == DB_UNCACHED) 365 err = EIO; 366 mutex_exit(&db->db_mtx); 367 if (err) { 368 dmu_buf_rele_array(dbp, nblks, tag); 369 return (err); 370 } 371 } 372 } 373 374 *numbufsp = nblks; 375 *dbpp = dbp; 376 return (0); 377 } 378 379 static int 380 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 381 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 382 { 383 dnode_t *dn; 384 int err; 385 386 err = dnode_hold(os, object, FTAG, &dn); 387 if (err) 388 return (err); 389 390 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 391 numbufsp, dbpp, DMU_READ_PREFETCH); 392 393 dnode_rele(dn, FTAG); 394 395 return (err); 396 } 397 398 int 399 dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 400 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 401 { 402 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 403 int err; 404 405 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 406 numbufsp, dbpp, DMU_READ_PREFETCH); 407 408 return (err); 409 } 410 411 void 412 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 413 { 414 int i; 415 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 416 417 if (numbufs == 0) 418 return; 419 420 for (i = 0; i < numbufs; i++) { 421 if (dbp[i]) 422 dbuf_rele(dbp[i], tag); 423 } 424 425 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 426 } 427 428 void 429 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 430 { 431 dnode_t *dn; 432 uint64_t blkid; 433 int nblks, i, err; 434 435 if (zfs_prefetch_disable) 436 return; 437 438 if (len == 0) { /* they're interested in the bonus buffer */ 439 dn = os->os_meta_dnode; 440 441 if (object == 0 || object >= DN_MAX_OBJECT) 442 return; 443 444 rw_enter(&dn->dn_struct_rwlock, RW_READER); 445 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 446 dbuf_prefetch(dn, blkid); 447 rw_exit(&dn->dn_struct_rwlock); 448 return; 449 } 450 451 /* 452 * XXX - Note, if the dnode for the requested object is not 453 * already cached, we will do a *synchronous* read in the 454 * dnode_hold() call. The same is true for any indirects. 455 */ 456 err = dnode_hold(os, object, FTAG, &dn); 457 if (err != 0) 458 return; 459 460 rw_enter(&dn->dn_struct_rwlock, RW_READER); 461 if (dn->dn_datablkshift) { 462 int blkshift = dn->dn_datablkshift; 463 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 464 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 465 } else { 466 nblks = (offset < dn->dn_datablksz); 467 } 468 469 if (nblks != 0) { 470 blkid = dbuf_whichblock(dn, offset); 471 for (i = 0; i < nblks; i++) 472 dbuf_prefetch(dn, blkid+i); 473 } 474 475 rw_exit(&dn->dn_struct_rwlock); 476 477 dnode_rele(dn, FTAG); 478 } 479 480 /* 481 * Get the next "chunk" of file data to free. We traverse the file from 482 * the end so that the file gets shorter over time (if we crashes in the 483 * middle, this will leave us in a better state). We find allocated file 484 * data by simply searching the allocated level 1 indirects. 485 */ 486 static int 487 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit) 488 { 489 uint64_t len = *start - limit; 490 uint64_t blkcnt = 0; 491 uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1)); 492 uint64_t iblkrange = 493 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 494 495 ASSERT(limit <= *start); 496 497 if (len <= iblkrange * maxblks) { 498 *start = limit; 499 return (0); 500 } 501 ASSERT(ISP2(iblkrange)); 502 503 while (*start > limit && blkcnt < maxblks) { 504 int err; 505 506 /* find next allocated L1 indirect */ 507 err = dnode_next_offset(dn, 508 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 509 510 /* if there are no more, then we are done */ 511 if (err == ESRCH) { 512 *start = limit; 513 return (0); 514 } else if (err) { 515 return (err); 516 } 517 blkcnt += 1; 518 519 /* reset offset to end of "next" block back */ 520 *start = P2ALIGN(*start, iblkrange); 521 if (*start <= limit) 522 *start = limit; 523 else 524 *start -= 1; 525 } 526 return (0); 527 } 528 529 static int 530 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 531 uint64_t length, boolean_t free_dnode) 532 { 533 dmu_tx_t *tx; 534 uint64_t