xref: /titanic_41/usr/src/uts/common/fs/zfs/dmu.c (revision c888b1c3835492216ff6c65b22767dc4d7f187ab)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  */
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
28 
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dbuf.h>
33 #include <sys/dnode.h>
34 #include <sys/zfs_context.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_traverse.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/zfs_ioctl.h>
44 #include <sys/zap.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/zio_compress.h>
47 #include <sys/sa.h>
48 #include <sys/zfeature.h>
49 #ifdef _KERNEL
50 #include <sys/vmsystm.h>
51 #include <sys/zfs_znode.h>
52 #endif
53 
54 /*
55  * Enable/disable nopwrite feature.
56  */
57 int zfs_nopwrite_enabled = 1;
58 
59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
60 	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
61 	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
62 	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
63 	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
64 	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
65 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
66 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
67 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
68 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
69 	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
70 	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
71 	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
72 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
73 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
74 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
75 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
76 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
77 	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
78 	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
79 	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
80 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
81 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
82 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
83 	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
84 	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
85 	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
86 	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
87 	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
88 	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
89 	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
90 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
91 	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
92 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
93 	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
94 	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
95 	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
96 	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
97 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
98 	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
99 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
100 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
101 	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
102 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
103 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
104 	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
105 	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
106 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
107 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
108 	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
109 	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
110 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
111 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
112 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
113 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
114 };
115 
116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
117 	{	byteswap_uint8_array,	"uint8"		},
118 	{	byteswap_uint16_array,	"uint16"	},
119 	{	byteswap_uint32_array,	"uint32"	},
120 	{	byteswap_uint64_array,	"uint64"	},
121 	{	zap_byteswap,		"zap"		},
122 	{	dnode_buf_byteswap,	"dnode"		},
123 	{	dmu_objset_byteswap,	"objset"	},
124 	{	zfs_znode_byteswap,	"znode"		},
125 	{	zfs_oldacl_byteswap,	"oldacl"	},
126 	{	zfs_acl_byteswap,	"acl"		}
127 };
128 
129 int
130 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
131     void *tag, dmu_buf_t **dbp)
132 {
133 	dnode_t *dn;
134 	uint64_t blkid;
135 	dmu_buf_impl_t *db;
136 	int err;
137 
138 	err = dnode_hold(os, object, FTAG, &dn);
139 	if (err)
140 		return (err);
141 	blkid = dbuf_whichblock(dn, offset);
142 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
143 	db = dbuf_hold(dn, blkid, tag);
144 	rw_exit(&dn->dn_struct_rwlock);
145 	dnode_rele(dn, FTAG);
146 
147 	if (db == NULL) {
148 		*dbp = NULL;
149 		return (SET_ERROR(EIO));
150 	}
151 
152 	*dbp = &db->db;
153 	return (err);
154 }
155 
156 int
157 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
158     void *tag, dmu_buf_t **dbp, int flags)
159 {
160 	int err;
161 	int db_flags = DB_RF_CANFAIL;
162 
163 	if (flags & DMU_READ_NO_PREFETCH)
164 		db_flags |= DB_RF_NOPREFETCH;
165 
166 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
167 	if (err == 0) {
168 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
169 		err = dbuf_read(db, NULL, db_flags);
170 		if (err != 0) {
171 			dbuf_rele(db, tag);
172 			*dbp = NULL;
173 		}
174 	}
175 
176 	return (err);
177 }
178 
179 int
180 dmu_bonus_max(void)
181 {
182 	return (DN_MAX_BONUSLEN);
183 }
184 
185 int
186 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
187 {
188 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
189 	dnode_t *dn;
190 	int error;
191 
192 	DB_DNODE_ENTER(db);
193 	dn = DB_DNODE(db);
194 
195 	if (dn->dn_bonus != db) {
196 		error = SET_ERROR(EINVAL);
197 	} else if (newsize < 0 || newsize > db_fake->db_size) {
198 		error = SET_ERROR(EINVAL);
199 	} else {
200 		dnode_setbonuslen(dn, newsize, tx);
201 		error = 0;
202 	}
203 
204 	DB_DNODE_EXIT(db);
205 	return (error);
206 }
207 
208 int
209 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
210 {
211 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
212 	dnode_t *dn;
213 	int error;
214 
215 	DB_DNODE_ENTER(db);
216 	dn = DB_DNODE(db);
217 
218 	if (!DMU_OT_IS_VALID(type)) {
219 		error = SET_ERROR(EINVAL);
220 	} else if (dn->dn_bonus != db) {
221 		error = SET_ERROR(EINVAL);
222 	} else {
223 		dnode_setbonus_type(dn, type, tx);
224 		error = 0;
225 	}
226 
227 	DB_DNODE_EXIT(db);
228 	return (error);
229 }
230 
231 dmu_object_type_t
232 dmu_get_bonustype(dmu_buf_t *db_fake)
233 {
234 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
235 	dnode_t *dn;
236 	dmu_object_type_t type;
237 
238 	DB_DNODE_ENTER(db);
239 	dn = DB_DNODE(db);
240 	type = dn->dn_bonustype;
241 	DB_DNODE_EXIT(db);
242 
243 	return (type);
244 }
245 
246 int
247 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
248 {
249 	dnode_t *dn;
250 	int error;
251 
252 	error = dnode_hold(os, object, FTAG, &dn);
253 	dbuf_rm_spill(dn, tx);
254 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
255 	dnode_rm_spill(dn, tx);
256 	rw_exit(&dn->dn_struct_rwlock);
257 	dnode_rele(dn, FTAG);
258 	return (error);
259 }
260 
261 /*
262  * returns ENOENT, EIO, or 0.
263  */
264 int
265 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
266 {
267 	dnode_t *dn;
268 	dmu_buf_impl_t *db;
269 	int error;
270 
271 	error = dnode_hold(os, object, FTAG, &dn);
272 	if (error)
273 		return (error);
274 
275 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
276 	if (dn->dn_bonus == NULL) {
277 		rw_exit(&dn->dn_struct_rwlock);
278 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
279 		if (dn->dn_bonus == NULL)
280 			dbuf_create_bonus(dn);
281 	}
282 	db = dn->dn_bonus;
283 
284 	/* as long as the bonus buf is held, the dnode will be held */
285 	if (refcount_add(&db->db_holds, tag) == 1) {
286 		VERIFY(dnode_add_ref(dn, db));
287 		atomic_inc_32(&dn->dn_dbufs_count);
288 	}
289 
290 	/*
291 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
292 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
293 	 * a dnode hold for every dbuf.
294 	 */
295 	rw_exit(&dn->dn_struct_rwlock);
296 
297 	dnode_rele(dn, FTAG);
298 
299 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
300 
301 	*dbp = &db->db;
302 	return (0);
303 }
304 
305 /*
306  * returns ENOENT, EIO, or 0.
307  *
308  * This interface will allocate a blank spill dbuf when a spill blk
309  * doesn't already exist on the dnode.
310  *
311  * if you only want to find an already existing spill db, then
312  * dmu_spill_hold_existing() should be used.
