xref: /titanic_41/usr/src/uts/common/fs/zfs/dmu.c (revision a9478106a12424322498e53cf7cd75bd8a4d6004)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  */
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 
28 #include <sys/dmu.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dbuf.h>
32 #include <sys/dnode.h>
33 #include <sys/zfs_context.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dmu_traverse.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dsl_pool.h>
39 #include <sys/dsl_synctask.h>
40 #include <sys/dsl_prop.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/zfs_ioctl.h>
43 #include <sys/zap.h>
44 #include <sys/zio_checksum.h>
45 #include <sys/zio_compress.h>
46 #include <sys/sa.h>
47 #ifdef _KERNEL
48 #include <sys/vmsystm.h>
49 #include <sys/zfs_znode.h>
50 #endif
51 
52 /*
53  * Enable/disable nopwrite feature.
54  */
55 int zfs_nopwrite_enabled = 1;
56 
57 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
58 	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
59 	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
60 	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
61 	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
62 	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
63 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
64 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
65 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
66 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
67 	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
68 	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
69 	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
70 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
71 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
72 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
73 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
74 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
75 	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
76 	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
77 	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
78 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
79 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
80 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
81 	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
82 	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
83 	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
84 	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
85 	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
86 	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
87 	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
88 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
89 	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
90 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
91 	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
92 	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
93 	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
94 	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
95 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
96 	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
97 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
98 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
99 	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
100 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
101 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
102 	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
103 	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
104 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
105 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
106 	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
107 	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
108 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
109 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
110 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
111 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
112 };
113 
114 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
115 	{	byteswap_uint8_array,	"uint8"		},
116 	{	byteswap_uint16_array,	"uint16"	},
117 	{	byteswap_uint32_array,	"uint32"	},
118 	{	byteswap_uint64_array,	"uint64"	},
119 	{	zap_byteswap,		"zap"		},
120 	{	dnode_buf_byteswap,	"dnode"		},
121 	{	dmu_objset_byteswap,	"objset"	},
122 	{	zfs_znode_byteswap,	"znode"		},
123 	{	zfs_oldacl_byteswap,	"oldacl"	},
124 	{	zfs_acl_byteswap,	"acl"		}
125 };
126 
127 int
128 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
129     void *tag, dmu_buf_t **dbp, int flags)
130 {
131 	dnode_t *dn;
132 	uint64_t blkid;
133 	dmu_buf_impl_t *db;
134 	int err;
135 	int db_flags = DB_RF_CANFAIL;
136 
137 	if (flags & DMU_READ_NO_PREFETCH)
138 		db_flags |= DB_RF_NOPREFETCH;
139 
140 	err = dnode_hold(os, object, FTAG, &dn);
141 	if (err)
142 		return (err);
143 	blkid = dbuf_whichblock(dn, offset);
144 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
145 	db = dbuf_hold(dn, blkid, tag);
146 	rw_exit(&dn->dn_struct_rwlock);
147 	if (db == NULL) {
148 		err = SET_ERROR(EIO);
149 	} else {
150 		err = dbuf_read(db, NULL, db_flags);
151 		if (err) {
152 			dbuf_rele(db, tag);
153 			db = NULL;
154 		}
155 	}
156 
157 	dnode_rele(dn, FTAG);
158 	*dbp = &db->db; /* NULL db plus first field offset is NULL */
159 	return (err);
160 }
161 
162 int
163 dmu_bonus_max(void)
164 {
165 	return (DN_MAX_BONUSLEN);
166 }
167 
168 int
169 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
170 {
171 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
172 	dnode_t *dn;
173 	int error;
174 
175 	DB_DNODE_ENTER(db);
176 	dn = DB_DNODE(db);
177 
178 	if (dn->dn_bonus != db) {
179 		error = SET_ERROR(EINVAL);
180 	} else if (newsize < 0 || newsize > db_fake->db_size) {
181 		error = SET_ERROR(EINVAL);
182 	} else {
183 		dnode_setbonuslen(dn, newsize, tx);
184 		error = 0;
185 	}
186 
187 	DB_DNODE_EXIT(db);
188 	return (error);
189 }
190 
191 int
192 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
193 {
194 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
195 	dnode_t *dn;
196 	int error;
197 
198 	DB_DNODE_ENTER(db);
199 	dn = DB_DNODE(db);
200 
201 	if (!DMU_OT_IS_VALID(type)) {
202 		error = SET_ERROR(EINVAL);
203 	} else if (dn->dn_bonus != db) {
204 		error = SET_ERROR(EINVAL);
205 	} else {
206 		dnode_setbonus_type(dn, type, tx);
207 		error = 0;
208 	}
209 
210 	DB_DNODE_EXIT(db);
211 	return (error);
212 }
213 
214 dmu_object_type_t
215 dmu_get_bonustype(dmu_buf_t *db_fake)
216 {
217 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
218 	dnode_t *dn;
219 	dmu_object_type_t type;
220 
221 	DB_DNODE_ENTER(db);
222 	dn = DB_DNODE(db);
223 	type = dn->dn_bonustype;
224 	DB_DNODE_EXIT(db);
225 
226 	return (type);
227 }
228 
229 int
230 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
231 {
232 	dnode_t *dn;
233 	int error;
234 
235 	error = dnode_hold(os, object, FTAG, &dn);
236 	dbuf_rm_spill(dn, tx);
237 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
238 	dnode_rm_spill(dn, tx);
239 	rw_exit(&dn->dn_struct_rwlock);
240 	dnode_rele(dn, FTAG);
241 	return (error);
242 }
243 
244 /*
245  * returns ENOENT, EIO, or 0.
246  */
247 int
248 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
249 {
250 	dnode_t *dn;
251 	dmu_buf_impl_t *db;
252 	int error;
253 
254 	error = dnode_hold(os, object, FTAG, &dn);
255 	if (error)
256 		return (error);
257 
258 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
259 	if (dn->dn_bonus == NULL) {
260 		rw_exit(&dn->dn_struct_rwlock);
261 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
262 		if (dn->dn_bonus == NULL)
263 			dbuf_create_bonus(dn);
264 	}
265 	db = dn->dn_bonus;
266 
267 	/* as long as the bonus buf is held, the dnode will be held */
268 	if (refcount_add(&db->db_holds, tag) == 1) {
269 		VERIFY(dnode_add_ref(dn, db));
270 		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
271 	}
272 
273 	/*
274 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
275 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
276 	 * a dnode hold for every dbuf.