object_size, start, end, len; 535 boolean_t trunc = (length == DMU_OBJECT_END); 536 int align, err; 537 538 align = 1 << dn->dn_datablkshift; 539 ASSERT(align > 0); 540 object_size = align == 1 ? dn->dn_datablksz : 541 (dn->dn_maxblkid + 1) << dn->dn_datablkshift; 542 543 end = offset + length; 544 if (trunc || end > object_size) 545 end = object_size; 546 if (end <= offset) 547 return (0); 548 length = end - offset; 549 550 while (length) { 551 start = end; 552 /* assert(offset <= start) */ 553 err = get_next_chunk(dn, &start, offset); 554 if (err) 555 return (err); 556 len = trunc ? DMU_OBJECT_END : end - start; 557 558 tx = dmu_tx_create(os); 559 dmu_tx_hold_free(tx, dn->dn_object, start, len); 560 err = dmu_tx_assign(tx, TXG_WAIT); 561 if (err) { 562 dmu_tx_abort(tx); 563 return (err); 564 } 565 566 dnode_free_range(dn, start, trunc ? -1 : len, tx); 567 568 if (start == 0 && free_dnode) { 569 ASSERT(trunc); 570 dnode_free(dn, tx); 571 } 572 573 length -= end - start; 574 575 dmu_tx_commit(tx); 576 end = start; 577 } 578 return (0); 579 } 580 581 int 582 dmu_free_long_range(objset_t *os, uint64_t object, 583 uint64_t offset, uint64_t length) 584 { 585 dnode_t *dn; 586 int err; 587 588 err = dnode_hold(os, object, FTAG, &dn); 589 if (err != 0) 590 return (err); 591 err = dmu_free_long_range_impl(os, dn, offset, length, FALSE); 592 dnode_rele(dn, FTAG); 593 return (err); 594 } 595 596 int 597 dmu_free_object(objset_t *os, uint64_t object) 598 { 599 dnode_t *dn; 600 dmu_tx_t *tx; 601 int err; 602 603 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 604 FTAG, &dn); 605 if (err != 0) 606 return (err); 607 if (dn->dn_nlevels == 1) { 608 tx = dmu_tx_create(os); 609 dmu_tx_hold_bonus(tx, object); 610 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END); 611 err = dmu_tx_assign(tx, TXG_WAIT); 612 if (err == 0) { 613 dnode_free_range(dn, 0, DMU_OBJECT_END, tx); 614 dnode_free(dn, tx); 615 dmu_tx_commit(tx); 616 } else { 617 dmu_tx_abort(tx); 618 } 619 } else { 620 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE); 621 } 622 dnode_rele(dn, FTAG); 623 return (err); 624 } 625 626 int 627 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 628 uint64_t size, dmu_tx_t *tx) 629 { 630 dnode_t *dn; 631 int err = dnode_hold(os, object, FTAG, &dn); 632 if (err) 633 return (err); 634 ASSERT(offset < UINT64_MAX); 635 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 636 dnode_free_range(dn, offset, size, tx); 637 dnode_rele(dn, FTAG); 638 return (0); 639 } 640 641 int 642 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 643 void *buf, uint32_t flags) 644 { 645 dnode_t *dn; 646 dmu_buf_t **dbp; 647 int numbufs, err; 648 649 err = dnode_hold(os, object, FTAG, &dn); 650 if (err) 651 return (err); 652 653 /* 654 * Deal with odd block sizes, where there can't be data past the first 655 * block. If we ever do the tail block optimization, we will need to 656 * handle that here as well. 657 */ 658 if (dn->dn_maxblkid == 0) { 659 int newsz = offset > dn->dn_datablksz ? 0 : 660 MIN(size, dn->dn_datablksz - offset); 661 bzero((char *)buf + newsz, size - newsz); 662 size = newsz; 663 } 664 665 while (size > 0) { 666 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 667 int i; 668 669 /* 670 * NB: we could do this block-at-a-time, but it's nice 671 * to be reading in parallel. 672 */ 673 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 674 TRUE, FTAG, &numbufs, &dbp, flags); 675 if (err) 676 break; 677 678 for (i = 0; i < numbufs; i++) { 679 int tocpy; 680 int bufoff; 681 dmu_buf_t *db = dbp[i]; 682 683 ASSERT(size > 0); 684 685 bufoff = offset - db->db_offset; 686 tocpy = (int)MIN(db->db_size - bufoff, size); 687 688 bcopy((char *)db->db_data + bufoff, buf, tocpy); 689 690 offset += tocpy; 691 size -= tocpy; 692 buf = (char *)buf + tocpy; 693 } 694 dmu_buf_rele_array(dbp, numbufs, FTAG); 695 } 696 dnode_rele(dn, FTAG); 697 return (err); 698 } 699 700 void 701 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 702 const void *buf, dmu_tx_t *tx) 703 { 704 dmu_buf_t **dbp; 705 int numbufs, i; 706 707 if (size == 0) 708 return; 709 710 