1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/dmu.h> 27 #include <sys/dmu_impl.h> 28 #include <sys/dmu_tx.h> 29 #include <sys/dbuf.h> 30 #include <sys/dnode.h> 31 #include <sys/zfs_context.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_traverse.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_pool.h> 37 #include <sys/dsl_synctask.h> 38 #include <sys/dsl_prop.h> 39 #include <sys/dmu_zfetch.h> 40 #include <sys/zfs_ioctl.h> 41 #include <sys/zap.h> 42 #include <sys/zio_checksum.h> 43 #ifdef _KERNEL 44 #include <sys/vmsystm.h> 45 #include <sys/zfs_znode.h> 46 #endif 47 48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 49 { byteswap_uint8_array, TRUE, "unallocated" }, 50 { zap_byteswap, TRUE, "object directory" }, 51 { byteswap_uint64_array, TRUE, "object array" }, 52 { byteswap_uint8_array, TRUE, "packed nvlist" }, 53 { byteswap_uint64_array, TRUE, "packed nvlist size" }, 54 { byteswap_uint64_array, TRUE, "bplist" }, 55 { byteswap_uint64_array, TRUE, "bplist header" }, 56 { byteswap_uint64_array, TRUE, "SPA space map header" }, 57 { byteswap_uint64_array, TRUE, "SPA space map" }, 58 { byteswap_uint64_array, TRUE, "ZIL intent log" }, 59 { dnode_buf_byteswap, TRUE, "DMU dnode" }, 60 { dmu_objset_byteswap, TRUE, "DMU objset" }, 61 { byteswap_uint64_array, TRUE, "DSL directory" }, 62 { zap_byteswap, TRUE, "DSL directory child map"}, 63 { zap_byteswap, TRUE, "DSL dataset snap map" }, 64 { zap_byteswap, TRUE, "DSL props" }, 65 { byteswap_uint64_array, TRUE, "DSL dataset" }, 66 { zfs_znode_byteswap, TRUE, "ZFS znode" }, 67 { zfs_oldacl_byteswap, TRUE, "ZFS V0 ACL" }, 68 { byteswap_uint8_array, FALSE, "ZFS plain file" }, 69 { zap_byteswap, TRUE, "ZFS directory" }, 70 { zap_byteswap, TRUE, "ZFS master node" }, 71 { zap_byteswap, TRUE, "ZFS delete queue" }, 72 { byteswap_uint8_array, FALSE, "zvol object" }, 73 { zap_byteswap, TRUE, "zvol prop" }, 74 { byteswap_uint8_array, FALSE, "other uint8[]" }, 75 { byteswap_uint64_array, FALSE, "other uint64[]" }, 76 { zap_byteswap, TRUE, "other ZAP" }, 77 { zap_byteswap, TRUE, "persistent error log" }, 78 { byteswap_uint8_array, TRUE, "SPA history" }, 79 { byteswap_uint64_array, TRUE, "SPA history offsets" }, 80 { zap_byteswap, TRUE, "Pool properties" }, 81 { zap_byteswap, TRUE, "DSL permissions" }, 82 { zfs_acl_byteswap, TRUE, "ZFS ACL" }, 83 { byteswap_uint8_array, TRUE, "ZFS SYSACL" }, 84 { byteswap_uint8_array, TRUE, "FUID table" }, 85 { byteswap_uint64_array, TRUE, "FUID table size" }, 86 { zap_byteswap, TRUE, "DSL dataset next clones"}, 87 { zap_byteswap, TRUE, "scrub work queue" }, 88 }; 89 90 int 91 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 92 void *tag, dmu_buf_t **dbp) 93 { 94 dnode_t *dn; 95 uint64_t blkid; 96 dmu_buf_impl_t *db; 97 int err; 98 99 err = dnode_hold(os->os, object, FTAG, &dn); 100 if (err) 101 return (err); 102 blkid = dbuf_whichblock(dn, offset); 103 rw_enter(&dn->dn_struct_rwlock, RW_READER); 104 db = dbuf_hold(dn, blkid, tag); 105 rw_exit(&dn->dn_struct_rwlock); 106 if (db == NULL) { 107 err = EIO; 108 } else { 109 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 110 if (err) { 111 dbuf_rele(db, tag); 112 db = NULL; 113 } 114 } 115 116 dnode_rele(dn, FTAG); 117 *dbp = &db->db; 118 return (err); 119 } 120 121 int 122 dmu_bonus_max(void) 123 { 124 return (DN_MAX_BONUSLEN); 125 } 126 127 int 128 dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx) 129 { 130 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 131 132 if (dn->dn_bonus != (dmu_buf_impl_t *)db) 133 return (EINVAL); 134 if (newsize < 0 || newsize > db->db_size) 135 return (EINVAL); 136 dnode_setbonuslen(dn, newsize, tx); 137 return (0); 138 } 139 140 /* 141 * returns ENOENT, EIO, or 0. 