313  */
314 int
315 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
316 {
317 	dmu_buf_impl_t *db = NULL;
318 	int err;
319 
320 	if ((flags & DB_RF_HAVESTRUCT) == 0)
321 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
322 
323 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
324 
325 	if ((flags & DB_RF_HAVESTRUCT) == 0)
326 		rw_exit(&dn->dn_struct_rwlock);
327 
328 	ASSERT(db != NULL);
329 	err = dbuf_read(db, NULL, flags);
330 	if (err == 0)
331 		*dbp = &db->db;
332 	else
333 		dbuf_rele(db, tag);
334 	return (err);
335 }
336 
337 int
338 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
339 {
340 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
341 	dnode_t *dn;
342 	int err;
343 
344 	DB_DNODE_ENTER(db);
345 	dn = DB_DNODE(db);
346 
347 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
348 		err = SET_ERROR(EINVAL);
349 	} else {
350 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
351 
352 		if (!dn->dn_have_spill) {
353 			err = SET_ERROR(ENOENT);
354 		} else {
355 			err = dmu_spill_hold_by_dnode(dn,
356 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
357 		}
358 
359 		rw_exit(&dn->dn_struct_rwlock);
360 	}
361 
362 	DB_DNODE_EXIT(db);
363 	return (err);
364 }
365 
366 int
367 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
368 {
369 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
370 	dnode_t *dn;
371 	int err;
372 
373 	DB_DNODE_ENTER(db);
374 	dn = DB_DNODE(db);
375 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
376 	DB_DNODE_EXIT(db);
377 
378 	return (err);
379 }
380 
381 /*
382  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
383  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
384  * and can induce severe lock contention when writing to several files
385  * whose dnodes are in the same block.
386  */
387 static int
388 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
389     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
390 {
391 	dmu_buf_t **dbp;
392 	uint64_t blkid, nblks, i;
393 	uint32_t dbuf_flags;
394 	int err;
395 	zio_t *zio;
396 
397 	ASSERT(length <= DMU_MAX_ACCESS);
398 
399 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
400 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
401 		dbuf_flags |= DB_RF_NOPREFETCH;
402 
403 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
404 	if (dn->dn_datablkshift) {
405 		int blkshift = dn->dn_datablkshift;
406 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
407 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
408 	} else {
409 		if (offset + length > dn->dn_datablksz) {
410 			zfs_panic_recover("zfs: accessing past end of object "
411 			    "%llx/%llx (size=%u access=%llu+%llu)",
412 			    (longlong_t)dn->dn_objset->
413 			    os_dsl_dataset->ds_object,
414 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
415 			    (longlong_t)offset, (longlong_t)length);
416 			rw_exit(&dn->dn_struct_rwlock);
417 			return (SET_ERROR(EIO));
418 		}
419 		nblks = 1;
420 	}
421 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
422 
423 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
424 	blkid = dbuf_whichblock(dn, offset);
425 	for (i = 0; i < nblks; i++) {
426 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
427 		if (db == NULL) {
428 			rw_exit(&dn->dn_struct_rwlock);
429 			dmu_buf_rele_array(dbp, nblks, tag);
430 			zio_nowait(zio);
431 			return (SET_ERROR(EIO));
432 		}
433 		/* initiate async i/o */
434 		if (read) {
435 			(void) dbuf_read(db, zio, dbuf_flags);
436 		}
437 		dbp[i] = &db->db;
438 	}
439 	rw_exit(&dn->dn_struct_rwlock);
440 
441 	/* wait for async i/o */
442 	err = zio_wait(zio);
443 	if (err) {
444 		dmu_buf_rele_array(dbp, nblks, tag);
445 		return (err);
446 	}
447 
448 	/* wait for other io to complete */
449 	if (read) {
450 		for (i = 0; i < nblks; i++) {
451 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
452 			mutex_enter(&db->db_mtx);
453 			while (db->db_state == DB_READ ||
454 			    db->db_state == DB_FILL)
455 				cv_wait(&db->db_changed, &db->db_mtx);
456 			if (db->db_state == DB_UNCACHED)
457 				err = SET_ERROR(EIO);
458 			mutex_exit(&db->db_mtx);
459 			if (err) {
460 				dmu_buf_rele_array(dbp, nblks, tag);
461 				return (err);
462 			}
463 		}
464 	}
465 
466 	*numbufsp = nblks;
467 	*dbpp = dbp;
468 	return (0);
469 }
470 
471 static int
472 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
473     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
474 {
475 	dnode_t *dn;
476 	int err;
477 
478 	err = dnode_hold(os, object, FTAG, &dn);
479 	if (err)
480 		return (err);
481 
482 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
483 	    numbufsp, dbpp, DMU_READ_PREFETCH);
484 
485 	dnode_rele(dn, FTAG);
486 
487 	return (err);
488 }
489 
490 int
491 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
492     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
493 {
494 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
495 	dnode_t *dn;
496 	int err;
497 
498 	DB_DNODE_ENTER(db);
499 	dn = DB_DNODE(db);
500 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
501 	    numbufsp, dbpp, DMU_READ_PREFETCH);
502 	DB_DNODE_EXIT(db);
503 
504 	return (err);
505 }
506 
507 void
508 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
509 {
510 	int i;
511 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
512 
513 	if (numbufs == 0)
514 		return;
515 
516 	for (i = 0; i < numbufs; i++) {
517 		if (dbp[i])
518 			dbuf_rele(dbp[i], tag);
519 	}
520 
521 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
522 }
523 
524 /*
525  * Issue prefetch i/os for the given blocks.
526  *
527  * Note: The assumption is that we *know* these blocks will be needed
528  * almost immediately.  Therefore, the prefetch i/os will be issued at
529  * ZIO_PRIORITY_SYNC_READ
530  *
531  * Note: indirect blocks and other metadata will be read synchronously,
532  * causing this function to block if they are not already cached.
533  */
534 void
535 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
536 {
537 	dnode_t *dn;
538 	uint64_t blkid;
539 	int nblks, err;
540 
541 	if (zfs_prefetch_disable)
542 		return;
543 
544 	if (len == 0) {  /* they're interested in the bonus buffer */
545 		dn = DMU_META_DNODE(os);
546 
547 		if (object == 0 || object >= DN_MAX_OBJECT)
548 			return;
549 
550 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
551 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
552 		dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
553 		rw_exit(&dn->dn_struct_rwlock);
554 		return;
555 	}
556 
557 	/*
558 	 * XXX - Note, if the dnode for the requested object is not
559 	 * already cached, we will do a *synchronous* read in the
560 	 * dnode_hold() call.  The same is true for any indirects.