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 711 FALSE, FTAG, &numbufs, &dbp)); 712 713 for (i = 0; i < numbufs; i++) { 714 int tocpy; 715 int bufoff; 716 dmu_buf_t *db = dbp[i]; 717 718 ASSERT(size > 0); 719 720 bufoff = offset - db->db_offset; 721 tocpy = (int)MIN(db->db_size - bufoff, size); 722 723 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 724 725 if (tocpy == db->db_size) 726 dmu_buf_will_fill(db, tx); 727 else 728 dmu_buf_will_dirty(db, tx); 729 730 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 731 732 if (tocpy == db->db_size) 733 dmu_buf_fill_done(db, tx); 734 735 offset += tocpy; 736 size -= tocpy; 737 buf = (char *)buf + tocpy; 738 } 739 dmu_buf_rele_array(dbp, numbufs, FTAG); 740 } 741 742 void 743 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 744 dmu_tx_t *tx) 745 { 746 dmu_buf_t **dbp; 747 int numbufs, i; 748 749 if (size == 0) 750 return; 751 752 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 753 FALSE, FTAG, &numbufs, &dbp)); 754 755 for (i = 0; i < numbufs; i++) { 756 dmu_buf_t *db = dbp[i]; 757 758 dmu_buf_will_not_fill(db, tx); 759 } 760 dmu_buf_rele_array(dbp, numbufs, FTAG); 761 } 762 763 /* 764 * DMU support for xuio 765 */ 766 kstat_t *xuio_ksp = NULL; 767 768 int 769 dmu_xuio_init(xuio_t *xuio, int nblk) 770 { 771 dmu_xuio_t *priv; 772 uio_t *uio = &xuio->xu_uio; 773 774 uio->uio_iovcnt = nblk; 775 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 776 777 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 778 priv->cnt = nblk; 779 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 780 priv->iovp = uio->uio_iov; 781 XUIO_XUZC_PRIV(xuio) = priv; 782 783 if (XUIO_XUZC_RW(xuio) == UIO_READ) 784 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 785 else 786 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 787 788 return (0); 789 } 790 791 void 792 dmu_xuio_fini(xuio_t *xuio) 793 { 794 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 795 int nblk = priv->cnt; 796 797 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 798 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 799 kmem_free(priv, sizeof (dmu_xuio_t)); 800 801 if (XUIO_XUZC_RW(xuio) == UIO_READ) 802 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 803 else 804 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 805 } 806 807 /* 808 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 809 * and increase priv->next by 1. 810 */ 811 int 812 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 813 { 814 struct iovec *iov; 815 uio_t *uio = &xuio->xu_uio; 816 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 817 int i = priv->next++; 818 819 ASSERT(i < priv->cnt); 820 ASSERT(off + n <= arc_buf_size(abuf)); 821 iov = uio->uio_iov + i; 822 iov->iov_base = (char *)abuf->b_data + off; 823 iov->iov_len = n; 824 priv->bufs[i] = abuf; 825 return (0); 826 } 827 828 int 829 dmu_xuio_cnt(xuio_t *xuio) 830 { 831 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 832 return (priv->cnt); 833 } 834 835 arc_buf_t * 836 dmu_xuio_arcbuf(xuio_t *xuio, int i) 837 { 838 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 839 840 ASSERT(i < priv->cnt); 841 return (priv->bufs[i]); 842 } 843 844 void 845 dmu_xuio_clear(xuio_t *xuio, int i) 846 { 847 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 848 849 ASSERT(i < priv->cnt); 850 priv->bufs[i] = NULL; 851 } 852 853 static void 854 xuio_stat_init(void) 855 { 856 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 857 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 858 KSTAT_FLAG_VIRTUAL); 859 if (xuio_ksp != NULL) { 860 xuio_ksp->ks_data = &xuio_stats; 861 kstat_install(xuio_ksp); 862 } 863 } 864 865 static void 866 xuio_stat_fini(void) 867 { 868 if (xuio_ksp != NULL) { 869 kstat_delete(xuio_ksp); 870 xuio_ksp = NULL; 871 } 872 } 873 874 void 875 xuio_stat_wbuf_copied() 876 { 877 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 878 } 879 880 void 881 xuio_stat_wbuf_nocopy() 882 { 883 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 884 } 885 886 #ifdef _KERNEL 887 int 888 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 889 { 890 dmu_buf_t **dbp; 891 int numbufs, i, err; 892 xuio_t *xuio = NULL; 893 894 /* 895 * NB: we could do this block-at-a-time, but it's nice 896 * to be reading in parallel. 