142 */ 143 int 144 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 145 { 146 dnode_t *dn; 147 dmu_buf_impl_t *db; 148 int error; 149 150 error = dnode_hold(os->os, object, FTAG, &dn); 151 if (error) 152 return (error); 153 154 rw_enter(&dn->dn_struct_rwlock, RW_READER); 155 if (dn->dn_bonus == NULL) { 156 rw_exit(&dn->dn_struct_rwlock); 157 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 158 if (dn->dn_bonus == NULL) 159 dbuf_create_bonus(dn); 160 } 161 db = dn->dn_bonus; 162 rw_exit(&dn->dn_struct_rwlock); 163 164 /* as long as the bonus buf is held, the dnode will be held */ 165 if (refcount_add(&db->db_holds, tag) == 1) 166 VERIFY(dnode_add_ref(dn, db)); 167 168 dnode_rele(dn, FTAG); 169 170 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED)); 171 172 *dbp = &db->db; 173 return (0); 174 } 175 176 /* 177 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 178 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 179 * and can induce severe lock contention when writing to several files 180 * whose dnodes are in the same block. 181 */ 182 static int 183 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, 184 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 185 { 186 dmu_buf_t **dbp; 187 uint64_t blkid, nblks, i; 188 uint32_t flags; 189 int err; 190 zio_t *zio; 191 192 ASSERT(length <= DMU_MAX_ACCESS); 193 194 flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT; 195 if (length > zfetch_array_rd_sz) 196 flags |= DB_RF_NOPREFETCH; 197 198 rw_enter(&dn->dn_struct_rwlock, RW_READER); 199 if (dn->dn_datablkshift) { 200 int blkshift = dn->dn_datablkshift; 201 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 202 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 203 } else { 204 if (offset + length > dn->dn_datablksz) { 205 zfs_panic_recover("zfs: accessing past end of object " 206 "%llx/%llx (size=%u access=%llu+%llu)", 207 (longlong_t)dn->dn_objset-> 208 os_dsl_dataset->ds_object, 209 (longlong_t)dn->dn_object, dn->dn_datablksz, 210 (longlong_t)offset, (longlong_t)length); 211 return (EIO); 212 } 213 nblks = 1; 214 } 215 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 216 217 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, TRUE); 218 blkid = dbuf_whichblock(dn, offset); 219 for (i = 0; i < nblks; i++) { 220 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 221 if (db == NULL) { 222 rw_exit(&dn->dn_struct_rwlock); 223 dmu_buf_rele_array(dbp, nblks, tag); 224 zio_nowait(zio); 225 return (EIO); 226 } 227 /* initiate async i/o */ 228 if (read) { 229 rw_exit(&dn->dn_struct_rwlock); 230 (void) dbuf_read(db, zio, flags); 231 rw_enter(&dn->dn_struct_rwlock, RW_READER); 232 } 233 dbp[i] = &db->db; 234 } 235 rw_exit(&dn->dn_struct_rwlock); 236 237 /* wait for async i/o */ 238 err = zio_wait(zio); 239 if (err) { 240 dmu_buf_rele_array(dbp, nblks, tag); 241 return (err); 242 } 243 244 /* wait for other io to complete */ 245 if (read) { 246 for (i = 0; i < nblks; i++) { 247 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 248 mutex_enter(&db->db_mtx); 249 while (db->db_state == DB_READ || 250 db->db_state == DB_FILL) 251 cv_wait(&db->db_changed, &db->db_mtx); 252 if (db->db_state == DB_UNCACHED) 253 err = EIO; 254 mutex_exit(&db->db_mtx); 255 if (err) { 256 dmu_buf_rele_array(dbp, nblks, tag); 257 return (err); 258 } 259 } 260 } 261 262 *numbufsp = nblks; 263 *dbpp = dbp; 264 return (0); 265 } 266 267 static int 268 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 269 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 270 { 271 dnode_t *dn; 272 int err; 273 274 err = dnode_hold(os->os, object, FTAG, &dn); 275 if (err) 276 return (err); 277 278 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 279 numbufsp, dbpp); 280 