561 	 */
562 	err = dnode_hold(os, object, FTAG, &dn);
563 	if (err != 0)
564 		return;
565 
566 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
567 	if (dn->dn_datablkshift) {
568 		int blkshift = dn->dn_datablkshift;
569 		nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
570 		    P2ALIGN(offset, 1 << blkshift)) >> blkshift;
571 	} else {
572 		nblks = (offset < dn->dn_datablksz);
573 	}
574 
575 	if (nblks != 0) {
576 		blkid = dbuf_whichblock(dn, offset);
577 		for (int i = 0; i < nblks; i++)
578 			dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
579 	}
580 
581 	rw_exit(&dn->dn_struct_rwlock);
582 
583 	dnode_rele(dn, FTAG);
584 }
585 
586 /*
587  * Get the next "chunk" of file data to free.  We traverse the file from
588  * the end so that the file gets shorter over time (if we crashes in the
589  * middle, this will leave us in a better state).  We find allocated file
590  * data by simply searching the allocated level 1 indirects.
591  *
592  * On input, *start should be the first offset that does not need to be
593  * freed (e.g. "offset + length").  On return, *start will be the first
594  * offset that should be freed.
595  */
596 static int
597 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
598 {
599 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
600 	/* bytes of data covered by a level-1 indirect block */
601 	uint64_t iblkrange =
602 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
603 
604 	ASSERT3U(minimum, <=, *start);
605 
606 	if (*start - minimum <= iblkrange * maxblks) {
607 		*start = minimum;
608 		return (0);
609 	}
610 	ASSERT(ISP2(iblkrange));
611 
612 	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
613 		int err;
614 
615 		/*
616 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
617 		 * indirect block at or before the input offset.  We must
618 		 * decrement *start so that it is at the end of the region
619 		 * to search.
620 		 */
621 		(*start)--;
622 		err = dnode_next_offset(dn,
623 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
624 
625 		/* if there are no indirect blocks before start, we are done */
626 		if (err == ESRCH) {
627 			*start = minimum;
628 			break;
629 		} else if (err != 0) {
630 			return (err);
631 		}
632 
633 		/* set start to the beginning of this L1 indirect */
634 		*start = P2ALIGN(*start, iblkrange);
635 	}
636 	if (*start < minimum)
637 		*start = minimum;
638 	return (0);
639 }
640 
641 static int
642 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
643     uint64_t length)
644 {
645 	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
646 	int err;
647 
648 	if (offset >= object_size)
649 		return (0);
650 
651 	if (length == DMU_OBJECT_END || offset + length > object_size)
652 		length = object_size - offset;
653 
654 	while (length != 0) {
655 		uint64_t chunk_end, chunk_begin;
656 
657 		chunk_end = chunk_begin = offset + length;
658 
659 		/* move chunk_begin backwards to the beginning of this chunk */
660 		err = get_next_chunk(dn, &chunk_begin, offset);
661 		if (err)
662 			return (err);
663 		ASSERT3U(chunk_begin, >=, offset);
664 		ASSERT3U(chunk_begin, <=, chunk_end);
665 
666 		dmu_tx_t *tx = dmu_tx_create(os);
667 		dmu_tx_hold_free(tx, dn->dn_object,
668 		    chunk_begin, chunk_end - chunk_begin);
669 
670 		/*
671 		 * Mark this transaction as typically resulting in a net
672 		 * reduction in space used.
673 		 */
674 		dmu_tx_mark_netfree(tx);
675 		err = dmu_tx_assign(tx, TXG_WAIT);
676 		if (err) {
677 			dmu_tx_abort(tx);
678 			return (err);
679 		}
680 		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
681 		dmu_tx_commit(tx);
682 
683 		length -= chunk_end - chunk_begin;
684 	}
685 	return (0);
686 }
687 
688 int
689 dmu_free_long_range(objset_t *os, uint64_t object,
690     uint64_t offset, uint64_t length)
691 {
692 	dnode_t *dn;
693 	int err;
694 
695 	err = dnode_hold(os, object, FTAG, &dn);
696 	if (err != 0)
697 		return (err);
698 	err = dmu_free_long_range_impl(os, dn, offset, length);
699 
700 	/*
701 	 * It is important to zero out the maxblkid when freeing the entire
702 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
703 	 * will take the fast path, and (b) dnode_reallocate() can verify
704 	 * that the entire file has been freed.
705 	 */
706 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
707 		dn->dn_maxblkid = 0;
708 
709 	dnode_rele(dn, FTAG);
710 	return (err);
711 }
712 
713 int
714 dmu_free_long_object(objset_t *os, uint64_t object)
715 {
716 	dmu_tx_t *tx;
717 	int err;
718 
719 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
720 	if (err != 0)
721 		return (err);
722 
723 	tx = dmu_tx_create(os);
724 	dmu_tx_hold_bonus(tx, object);
725 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
726 	dmu_tx_mark_netfree(tx);
727 	err = dmu_tx_assign(tx, TXG_WAIT);
728 	if (err == 0) {
729 		err = dmu_object_free(os, object, tx);
730 		dmu_tx_commit(tx);
731 	} else {
732 		dmu_tx_abort(tx);
733 	}
734 
735 	return (err);
736 }
737 
738 int
739 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
740     uint64_t size, dmu_tx_t *tx)
741 {
742 	dnode_t *dn;
743 	int err = dnode_hold(os, object, FTAG, &dn);
744 	if (err)
745 		return (err);
746 	ASSERT(offset < UINT64_MAX);
747 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
748 	dnode_free_range(dn, offset, size, tx);
749 	dnode_rele(dn, FTAG);
750 	return (0);
751 }
752 
753 int
754 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
755     void *buf, uint32_t flags)
756 {
757 	dnode_t *dn;
758 	dmu_buf_t **dbp;
759 	int numbufs, err;
760 
761 	err = dnode_hold(os, object, FTAG, &dn);
762 	if (err)
763 		return (err);
764 
765 	/*
766 	 * Deal with odd block sizes, where there can't be data past the first
767 	 * block.  If we ever do the tail block optimization, we will need to
768 	 * handle that here as well.
769 	 */
770 	if (dn->dn_maxblkid == 0) {
771 		int newsz = offset > dn->dn_datablksz ? 0 :
772 		    MIN(size, dn->dn_datablksz - offset);
773 		bzero((char *)buf + newsz, size - newsz);
774 		size = newsz;
775 	}
776 
777 	while (size > 0) {
778 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
779 		int i;
780 
781 		/*
782 		 * NB: we could do this block-at-a-time, but it's nice
783 		 * to be reading in parallel.