277 	 */
278 	rw_exit(&dn->dn_struct_rwlock);
279 
280 	dnode_rele(dn, FTAG);
281 
282 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
283 
284 	*dbp = &db->db;
285 	return (0);
286 }
287 
288 /*
289  * returns ENOENT, EIO, or 0.
290  *
291  * This interface will allocate a blank spill dbuf when a spill blk
292  * doesn't already exist on the dnode.
293  *
294  * if you only want to find an already existing spill db, then
295  * dmu_spill_hold_existing() should be used.
296  */
297 int
298 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
299 {
300 	dmu_buf_impl_t *db = NULL;
301 	int err;
302 
303 	if ((flags & DB_RF_HAVESTRUCT) == 0)
304 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
305 
306 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
307 
308 	if ((flags & DB_RF_HAVESTRUCT) == 0)
309 		rw_exit(&dn->dn_struct_rwlock);
310 
311 	ASSERT(db != NULL);
312 	err = dbuf_read(db, NULL, flags);
313 	if (err == 0)
314 		*dbp = &db->db;
315 	else
316 		dbuf_rele(db, tag);
317 	return (err);
318 }
319 
320 int
321 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
322 {
323 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
324 	dnode_t *dn;
325 	int err;
326 
327 	DB_DNODE_ENTER(db);
328 	dn = DB_DNODE(db);
329 
330 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
331 		err = SET_ERROR(EINVAL);
332 	} else {
333 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
334 
335 		if (!dn->dn_have_spill) {
336 			err = SET_ERROR(ENOENT);
337 		} else {
338 			err = dmu_spill_hold_by_dnode(dn,
339 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
340 		}
341 
342 		rw_exit(&dn->dn_struct_rwlock);
343 	}
344 
345 	DB_DNODE_EXIT(db);
346 	return (err);
347 }
348 
349 int
350 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
351 {
352 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
353 	dnode_t *dn;
354 	int err;
355 
356 	DB_DNODE_ENTER(db);
357 	dn = DB_DNODE(db);
358 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
359 	DB_DNODE_EXIT(db);
360 
361 	return (err);
362 }
363 
364 /*
365  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
366  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
367  * and can induce severe lock contention when writing to several files
368  * whose dnodes are in the same block.
369  */
370 static int
371 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
372     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
373 {
374 	dmu_buf_t **dbp;
375 	uint64_t blkid, nblks, i;
376 	uint32_t dbuf_flags;
377 	int err;
378 	zio_t *zio;
379 
380 	ASSERT(length <= DMU_MAX_ACCESS);
381 
382 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
383 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
384 		dbuf_flags |= DB_RF_NOPREFETCH;
385 
386 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
387 	if (dn->dn_datablkshift) {
388 		int blkshift = dn->dn_datablkshift;
389 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
390 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
391 	} else {
392 		if (offset + length > dn->dn_datablksz) {
393 			zfs_panic_recover("zfs: accessing past end of object "
394 			    "%llx/%llx (size=%u access=%llu+%llu)",
395 			    (longlong_t)dn->dn_objset->
396 			    os_dsl_dataset->ds_object,
397 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
398 			    (longlong_t)offset, (longlong_t)length);
399 			rw_exit(&dn->dn_struct_rwlock);
400 			return (SET_ERROR(EIO));
401 		}
402 		nblks = 1;
403 	}
404 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
405 
406 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
407 	blkid = dbuf_whichblock(dn, offset);
408 	for (i = 0; i < nblks; i++) {
409 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
410 		if (db == NULL) {
411 			rw_exit(&dn->dn_struct_rwlock);
412 			dmu_buf_rele_array(dbp, nblks, tag);
413 			zio_nowait(zio);
414 			return (SET_ERROR(EIO));
415 		}
416 		/* initiate async i/o */
417 		if (read) {
418 			(void) dbuf_read(db, zio, dbuf_flags);
419 		}
420 		dbp[i] = &db->db;
421 	}
422 	rw_exit(&dn->dn_struct_rwlock);
423 
424 	/* wait for async i/o */
425 	err = zio_wait(zio);
426 	if (err) {
427 		dmu_buf_rele_array(dbp, nblks, tag);
428 		return (err);
429 	}
430 
431 	/* wait for other io to complete */
432 	if (read) {
433 		for (i = 0; i < nblks; i++) {
434 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
435 			mutex_enter(&db->db_mtx);
436 			while (db->db_state == DB_READ ||
437 			    db->db_state == DB_FILL)
438 				cv_wait(&db->db_changed, &db->db_mtx);
439 			if (db->db_state == DB_UNCACHED)
440 				err = SET_ERROR(EIO);
441 			mutex_exit(&db->db_mtx);
442 			if (err) {
443 				dmu_buf_rele_array(dbp, nblks, tag);
444 				return (err);
445 			}
446 		}
447 	}
448 
449 	*numbufsp = nblks;
450 	*dbpp = dbp;
451 	return (0);
452 }
453 
454 static int
455 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
456     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
457 {
458 	dnode_t *dn;
459 	int err;
460 
461 	err = dnode_hold(os, object, FTAG, &dn);
462 	if (err)
463 		return (err);
464 
465 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
466 	    numbufsp, dbpp, DMU_READ_PREFETCH);
467 
468 	dnode_rele(dn, FTAG);
469 
470 	return (err);
471 }
472 
473 int
474 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
475     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
476 {
477 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
478 	dnode_t *dn;
479 	int err;
480 
481 	DB_DNODE_ENTER(db);
482 	dn = DB_DNODE(db);
483 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
484 	    numbufsp, dbpp, DMU_READ_PREFETCH);
485 	DB_DNODE_EXIT(db);
486 
487 	return (err);
488 }
489 
490 void
491 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
492 {
493 	int i;
494 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
495 
496 	if (numbufs == 0)
497 		return;
498 
499 	for (i = 0; i < numbufs; i++) {
500 		if (dbp[i])
501 			dbuf_rele(dbp[i], tag);
502 	}
503 
504 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
505 }
506 
507 /*
508  * Issue prefetch i/os for the given blocks.
509  *
510  * Note: The assumption is that we *know* these blocks will be needed
511  * almost immediately.  Therefore, the prefetch i/os will be issued at
512  * ZIO_PRIORITY_SYNC_READ
513  *
514  * Note: indirect blocks and other metadata will be read synchronously,
515  * causing this function to block if they are not already cached.