897 */ 898 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 899 &numbufs, &dbp); 900 if (err) 901 return (err); 902 903 if (uio->uio_extflg == UIO_XUIO) 904 xuio = (xuio_t *)uio; 905 906 for (i = 0; i < numbufs; i++) { 907 int tocpy; 908 int bufoff; 909 dmu_buf_t *db = dbp[i]; 910 911 ASSERT(size > 0); 912 913 bufoff = uio->uio_loffset - db->db_offset; 914 tocpy = (int)MIN(db->db_size - bufoff, size); 915 916 if (xuio) { 917 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 918 arc_buf_t *dbuf_abuf = dbi->db_buf; 919 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 920 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 921 if (!err) { 922 uio->uio_resid -= tocpy; 923 uio->uio_loffset += tocpy; 924 } 925 926 if (abuf == dbuf_abuf) 927 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 928 else 929 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 930 } else { 931 err = uiomove((char *)db->db_data + bufoff, tocpy, 932 UIO_READ, uio); 933 } 934 if (err) 935 break; 936 937 size -= tocpy; 938 } 939 dmu_buf_rele_array(dbp, numbufs, FTAG); 940 941 return (err); 942 } 943 944 static int 945 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 946 { 947 dmu_buf_t **dbp; 948 int numbufs; 949 int err = 0; 950 int i; 951 952 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 953 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 954 if (err) 955 return (err); 956 957 for (i = 0; i < numbufs; i++) { 958 int tocpy; 959 int bufoff; 960 dmu_buf_t *db = dbp[i]; 961 962 ASSERT(size > 0); 963 964 bufoff = uio->uio_loffset - db->db_offset; 965 tocpy = (int)MIN(db->db_size - bufoff, size); 966 967 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 968 969 if (tocpy == db->db_size) 970 dmu_buf_will_fill(db, tx); 971 else 972 dmu_buf_will_dirty(db, tx); 973 974 /* 975 * XXX uiomove could block forever (eg. nfs-backed 976 * pages). There needs to be a uiolockdown() function 977 * to lock the pages in memory, so that uiomove won't 978 * block. 979 */ 980 err = uiomove((char *)db->db_data + bufoff, tocpy, 981 UIO_WRITE, uio); 982 983 if (tocpy == db->db_size) 984 dmu_buf_fill_done(db, tx); 985 986 if (err) 987 break; 988 989 size -= tocpy; 990 } 991 992 dmu_buf_rele_array(dbp, numbufs, FTAG); 993 return (err); 994 } 995 996 int 997 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 998 dmu_tx_t *tx) 999 { 1000 if (size == 0) 1001 return (0); 1002 1003 return (dmu_write_uio_dnode(((dmu_buf_impl_t *)zdb)->db_dnode, 1004 uio, size, tx)); 1005 } 1006 1007 int 1008 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1009 dmu_tx_t *tx) 1010 { 1011 dnode_t *dn; 1012 int err; 1013 1014 if (size == 0) 1015 return (0); 1016 1017 err = dnode_hold(os, object, FTAG, &dn); 1018 if (err) 1019 return (err); 1020 1021 err = dmu_write_uio_dnode(dn, uio, size, tx); 1022 1023 dnode_rele(dn, FTAG); 1024 1025 return (err); 1026 } 1027 1028 int 1029 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1030 page_t *pp, dmu_tx_t *tx) 1031 { 1032 dmu_buf_t **dbp; 1033 int numbufs, i; 1034 int err; 1035 1036 if (size == 0) 1037 return (0); 1038 1039 err = dmu_buf_hold_array(os, object, offset, size, 1040 FALSE, FTAG, &numbufs, &dbp); 1041 if (err) 1042 return (err); 1043 1044 for (i = 0; i < numbufs; i++) { 1045 int tocpy, copied, thiscpy; 1046 int bufoff; 1047 dmu_buf_t *db = dbp[i]; 1048 caddr_t va; 1049 1050 ASSERT(size > 0); 1051 ASSERT3U(db->db_size, >=, PAGESIZE); 1052 1053 bufoff = offset - db->db_offset; 1054 tocpy = (int)MIN(db->db_size - bufoff, size); 1055 1056 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1057 1058 if (tocpy == db->db_size) 1059 dmu_buf_will_fill(db, tx); 1060 else 1061 dmu_buf_will_dirty(db, tx); 1062 1063 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1064 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1065 thiscpy = MIN(PAGESIZE, tocpy - copied); 1066 va = zfs_map_page(pp, S_READ); 1067 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1068 zfs_unmap_page(pp, va); 1069 pp = pp->p_next; 1070 bufoff += PAGESIZE; 1071 } 1072 1073 if (tocpy == db->db_size) 1074 dmu_buf_fill_done(db, tx); 1075 1076 offset += tocpy; 1077 size -= tocpy; 1078 } 1079 dmu_buf_rele_array(dbp, numbufs, FTAG); 1080 return (err); 1081 } 1082 #endif 1083 1084 /* 1085 * Allocate a loaned anonymous arc buffer. 