784 		 */
785 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
786 		    TRUE, FTAG, &numbufs, &dbp, flags);
787 		if (err)
788 			break;
789 
790 		for (i = 0; i < numbufs; i++) {
791 			int tocpy;
792 			int bufoff;
793 			dmu_buf_t *db = dbp[i];
794 
795 			ASSERT(size > 0);
796 
797 			bufoff = offset - db->db_offset;
798 			tocpy = (int)MIN(db->db_size - bufoff, size);
799 
800 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
801 
802 			offset += tocpy;
803 			size -= tocpy;
804 			buf = (char *)buf + tocpy;
805 		}
806 		dmu_buf_rele_array(dbp, numbufs, FTAG);
807 	}
808 	dnode_rele(dn, FTAG);
809 	return (err);
810 }
811 
812 void
813 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
814     const void *buf, dmu_tx_t *tx)
815 {
816 	dmu_buf_t **dbp;
817 	int numbufs, i;
818 
819 	if (size == 0)
820 		return;
821 
822 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
823 	    FALSE, FTAG, &numbufs, &dbp));
824 
825 	for (i = 0; i < numbufs; i++) {
826 		int tocpy;
827 		int bufoff;
828 		dmu_buf_t *db = dbp[i];
829 
830 		ASSERT(size > 0);
831 
832 		bufoff = offset - db->db_offset;
833 		tocpy = (int)MIN(db->db_size - bufoff, size);
834 
835 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
836 
837 		if (tocpy == db->db_size)
838 			dmu_buf_will_fill(db, tx);
839 		else
840 			dmu_buf_will_dirty(db, tx);
841 
842 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
843 
844 		if (tocpy == db->db_size)
845 			dmu_buf_fill_done(db, tx);
846 
847 		offset += tocpy;
848 		size -= tocpy;
849 		buf = (char *)buf + tocpy;
850 	}
851 	dmu_buf_rele_array(dbp, numbufs, FTAG);
852 }
853 
854 void
855 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
856     dmu_tx_t *tx)
857 {
858 	dmu_buf_t **dbp;
859 	int numbufs, i;
860 
861 	if (size == 0)
862 		return;
863 
864 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
865 	    FALSE, FTAG, &numbufs, &dbp));
866 
867 	for (i = 0; i < numbufs; i++) {
868 		dmu_buf_t *db = dbp[i];
869 
870 		dmu_buf_will_not_fill(db, tx);
871 	}
872 	dmu_buf_rele_array(dbp, numbufs, FTAG);
873 }
874 
875 void
876 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
877     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
878     int compressed_size, int byteorder, dmu_tx_t *tx)
879 {
880 	dmu_buf_t *db;
881 
882 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
883 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
884 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
885 	    FTAG, &db));
886 
887 	dmu_buf_write_embedded(db,
888 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
889 	    uncompressed_size, compressed_size, byteorder, tx);
890 
891 	dmu_buf_rele(db, FTAG);
892 }
893 
894 /*
895  * DMU support for xuio
896  */
897 kstat_t *xuio_ksp = NULL;
898 
899 int
900 dmu_xuio_init(xuio_t *xuio, int nblk)
901 {
902 	dmu_xuio_t *priv;
903 	uio_t *uio = &xuio->xu_uio;
904 
905 	uio->uio_iovcnt = nblk;
906 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
907 
908 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
909 	priv->cnt = nblk;
910 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
911 	priv->iovp = uio->uio_iov;
912 	XUIO_XUZC_PRIV(xuio) = priv;
913 
914 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
915 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
916 	else
917 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
918 
919 	return (0);
920 }
921 
922 void
923 dmu_xuio_fini(xuio_t *xuio)
924 {
925 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
926 	int nblk = priv->cnt;
927 
928 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
929 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
930 	kmem_free(priv, sizeof (dmu_xuio_t));
931 
932 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
933 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
934 	else
935 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
936 }
937 
938 /*
939  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
940  * and increase priv->next by 1.
941  */
942 int
943 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
944 {
945 	struct iovec *iov;
946 	uio_t *uio = &xuio->xu_uio;
947 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
948 	int i = priv->next++;
949 
950 	ASSERT(i < priv->cnt);
951 	ASSERT(off + n <= arc_buf_size(abuf));
952 	iov = uio->uio_iov + i;
953 	iov->iov_base = (char *)abuf->b_data + off;
954 	iov->iov_len = n;
955 	priv->bufs[i] = abuf;
956 	return (0);
957 }
958 
959 int
960 dmu_xuio_cnt(xuio_t *xuio)
961 {
962 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
963 	return (priv->cnt);
964 }
965 
966 arc_buf_t *
967 dmu_xuio_arcbuf(xuio_t *xuio, int i)
968 {
969 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
970 
971 	ASSERT(i < priv->cnt);
972 	return (priv->bufs[i]);
973 }
974 
975 void
976 dmu_xuio_clear(xuio_t *xuio, int i)
977 {
978 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
979 
980 	ASSERT(i < priv->cnt);
981 	priv->bufs[i] = NULL;
982 }
983 
984 static void
985 xuio_stat_init(void)
986 {
987 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
988 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
989 	    KSTAT_FLAG_VIRTUAL);
990 	if (xuio_ksp != NULL) {
991 		xuio_ksp->ks_data = &xuio_stats;
992 		kstat_install(xuio_ksp);
993 	}
994 }
995 
996 static void
997 xuio_stat_fini(void)
998 {
999 	if (xuio_ksp != NULL) {
1000 		kstat_delete(xuio_ksp);
1001 		xuio_ksp = NULL;
1002 	}
1003 }
1004 
1005 void
1006 xuio_stat_wbuf_copied()
1007 {
1008 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1009 }
1010 
1011 void
1012 xuio_stat_wbuf_nocopy()
1013 {
1014 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1015 }
1016 
1017 #ifdef _KERNEL
1018 static int
1019 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1020 {
1021 	dmu_buf_t **dbp;
1022 	int numbufs, i, err;
1023 	xuio_t *xuio = NULL;
1024 
1025 	/*
1026 	 * NB: we could do this block-at-a-time, but it's nice
1027 	 * to be reading in parallel.
1028 	 */
1029 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1030 	    TRUE, FTAG, &numbufs, &dbp, 0);
1031 	if (err)
1032 		return (err);
1033 
1034 	if (uio->uio_extflg == UIO_XUIO)
1035 		xuio = (xuio_t *)uio;
1036 
1037 	for (i = 0; i < numbufs; i++) {
1038 		int tocpy;
1039 		int bufoff;
1040 		dmu_buf_t *db = dbp[i];
1041 
1042 		ASSERT(size > 0);
1043 
1044 		bufoff = uio->uio_loffset - db->db_offset;
1045 		tocpy = (int)MIN(db->db_size - bufoff, size);
1046 
1047 		if (xuio) {
1048 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1049 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1050 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1051 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1052 			if (!err) {
1053 				uio->uio_resid -= tocpy;
1054 				uio->uio_loffset += tocpy;
1055 			}
1056 
1057 			if (abuf == dbuf_abuf)
1058 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1059 			else
1060 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1061 		} else {
1062 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1063 			    UIO_READ, uio);
1064 		}
1065 		if (err)
1066 			break;
1067 
1068 		size -= tocpy;
1069 	}
1070 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1071 
1072 	return (err);
1073 }
1074 
1075 /*
1076  * Read 'size' bytes into the uio buffer.
1077  * From object zdb->db_object.
1078  * Starting at offset uio->uio_loffset.
1079  *
1080  * If the caller already has a dbuf in the target object
1081  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1082  * because we don't have to find the dnode_t for the object.
1083  */
1084 int
1085 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1086 {
1087 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1088 	dnode_t *dn;
1089 	int err;
1090 
1091 	if (size == 0)
1092 		return (0);
1093 
1094 	DB_DNODE_ENTER(db);
1095 	dn = DB_DNODE(db);
1096 	err = dmu_read_uio_dnode(dn, uio, size);
1097 	DB_DNODE_EXIT(db);
1098 
1099 	return (err);
1100 }
1101 
1102 /*
1103  * Read 'size' bytes into the uio buffer.