281 dnode_rele(dn, FTAG); 282 283 return (err); 284 } 285 286 int 287 dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 288 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 289 { 290 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 291 int err; 292 293 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 294 numbufsp, dbpp); 295 296 return (err); 297 } 298 299 void 300 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 301 { 302 int i; 303 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 304 305 if (numbufs == 0) 306 return; 307 308 for (i = 0; i < numbufs; i++) { 309 if (dbp[i]) 310 dbuf_rele(dbp[i], tag); 311 } 312 313 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 314 } 315 316 void 317 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 318 { 319 dnode_t *dn; 320 uint64_t blkid; 321 int nblks, i, err; 322 323 if (zfs_prefetch_disable) 324 return; 325 326 if (len == 0) { /* they're interested in the bonus buffer */ 327 dn = os->os->os_meta_dnode; 328 329 if (object == 0 || object >= DN_MAX_OBJECT) 330 return; 331 332 rw_enter(&dn->dn_struct_rwlock, RW_READER); 333 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 334 dbuf_prefetch(dn, blkid); 335 rw_exit(&dn->dn_struct_rwlock); 336 return; 337 } 338 339 /* 340 * XXX - Note, if the dnode for the requested object is not 341 * already cached, we will do a *synchronous* read in the 342 * dnode_hold() call. The same is true for any indirects. 343 */ 344 err = dnode_hold(os->os, object, FTAG, &dn); 345 if (err != 0) 346 return; 347 348 rw_enter(&dn->dn_struct_rwlock, RW_READER); 349 if (dn->dn_datablkshift) { 350 int blkshift = dn->dn_datablkshift; 351 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 352 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 353 } else { 354 nblks = (offset < dn->dn_datablksz); 355 } 356 357 if (nblks != 0) { 358 blkid = dbuf_whichblock(dn, offset); 359 for (i = 0; i < nblks; i++) 360 dbuf_prefetch(dn, blkid+i); 361 } 362 363 rw_exit(&dn->dn_struct_rwlock); 364 365 dnode_rele(dn, FTAG); 366 } 367 368 static int 369 get_next_chunk(dnode_t *dn, uint64_t *offset, uint64_t limit) 370 { 371 uint64_t len = *offset - limit; 372 uint64_t chunk_len = dn->dn_datablksz * DMU_MAX_DELETEBLKCNT; 373 uint64_t subchunk = 374 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 375 376 ASSERT(limit <= *offset); 377 378 if (len <= chunk_len) { 379 *offset = limit; 380 return (0); 381 } 382 383 ASSERT(ISP2(subchunk)); 384 385 while (*offset > limit) { 386 uint64_t initial_offset = P2ROUNDUP(*offset, subchunk); 387 uint64_t delta; 388 int err; 389 390 /* skip over allocated data */ 391 err = dnode_next_offset(dn, 392 DNODE_FIND_HOLE|DNODE_FIND_BACKWARDS, offset, 1, 1, 0); 393 if (err == ESRCH) 394 *offset = limit; 395 else if (err) 396 return (err); 397 398 ASSERT3U(*offset, <=, initial_offset); 399 *offset = P2ALIGN(*offset, subchunk); 400 delta = initial_offset - *offset; 401 if (delta >= chunk_len) { 402 *offset += delta - chunk_len; 403 return (0); 404 } 405 chunk_len -= delta; 406 407 /* skip over unallocated data */ 408 err = dnode_next_offset(dn, 409 DNODE_FIND_BACKWARDS, offset, 1, 1, 0); 410 if (err == ESRCH) 411 *offset = limit; 412 else if (err) 413 return (err); 414 415 if (*offset < limit) 416 *offset = limit; 417 ASSERT3U(*offset, <, initial_offset); 418 } 419 return (0); 420 } 421 422 static int 423 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 424 uint64_t length, boolean_t free_dnode) 425 { 426 dmu_tx_t *tx; 427 uint64_t object_size, start, end, len; 428 boolean_t trunc = (length == DMU_OBJECT_END); 429 int align, err; 430 431 align = 1 << dn->dn_datablkshift; 432 ASSERT(align > 0); 433 object_size = align == 1 ? dn->dn_datablksz : 