516  */
517 void
518 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
519 {
520 	dnode_t *dn;
521 	uint64_t blkid;
522 	int nblks, err;
523 
524 	if (zfs_prefetch_disable)
525 		return;
526 
527 	if (len == 0) {  /* they're interested in the bonus buffer */
528 		dn = DMU_META_DNODE(os);
529 
530 		if (object == 0 || object >= DN_MAX_OBJECT)
531 			return;
532 
533 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
534 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
535 		dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
536 		rw_exit(&dn->dn_struct_rwlock);
537 		return;
538 	}
539 
540 	/*
541 	 * XXX - Note, if the dnode for the requested object is not
542 	 * already cached, we will do a *synchronous* read in the
543 	 * dnode_hold() call.  The same is true for any indirects.
544 	 */
545 	err = dnode_hold(os, object, FTAG, &dn);
546 	if (err != 0)
547 		return;
548 
549 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
550 	if (dn->dn_datablkshift) {
551 		int blkshift = dn->dn_datablkshift;
552 		nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
553 		    P2ALIGN(offset, 1 << blkshift)) >> blkshift;
554 	} else {
555 		nblks = (offset < dn->dn_datablksz);
556 	}
557 
558 	if (nblks != 0) {
559 		blkid = dbuf_whichblock(dn, offset);
560 		for (int i = 0; i < nblks; i++)
561 			dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
562 	}
563 
564 	rw_exit(&dn->dn_struct_rwlock);
565 
566 	dnode_rele(dn, FTAG);
567 }
568 
569 /*
570  * Get the next "chunk" of file data to free.  We traverse the file from
571  * the end so that the file gets shorter over time (if we crashes in the
572  * middle, this will leave us in a better state).  We find allocated file
573  * data by simply searching the allocated level 1 indirects.
574  *
575  * On input, *start should be the first offset that does not need to be
576  * freed (e.g. "offset + length").  On return, *start will be the first
577  * offset that should be freed.
578  */
579 static int
580 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
581 {
582 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
583 	/* bytes of data covered by a level-1 indirect block */
584 	uint64_t iblkrange =
585 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
586 
587 	ASSERT3U(minimum, <=, *start);
588 
589 	if (*start - minimum <= iblkrange * maxblks) {
590 		*start = minimum;
591 		return (0);
592 	}
593 	ASSERT(ISP2(iblkrange));
594 
595 	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
596 		int err;
597 
598 		/*
599 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
600 		 * indirect block at or before the input offset.  We must
601 		 * decrement *start so that it is at the end of the region
602 		 * to search.
603 		 */
604 		(*start)--;
605 		err = dnode_next_offset(dn,
606 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
607 
608 		/* if there are no indirect blocks before start, we are done */
609 		if (err == ESRCH) {
610 			*start = minimum;
611 			break;
612 		} else if (err != 0) {
613 			return (err);
614 		}
615 
616 		/* set start to the beginning of this L1 indirect */
617 		*start = P2ALIGN(*start, iblkrange);
618 	}
619 	if (*start < minimum)
620 		*start = minimum;
621 	return (0);
622 }
623 
624 static int
625 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
626     uint64_t length)
627 {
628 	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
629 	int err;
630 
631 	if (offset >= object_size)
632 		return (0);
633 
634 	if (length == DMU_OBJECT_END || offset + length > object_size)
635 		length = object_size - offset;
636 
637 	while (length != 0) {
638 		uint64_t chunk_end, chunk_begin;
639 
640 		chunk_end = chunk_begin = offset + length;
641 
642 		/* move chunk_begin backwards to the beginning of this chunk */
643 		err = get_next_chunk(dn, &chunk_begin, offset);
644 		if (err)
645 			return (err);
646 		ASSERT3U(chunk_begin, >=, offset);
647 		ASSERT3U(chunk_begin, <=, chunk_end);
648 
649 		dmu_tx_t *tx = dmu_tx_create(os);
650 		dmu_tx_hold_free(tx, dn->dn_object,
651 		    chunk_begin, chunk_end - chunk_begin);
652 		err = dmu_tx_assign(tx, TXG_WAIT);
653 		if (err) {
654 			dmu_tx_abort(tx);
655 			return (err);
656 		}
657 		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
658 		dmu_tx_commit(tx);
659 
660 		length -= chunk_end - chunk_begin;
661 	}
662 	return (0);
663 }
664 
665 int
666 dmu_free_long_range(objset_t *os, uint64_t object,
667     uint64_t offset, uint64_t length)
668 {
669 	dnode_t *dn;
670 	int err;
671 
672 	err = dnode_hold(os, object, FTAG, &dn);
673 	if (err != 0)
674 		return (err);
675 	err = dmu_free_long_range_impl(os, dn, offset, length);
676 
677 	/*
678 	 * It is important to zero out the maxblkid when freeing the entire
679 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
680 	 * will take the fast path, and (b) dnode_reallocate() can verify
681 	 * that the entire file has been freed.
682 	 */
683 	if (offset == 0 && length == DMU_OBJECT_END)
684 		dn->dn_maxblkid = 0;
685 
686 	dnode_rele(dn, FTAG);
687 	return (err);
688 }
689 
690 int
691 dmu_free_long_object(objset_t *os, uint64_t object)
692 {
693 	dmu_tx_t *tx;
694 	int err;
695 
696 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
697 	if (err != 0)
698 		return (err);
699 
700 	tx = dmu_tx_create(os);
701 	dmu_tx_hold_bonus(tx, object);
702 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
703 	err = dmu_tx_assign(tx, TXG_WAIT);
704 	if (err == 0) {
705 		err = dmu_object_free(os, object, tx);
706 		dmu_tx_commit(tx);
707 	} else {
708 		dmu_tx_abort(tx);
709 	}
710 
711 	return (err);
712 }
713 
714 int
715 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
716     uint64_t size, dmu_tx_t *tx)
717 {
718 	dnode_t *dn;
719 	int err = dnode_hold(os, object, FTAG, &dn);
720 	if (err)
721 		return (err);
722 	ASSERT(offset < UINT64_MAX);
723 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
724 	dnode_free_range(dn, offset, size, tx);
725 	dnode_rele(dn, FTAG);
726 	return (0);
727 }
728 
729 int
730 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
731     void *buf, uint32_t flags)
732 {
733 	dnode_t *dn;
734 	dmu_buf_t **dbp;
735 	int numbufs, err;
736 
737 	err = dnode_hold(os, object, FTAG, &dn);
738 	if (err)
739 		return (err);
740 
741 	/*
742 	 * Deal with odd block sizes, where there can't be data past the first
743 	 * block.  If we ever do the tail block optimization, we will need to
744 	 * handle that here as well.