1086 */ 1087 arc_buf_t * 1088 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1089 { 1090 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; 1091 1092 return (arc_loan_buf(dn->dn_objset->os_spa, size)); 1093 } 1094 1095 /* 1096 * Free a loaned arc buffer. 1097 */ 1098 void 1099 dmu_return_arcbuf(arc_buf_t *buf) 1100 { 1101 arc_return_buf(buf, FTAG); 1102 VERIFY(arc_buf_remove_ref(buf, FTAG) == 1); 1103 } 1104 1105 /* 1106 * When possible directly assign passed loaned arc buffer to a dbuf. 1107 * If this is not possible copy the contents of passed arc buf via 1108 * dmu_write(). 1109 */ 1110 void 1111 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1112 dmu_tx_t *tx) 1113 { 1114 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; 1115 dmu_buf_impl_t *db; 1116 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1117 uint64_t blkid; 1118 1119 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1120 blkid = dbuf_whichblock(dn, offset); 1121 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1122 rw_exit(&dn->dn_struct_rwlock); 1123 1124 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1125 dbuf_assign_arcbuf(db, buf, tx); 1126 dbuf_rele(db, FTAG); 1127 } else { 1128 dbuf_rele(db, FTAG); 1129 dmu_write(dn->dn_objset, dn->dn_object, offset, blksz, 1130 buf->b_data, tx); 1131 dmu_return_arcbuf(buf); 1132 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1133 } 1134 } 1135 1136 typedef struct { 1137 dbuf_dirty_record_t *dsa_dr; 1138 dmu_sync_cb_t *dsa_done; 1139 zgd_t *dsa_zgd; 1140 dmu_tx_t *dsa_tx; 1141 } dmu_sync_arg_t; 1142 1143 /* ARGSUSED */ 1144 static void 1145 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1146 { 1147 dmu_sync_arg_t *dsa = varg; 1148 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1149 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1150 blkptr_t *bp = zio->io_bp; 1151 1152 if (zio->io_error == 0) { 1153 if (BP_IS_HOLE(bp)) { 1154 /* 1155 * A block of zeros may compress to a hole, but the 1156 * block size still needs to be known for replay. 1157 */ 1158 BP_SET_LSIZE(bp, db->db_size); 1159 } else { 1160 ASSERT(BP_GET_TYPE(bp) == dn->dn_type); 1161 ASSERT(BP_GET_LEVEL(bp) == 0); 1162 bp->blk_fill = 1; 1163 } 1164 } 1165 } 1166 1167 static void 1168 dmu_sync_late_arrival_ready(zio_t *zio) 1169 { 1170 dmu_sync_ready(zio, NULL, zio->io_private); 1171 } 1172 1173 /* ARGSUSED */ 1174 static void 1175 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1176 { 1177 dmu_sync_arg_t *dsa = varg; 1178 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1179 dmu_buf_impl_t *db = dr->dr_dbuf; 1180 1181 mutex_enter(&db->db_mtx); 1182 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1183 if (zio->io_error == 0) { 1184 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1185 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1186 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1187 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1188 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1189 } else { 1190 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1191 } 1192 cv_broadcast(&db->db_changed); 1193 mutex_exit(&db->db_mtx); 1194 1195 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1196 1197 kmem_free(dsa, sizeof (*dsa)); 1198 } 1199 1200 static void 1201 dmu_sync_late_arrival_done(zio_t *zio) 1202 { 1203 blkptr_t *bp = zio->io_bp; 1204 dmu_sync_arg_t *dsa = zio->io_private; 1205 1206 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1207 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1208 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1209 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1210 } 1211 1212 dmu_tx_commit(dsa->dsa_tx); 1213 1214 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1215 