1104  * From the specified object
1105  * Starting at offset uio->uio_loffset.
1106  */
1107 int
1108 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1109 {
1110 	dnode_t *dn;
1111 	int err;
1112 
1113 	if (size == 0)
1114 		return (0);
1115 
1116 	err = dnode_hold(os, object, FTAG, &dn);
1117 	if (err)
1118 		return (err);
1119 
1120 	err = dmu_read_uio_dnode(dn, uio, size);
1121 
1122 	dnode_rele(dn, FTAG);
1123 
1124 	return (err);
1125 }
1126 
1127 static int
1128 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1129 {
1130 	dmu_buf_t **dbp;
1131 	int numbufs;
1132 	int err = 0;
1133 	int i;
1134 
1135 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1136 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1137 	if (err)
1138 		return (err);
1139 
1140 	for (i = 0; i < numbufs; i++) {
1141 		int tocpy;
1142 		int bufoff;
1143 		dmu_buf_t *db = dbp[i];
1144 
1145 		ASSERT(size > 0);
1146 
1147 		bufoff = uio->uio_loffset - db->db_offset;
1148 		tocpy = (int)MIN(db->db_size - bufoff, size);
1149 
1150 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1151 
1152 		if (tocpy == db->db_size)
1153 			dmu_buf_will_fill(db, tx);
1154 		else
1155 			dmu_buf_will_dirty(db, tx);
1156 
1157 		/*
1158 		 * XXX uiomove could block forever (eg. nfs-backed
1159 		 * pages).  There needs to be a uiolockdown() function
1160 		 * to lock the pages in memory, so that uiomove won't
1161 		 * block.
1162 		 */
1163 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1164 		    UIO_WRITE, uio);
1165 
1166 		if (tocpy == db->db_size)
1167 			dmu_buf_fill_done(db, tx);
1168 
1169 		if (err)
1170 			break;
1171 
1172 		size -= tocpy;
1173 	}
1174 
1175 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1176 	return (err);
1177 }
1178 
1179 /*
1180  * Write 'size' bytes from the uio buffer.
1181  * To object zdb->db_object.
1182  * Starting at offset uio->uio_loffset.
1183  *
1184  * If the caller already has a dbuf in the target object
1185  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1186  * because we don't have to find the dnode_t for the object.
1187  */
1188 int
1189 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1190     dmu_tx_t *tx)
1191 {
1192 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1193 	dnode_t *dn;
1194 	int err;
1195 
1196 	if (size == 0)
1197 		return (0);
1198 
1199 	DB_DNODE_ENTER(db);
1200 	dn = DB_DNODE(db);
1201 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1202 	DB_DNODE_EXIT(db);
1203 
1204 	return (err);
1205 }
1206 
1207 /*
1208  * Write 'size' bytes from the uio buffer.
1209  * To the specified object.
1210  * Starting at offset uio->uio_loffset.
1211  */
1212 int
1213 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1214     dmu_tx_t *tx)
1215 {
1216 	dnode_t *dn;
1217 	int err;
1218 
1219 	if (size == 0)
1220 		return (0);
1221 
1222 	err = dnode_hold(os, object, FTAG, &dn);
1223 	if (err)
1224 		return (err);
1225 
1226 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1227 
1228 	dnode_rele(dn, FTAG);
1229 
1230 	return (err);
1231 }
1232 
1233 int
1234 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1235     page_t *pp, dmu_tx_t *tx)
1236 {
1237 	dmu_buf_t **dbp;
1238 	int numbufs, i;
1239 	int err;
1240 
1241 	if (size == 0)
1242 		return (0);
1243 
1244 	err = dmu_buf_hold_array(os, object, offset, size,
1245 	    FALSE, FTAG, &numbufs, &dbp);
1246 	if (err)
1247 		return (err);
1248 
1249 	for (i = 0; i < numbufs; i++) {
1250 		int tocpy, copied, thiscpy;
1251 		int bufoff;
1252 		dmu_buf_t *db = dbp[i];
1253 		caddr_t va;
1254 
1255 		ASSERT(size > 0);
1256 		ASSERT3U(db->db_size, >=, PAGESIZE);
1257 
1258 		bufoff = offset - db->db_offset;
1259 		tocpy = (int)MIN(db->db_size - bufoff, size);
1260 
1261 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1262 
1263 		if (tocpy == db->db_size)
1264 			dmu_buf_will_fill(db, tx);
1265 		else
1266 			dmu_buf_will_dirty(db, tx);
1267 
1268 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1269 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1270 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1271 			va = zfs_map_page(pp, S_READ);
1272 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1273 			zfs_unmap_page(pp, va);
1274 			pp = pp->p_next;
1275 			bufoff += PAGESIZE;
1276 		}
1277 
1278 		if (tocpy == db->db_size)
1279 			dmu_buf_fill_done(db, tx);
1280 
1281 		offset += tocpy;
1282 		size -= tocpy;
1283 	}
1284 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1285 	return (err);
1286 }
1287 #endif
1288 
1289 /*
1290  * Allocate a loaned anonymous arc buffer.
1291  */
1292 arc_buf_t *
1293 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1294 {
1295 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1296 
1297 	return (arc_loan_buf(db->db_objset->os_spa, size));
1298 }
1299 
1300 /*
1301  * Free a loaned arc buffer.
1302  */
1303 void
1304 dmu_return_arcbuf(arc_buf_t *buf)
1305 {
1306 	arc_return_buf(buf, FTAG);
1307 	VERIFY(arc_buf_remove_ref(buf, FTAG));
1308 }
1309 
1310 /*
1311  * When possible directly assign passed loaned arc buffer to a dbuf.
1312  * If this is not possible copy the contents of passed arc buf via
1313  * dmu_write().
1314  */
1315 void
1316 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1317     dmu_tx_t *tx)
1318 {
1319 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1320 	dnode_t *dn;
1321 	dmu_buf_impl_t *db;
1322 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1323 	uint64_t blkid;
1324 
1325 	DB_DNODE_ENTER(dbuf);
1326 	dn = DB_DNODE(dbuf);
1327 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1328 	blkid = dbuf_whichblock(dn, offset);
1329 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1330 	rw_exit(&dn->dn_struct_rwlock);
1331 	DB_DNODE_EXIT(dbuf);
1332 
1333 	/*
1334 	 * We can only assign if the offset is aligned, the arc buf is the
1335 	 * same size as the dbuf, and the dbuf is not metadata.  It
1336 	 * can't be metadata because the loaned arc buf comes from the
1337 	 * user-data kmem arena.