745 	 */
746 	if (dn->dn_maxblkid == 0) {
747 		int newsz = offset > dn->dn_datablksz ? 0 :
748 		    MIN(size, dn->dn_datablksz - offset);
749 		bzero((char *)buf + newsz, size - newsz);
750 		size = newsz;
751 	}
752 
753 	while (size > 0) {
754 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
755 		int i;
756 
757 		/*
758 		 * NB: we could do this block-at-a-time, but it's nice
759 		 * to be reading in parallel.
760 		 */
761 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
762 		    TRUE, FTAG, &numbufs, &dbp, flags);
763 		if (err)
764 			break;
765 
766 		for (i = 0; i < numbufs; i++) {
767 			int tocpy;
768 			int bufoff;
769 			dmu_buf_t *db = dbp[i];
770 
771 			ASSERT(size > 0);
772 
773 			bufoff = offset - db->db_offset;
774 			tocpy = (int)MIN(db->db_size - bufoff, size);
775 
776 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
777 
778 			offset += tocpy;
779 			size -= tocpy;
780 			buf = (char *)buf + tocpy;
781 		}
782 		dmu_buf_rele_array(dbp, numbufs, FTAG);
783 	}
784 	dnode_rele(dn, FTAG);
785 	return (err);
786 }
787 
788 void
789 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
790     const void *buf, dmu_tx_t *tx)
791 {
792 	dmu_buf_t **dbp;
793 	int numbufs, i;
794 
795 	if (size == 0)
796 		return;
797 
798 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
799 	    FALSE, FTAG, &numbufs, &dbp));
800 
801 	for (i = 0; i < numbufs; i++) {
802 		int tocpy;
803 		int bufoff;
804 		dmu_buf_t *db = dbp[i];
805 
806 		ASSERT(size > 0);
807 
808 		bufoff = offset - db->db_offset;
809 		tocpy = (int)MIN(db->db_size - bufoff, size);
810 
811 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
812 
813 		if (tocpy == db->db_size)
814 			dmu_buf_will_fill(db, tx);
815 		else
816 			dmu_buf_will_dirty(db, tx);
817 
818 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
819 
820 		if (tocpy == db->db_size)
821 			dmu_buf_fill_done(db, tx);
822 
823 		offset += tocpy;
824 		size -= tocpy;
825 		buf = (char *)buf + tocpy;
826 	}
827 	dmu_buf_rele_array(dbp, numbufs, FTAG);
828 }
829 
830 void
831 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
832     dmu_tx_t *tx)
833 {
834 	dmu_buf_t **dbp;
835 	int numbufs, i;
836 
837 	if (size == 0)
838 		return;
839 
840 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
841 	    FALSE, FTAG, &numbufs, &dbp));
842 
843 	for (i = 0; i < numbufs; i++) {
844 		dmu_buf_t *db = dbp[i];
845 
846 		dmu_buf_will_not_fill(db, tx);
847 	}
848 	dmu_buf_rele_array(dbp, numbufs, FTAG);
849 }
850 
851 /*
852  * DMU support for xuio
853  */
854 kstat_t *xuio_ksp = NULL;
855 
856 int
857 dmu_xuio_init(xuio_t *xuio, int nblk)
858 {
859 	dmu_xuio_t *priv;
860 	uio_t *uio = &xuio->xu_uio;
861 
862 	uio->uio_iovcnt = nblk;
863 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
864 
865 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
866 	priv->cnt = nblk;
867 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
868 	priv->iovp = uio->uio_iov;
869 	XUIO_XUZC_PRIV(xuio) = priv;
870 
871 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
872 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
873 	else
874 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
875 
876 	return (0);
877 }
878 
879 void
880 dmu_xuio_fini(xuio_t *xuio)
881 {
882 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
883 	int nblk = priv->cnt;
884 
885 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
886 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
887 	kmem_free(priv, sizeof (dmu_xuio_t));
888 
889 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
890 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
891 	else
892 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
893 }
894 
895 /*
896  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
897  * and increase priv->next by 1.
898  */
899 int
900 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
901 {
902 	struct iovec *iov;
903 	uio_t *uio = &xuio->xu_uio;
904 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
905 	int i = priv->next++;
906 
907 	ASSERT(i < priv->cnt);
908 	ASSERT(off + n <= arc_buf_size(abuf));
909 	iov = uio->uio_iov + i;
910 	iov->iov_base = (char *)abuf->b_data + off;
911 	iov->iov_len = n;
912 	priv->bufs[i] = abuf;
913 	return (0);
914 }
915 
916 int
917 dmu_xuio_cnt(xuio_t *xuio)
918 {
919 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
920 	return (priv->cnt);
921 }
922 
923 arc_buf_t *
924 dmu_xuio_arcbuf(xuio_t *xuio, int i)
925 {
926 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
927 
928 	ASSERT(i < priv->cnt);
929 	return (priv->bufs[i]);
930 }
931 
932 void
933 dmu_xuio_clear(xuio_t *xuio, int i)
934 {
935 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
936 
937 	ASSERT(i < priv->cnt);
938 	priv->bufs[i] = NULL;
939 }
940 
941 static void
942 xuio_stat_init(void)
943 {
944 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
945 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
946 	    KSTAT_FLAG_VIRTUAL);
947 	if (xuio_ksp != NULL) {
948 		xuio_ksp->ks_data = &xuio_stats;
949 		kstat_install(xuio_ksp);
950 	}
951 }
952 
953 static void
954 xuio_stat_fini(void)
955 {
956 	if (xuio_ksp != NULL) {
957 		kstat_delete(xuio_ksp);
958 		xuio_ksp = NULL;
959 	}
960 }
961 
962 void
963 xuio_stat_wbuf_copied()
964 {
965 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
966 }
967 
968 void
969 xuio_stat_wbuf_nocopy()
970 {
971 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
972 }
973 
974 #ifdef _KERNEL
975 int
976 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
977 {
978 	dmu_buf_t **dbp;
979 	int numbufs, i, err;
980 	xuio_t *xuio = NULL;
981 
982 	/*
983 	 * NB: we could do this block-at-a-time, but it's nice
984 	 * to be reading in parallel.