434 (dn->dn_maxblkid + 1) << dn->dn_datablkshift; 435 436 if (trunc || (end = offset + length) > object_size) 437 end = object_size; 438 if (end <= offset) 439 return (0); 440 length = end - offset; 441 442 while (length) { 443 start = end; 444 err = get_next_chunk(dn, &start, offset); 445 if (err) 446 return (err); 447 len = trunc ? DMU_OBJECT_END : end - start; 448 449 tx = dmu_tx_create(os); 450 dmu_tx_hold_free(tx, dn->dn_object, start, len); 451 err = dmu_tx_assign(tx, TXG_WAIT); 452 if (err) { 453 dmu_tx_abort(tx); 454 return (err); 455 } 456 457 dnode_free_range(dn, start, trunc ? -1 : len, tx); 458 459 if (start == 0 && free_dnode) { 460 ASSERT(trunc); 461 dnode_free(dn, tx); 462 } 463 464 length -= end - start; 465 466 dmu_tx_commit(tx); 467 end = start; 468 } 469 return (0); 470 } 471 472 int 473 dmu_free_long_range(objset_t *os, uint64_t object, 474 uint64_t offset, uint64_t length) 475 { 476 dnode_t *dn; 477 int err; 478 479 err = dnode_hold(os->os, object, FTAG, &dn); 480 if (err != 0) 481 return (err); 482 err = dmu_free_long_range_impl(os, dn, offset, length, FALSE); 483 dnode_rele(dn, FTAG); 484 return (err); 485 } 486 487 int 488 dmu_free_object(objset_t *os, uint64_t object) 489 { 490 dnode_t *dn; 491 dmu_tx_t *tx; 492 int err; 493 494 err = dnode_hold_impl(os->os, object, DNODE_MUST_BE_ALLOCATED, 495 FTAG, &dn); 496 if (err != 0) 497 return (err); 498 if (dn->dn_nlevels == 1) { 499 tx = dmu_tx_create(os); 500 dmu_tx_hold_bonus(tx, object); 501 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END); 502 err = dmu_tx_assign(tx, TXG_WAIT); 503 if (err == 0) { 504 dnode_free_range(dn, 0, DMU_OBJECT_END, tx); 505 dnode_free(dn, tx); 506 dmu_tx_commit(tx); 507 } else { 508 dmu_tx_abort(tx); 509 } 510 } else { 511 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE); 512 } 513 dnode_rele(dn, FTAG); 514 return (err); 515 } 516 517 int 518 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 519 uint64_t size, dmu_tx_t *tx) 520 { 521 dnode_t *dn; 522 int err = dnode_hold(os->os, object, FTAG, &dn); 523 if (err) 524 return (err); 525 ASSERT(offset < UINT64_MAX); 526 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 527 dnode_free_range(dn, offset, size, tx); 528 dnode_rele(dn, FTAG); 529 return (0); 530 } 531 532 int 533 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 534 void *buf) 535 { 536 dnode_t *dn; 537 dmu_buf_t **dbp; 538 int numbufs, i, err; 539 540 err = dnode_hold(os->os, object, FTAG, &dn); 541 if (err) 542 return (err); 543 544 /* 545 * Deal with odd block sizes, where there can't be data past the first 546 * block. If we ever do the tail block optimization, we will need to 547 * handle that here as well. 548 */ 549 if (dn->dn_datablkshift == 0) { 550 int newsz = offset > dn->dn_datablksz ? 0 : 551 MIN(size, dn->dn_datablksz - offset); 552 bzero((char *)buf + newsz, size - newsz); 553 size = newsz; 554 } 555 556 while (size > 0) { 557 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 558 559 /* 560 * NB: we could do this block-at-a-time, but it's nice 561 * to be reading in parallel. 562 */ 563 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 564 TRUE, FTAG, &numbufs, &dbp); 565 if (err) 566 break; 567 568 for (i = 0; i < numbufs; i++) { 569 int tocpy; 570 int bufoff; 571 dmu_buf_t *db = dbp[i]; 572 573 ASSERT(size > 0); 574 575 bufoff = offset - db->db_offset; 576 tocpy = (int)MIN(db->db_size - bufoff, size); 577 578 bcopy((char *)db->db_data + bufoff, buf, tocpy); 579 580 offset += tocpy; 581 size -= tocpy; 582 buf = (char *)buf + tocpy; 583 } 584 dmu_buf_rele_array(dbp, numbufs, FTAG); 585 } 586 dnode_rele(dn, FTAG); 587 return (err); 588 } 589 590 void 591 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 