1216 kmem_free(dsa, sizeof (*dsa)); 1217 } 1218 1219 static int 1220 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1221 zio_prop_t *zp, zbookmark_t *zb) 1222 { 1223 dmu_sync_arg_t *dsa; 1224 dmu_tx_t *tx; 1225 1226 tx = dmu_tx_create(os); 1227 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1228 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1229 dmu_tx_abort(tx); 1230 return (EIO); /* Make zl_get_data do txg_waited_synced() */ 1231 } 1232 1233 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1234 dsa->dsa_dr = NULL; 1235 dsa->dsa_done = done; 1236 dsa->dsa_zgd = zgd; 1237 dsa->dsa_tx = tx; 1238 1239 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1240 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1241 dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa, 1242 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1243 1244 return (0); 1245 } 1246 1247 /* 1248 * Intent log support: sync the block associated with db to disk. 1249 * N.B. and XXX: the caller is responsible for making sure that the 1250 * data isn't changing while dmu_sync() is writing it. 1251 * 1252 * Return values: 1253 * 1254 * EEXIST: this txg has already been synced, so there's nothing to to. 1255 * The caller should not log the write. 1256 * 1257 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1258 * The caller should not log the write. 1259 * 1260 * EALREADY: this block is already in the process of being synced. 1261 * The caller should track its progress (somehow). 1262 * 1263 * EIO: could not do the I/O. 1264 * The caller should do a txg_wait_synced(). 1265 * 1266 * 0: the I/O has been initiated. 1267 * The caller should log this blkptr in the done callback. 1268 * It is possible that the I/O will fail, in which case 1269 * the error will be reported to the done callback and 1270 * propagated to pio from zio_done(). 1271 */ 1272 int 1273 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1274 { 1275 blkptr_t *bp = zgd->zgd_bp; 1276 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1277 objset_t *os = db->db_objset; 1278 dsl_dataset_t *ds = os->os_dsl_dataset; 1279 dbuf_dirty_record_t *dr; 1280 dmu_sync_arg_t *dsa; 1281 zbookmark_t zb; 1282 zio_prop_t zp; 1283 1284 ASSERT(pio != NULL); 1285 ASSERT(BP_IS_HOLE(bp)); 1286 ASSERT(txg != 0); 1287 1288 SET_BOOKMARK(&zb, ds->ds_object, 1289 db->db.db_object, db->db_level, db->db_blkid); 1290 1291 dmu_write_policy(os, db->db_dnode, db->db_level, WP_DMU_SYNC, &zp); 1292 1293 /* 1294 * If we're frozen (running ziltest), we always need to generate a bp. 1295 */ 1296 if (txg > spa_freeze_txg(os->os_spa)) 1297 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1298 1299 /* 1300 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1301 * and us. If we determine that this txg is not yet syncing, 1302 * but it begins to sync a moment later, that's OK because the 1303 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1304 */ 1305 mutex_enter(&db->db_mtx); 1306 1307 if (txg <= spa_last_synced_txg(os->os_spa)) { 1308 /* 1309 * This txg has already synced. There's nothing to do. 1310 */ 1311 mutex_exit(&db->db_mtx); 1312 return (EEXIST); 1313 } 1314 1315 if (txg <= spa_syncing_txg(os->os_spa)) { 1316 /* 1317 * This txg is currently syncing, so we can't mess with 1318 * the dirty record anymore; just write a new log block. 1319 */ 1320 mutex_exit(&db->db_mtx); 1321 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1322 } 1323 1324 dr = db->db_last_dirty; 1325 while (dr && dr->dr_txg != txg) 1326 dr = dr->dr_next; 1327 1328 if (dr == NULL) { 1329 /* 1330 * There's no dr for this dbuf, so it must have been freed. 1331 * There's no need to log writes to freed blocks, so we're done. 1332 */ 1333 mutex_exit(&db->db_mtx); 1334 return (ENOENT); 1335 } 1336 1337 ASSERT(dr->dr_txg == txg); 1338 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1339 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1340 /* 1341 * We have already issued a sync write for this buffer, 1342 * or this buffer has already been synced. It could not 1343 * have been dirtied since, or we would have cleared the state. 