985 	 */
986 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
987 	    &numbufs, &dbp);
988 	if (err)
989 		return (err);
990 
991 	if (uio->uio_extflg == UIO_XUIO)
992 		xuio = (xuio_t *)uio;
993 
994 	for (i = 0; i < numbufs; i++) {
995 		int tocpy;
996 		int bufoff;
997 		dmu_buf_t *db = dbp[i];
998 
999 		ASSERT(size > 0);
1000 
1001 		bufoff = uio->uio_loffset - db->db_offset;
1002 		tocpy = (int)MIN(db->db_size - bufoff, size);
1003 
1004 		if (xuio) {
1005 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1006 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1007 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1008 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1009 			if (!err) {
1010 				uio->uio_resid -= tocpy;
1011 				uio->uio_loffset += tocpy;
1012 			}
1013 
1014 			if (abuf == dbuf_abuf)
1015 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1016 			else
1017 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1018 		} else {
1019 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1020 			    UIO_READ, uio);
1021 		}
1022 		if (err)
1023 			break;
1024 
1025 		size -= tocpy;
1026 	}
1027 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1028 
1029 	return (err);
1030 }
1031 
1032 static int
1033 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1034 {
1035 	dmu_buf_t **dbp;
1036 	int numbufs;
1037 	int err = 0;
1038 	int i;
1039 
1040 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1041 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1042 	if (err)
1043 		return (err);
1044 
1045 	for (i = 0; i < numbufs; i++) {
1046 		int tocpy;
1047 		int bufoff;
1048 		dmu_buf_t *db = dbp[i];
1049 
1050 		ASSERT(size > 0);
1051 
1052 		bufoff = uio->uio_loffset - db->db_offset;
1053 		tocpy = (int)MIN(db->db_size - bufoff, size);
1054 
1055 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1056 
1057 		if (tocpy == db->db_size)
1058 			dmu_buf_will_fill(db, tx);
1059 		else
1060 			dmu_buf_will_dirty(db, tx);
1061 
1062 		/*
1063 		 * XXX uiomove could block forever (eg. nfs-backed
1064 		 * pages).  There needs to be a uiolockdown() function
1065 		 * to lock the pages in memory, so that uiomove won't
1066 		 * block.
1067 		 */
1068 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1069 		    UIO_WRITE, uio);
1070 
1071 		if (tocpy == db->db_size)
1072 			dmu_buf_fill_done(db, tx);
1073 
1074 		if (err)
1075 			break;
1076 
1077 		size -= tocpy;
1078 	}
1079 
1080 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1081 	return (err);
1082 }
1083 
1084 int
1085 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1086     dmu_tx_t *tx)
1087 {
1088 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1089 	dnode_t *dn;
1090 	int err;
1091 
1092 	if (size == 0)
1093 		return (0);
1094 
1095 	DB_DNODE_ENTER(db);
1096 	dn = DB_DNODE(db);
1097 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1098 	DB_DNODE_EXIT(db);
1099 
1100 	return (err);
1101 }
1102 
1103 int
1104 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1105     dmu_tx_t *tx)
1106 {
1107 	dnode_t *dn;
1108 	int err;
1109 
1110 	if (size == 0)
1111 		return (0);
1112 
1113 	err = dnode_hold(os, object, FTAG, &dn);
1114 	if (err)
1115 		return (err);
1116 
1117 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1118 
1119 	dnode_rele(dn, FTAG);
1120 
1121 	return (err);
1122 }
1123 
1124 int
1125 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1126     page_t *pp, dmu_tx_t *tx)
1127 {
1128 	dmu_buf_t **dbp;
1129 	int numbufs, i;
1130 	int err;
1131 
1132 	if (size == 0)
1133 		return (0);
1134 
1135 	err = dmu_buf_hold_array(os, object, offset, size,
1136 	    FALSE, FTAG, &numbufs, &dbp);
1137 	if (err)
1138 		return (err);
1139 
1140 	for (i = 0; i < numbufs; i++) {
1141 		int tocpy, copied, thiscpy;
1142 		int bufoff;
1143 		dmu_buf_t *db = dbp[i];
1144 		caddr_t va;
1145 
1146 		ASSERT(size > 0);
1147 		ASSERT3U(db->db_size, >=, PAGESIZE);
1148 
1149 		bufoff = offset - db->db_offset;
1150 		tocpy = (int)MIN(db->db_size - bufoff, size);
1151 
1152 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1153 
1154 		if (tocpy == db->db_size)
1155 			dmu_buf_will_fill(db, tx);
1156 		else
1157 			dmu_buf_will_dirty(db, tx);
1158 
1159 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1160 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1161 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1162 			va = zfs_map_page(pp, S_READ);
1163 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1164 			zfs_unmap_page(pp, va);
1165 			pp = pp->p_next;
1166 			bufoff += PAGESIZE;
1167 		}
1168 
1169 		if (tocpy == db->db_size)
1170 			dmu_buf_fill_done(db, tx);
1171 
1172 		offset += tocpy;
1173 		size -= tocpy;
1174 	}
1175 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1176 	return (err);
1177 }
1178 #endif
1179 
1180 /*
1181  * Allocate a loaned anonymous arc buffer.
1182  */
1183 arc_buf_t *
1184 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1185 {
1186 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1187 	spa_t *spa;
1188 
1189 	DB_GET_SPA(&spa, db);
1190 	return (arc_loan_buf(spa, size));
1191 }
1192 
1193 /*
1194  * Free a loaned arc buffer.
1195  */
1196 void
1197 dmu_return_arcbuf(arc_buf_t *buf)
1198 {
1199 	arc_return_buf(buf, FTAG);
1200 	VERIFY(arc_buf_remove_ref(buf, FTAG));
1201 }
1202 
1203 /*
1204  * When possible directly assign passed loaned arc buffer to a dbuf.
1205  * If this is not possible copy the contents of passed arc buf via
1206  * dmu_write().