1338 	 */
1339 	if (offset == db->db.db_offset && blksz == db->db.db_size &&
1340 	    DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
1341 		dbuf_assign_arcbuf(db, buf, tx);
1342 		dbuf_rele(db, FTAG);
1343 	} else {
1344 		objset_t *os;
1345 		uint64_t object;
1346 
1347 		DB_DNODE_ENTER(dbuf);
1348 		dn = DB_DNODE(dbuf);
1349 		os = dn->dn_objset;
1350 		object = dn->dn_object;
1351 		DB_DNODE_EXIT(dbuf);
1352 
1353 		dbuf_rele(db, FTAG);
1354 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1355 		dmu_return_arcbuf(buf);
1356 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1357 	}
1358 }
1359 
1360 typedef struct {
1361 	dbuf_dirty_record_t	*dsa_dr;
1362 	dmu_sync_cb_t		*dsa_done;
1363 	zgd_t			*dsa_zgd;
1364 	dmu_tx_t		*dsa_tx;
1365 } dmu_sync_arg_t;
1366 
1367 /* ARGSUSED */
1368 static void
1369 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1370 {
1371 	dmu_sync_arg_t *dsa = varg;
1372 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1373 	blkptr_t *bp = zio->io_bp;
1374 
1375 	if (zio->io_error == 0) {
1376 		if (BP_IS_HOLE(bp)) {
1377 			/*
1378 			 * A block of zeros may compress to a hole, but the
1379 			 * block size still needs to be known for replay.
1380 			 */
1381 			BP_SET_LSIZE(bp, db->db_size);
1382 		} else if (!BP_IS_EMBEDDED(bp)) {
1383 			ASSERT(BP_GET_LEVEL(bp) == 0);
1384 			bp->blk_fill = 1;
1385 		}
1386 	}
1387 }
1388 
1389 static void
1390 dmu_sync_late_arrival_ready(zio_t *zio)
1391 {
1392 	dmu_sync_ready(zio, NULL, zio->io_private);
1393 }
1394 
1395 /* ARGSUSED */
1396 static void
1397 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1398 {
1399 	dmu_sync_arg_t *dsa = varg;
1400 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1401 	dmu_buf_impl_t *db = dr->dr_dbuf;
1402 
1403 	mutex_enter(&db->db_mtx);
1404 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1405 	if (zio->io_error == 0) {
1406 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1407 		if (dr->dt.dl.dr_nopwrite) {
1408 			blkptr_t *bp = zio->io_bp;
1409 			blkptr_t *bp_orig = &zio->io_bp_orig;
1410 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1411 
1412 			ASSERT(BP_EQUAL(bp, bp_orig));
1413 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1414 			ASSERT(zio_checksum_table[chksum].ci_dedup);
1415 		}
1416 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1417 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1418 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1419 
1420 		/*
1421 		 * Old style holes are filled with all zeros, whereas
1422 		 * new-style holes maintain their lsize, type, level,
1423 		 * and birth time (see zio_write_compress). While we
1424 		 * need to reset the BP_SET_LSIZE() call that happened
1425 		 * in dmu_sync_ready for old style holes, we do *not*
1426 		 * want to wipe out the information contained in new
1427 		 * style holes. Thus, only zero out the block pointer if
1428 		 * it's an old style hole.
1429 		 */
1430 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1431 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1432 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1433 	} else {
1434 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1435 	}
1436 	cv_broadcast(&db->db_changed);
1437 	mutex_exit(&db->db_mtx);
1438 
1439 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1440 
1441 	kmem_free(dsa, sizeof (*dsa));
1442 }
1443 
1444 static void
1445 dmu_sync_late_arrival_done(zio_t *zio)
1446 {
1447 	blkptr_t *bp = zio->io_bp;
1448 	dmu_sync_arg_t *dsa = zio->io_private;
1449 	blkptr_t *bp_orig = &zio->io_bp_orig;
1450 
1451 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1452 		/*
1453 		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1454 		 * then there is nothing to do here. Otherwise, free the
1455 		 * newly allocated block in this txg.
1456 		 */
1457 		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1458 			ASSERT(BP_EQUAL(bp, bp_orig));
1459 		} else {
1460 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1461 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1462 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1463 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1464 		}
1465 	}
1466 
1467 	dmu_tx_commit(dsa->dsa_tx);
1468 
1469 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1470 
1471 	kmem_free(dsa, sizeof (*dsa));
1472 }
1473 
1474 static int
1475 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1476     zio_prop_t *zp, zbookmark_phys_t *zb)
1477 {
1478 	dmu_sync_arg_t *dsa;
1479 	dmu_tx_t *tx;
1480 
1481 	tx = dmu_tx_create(os);
1482 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1483 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1484 		dmu_tx_abort(tx);
1485 		/* Make zl_get_data do txg_waited_synced() */
1486 		return (SET_ERROR(EIO));
1487 	}
1488 
1489 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1490 	dsa->dsa_dr = NULL;
1491 	dsa->dsa_done = done;
1492 	dsa->dsa_zgd = zgd;
1493 	dsa->dsa_tx = tx;
1494 
1495 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1496 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1497 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1498 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1499 
1500 	return (0);
1501 }
1502 
1503 /*
1504  * Intent log support: sync the block associated with db to disk.
1505  * N.B. and XXX: the caller is responsible for making sure that the
1506  * data isn't changing while dmu_sync() is writing it.
1507  *
1508  * Return values:
1509  *
1510  *	EEXIST: this txg has already been synced, so there's nothing to do.
1511  *		The caller should not log the write.
1512  *
1513  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1514  *		The caller should not log the write.
1515  *
1516  *	EALREADY: this block is already in the process of being synced.
1517  *		The caller should track its progress (somehow).
1518  *
1519  *	EIO: could not do the I/O.
1520  *		The caller should do a txg_wait_synced().
1521  *
1522  *	0: the I/O has been initiated.
1523  *		The caller should log this blkptr in the done callback.
1524  *		It is possible that the I/O will fail, in which case
1525  *		the error will be reported to the done callback and
1526  *		propagated to pio from zio_done().
1527  */
1528 int
1529 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1530 {
1531 	blkptr_t *bp = zgd->zgd_bp;
1532 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1533 	objset_t *os = db->db_objset;
1534 	dsl_dataset_t *ds = os->os_dsl_dataset;
1535 	dbuf_dirty_record_t *dr;
1536 	dmu_sync_arg_t *dsa;
1537 	zbookmark_phys_t zb;
1538 	zio_prop_t zp;
1539 	dnode_t *dn;
1540 
1541 	ASSERT(pio != NULL);
1542 	ASSERT(txg != 0);
1543 
1544 	SET_BOOKMARK(&zb, ds->ds_object,
1545 	    db->db.db_object, db->db_level, db->db_blkid);
1546 
1547 	DB_DNODE_ENTER(db);
1548 	dn = DB_DNODE(db);
1549 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1550 	DB_DNODE_EXIT(db);
1551 
1552 	/*
1553 	 * If we're frozen (running ziltest), we always need to generate a bp.
1554 	 */
1555 	if (txg > spa_freeze_txg(os->os_spa))
1556 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1557 
1558 	/*
1559 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1560 	 * and us.  If we determine that this txg is not yet syncing,
1561 	 * but it begins to sync a moment later, that's OK because the
1562 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1563 	 */
1564 	mutex_enter(&db->db_mtx);
1565 
1566 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1567 		/*
1568 		 * This txg has already synced.  There's nothing to do.
