1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/dmu.h> 26 #include <sys/dmu_impl.h> 27 #include <sys/dmu_tx.h> 28 #include <sys/dbuf.h> 29 #include <sys/dnode.h> 30 #include <sys/zfs_context.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_traverse.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_pool.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_prop.h> 38 #include <sys/dmu_zfetch.h> 39 #include <sys/zfs_ioctl.h> 40 #include <sys/zap.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/sa.h> 43 #ifdef _KERNEL 44 #include <sys/vmsystm.h> 45 #include <sys/zfs_znode.h> 46 #endif 47 48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 49 { byteswap_uint8_array, TRUE, "unallocated" }, 50 { zap_byteswap, TRUE, "object directory" }, 51 { byteswap_uint64_array, TRUE, "object array" }, 52 { byteswap_uint8_array, TRUE, "packed nvlist" }, 53 { byteswap_uint64_array, TRUE, "packed nvlist size" }, 54 { byteswap_uint64_array, TRUE, "bpobj" }, 55 { byteswap_uint64_array, TRUE, "bpobj header" }, 56 { byteswap_uint64_array, TRUE, "SPA space map header" }, 57 { byteswap_uint64_array, TRUE, "SPA space map" }, 58 { byteswap_uint64_array, TRUE, "ZIL intent log" }, 59 { dnode_buf_byteswap, TRUE, "DMU dnode" }, 60 { dmu_objset_byteswap, TRUE, "DMU objset" }, 61 { byteswap_uint64_array, TRUE, "DSL directory" }, 62 { zap_byteswap, TRUE, "DSL directory child map"}, 63 { zap_byteswap, TRUE, "DSL dataset snap map" }, 64 { zap_byteswap, TRUE, "DSL props" }, 65 { byteswap_uint64_array, TRUE, "DSL dataset" }, 66 { zfs_znode_byteswap, TRUE, "ZFS znode" }, 67 { zfs_oldacl_byteswap, TRUE, "ZFS V0 ACL" }, 68 { byteswap_uint8_array, FALSE, "ZFS plain file" }, 69 { zap_byteswap, TRUE, "ZFS directory" }, 70 { zap_byteswap, TRUE, "ZFS master node" }, 71 { zap_byteswap, TRUE, "ZFS delete queue" }, 72 { byteswap_uint8_array, FALSE, "zvol object" }, 73 { zap_byteswap, TRUE, "zvol prop" }, 74 { byteswap_uint8_array, FALSE, "other uint8[]" }, 75 { byteswap_uint64_array, FALSE, "other uint64[]" }, 76 { zap_byteswap, TRUE, "other ZAP" }, 77 { zap_byteswap, TRUE, "persistent error log" }, 78 { byteswap_uint8_array, TRUE, "SPA history" }, 79 { byteswap_uint64_array, TRUE, "SPA history offsets" }, 80 { zap_byteswap, TRUE, "Pool properties" }, 81 { zap_byteswap, TRUE, "DSL permissions" }, 82 { zfs_acl_byteswap, TRUE, "ZFS ACL" }, 83 { byteswap_uint8_array, TRUE, "ZFS SYSACL" }, 84 { byteswap_uint8_array, TRUE, "FUID table" }, 85 { byteswap_uint64_array, TRUE, "FUID table size" }, 86 { zap_byteswap, TRUE, "DSL dataset next clones"}, 87 { zap_byteswap, TRUE, "scan work queue" }, 88 { zap_byteswap, TRUE, "ZFS user/group used" }, 89 { zap_byteswap, TRUE, "ZFS user/group quota" }, 90 { zap_byteswap, TRUE, "snapshot refcount tags"}, 91 { zap_byteswap, TRUE, "DDT ZAP algorithm" }, 92 { zap_byteswap, TRUE, "DDT statistics" }, 93 { byteswap_uint8_array, TRUE, "System attributes" }, 94 { zap_byteswap, TRUE, "SA master node" }, 95 { zap_byteswap, TRUE, "SA attr registration" }, 96 { zap_byteswap, TRUE, "SA attr layouts" }, 97 { zap_byteswap, TRUE, "scan translations" }, 98 { byteswap_uint8_array, FALSE, "deduplicated block" }, 99 { zap_byteswap, TRUE, "DSL deadlist map" }, 100 { byteswap_uint64_array, TRUE, "DSL deadlist map hdr" }, 101 { zap_byteswap, TRUE, "DSL dir clones" }, 102 { byteswap_uint64_array, TRUE, "bpobj subobj" }, 103 }; 104 105 int 106 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 107 void *tag, dmu_buf_t **dbp, int flags) 108 { 109 dnode_t *dn; 110 uint64_t blkid; 111 dmu_buf_impl_t *db; 112 int err; 113 int db_flags = DB_RF_CANFAIL; 114 115 if (flags & DMU_READ_NO_PREFETCH) 116 db_flags |= DB_RF_NOPREFETCH; 117 118 err = dnode_hold(os, object, FTAG, &dn); 119 if (err) 120 return (err); 121 blkid = dbuf_whichblock(dn, offset); 122 rw_enter(&dn->dn_struct_rwlock, RW_READER); 123 db = dbuf_hold(dn, blkid, tag); 124 rw_exit(&dn->dn_struct_rwlock); 125 if (db == NULL) { 126 err = EIO; 127 } else { 128 err = dbuf_read(db, NULL, db_flags); 129 if (err) { 130 dbuf_rele(db, tag); 131 db = NULL; 132 } 133 } 134 135 dnode_rele(dn, FTAG); 136 *dbp = &db->db; /* NULL db plus first field offset is NULL */ 137 return (err); 138 } 139 140 int 141 dmu_bonus_max(void) 142 { 143 return (DN_MAX_BONUSLEN); 144 } 145 146 int 147 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 148 { 149 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 150 dnode_t *dn; 151 int error; 152 153 DB_DNODE_ENTER(db); 154 dn = DB_DNODE(db); 155 156 if (dn->dn_bonus != db) { 157 error = EINVAL; 158 } else if (newsize < 0 || newsize > db_fake->db_size) { 159 error = EINVAL; 160 } else { 161 dnode_setbonuslen(dn, newsize, tx); 162 error = 0; 163 } 164 165 DB_DNODE_EXIT(db); 166 return (error); 167 } 168 169 int 170 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 171 { 172 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 173 dnode_t *dn; 174 int error; 175 176 DB_DNODE_ENTER(db); 177 dn = DB_DNODE(db); 178 179 if (type > DMU_OT_NUMTYPES) { 180 error = EINVAL; 181 } else if (dn->dn_bonus != db) { 182 error = EINVAL; 183 } else { 184 dnode_setbonus_type(dn, type, tx); 185 error = 0; 186 } 187 188 DB_DNODE_EXIT(db); 189 return (error); 190 } 191 192 dmu_object_type_t 193 dmu_get_bonustype(dmu_buf_t *db_fake) 194 { 195 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 196 dnode_t *dn; 197 dmu_object_type_t type; 198 199 DB_DNODE_ENTER(db); 200 dn = DB_DNODE(db); 201 type = dn->dn_bonustype; 202 DB_DNODE_EXIT(db); 203 204 return (type); 205 } 206 207 int 208 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 209 { 210 dnode_t *dn; 211 int error; 212 213 error = dnode_hold(os, object, FTAG, &dn); 214 dbuf_rm_spill(dn, tx); 215 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 216 dnode_rm_spill(dn, tx); 217 rw_exit(&dn->dn_struct_rwlock); 218 dnode_rele(dn, FTAG); 219 return (error); 220 } 221 222 /* 223 * returns ENOENT, EIO, or 0. 224 */ 225 int 226 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 227 { 228 dnode_t *dn; 229 dmu_buf_impl_t *db; 230 int error; 231 232 error = dnode_hold(os, object, FTAG, &dn); 233 if (error) 234 return (error); 235 236 rw_enter(&dn->dn_struct_rwlock, RW_READER); 237 if (dn->dn_bonus == NULL) { 238 rw_exit(&dn->dn_struct_rwlock); 239 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 240 if (dn->dn_bonus == NULL) 241 dbuf_create_bonus(dn); 242 } 243 db = dn->dn_bonus; 244 245 /* as long as the bonus buf is held, the dnode will be held */ 246 if (refcount_add(&db->db_holds, tag) == 1) { 247 VERIFY(dnode_add_ref(dn, db)); 248 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 249 } 250 251 /* 252 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 253 * hold and incrementing the dbuf count to ensure that dnode_move() sees 254 * a dnode hold for every dbuf. 255 */ 256 rw_exit(&dn->dn_struct_rwlock); 257 258 dnode_rele(dn, FTAG); 259 260 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 261 262 *dbp = &db->db; 263 return (0); 264 } 265 266 /* 267 * returns ENOENT, EIO, or 0. 268 * 269 * This interface will allocate a blank spill dbuf when a spill blk 270 * doesn't already exist on the dnode. 271 * 272 * if you only want to find an already existing spill db, then 273 * dmu_spill_hold_existing() should be used. 274 */ 275 int 276 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 277 { 278 dmu_buf_impl_t *db = NULL; 279 int err; 280 281 if ((flags & DB_RF_HAVESTRUCT) == 0) 282 rw_enter(&dn->dn_struct_rwlock, RW_READER); 283 284 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 285 286 if ((flags & DB_RF_HAVESTRUCT) == 0) 287 rw_exit(&dn->dn_struct_rwlock); 288 289 ASSERT(db != NULL); 290 err = dbuf_read(db, NULL, flags); 291 if (err == 0) 292 *dbp = &db->db; 293 else 294 dbuf_rele(db, tag); 295 return (err); 296 } 297 298 int 299 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 300 { 301 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 302 dnode_t *dn; 303 int err; 304 305 DB_DNODE_ENTER(db); 306 dn = DB_DNODE(db); 307 308 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 309 err = EINVAL; 310 } else { 311 rw_enter(&dn->dn_struct_rwlock, RW_READER); 312 313 if (!dn->dn_have_spill) { 314 err = ENOENT; 315 } else { 316 err = dmu_spill_hold_by_dnode(dn, 317 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 318 } 319 320 rw_exit(&dn->dn_struct_rwlock); 321 } 322 323 DB_DNODE_EXIT(db); 324 return (err); 325 } 326 327 int 328 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 329 { 330 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 331 dnode_t *dn; 332 int err; 333 334 DB_DNODE_ENTER(db); 335 dn = DB_DNODE(db); 336 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 337 DB_DNODE_EXIT(db); 338 339 return (err); 340 } 341 342 /* 343 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 344 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 345 * and can induce severe lock contention when writing to several files 346 * whose dnodes are in the same block. 