1207  */
1208 void
1209 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1210     dmu_tx_t *tx)
1211 {
1212 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1213 	dnode_t *dn;
1214 	dmu_buf_impl_t *db;
1215 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1216 	uint64_t blkid;
1217 
1218 	DB_DNODE_ENTER(dbuf);
1219 	dn = DB_DNODE(dbuf);
1220 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1221 	blkid = dbuf_whichblock(dn, offset);
1222 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1223 	rw_exit(&dn->dn_struct_rwlock);
1224 	DB_DNODE_EXIT(dbuf);
1225 
1226 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1227 		dbuf_assign_arcbuf(db, buf, tx);
1228 		dbuf_rele(db, FTAG);
1229 	} else {
1230 		objset_t *os;
1231 		uint64_t object;
1232 
1233 		DB_DNODE_ENTER(dbuf);
1234 		dn = DB_DNODE(dbuf);
1235 		os = dn->dn_objset;
1236 		object = dn->dn_object;
1237 		DB_DNODE_EXIT(dbuf);
1238 
1239 		dbuf_rele(db, FTAG);
1240 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1241 		dmu_return_arcbuf(buf);
1242 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1243 	}
1244 }
1245 
1246 typedef struct {
1247 	dbuf_dirty_record_t	*dsa_dr;
1248 	dmu_sync_cb_t		*dsa_done;
1249 	zgd_t			*dsa_zgd;
1250 	dmu_tx_t		*dsa_tx;
1251 } dmu_sync_arg_t;
1252 
1253 /* ARGSUSED */
1254 static void
1255 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1256 {
1257 	dmu_sync_arg_t *dsa = varg;
1258 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1259 	blkptr_t *bp = zio->io_bp;
1260 
1261 	if (zio->io_error == 0) {
1262 		if (BP_IS_HOLE(bp)) {
1263 			/*
1264 			 * A block of zeros may compress to a hole, but the
1265 			 * block size still needs to be known for replay.
1266 			 */
1267 			BP_SET_LSIZE(bp, db->db_size);
1268 		} else {
1269 			ASSERT(BP_GET_LEVEL(bp) == 0);
1270 			bp->blk_fill = 1;
1271 		}
1272 	}
1273 }
1274 
1275 static void
1276 dmu_sync_late_arrival_ready(zio_t *zio)
1277 {
1278 	dmu_sync_ready(zio, NULL, zio->io_private);
1279 }
1280 
1281 /* ARGSUSED */
1282 static void
1283 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1284 {
1285 	dmu_sync_arg_t *dsa = varg;
1286 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1287 	dmu_buf_impl_t *db = dr->dr_dbuf;
1288 
1289 	mutex_enter(&db->db_mtx);
1290 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1291 	if (zio->io_error == 0) {
1292 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1293 		if (dr->dt.dl.dr_nopwrite) {
1294 			blkptr_t *bp = zio->io_bp;
1295 			blkptr_t *bp_orig = &zio->io_bp_orig;
1296 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1297 
1298 			ASSERT(BP_EQUAL(bp, bp_orig));
1299 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1300 			ASSERT(zio_checksum_table[chksum].ci_dedup);
1301 		}
1302 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1303 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1304 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1305 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1306 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1307 	} else {
1308 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1309 	}
1310 	cv_broadcast(&db->db_changed);
1311 	mutex_exit(&db->db_mtx);
1312 
1313 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1314 
1315 	kmem_free(dsa, sizeof (*dsa));
1316 }
1317 
1318 static void
1319 dmu_sync_late_arrival_done(zio_t *zio)
1320 {
1321 	blkptr_t *bp = zio->io_bp;
1322 	dmu_sync_arg_t *dsa = zio->io_private;
1323 	blkptr_t *bp_orig = &zio->io_bp_orig;
1324 
1325 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1326 		/*
1327 		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1328 		 * then there is nothing to do here. Otherwise, free the
1329 		 * newly allocated block in this txg.
1330 		 */
1331 		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1332 			ASSERT(BP_EQUAL(bp, bp_orig));
1333 		} else {
1334 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1335 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1336 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1337 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1338 		}
1339 	}
1340 
1341 	dmu_tx_commit(dsa->dsa_tx);
1342 
1343 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1344 
1345 	kmem_free(dsa, sizeof (*dsa));
1346 }
1347 
1348 static int
1349 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1350     zio_prop_t *zp, zbookmark_t *zb)
1351 {
1352 	dmu_sync_arg_t *dsa;
1353 	dmu_tx_t *tx;
1354 
1355 	tx = dmu_tx_create(os);
1356 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1357 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1358 		dmu_tx_abort(tx);
1359 		/* Make zl_get_data do txg_waited_synced() */
1360 		return (SET_ERROR(EIO));
1361 	}
1362 
1363 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1364 	dsa->dsa_dr = NULL;
1365 	dsa->dsa_done = done;
1366 	dsa->dsa_zgd = zgd;
1367 	dsa->dsa_tx = tx;
1368 
1369 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1370 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1371 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1372 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1373 
1374 	return (0);
1375 }
1376 
1377 /*
1378  * Intent log support: sync the block associated with db to disk.
1379  * N.B. and XXX: the caller is responsible for making sure that the
1380  * data isn't changing while dmu_sync() is writing it.
1381  *
1382  * Return values:
1383  *
1384  *	EEXIST: this txg has already been synced, so there's nothing to do.
1385  *		The caller should not log the write.
1386  *
1387  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1388  *		The caller should not log the write.
1389  *
1390  *	EALREADY: this block is already in the process of being synced.
1391  *		The caller should track its progress (somehow).
1392  *
1393  *	EIO: could not do the I/O.
1394  *		The caller should do a txg_wait_synced().
1395  *
1396  *	0: the I/O has been initiated.
1397  *		The caller should log this blkptr in the done callback.
1398  *		It is possible that the I/O will fail, in which case
1399  *		the error will be reported to the done callback and
1400  *		propagated to pio from zio_done().
1401  */
1402 int
1403 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1404 {
1405 	blkptr_t *bp = zgd->zgd_bp;
1406 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1407 	objset_t *os = db->db_objset;
1408 	dsl_dataset_t *ds = os->os_dsl_dataset;
1409 	dbuf_dirty_record_t *dr;
1410 	dmu_sync_arg_t *dsa;
1411 	zbookmark_t zb;
1412 	zio_prop_t zp;
1413 	dnode_t *dn;
1414 
1415 	ASSERT(pio != NULL);
1416 	ASSERT(txg != 0);
1417 
1418 	SET_BOOKMARK(&zb, ds->ds_object,
1419 	    db->db.db_object, db->db_level, db->db_blkid);
1420 
1421 	DB_DNODE_ENTER(db);
1422 	dn = DB_DNODE(db);
1423 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1424 	DB_DNODE_EXIT(db);
1425 
1426 	/*
1427 	 * If we're frozen (running ziltest), we always need to generate a bp.
1428 	 */
1429 	if (txg > spa_freeze_txg(os->os_spa))
1430 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1431 
1432 	/*
1433 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1434 	 * and us.  If we determine that this txg is not yet syncing,
1435 	 * but it begins to sync a moment later, that's OK because the
1436 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1437 	 */
1438 	mutex_enter(&db->db_mtx);
1439 
1440 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1441 		/*
1442 		 * This txg has already synced.  There's nothing to do.