1569 		 */
1570 		mutex_exit(&db->db_mtx);
1571 		return (SET_ERROR(EEXIST));
1572 	}
1573 
1574 	if (txg <= spa_syncing_txg(os->os_spa)) {
1575 		/*
1576 		 * This txg is currently syncing, so we can't mess with
1577 		 * the dirty record anymore; just write a new log block.
1578 		 */
1579 		mutex_exit(&db->db_mtx);
1580 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1581 	}
1582 
1583 	dr = db->db_last_dirty;
1584 	while (dr && dr->dr_txg != txg)
1585 		dr = dr->dr_next;
1586 
1587 	if (dr == NULL) {
1588 		/*
1589 		 * There's no dr for this dbuf, so it must have been freed.
1590 		 * There's no need to log writes to freed blocks, so we're done.
1591 		 */
1592 		mutex_exit(&db->db_mtx);
1593 		return (SET_ERROR(ENOENT));
1594 	}
1595 
1596 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1597 
1598 	/*
1599 	 * Assume the on-disk data is X, the current syncing data is Y,
1600 	 * and the current in-memory data is Z (currently in dmu_sync).
1601 	 * X and Z are identical but Y is has been modified. Normally,
1602 	 * when X and Z are the same we will perform a nopwrite but if Y
1603 	 * is different we must disable nopwrite since the resulting write
1604 	 * of Y to disk can free the block containing X. If we allowed a
1605 	 * nopwrite to occur the block pointing to Z would reference a freed
1606 	 * block. Since this is a rare case we simplify this by disabling
1607 	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1608 	 * a previous transaction.
1609 	 */
1610 	if (dr->dr_next)
1611 		zp.zp_nopwrite = B_FALSE;
1612 
1613 	ASSERT(dr->dr_txg == txg);
1614 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1615 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1616 		/*
1617 		 * We have already issued a sync write for this buffer,
1618 		 * or this buffer has already been synced.  It could not
1619 		 * have been dirtied since, or we would have cleared the state.
1620 		 */
1621 		mutex_exit(&db->db_mtx);
1622 		return (SET_ERROR(EALREADY));
1623 	}
1624 
1625 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1626 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1627 	mutex_exit(&db->db_mtx);
1628 
1629 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1630 	dsa->dsa_dr = dr;
1631 	dsa->dsa_done = done;
1632 	dsa->dsa_zgd = zgd;
1633 	dsa->dsa_tx = NULL;
1634 
1635 	zio_nowait(arc_write(pio, os->os_spa, txg,
1636 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1637 	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1638 	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1639 	    ZIO_FLAG_CANFAIL, &zb));
1640 
1641 	return (0);
1642 }
1643 
1644 int
1645 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1646 	dmu_tx_t *tx)
1647 {
1648 	dnode_t *dn;
1649 	int err;
1650 
1651 	err = dnode_hold(os, object, FTAG, &dn);
1652 	if (err)
1653 		return (err);
1654 	err = dnode_set_blksz(dn, size, ibs, tx);
1655 	dnode_rele(dn, FTAG);
1656 	return (err);
1657 }
1658 
1659 void
1660 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1661 	dmu_tx_t *tx)
1662 {
1663 	dnode_t *dn;
1664 
1665 	/*
1666 	 * Send streams include each object's checksum function.  This
1667 	 * check ensures that the receiving system can understand the
1668 	 * checksum function transmitted.
1669 	 */
1670 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1671 
1672 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1673 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1674 	dn->dn_checksum = checksum;
1675 	dnode_setdirty(dn, tx);
1676 	dnode_rele(dn, FTAG);
1677 }
1678 
1679 void
1680 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1681 	dmu_tx_t *tx)
1682 {
1683 	dnode_t *dn;
1684 
1685 	/*
1686 	 * Send streams include each object's compression function.  This
1687 	 * check ensures that the receiving system can understand the
1688 	 * compression function transmitted.
1689 	 */
1690 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1691 
1692 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1693 	dn->dn_compress = compress;
1694 	dnode_setdirty(dn, tx);
1695 	dnode_rele(dn, FTAG);
1696 }
1697 
1698 int zfs_mdcomp_disable = 0;
1699 
1700 /*
1701  * When the "redundant_metadata" property is set to "most", only indirect
1702  * blocks of this level and higher will have an additional ditto block.
1703  */
1704 int zfs_redundant_metadata_most_ditto_level = 2;
1705 
1706 void
1707 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1708 {
1709 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1710 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1711 	    (wp & WP_SPILL));
1712 	enum zio_checksum checksum = os->os_checksum;
1713 	enum zio_compress compress = os->os_compress;
1714 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1715 	boolean_t dedup = B_FALSE;
1716 	boolean_t nopwrite = B_FALSE;
1717 	boolean_t dedup_verify = os->os_dedup_verify;
1718 	int copies = os->os_copies;
1719 
1720 	/*
1721 	 * We maintain different write policies for each of the following
1722 	 * types of data:
1723 	 *	 1. metadata
1724 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1725 	 *	 3. all other level 0 blocks
1726 	 */
1727 	if (ismd) {
1728 		if (zfs_mdcomp_disable) {
1729 			compress = ZIO_COMPRESS_EMPTY;
1730 		} else {
1731 			/*
1732 			 * XXX -- we should design a compression algorithm
1733 			 * that specializes in arrays of bps.
1734 			 */
1735 			compress = zio_compress_select(os->os_spa,
1736 			    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1737 		}
1738 
1739 		/*
1740 		 * Metadata always gets checksummed.  If the data
1741 		 * checksum is multi-bit correctable, and it's not a
1742 		 * ZBT-style checksum, then it's suitable for metadata
1743 		 * as well.  Otherwise, the metadata checksum defaults
1744 		 * to fletcher4.
1745 		 */
1746 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1747 		    zio_checksum_table[checksum].ci_eck)
1748 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1749 
1750 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1751 		    (os->os_redundant_metadata ==
1752 		    ZFS_REDUNDANT_METADATA_MOST &&
1753 		    (level >= zfs_redundant_metadata_most_ditto_level ||
1754 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1755 			copies++;
1756 	} else if (wp & WP_NOFILL) {
1757 		ASSERT(level == 0);
1758 
1759 		/*
1760 		 * If we're writing preallocated blocks, we aren't actually
1761 		 * writing them so don't set any policy properties.  These
1762 		 * blocks are currently only used by an external subsystem
1763 		 * outside of zfs (i.e. dump) and not written by the zio
1764 		 * pipeline.
1765 		 */
1766 		compress = ZIO_COMPRESS_OFF;
1767 		checksum = ZIO_CHECKSUM_NOPARITY;
1768 	} else {
1769 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
1770 		    compress);
1771 
1772 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1773 		    zio_checksum_select(dn->dn_checksum, checksum) :
1774 		    dedup_checksum;
1775 
1776 		/*
1777 		 * Determine dedup setting.  If we are in dmu_sync(),
1778 		 * we won't actually dedup now because that's all
1779 		 * done in syncing context; but we do want to use the
1780 		 * dedup checkum.  If the checksum is not strong
1781 		 * enough to ensure unique signatures, force
1782 		 * dedup_verify.