592 const void *buf, dmu_tx_t *tx) 593 { 594 dmu_buf_t **dbp; 595 int numbufs, i; 596 597 if (size == 0) 598 return; 599 600 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 601 FALSE, FTAG, &numbufs, &dbp)); 602 603 for (i = 0; i < numbufs; i++) { 604 int tocpy; 605 int bufoff; 606 dmu_buf_t *db = dbp[i]; 607 608 ASSERT(size > 0); 609 610 bufoff = offset - db->db_offset; 611 tocpy = (int)MIN(db->db_size - bufoff, size); 612 613 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 614 615 if (tocpy == db->db_size) 616 dmu_buf_will_fill(db, tx); 617 else 618 dmu_buf_will_dirty(db, tx); 619 620 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 621 622 if (tocpy == db->db_size) 623 dmu_buf_fill_done(db, tx); 624 625 offset += tocpy; 626 size -= tocpy; 627 buf = (char *)buf + tocpy; 628 } 629 dmu_buf_rele_array(dbp, numbufs, FTAG); 630 } 631 632 #ifdef _KERNEL 633 int 634 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 635 { 636 dmu_buf_t **dbp; 637 int numbufs, i, err; 638 639 /* 640 * NB: we could do this block-at-a-time, but it's nice 641 * to be reading in parallel. 642 */ 643 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 644 &numbufs, &dbp); 645 if (err) 646 return (err); 647 648 for (i = 0; i < numbufs; i++) { 649 int tocpy; 650 int bufoff; 651 dmu_buf_t *db = dbp[i]; 652 653 ASSERT(size > 0); 654 655 bufoff = uio->uio_loffset - db->db_offset; 656 tocpy = (int)MIN(db->db_size - bufoff, size); 657 658 err = uiomove((char *)db->db_data + bufoff, tocpy, 659 UIO_READ, uio); 660 if (err) 661 break; 662 663 size -= tocpy; 664 } 665 dmu_buf_rele_array(dbp, numbufs, FTAG); 666 667 return (err); 668 } 669 670 int 671 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 672 dmu_tx_t *tx) 673 { 674 dmu_buf_t **dbp; 675 int numbufs, i; 676 int err = 0; 677 678 if (size == 0) 679 return (0); 680 681 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, 682 FALSE, FTAG, &numbufs, &dbp); 683 if (err) 684 return (err); 685 686 for (i = 0; i < numbufs; i++) { 687 int tocpy; 688 int bufoff; 689 dmu_buf_t *db = dbp[i]; 690 691 ASSERT(size > 0); 692 693 bufoff = uio->uio_loffset - db->db_offset; 694 tocpy = (int)MIN(db->db_size - bufoff, size); 695 696 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 697 698 if (tocpy == db->db_size) 699 dmu_buf_will_fill(db, tx); 700 else 701 dmu_buf_will_dirty(db, tx); 702 703 /* 704 * XXX uiomove could block forever (eg. nfs-backed 705 * pages). There needs to be a uiolockdown() function 706 * to lock the pages in memory, so that uiomove won't 707 * block. 708 */ 709 err = uiomove((char *)db->db_data + bufoff, tocpy, 710 UIO_WRITE, uio); 711 712 if (tocpy == db->db_size) 713 dmu_buf_fill_done(db, tx); 714 715 if (err) 716 break; 717 718 size -= tocpy; 719 } 720 dmu_buf_rele_array(dbp, numbufs, FTAG); 721 return (err); 722 } 723 724 int 725 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 726 page_t *pp, dmu_tx_t *tx) 727 { 728 dmu_buf_t **dbp; 729 int numbufs, i; 730 int err; 731 732 if (size == 0) 733 return (0); 734 735 err = dmu_buf_hold_array(os, object, offset, size, 736 FALSE, FTAG, &numbufs, &dbp); 737 if (err) 738 return (err); 739 740 for (i = 0; i < numbufs; i++) { 741 int tocpy, copied, thiscpy; 742 int bufoff; 743 dmu_buf_t *db = dbp[i]; 744 caddr_t va; 745 746 ASSERT(size > 0); 747 ASSERT3U(db->db_size, >=, PAGESIZE); 748 749 bufoff = offset - db->db_offset; 750 tocpy = (int)MIN(db->db_size - bufoff, size); 751 752 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 753 754 if (tocpy == db->db_size) 755 dmu_buf_will_fill(db, tx); 756 else 757 dmu_buf_will_dirty(db, tx); 758 759 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 760 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 761 