347 */ 348 static int 349 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 350 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 351 { 352 dsl_pool_t *dp = NULL; 353 dmu_buf_t **dbp; 354 uint64_t blkid, nblks, i; 355 uint32_t dbuf_flags; 356 int err; 357 zio_t *zio; 358 hrtime_t start; 359 360 ASSERT(length <= DMU_MAX_ACCESS); 361 362 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 363 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 364 dbuf_flags |= DB_RF_NOPREFETCH; 365 366 rw_enter(&dn->dn_struct_rwlock, RW_READER); 367 if (dn->dn_datablkshift) { 368 int blkshift = dn->dn_datablkshift; 369 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 370 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 371 } else { 372 if (offset + length > dn->dn_datablksz) { 373 zfs_panic_recover("zfs: accessing past end of object " 374 "%llx/%llx (size=%u access=%llu+%llu)", 375 (longlong_t)dn->dn_objset-> 376 os_dsl_dataset->ds_object, 377 (longlong_t)dn->dn_object, dn->dn_datablksz, 378 (longlong_t)offset, (longlong_t)length); 379 rw_exit(&dn->dn_struct_rwlock); 380 return (EIO); 381 } 382 nblks = 1; 383 } 384 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 385 386 if (dn->dn_objset->os_dsl_dataset) 387 dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool; 388 if (dp && dsl_pool_sync_context(dp)) 389 start = gethrtime(); 390 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 391 blkid = dbuf_whichblock(dn, offset); 392 for (i = 0; i < nblks; i++) { 393 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 394 if (db == NULL) { 395 rw_exit(&dn->dn_struct_rwlock); 396 dmu_buf_rele_array(dbp, nblks, tag); 397 zio_nowait(zio); 398 return (EIO); 399 } 400 /* initiate async i/o */ 401 if (read) { 402 (void) dbuf_read(db, zio, dbuf_flags); 403 } 404 dbp[i] = &db->db; 405 } 406 rw_exit(&dn->dn_struct_rwlock); 407 408 /* wait for async i/o */ 409 err = zio_wait(zio); 410 /* track read overhead when we are in sync context */ 411 if (dp && dsl_pool_sync_context(dp)) 412 dp->dp_read_overhead += gethrtime() - start; 413 if (err) { 414 dmu_buf_rele_array(dbp, nblks, tag); 415 return (err); 416 } 417 418 /* wait for other io to complete */ 419 if (read) { 420 for (i = 0; i < nblks; i++) { 421 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 422 mutex_enter(&db->db_mtx); 423 while (db->db_state == DB_READ || 424 db->db_state == DB_FILL) 425 cv_wait(&db->db_changed, &db->db_mtx); 426 if (db->db_state == DB_UNCACHED) 427 err = EIO; 428 mutex_exit(&db->db_mtx); 429 if (err) { 430 dmu_buf_rele_array(dbp, nblks, tag); 431 return (err); 432 } 433 } 434 } 435 436 *numbufsp = nblks; 437 *dbpp = dbp; 438 return (0); 439 } 440 441 static int 442 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 443 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 444 { 445 dnode_t *dn; 446 int err; 447 448 err = dnode_hold(os, object, FTAG, &dn); 449 if (err) 450 return (err); 451 452 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 453 numbufsp, dbpp, DMU_READ_PREFETCH); 454 455 dnode_rele(dn, FTAG); 456 457 return (err); 458 } 459 460 int 461 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 462 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 463 { 464 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 465 dnode_t *dn; 466 int err; 467 468 DB_DNODE_ENTER(db); 469 dn = DB_DNODE(db); 470 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 471 numbufsp, dbpp, DMU_READ_PREFETCH); 472 DB_DNODE_EXIT(db); 473 474 return (err); 475 } 476 477 void 478 