1344 */ 1345 mutex_exit(&db->db_mtx); 1346 return (EALREADY); 1347 } 1348 1349 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1350 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1351 mutex_exit(&db->db_mtx); 1352 1353 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1354 dsa->dsa_dr = dr; 1355 dsa->dsa_done = done; 1356 dsa->dsa_zgd = zgd; 1357 dsa->dsa_tx = NULL; 1358 1359 zio_nowait(arc_write(pio, os->os_spa, txg, 1360 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp, 1361 dmu_sync_ready, dmu_sync_done, dsa, 1362 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1363 1364 return (0); 1365 } 1366 1367 int 1368 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1369 dmu_tx_t *tx) 1370 { 1371 dnode_t *dn; 1372 int err; 1373 1374 err = dnode_hold(os, object, FTAG, &dn); 1375 if (err) 1376 return (err); 1377 err = dnode_set_blksz(dn, size, ibs, tx); 1378 dnode_rele(dn, FTAG); 1379 return (err); 1380 } 1381 1382 void 1383 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1384 dmu_tx_t *tx) 1385 { 1386 dnode_t *dn; 1387 1388 /* XXX assumes dnode_hold will not get an i/o error */ 1389 (void) dnode_hold(os, object, FTAG, &dn); 1390 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1391 dn->dn_checksum = checksum; 1392 dnode_setdirty(dn, tx); 1393 dnode_rele(dn, FTAG); 1394 } 1395 1396 void 1397 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1398 dmu_tx_t *tx) 1399 { 1400 dnode_t *dn; 1401 1402 /* XXX assumes dnode_hold will not get an i/o error */ 1403 (void) dnode_hold(os, object, FTAG, &dn); 1404 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1405 dn->dn_compress = compress; 1406 dnode_setdirty(dn, tx); 1407 dnode_rele(dn, FTAG); 1408 } 1409 1410 int zfs_mdcomp_disable = 0; 1411 1412 void 1413 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1414 { 1415 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1416 boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata); 1417 enum zio_checksum checksum = os->os_checksum; 1418 enum zio_compress compress = os->os_compress; 1419 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1420 boolean_t dedup; 1421 boolean_t dedup_verify = os->os_dedup_verify; 1422 int copies = os->os_copies; 1423 1424 /* 1425 * Determine checksum setting. 1426 */ 1427 if (ismd) { 1428 /* 1429 * Metadata always gets checksummed. If the data 1430 * checksum is multi-bit correctable, and it's not a 1431 * ZBT-style checksum, then it's suitable for metadata 1432 * as well. Otherwise, the metadata checksum defaults 1433 * to fletcher4. 1434 */ 1435 if (zio_checksum_table[checksum].ci_correctable < 1 || 1436 zio_checksum_table[checksum].ci_eck) 1437 checksum = ZIO_CHECKSUM_FLETCHER_4; 1438 } else { 1439 checksum = zio_checksum_select(dn->dn_checksum, checksum); 1440 } 1441 1442 /* 1443 * Determine compression setting. 1444 */ 1445 if (ismd) { 1446 /* 1447 * XXX -- we should design a compression algorithm 1448 * that specializes in arrays of bps. 1449 */ 1450 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 1451 ZIO_COMPRESS_LZJB; 1452 } else { 1453 compress = zio_compress_select(dn->dn_compress, compress); 1454 } 1455 1456 /* 1457 * Determine dedup setting. If we are in dmu_sync(), we won't 1458 * actually dedup now because that's all done in syncing context; 1459 * but we do want to use the dedup checkum. If the checksum is not 1460 * strong enough to ensure unique signatures, force dedup_verify. 1461 */ 1462 dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF); 1463 if (dedup) { 1464 checksum = dedup_checksum; 1465 if (!zio_checksum_table[checksum].ci_dedup) 1466 dedup_verify = 1; 1467 } 1468 1469 if (wp & WP_DMU_SYNC) 1470 dedup = 0; 1471 1472 if (wp & WP_NOFILL) { 1473 ASSERT(!ismd && level == 0); 1474 checksum = ZIO_CHECKSUM_OFF; 1475 compress = ZIO_COMPRESS_OFF; 1476 dedup = B_FALSE; 1477 } 1478 1479 zp->zp_checksum = checksum; 1480 zp->zp_compress = compress; 1481 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1482 zp->zp_level = level; 1483 zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa)); 1484 zp->zp_dedup = dedup; 1485 zp->zp_dedup_verify = dedup && dedup_verify; 1486 } 1487 1488 int 1489 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1490 { 1491 dnode_t *dn; 1492 int i, err; 1493 1494 err = dnode_hold(os, object, FTAG, &dn); 1495 if (err) 1496 return (err); 1497 /* 1498 * Sync any current changes before 1499 * we go trundling through the block pointers. 