thiscpy = MIN(PAGESIZE, tocpy - copied); 762 va = zfs_map_page(pp, S_READ); 763 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 764 zfs_unmap_page(pp, va); 765 pp = pp->p_next; 766 bufoff += PAGESIZE; 767 } 768 769 if (tocpy == db->db_size) 770 dmu_buf_fill_done(db, tx); 771 772 if (err) 773 break; 774 775 offset += tocpy; 776 size -= tocpy; 777 } 778 dmu_buf_rele_array(dbp, numbufs, FTAG); 779 return (err); 780 } 781 #endif 782 783 typedef struct { 784 dbuf_dirty_record_t *dr; 785 dmu_sync_cb_t *done; 786 void *arg; 787 } dmu_sync_arg_t; 788 789 /* ARGSUSED */ 790 static void 791 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 792 { 793 dmu_sync_arg_t *in = varg; 794 dbuf_dirty_record_t *dr = in->dr; 795 dmu_buf_impl_t *db = dr->dr_dbuf; 796 dmu_sync_cb_t *done = in->done; 797 798 if (!BP_IS_HOLE(zio->io_bp)) { 799 zio->io_bp->blk_fill = 1; 800 BP_SET_TYPE(zio->io_bp, db->db_dnode->dn_type); 801 BP_SET_LEVEL(zio->io_bp, 0); 802 } 803 804 mutex_enter(&db->db_mtx); 805 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 806 dr->dt.dl.dr_overridden_by = *zio->io_bp; /* structure assignment */ 807 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 808 cv_broadcast(&db->db_changed); 809 mutex_exit(&db->db_mtx); 810 811 if (done) 812 done(&(db->db), in->arg); 813 814 kmem_free(in, sizeof (dmu_sync_arg_t)); 815 } 816 817 /* 818 * Intent log support: sync the block associated with db to disk. 819 * N.B. and XXX: the caller is responsible for making sure that the 820 * data isn't changing while dmu_sync() is writing it. 821 * 822 * Return values: 823 * 824 * EEXIST: this txg has already been synced, so there's nothing to to. 825 * The caller should not log the write. 826 * 827 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 828 * The caller should not log the write. 829 * 830 * EALREADY: this block is already in the process of being synced. 831 * The caller should track its progress (somehow). 832 * 833 * EINPROGRESS: the IO has been initiated. 834 * The caller should log this blkptr in the callback. 835 * 836 * 0: completed. Sets *bp to the blkptr just written. 837 * The caller should log this blkptr immediately. 838 */ 839 int 840 dmu_sync(zio_t *pio, dmu_buf_t *db_fake, 841 blkptr_t *bp, uint64_t txg, dmu_sync_cb_t *done, void *arg) 842 { 843 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 844 objset_impl_t *os = db->db_objset; 845 dsl_pool_t *dp = os->os_dsl_dataset->ds_dir->dd_pool; 846 tx_state_t *tx = &dp->dp_tx; 847 dbuf_dirty_record_t *dr; 848 dmu_sync_arg_t *in; 849 zbookmark_t zb; 850 writeprops_t wp = { 0 }; 851 zio_t *zio; 852 int zio_flags; 853 int err; 854 855 ASSERT(BP_IS_HOLE(bp)); 856 ASSERT(txg != 0); 857 858 859 dprintf("dmu_sync txg=%llu, s,o,q %llu %llu %llu\n", 860 txg, tx->tx_synced_txg, tx->tx_open_txg, tx->tx_quiesced_txg); 861 862 /* 863 * XXX - would be nice if we could do this without suspending... 864 */ 865 txg_suspend(dp); 866 867 /* 868 * If this txg already synced, there's nothing to do. 869 */ 870 if (txg <= tx->tx_synced_txg) { 871 txg_resume(dp); 872 /* 873 * If we're running ziltest, we need the blkptr regardless. 874 */ 875 if (txg > spa_freeze_txg(dp->dp_spa)) { 876 /* if db_blkptr == NULL, this was an empty write */ 877 if (db->db_blkptr) 878 *bp = *db->db_blkptr; /* structure assignment */ 879 return (0); 880 } 881 return (EEXIST); 882 } 883 884 mutex_enter(&db->db_mtx); 885 886 if (txg == tx->tx_syncing_txg) { 887 while (db->db_data_pending) { 888 /* 889 * IO is in-progress. Wait for it to finish. 