1443 		 */
1444 		mutex_exit(&db->db_mtx);
1445 		return (SET_ERROR(EEXIST));
1446 	}
1447 
1448 	if (txg <= spa_syncing_txg(os->os_spa)) {
1449 		/*
1450 		 * This txg is currently syncing, so we can't mess with
1451 		 * the dirty record anymore; just write a new log block.
1452 		 */
1453 		mutex_exit(&db->db_mtx);
1454 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1455 	}
1456 
1457 	dr = db->db_last_dirty;
1458 	while (dr && dr->dr_txg != txg)
1459 		dr = dr->dr_next;
1460 
1461 	if (dr == NULL) {
1462 		/*
1463 		 * There's no dr for this dbuf, so it must have been freed.
1464 		 * There's no need to log writes to freed blocks, so we're done.
1465 		 */
1466 		mutex_exit(&db->db_mtx);
1467 		return (SET_ERROR(ENOENT));
1468 	}
1469 
1470 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1471 
1472 	/*
1473 	 * Assume the on-disk data is X, the current syncing data is Y,
1474 	 * and the current in-memory data is Z (currently in dmu_sync).
1475 	 * X and Z are identical but Y is has been modified. Normally,
1476 	 * when X and Z are the same we will perform a nopwrite but if Y
1477 	 * is different we must disable nopwrite since the resulting write
1478 	 * of Y to disk can free the block containing X. If we allowed a
1479 	 * nopwrite to occur the block pointing to Z would reference a freed
1480 	 * block. Since this is a rare case we simplify this by disabling
1481 	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1482 	 * a previous transaction.
1483 	 */
1484 	if (dr->dr_next)
1485 		zp.zp_nopwrite = B_FALSE;
1486 
1487 	ASSERT(dr->dr_txg == txg);
1488 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1489 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1490 		/*
1491 		 * We have already issued a sync write for this buffer,
1492 		 * or this buffer has already been synced.  It could not
1493 		 * have been dirtied since, or we would have cleared the state.
1494 		 */
1495 		mutex_exit(&db->db_mtx);
1496 		return (SET_ERROR(EALREADY));
1497 	}
1498 
1499 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1500 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1501 	mutex_exit(&db->db_mtx);
1502 
1503 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1504 	dsa->dsa_dr = dr;
1505 	dsa->dsa_done = done;
1506 	dsa->dsa_zgd = zgd;
1507 	dsa->dsa_tx = NULL;
1508 
1509 	zio_nowait(arc_write(pio, os->os_spa, txg,
1510 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1511 	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1512 	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1513 	    ZIO_FLAG_CANFAIL, &zb));
1514 
1515 	return (0);
1516 }
1517 
1518 int
1519 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1520 	dmu_tx_t *tx)
1521 {
1522 	dnode_t *dn;
1523 	int err;
1524 
1525 	err = dnode_hold(os, object, FTAG, &dn);
1526 	if (err)
1527 		return (err);
1528 	err = dnode_set_blksz(dn, size, ibs, tx);
1529 	dnode_rele(dn, FTAG);
1530 	return (err);
1531 }
1532 
1533 void
1534 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1535 	dmu_tx_t *tx)
1536 {
1537 	dnode_t *dn;
1538 
1539 	/* XXX assumes dnode_hold will not get an i/o error */
1540 	(void) dnode_hold(os, object, FTAG, &dn);
1541 	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1542 	dn->dn_checksum = checksum;
1543 	dnode_setdirty(dn, tx);
1544 	dnode_rele(dn, FTAG);
1545 }
1546 
1547 void
1548 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1549 	dmu_tx_t *tx)
1550 {
1551 	dnode_t *dn;
1552 
1553 	/* XXX assumes dnode_hold will not get an i/o error */
1554 	(void) dnode_hold(os, object, FTAG, &dn);
1555 	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1556 	dn->dn_compress = compress;
1557 	dnode_setdirty(dn, tx);
1558 	dnode_rele(dn, FTAG);
1559 }
1560 
1561 int zfs_mdcomp_disable = 0;
1562 
1563 void
1564 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1565 {
1566 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1567 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1568 	    (wp & WP_SPILL));
1569 	enum zio_checksum checksum = os->os_checksum;
1570 	enum zio_compress compress = os->os_compress;
1571 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1572 	boolean_t dedup = B_FALSE;
1573 	boolean_t nopwrite = B_FALSE;
1574 	boolean_t dedup_verify = os->os_dedup_verify;
1575 	int copies = os->os_copies;
1576 
1577 	/*
1578 	 * We maintain different write policies for each of the following
1579 	 * types of data:
1580 	 *	 1. metadata
1581 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1582 	 *	 3. all other level 0 blocks
1583 	 */
1584 	if (ismd) {
1585 		/*
1586 		 * XXX -- we should design a compression algorithm
1587 		 * that specializes in arrays of bps.
1588 		 */
1589 		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1590 		    ZIO_COMPRESS_LZJB;
1591 
1592 		/*
1593 		 * Metadata always gets checksummed.  If the data
1594 		 * checksum is multi-bit correctable, and it's not a
1595 		 * ZBT-style checksum, then it's suitable for metadata
1596 		 * as well.  Otherwise, the metadata checksum defaults
1597 		 * to fletcher4.
1598 		 */
1599 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1600 		    zio_checksum_table[checksum].ci_eck)
1601 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1602 	} else if (wp & WP_NOFILL) {
1603 		ASSERT(level == 0);
1604 
1605 		/*
1606 		 * If we're writing preallocated blocks, we aren't actually
1607 		 * writing them so don't set any policy properties.  These
1608 		 * blocks are currently only used by an external subsystem
1609 		 * outside of zfs (i.e. dump) and not written by the zio
1610 		 * pipeline.
1611 		 */
1612 		compress = ZIO_COMPRESS_OFF;
1613 		checksum = ZIO_CHECKSUM_NOPARITY;
1614 	} else {
1615 		compress = zio_compress_select(dn->dn_compress, compress);
1616 
1617 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1618 		    zio_checksum_select(dn->dn_checksum, checksum) :
1619 		    dedup_checksum;
1620 
1621 		/*
1622 		 * Determine dedup setting.  If we are in dmu_sync(),
1623 		 * we won't actually dedup now because that's all
1624 		 * done in syncing context; but we do want to use the
1625 		 * dedup checkum.  If the checksum is not strong
1626 		 * enough to ensure unique signatures, force
1627 		 * dedup_verify.