1500 */ 1501 for (i = 0; i < TXG_SIZE; i++) { 1502 if (list_link_active(&dn->dn_dirty_link[i])) 1503 break; 1504 } 1505 if (i != TXG_SIZE) { 1506 dnode_rele(dn, FTAG); 1507 txg_wait_synced(dmu_objset_pool(os), 0); 1508 err = dnode_hold(os, object, FTAG, &dn); 1509 if (err) 1510 return (err); 1511 } 1512 1513 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1514 dnode_rele(dn, FTAG); 1515 1516 return (err); 1517 } 1518 1519 void 1520 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1521 { 1522 dnode_phys_t *dnp; 1523 1524 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1525 mutex_enter(&dn->dn_mtx); 1526 1527 dnp = dn->dn_phys; 1528 1529 doi->doi_data_block_size = dn->dn_datablksz; 1530 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1531 1ULL << dn->dn_indblkshift : 0; 1532 doi->doi_type = dn->dn_type; 1533 doi->doi_bonus_type = dn->dn_bonustype; 1534 doi->doi_bonus_size = dn->dn_bonuslen; 1535 doi->doi_indirection = dn->dn_nlevels; 1536 doi->doi_checksum = dn->dn_checksum; 1537 doi->doi_compress = dn->dn_compress; 1538 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1539 doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz; 1540 doi->doi_fill_count = 0; 1541 for (int i = 0; i < dnp->dn_nblkptr; i++) 1542 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1543 1544 mutex_exit(&dn->dn_mtx); 1545 rw_exit(&dn->dn_struct_rwlock); 1546 } 1547 1548 /* 1549 * Get information on a DMU object. 1550 * If doi is NULL, just indicates whether the object exists. 1551 */ 1552 int 1553 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1554 { 1555 dnode_t *dn; 1556 int err = dnode_hold(os, object, FTAG, &dn); 1557 1558 if (err) 1559 return (err); 1560 1561 if (doi != NULL) 1562 dmu_object_info_from_dnode(dn, doi); 1563 1564 dnode_rele(dn, FTAG); 1565 return (0); 1566 } 1567 1568 /* 1569 * As above, but faster; can be used when you have a held dbuf in hand. 1570 */ 1571 void 1572 dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi) 1573 { 1574 dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi); 1575 } 1576 1577 /* 1578 * Faster still when you only care about the size. 1579 * This is specifically optimized for zfs_getattr(). 1580 */ 1581 void 1582 dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512) 1583 { 1584 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1585 1586 *blksize = dn->dn_datablksz; 1587 /* add 1 for dnode space */ 1588 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1589 SPA_MINBLOCKSHIFT) + 1; 1590 } 1591 1592 void 1593 byteswap_uint64_array(void *vbuf, size_t size) 1594 { 1595 uint64_t *buf = vbuf; 1596 size_t count = size >> 3; 1597 int i; 1598 1599 ASSERT((size & 7) == 0); 1600 1601 for (i = 0; i < count; i++) 1602 buf[i] = BSWAP_64(buf[i]); 1603 } 1604 1605 void 1606 byteswap_uint32_array(void *vbuf, size_t size) 1607 { 1608 uint32_t *buf = vbuf; 1609 size_t count = size >> 2; 1610 int i; 1611 1612 ASSERT((size & 3) == 0); 1613 1614 for (i = 0; i < count; i++) 1615 buf[i] = BSWAP_32(buf[i]); 1616 } 1617 1618 void 1619 byteswap_uint16_array(void *vbuf, size_t size) 1620 { 1621 uint16_t *buf = vbuf; 1622 size_t count = size >> 1; 1623 int i; 1624 1625 ASSERT((size & 1) == 0); 1626 1627 for (i = 0; i < count; i++) 1628 buf[i] = BSWAP_16(buf[i]); 1629 } 1630 1631 /* ARGSUSED */ 1632 void 1633 byteswap_uint8_array(void *vbuf, size_t size) 1634 { 1635 } 1636 1637 void 1638 dmu_init(void) 1639 { 1640 zfs_dbgmsg_init(); 1641 dbuf_init(); 1642 dnode_init(); 1643 zfetch_init(); 1644 arc_init(); 1645 l2arc_init(); 1646 xuio_stat_init(); 1647 sa_cache_init(); 1648 } 1649 1650 void 1651 dmu_fini(void) 1652 { 1653 arc_fini(); 1654 zfetch_fini(); 1655 dnode_fini(); 1656 dbuf_fini(); 1657 l2arc_fini(); 1658 xuio_stat_fini(); 1659 sa_cache_fini(); 1660 zfs_dbgmsg_fini(); 1661 } 1662