890 * XXX - would be nice to be able to somehow "attach" 891 * this zio to the parent zio passed in. 892 */ 893 cv_wait(&db->db_changed, &db->db_mtx); 894 if (!db->db_data_pending && 895 db->db_blkptr && BP_IS_HOLE(db->db_blkptr)) { 896 /* 897 * IO was compressed away 898 */ 899 *bp = *db->db_blkptr; /* structure assignment */ 900 mutex_exit(&db->db_mtx); 901 txg_resume(dp); 902 return (0); 903 } 904 ASSERT(db->db_data_pending || 905 (db->db_blkptr && db->db_blkptr->blk_birth == txg)); 906 } 907 908 if (db->db_blkptr && db->db_blkptr->blk_birth == txg) { 909 /* 910 * IO is already completed. 911 */ 912 *bp = *db->db_blkptr; /* structure assignment */ 913 mutex_exit(&db->db_mtx); 914 txg_resume(dp); 915 return (0); 916 } 917 } 918 919 dr = db->db_last_dirty; 920 while (dr && dr->dr_txg > txg) 921 dr = dr->dr_next; 922 if (dr == NULL || dr->dr_txg < txg) { 923 /* 924 * This dbuf isn't dirty, must have been free_range'd. 925 * There's no need to log writes to freed blocks, so we're done. 926 */ 927 mutex_exit(&db->db_mtx); 928 txg_resume(dp); 929 return (ENOENT); 930 } 931 932 ASSERT(dr->dr_txg == txg); 933 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 934 /* 935 * We have already issued a sync write for this buffer. 936 */ 937 mutex_exit(&db->db_mtx); 938 txg_resume(dp); 939 return (EALREADY); 940 } else if (dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 941 /* 942 * This buffer has already been synced. It could not 943 * have been dirtied since, or we would have cleared the state. 944 */ 945 *bp = dr->dt.dl.dr_overridden_by; /* structure assignment */ 946 mutex_exit(&db->db_mtx); 947 txg_resume(dp); 948 return (0); 949 } 950 951 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 952 in = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 953 in->dr = dr; 954 in->done = done; 955 in->arg = arg; 956 mutex_exit(&db->db_mtx); 957 txg_resume(dp); 958 959 zb.zb_objset = os->os_dsl_dataset->ds_object; 960 zb.zb_object = db->db.db_object; 961 zb.zb_level = db->db_level; 962 zb.zb_blkid = db->db_blkid; 963 zio_flags = ZIO_FLAG_MUSTSUCCEED; 964 if (dmu_ot[db->db_dnode->dn_type].ot_metadata || zb.zb_level != 0) 965 zio_flags |= ZIO_FLAG_METADATA; 966 wp.wp_type = db->db_dnode->dn_type; 967 wp.wp_copies = os->os_copies; 968 wp.wp_level = db->db_level; 969 wp.wp_dnchecksum = db->db_dnode->dn_checksum; 970 wp.wp_oschecksum = os->os_checksum; 971 wp.wp_dncompress = db->db_dnode->dn_compress; 972 wp.wp_oscompress = os->os_compress; 973 zio = arc_write(pio, os->os_spa, &wp, 974 DBUF_IS_L2CACHEABLE(db), txg, bp, dr->dt.dl.dr_data, NULL, 975 dmu_sync_done, in, ZIO_PRIORITY_SYNC_WRITE, zio_flags, &zb); 976 977 if (pio) { 978 zio_nowait(zio); 979 err = EINPROGRESS; 980 } else { 981 err = zio_wait(zio); 982 ASSERT(err == 0); 983 } 984 return (err); 985 } 986 987 int 988 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 989 dmu_tx_t *tx) 990 { 991 dnode_t *dn; 992 int err; 993 994 err = dnode_hold(os->os, object, FTAG, &dn); 995 if (err) 996 return (err); 997 err = dnode_set_blksz(dn, size, ibs, tx); 998 dnode_rele(dn, FTAG); 999 return (err); 1000 } 1001 1002 void 1003 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1004 dmu_tx_t *tx) 1005 { 1006 dnode_t *dn; 1007 1008 /* XXX assumes dnode_hold will not get an i/o error */ 1009 (void) dnode_hold(os->os, object, FTAG, &dn); 1010 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1011 dn->dn_checksum = checksum; 1012 dnode_setdirty(dn, tx); 1013 dnode_rele(dn, FTAG); 1014 } 1015 1016 void 1017 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1018 dmu_tx_t *tx) 1019 { 1020 dnode_t *dn; 1021 1022 /* XXX assumes dnode_hold will not get an i/o error */ 1023 (void) dnode_hold(os->os, object, FTAG, &dn); 1024 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1025 dn->dn_compress = compress; 1026 dnode_setdirty(dn, tx); 1027 dnode_rele(dn, FTAG); 1028 } 1029 1030 int 1031 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1032 { 1033 dnode_t *dn; 1034 int i, err; 1035 1036 err = dnode_hold(os->os, object, FTAG, &dn); 1037 if (err) 1038 return (err); 1039 /* 1040 * Sync any current changes before 1041 * we go trundling through the block pointers. 