1628 		 */
1629 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1630 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1631 			if (!zio_checksum_table[checksum].ci_dedup)
1632 				dedup_verify = B_TRUE;
1633 		}
1634 
1635 		/*
1636 		 * Enable nopwrite if we have a cryptographically secure
1637 		 * checksum that has no known collisions (i.e. SHA-256)
1638 		 * and compression is enabled.  We don't enable nopwrite if
1639 		 * dedup is enabled as the two features are mutually exclusive.
1640 		 */
1641 		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1642 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1643 	}
1644 
1645 	zp->zp_checksum = checksum;
1646 	zp->zp_compress = compress;
1647 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1648 	zp->zp_level = level;
1649 	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1650 	zp->zp_dedup = dedup;
1651 	zp->zp_dedup_verify = dedup && dedup_verify;
1652 	zp->zp_nopwrite = nopwrite;
1653 }
1654 
1655 int
1656 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1657 {
1658 	dnode_t *dn;
1659 	int i, err;
1660 
1661 	err = dnode_hold(os, object, FTAG, &dn);
1662 	if (err)
1663 		return (err);
1664 	/*
1665 	 * Sync any current changes before
1666 	 * we go trundling through the block pointers.
1667 	 */
1668 	for (i = 0; i < TXG_SIZE; i++) {
1669 		if (list_link_active(&dn->dn_dirty_link[i]))
1670 			break;
1671 	}
1672 	if (i != TXG_SIZE) {
1673 		dnode_rele(dn, FTAG);
1674 		txg_wait_synced(dmu_objset_pool(os), 0);
1675 		err = dnode_hold(os, object, FTAG, &dn);
1676 		if (err)
1677 			return (err);
1678 	}
1679 
1680 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1681 	dnode_rele(dn, FTAG);
1682 
1683 	return (err);
1684 }
1685 
1686 void
1687 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1688 {
1689 	dnode_phys_t *dnp;
1690 
1691 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1692 	mutex_enter(&dn->dn_mtx);
1693 
1694 	dnp = dn->dn_phys;
1695 
1696 	doi->doi_data_block_size = dn->dn_datablksz;
1697 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1698 	    1ULL << dn->dn_indblkshift : 0;
1699 	doi->doi_type = dn->dn_type;
1700 	doi->doi_bonus_type = dn->dn_bonustype;
1701 	doi->doi_bonus_size = dn->dn_bonuslen;
1702 	doi->doi_indirection = dn->dn_nlevels;
1703 	doi->doi_checksum = dn->dn_checksum;
1704 	doi->doi_compress = dn->dn_compress;
1705 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1706 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1707 	doi->doi_fill_count = 0;
1708 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1709 		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1710 
1711 	mutex_exit(&dn->dn_mtx);
1712 	rw_exit(&dn->dn_struct_rwlock);
1713 }
1714 
1715 /*
1716  * Get information on a DMU object.
1717  * If doi is NULL, just indicates whether the object exists.
1718  */
1719 int
1720 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1721 {
1722 	dnode_t *dn;
1723 	int err = dnode_hold(os, object, FTAG, &dn);
1724 
1725 	if (err)
1726 		return (err);
1727 
1728 	if (doi != NULL)
1729 		dmu_object_info_from_dnode(dn, doi);
1730 
1731 	dnode_rele(dn, FTAG);
1732 	return (0);
1733 }
1734 
1735 /*
1736  * As above, but faster; can be used when you have a held dbuf in hand.
1737  */
1738 void
1739 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1740 {
1741 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1742 
1743 	DB_DNODE_ENTER(db);
1744 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1745 	DB_DNODE_EXIT(db);
1746 }
1747 
1748 /*
1749  * Faster still when you only care about the size.
1750  * This is specifically optimized for zfs_getattr().
1751  */
1752 void
1753 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1754     u_longlong_t *nblk512)
1755 {
1756 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1757 	dnode_t *dn;
1758 
1759 	DB_DNODE_ENTER(db);
1760 	dn = DB_DNODE(db);
1761 
1762 	*blksize = dn->dn_datablksz;
1763 	/* add 1 for dnode space */
1764 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1765 	    SPA_MINBLOCKSHIFT) + 1;
1766 	DB_DNODE_EXIT(db);
1767 }
1768 
1769 void
1770 byteswap_uint64_array(void *vbuf, size_t size)
1771 {
1772 	uint64_t *buf = vbuf;
1773 	size_t count = size >> 3;
1774 	int i;
1775 
1776 	ASSERT((size & 7) == 0);
1777 
1778 	for (i = 0; i < count; i++)
1779 		buf[i] = BSWAP_64(buf[i]);
1780 }
1781 
1782 void
1783 byteswap_uint32_array(void *vbuf, size_t size)
1784 {
1785 	uint32_t *buf = vbuf;
1786 	size_t count = size >> 2;
1787 	int i;
1788 
1789 	ASSERT((size & 3) == 0);
1790 
1791 	for (i = 0; i < count; i++)
1792 		buf[i] = BSWAP_32(buf[i]);
1793 }
1794 
1795 void
1796 byteswap_uint16_array(void *vbuf, size_t size)
1797 {
1798 	uint16_t *buf = vbuf;
1799 	size_t count = size >> 1;
1800 	int i;
1801 
1802 	ASSERT((size & 1) == 0);
1803 
1804 	for (i = 0; i < count; i++)
1805 		buf[i] = BSWAP_16(buf[i]);
1806 }
1807 
1808 /* ARGSUSED */
1809 void
1810 byteswap_uint8_array(void *vbuf, size_t size)
1811 {
1812 }
1813 
1814 void
1815 dmu_init(void)
1816 {
1817 	zfs_dbgmsg_init();
1818 	sa_cache_init();
1819 	xuio_stat_init();
1820 	dmu_objset_init();
1821 	dnode_init();
1822 	dbuf_init();
1823 	zfetch_init();
1824 	l2arc_init();
1825 	arc_init();
1826 }
1827 
1828 void
1829 dmu_fini(void)
1830 {
1831 	arc_fini(); /* arc depends on l2arc, so arc must go first */
1832 	l2arc_fini();
1833 	zfetch_fini();
1834 	dbuf_fini();
1835 	dnode_fini();
1836 	dmu_objset_fini();
1837 	xuio_stat_fini();
1838 	sa_cache_fini();
1839 	zfs_dbgmsg_fini();
1840 }
1841