1783 		 */
1784 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1785 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1786 			if (!zio_checksum_table[checksum].ci_dedup)
1787 				dedup_verify = B_TRUE;
1788 		}
1789 
1790 		/*
1791 		 * Enable nopwrite if we have a cryptographically secure
1792 		 * checksum that has no known collisions (i.e. SHA-256)
1793 		 * and compression is enabled.  We don't enable nopwrite if
1794 		 * dedup is enabled as the two features are mutually exclusive.
1795 		 */
1796 		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1797 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1798 	}
1799 
1800 	zp->zp_checksum = checksum;
1801 	zp->zp_compress = compress;
1802 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1803 	zp->zp_level = level;
1804 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1805 	zp->zp_dedup = dedup;
1806 	zp->zp_dedup_verify = dedup && dedup_verify;
1807 	zp->zp_nopwrite = nopwrite;
1808 }
1809 
1810 int
1811 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1812 {
1813 	dnode_t *dn;
1814 	int err;
1815 
1816 	/*
1817 	 * Sync any current changes before
1818 	 * we go trundling through the block pointers.
1819 	 */
1820 	err = dmu_object_wait_synced(os, object);
1821 	if (err) {
1822 		return (err);
1823 	}
1824 
1825 	err = dnode_hold(os, object, FTAG, &dn);
1826 	if (err) {
1827 		return (err);
1828 	}
1829 
1830 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1831 	dnode_rele(dn, FTAG);
1832 
1833 	return (err);
1834 }
1835 
1836 /*
1837  * Given the ZFS object, if it contains any dirty nodes
1838  * this function flushes all dirty blocks to disk. This
1839  * ensures the DMU object info is updated. A more efficient
1840  * future version might just find the TXG with the maximum
1841  * ID and wait for that to be synced.
1842  */
1843 int
1844 dmu_object_wait_synced(objset_t *os, uint64_t object) {
1845 	dnode_t *dn;
1846 	int error, i;
1847 
1848 	error = dnode_hold(os, object, FTAG, &dn);
1849 	if (error) {
1850 		return (error);
1851 	}
1852 
1853 	for (i = 0; i < TXG_SIZE; i++) {
1854 		if (list_link_active(&dn->dn_dirty_link[i])) {
1855 			break;
1856 		}
1857 	}
1858 	dnode_rele(dn, FTAG);
1859 	if (i != TXG_SIZE) {
1860 		txg_wait_synced(dmu_objset_pool(os), 0);
1861 	}
1862 
1863 	return (0);
1864 }
1865 
1866 void
1867 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1868 {
1869 	dnode_phys_t *dnp;
1870 
1871 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1872 	mutex_enter(&dn->dn_mtx);
1873 
1874 	dnp = dn->dn_phys;
1875 
1876 	doi->doi_data_block_size = dn->dn_datablksz;
1877 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1878 	    1ULL << dn->dn_indblkshift : 0;
1879 	doi->doi_type = dn->dn_type;
1880 	doi->doi_bonus_type = dn->dn_bonustype;
1881 	doi->doi_bonus_size = dn->dn_bonuslen;
1882 	doi->doi_indirection = dn->dn_nlevels;
1883 	doi->doi_checksum = dn->dn_checksum;
1884 	doi->doi_compress = dn->dn_compress;
1885 	doi->doi_nblkptr = dn->dn_nblkptr;
1886 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1887 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1888 	doi->doi_fill_count = 0;
1889 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1890 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1891 
1892 	mutex_exit(&dn->dn_mtx);
1893 	rw_exit(&dn->dn_struct_rwlock);
1894 }
1895 
1896 /*
1897  * Get information on a DMU object.
1898  * If doi is NULL, just indicates whether the object exists.
1899  */
1900 int
1901 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1902 {
1903 	dnode_t *dn;
1904 	int err = dnode_hold(os, object, FTAG, &dn);
1905 
1906 	if (err)
1907 		return (err);
1908 
1909 	if (doi != NULL)
1910 		dmu_object_info_from_dnode(dn, doi);
1911 
1912 	dnode_rele(dn, FTAG);
1913 	return (0);
1914 }
1915 
1916 /*
1917  * As above, but faster; can be used when you have a held dbuf in hand.
1918  */
1919 void
1920 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1921 {
1922 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1923 
1924 	DB_DNODE_ENTER(db);
1925 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1926 	DB_DNODE_EXIT(db);
1927 }
1928 
1929 /*
1930  * Faster still when you only care about the size.
1931  * This is specifically optimized for zfs_getattr().
1932  */
1933 void
1934 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1935     u_longlong_t *nblk512)
1936 {
1937 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1938 	dnode_t *dn;
1939 
1940 	DB_DNODE_ENTER(db);
1941 	dn = DB_DNODE(db);
1942 
1943 	*blksize = dn->dn_datablksz;
1944 	/* add 1 for dnode space */
1945 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1946 	    SPA_MINBLOCKSHIFT) + 1;
1947 	DB_DNODE_EXIT(db);
1948 }
1949 
1950 void
1951 byteswap_uint64_array(void *vbuf, size_t size)
1952 {
1953 	uint64_t *buf = vbuf;
1954 	size_t count = size >> 3;
1955 	int i;
1956 
1957 	ASSERT((size & 7) == 0);
1958 
1959 	for (i = 0; i < count; i++)
1960 		buf[i] = BSWAP_64(buf[i]);
1961 }
1962 
1963 void
1964 byteswap_uint32_array(void *vbuf, size_t size)
1965 {
1966 	uint32_t *buf = vbuf;
1967 	size_t count = size >> 2;
1968 	int i;
1969 
1970 	ASSERT((size & 3) == 0);
1971 
1972 	for (i = 0; i < count; i++)
1973 		buf[i] = BSWAP_32(buf[i]);
1974 }
1975 
1976 void
1977 byteswap_uint16_array(void *vbuf, size_t size)
1978 {
1979 	uint16_t *buf = vbuf;
1980 	size_t count = size >> 1;
1981 	int i;
1982 
1983 	ASSERT((size & 1) == 0);
1984 
1985 	for (i = 0; i < count; i++)
1986 		buf[i] = BSWAP_16(buf[i]);
1987 }
1988 
1989 /* ARGSUSED */
1990 void
1991 byteswap_uint8_array(void *vbuf, size_t size)
1992 {
1993 }
1994 
1995 void
1996 dmu_init(void)
1997 {
1998 	zfs_dbgmsg_init();
1999 	sa_cache_init();
2000 	xuio_stat_init();
2001 	dmu_objset_init();
2002 	dnode_init();
2003 	dbuf_init();
2004 	zfetch_init();
2005 	l2arc_init();
2006 	arc_init();
2007 }
2008 
2009 void
2010 dmu_fini(void)
2011 {
2012 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2013 	l2arc_fini();
2014 	zfetch_fini();
2015 	dbuf_fini();
2016 	dnode_fini();
2017 	dmu_objset_fini();
2018 	xuio_stat_fini();
2019 	sa_cache_fini();
2020 	zfs_dbgmsg_fini();
2021 }
2022