1042 */ 1043 for (i = 0; i < TXG_SIZE; i++) { 1044 if (list_link_active(&dn->dn_dirty_link[i])) 1045 break; 1046 } 1047 if (i != TXG_SIZE) { 1048 dnode_rele(dn, FTAG); 1049 txg_wait_synced(dmu_objset_pool(os), 0); 1050 err = dnode_hold(os->os, object, FTAG, &dn); 1051 if (err) 1052 return (err); 1053 } 1054 1055 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1056 dnode_rele(dn, FTAG); 1057 1058 return (err); 1059 } 1060 1061 void 1062 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1063 { 1064 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1065 mutex_enter(&dn->dn_mtx); 1066 1067 doi->doi_data_block_size = dn->dn_datablksz; 1068 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1069 1ULL << dn->dn_indblkshift : 0; 1070 doi->doi_indirection = dn->dn_nlevels; 1071 doi->doi_checksum = dn->dn_checksum; 1072 doi->doi_compress = dn->dn_compress; 1073 doi->doi_physical_blks = (DN_USED_BYTES(dn->dn_phys) + 1074 SPA_MINBLOCKSIZE/2) >> SPA_MINBLOCKSHIFT; 1075 doi->doi_max_block_offset = dn->dn_phys->dn_maxblkid; 1076 doi->doi_type = dn->dn_type; 1077 doi->doi_bonus_size = dn->dn_bonuslen; 1078 doi->doi_bonus_type = dn->dn_bonustype; 1079 1080 mutex_exit(&dn->dn_mtx); 1081 rw_exit(&dn->dn_struct_rwlock); 1082 } 1083 1084 /* 1085 * Get information on a DMU object. 1086 * If doi is NULL, just indicates whether the object exists. 1087 */ 1088 int 1089 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1090 { 1091 dnode_t *dn; 1092 int err = dnode_hold(os->os, object, FTAG, &dn); 1093 1094 if (err) 1095 return (err); 1096 1097 if (doi != NULL) 1098 dmu_object_info_from_dnode(dn, doi); 1099 1100 dnode_rele(dn, FTAG); 1101 return (0); 1102 } 1103 1104 /* 1105 * As above, but faster; can be used when you have a held dbuf in hand. 1106 */ 1107 void 1108 dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi) 1109 { 1110 dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi); 1111 } 1112 1113 /* 1114 * Faster still when you only care about the size. 1115 * This is specifically optimized for zfs_getattr(). 1116 */ 1117 void 1118 dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512) 1119 { 1120 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1121 1122 *blksize = dn->dn_datablksz; 1123 /* add 1 for dnode space */ 1124 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1125 SPA_MINBLOCKSHIFT) + 1; 1126 } 1127 1128 void 1129 byteswap_uint64_array(void *vbuf, size_t size) 1130 { 1131 uint64_t *buf = vbuf; 1132 size_t count = size >> 3; 1133 int i; 1134 1135 ASSERT((size & 7) == 0); 1136 1137 for (i = 0; i < count; i++) 1138 buf[i] = BSWAP_64(buf[i]); 1139 } 1140 1141 void 1142 byteswap_uint32_array(void *vbuf, size_t size) 1143 { 1144 uint32_t *buf = vbuf; 1145 size_t count = size >> 2; 1146 int i; 1147 1148 ASSERT((size & 3) == 0); 1149 1150 for (i = 0; i < count; i++) 1151 buf[i] = BSWAP_32(buf[i]); 1152 } 1153 1154 void 1155 byteswap_uint16_array(void *vbuf, size_t size) 1156 { 1157 uint16_t *buf = vbuf; 1158 size_t count = size >> 1; 1159 int i; 1160 1161 ASSERT((size & 1) == 0); 1162 1163 for (i = 0; i < count; i++) 1164 buf[i] = BSWAP_16(buf[i]); 1165 } 1166 1167 /* ARGSUSED */ 1168 void 1169 byteswap_uint8_array(void *vbuf, size_t size) 1170 { 1171 } 1172 1173 void 1174 dmu_init(void) 1175 { 1176 dbuf_init(); 1177 dnode_init(); 1178 arc_init(); 1179 l2arc_init(); 1180 } 1181 1182 void 1183 dmu_fini(void) 1184 { 1185 arc_fini(); 1186 dnode_fini(); 1187 dbuf_fini(); 1188 l2arc_fini(); 1189 } 1190