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 479 { 480 int i; 481 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 482 483 if (numbufs == 0) 484 return; 485 486 for (i = 0; i < numbufs; i++) { 487 if (dbp[i]) 488 dbuf_rele(dbp[i], tag); 489 } 490 491 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 492 } 493 494 void 495 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 496 { 497 dnode_t *dn; 498 uint64_t blkid; 499 int nblks, i, err; 500 501 if (zfs_prefetch_disable) 502 return; 503 504 if (len == 0) { /* they're interested in the bonus buffer */ 505 dn = DMU_META_DNODE(os); 506 507 if (object == 0 || object >= DN_MAX_OBJECT) 508 return; 509 510 rw_enter(&dn->dn_struct_rwlock, RW_READER); 511 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 512 dbuf_prefetch(dn, blkid); 513 rw_exit(&dn->dn_struct_rwlock); 514 return; 515 } 516 517 /* 518 * XXX - Note, if the dnode for the requested object is not 519 * already cached, we will do a *synchronous* read in the 520 * dnode_hold() call. The same is true for any indirects. 521 */ 522 err = dnode_hold(os, object, FTAG, &dn); 523 if (err != 0) 524 return; 525 526 rw_enter(&dn->dn_struct_rwlock, RW_READER); 527 if (dn->dn_datablkshift) { 528 int blkshift = dn->dn_datablkshift; 529 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 530 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 531 } else { 532 nblks = (offset < dn->dn_datablksz); 533 } 534 535 if (nblks != 0) { 536 blkid = dbuf_whichblock(dn, offset); 537 for (i = 0; i < nblks; i++) 538 dbuf_prefetch(dn, blkid+i); 539 } 540 541 rw_exit(&dn->dn_struct_rwlock); 542 543 dnode_rele(dn, FTAG); 544 } 545 546 /* 547 * Get the next "chunk" of file data to free. We traverse the file from 548 * the end so that the file gets shorter over time (if we crashes in the 549 * middle, this will leave us in a better state). We find allocated file 550 * data by simply searching the allocated level 1 indirects. 551 */ 552 static int 553 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit) 554 { 555 uint64_t len = *start - limit; 556 uint64_t blkcnt = 0; 557 uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1)); 558 uint64_t iblkrange = 559 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 560 561 ASSERT(limit <= *start); 562 563 if (len <= iblkrange * maxblks) { 564 *start = limit; 565 return (0); 566 } 567 ASSERT(ISP2(iblkrange)); 568 569 while (*start > limit && blkcnt < maxblks) { 570 int err; 571 572 /* find next allocated L1 indirect */ 573 err = dnode_next_offset(dn, 574 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 575 576 /* if there are no more, then we are done */ 577 if (err == ESRCH) { 578 *start = limit; 579 return (0); 580 } else if (err) { 581 return (err); 582 } 583 blkcnt += 1; 584 585 /* reset offset to end of "next" block back */ 586 *start = P2ALIGN(*start, iblkrange); 587 if (*start <= limit) 588 *start = limit; 589 else 590 *start -= 1; 591 } 592 return (0); 593 } 594 595 static int 596 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 597 uint64_t length, boolean_t free_dnode) 598 { 599 dmu_tx_t *tx; 600 uint64_t object_size, start, end, len; 601 boolean_t trunc = (length == DMU_OBJECT_END); 602 int align, err; 603 604 align = 1 << dn->dn_datablkshift; 605 ASSERT(align > 0); 606 object_size = align == 1 ? dn->dn_datablksz : 607 (dn->dn_maxblkid + 1) << dn->dn_datablkshift; 608 609 end = offset + length; 610 if (trunc || end > object_size) 611 end = object_size; 612 if (end <= offset) 613 return (0); 614 length = end - offset; 615 616 while (length) { 617 start = end; 618 /* assert(offset <= start) */ 619 err = get_next_chunk(dn, &start, offset); 620 if (err) 621 return (err); 622 len = trunc ? DMU_OBJECT_END : end - start; 623 624 tx = dmu_tx_create(os); 625 dmu_tx_hold_free(tx, dn->dn_object, start, len); 626 err = dmu_tx_assign(tx, TXG_WAIT); 627 if (err) { 628 dmu_tx_abort(tx); 629 return (err); 630 } 631 632 dnode_free_range(dn, start, trunc ? -1 : len, tx); 633 634 if (start == 0 && free_dnode) { 635 ASSERT(trunc); 636 dnode_free(dn, tx); 637 } 638 639 length -= end - start; 640 641 dmu_tx_commit(tx); 642 end = start; 643 } 644 return (0); 645 } 646 647 int 648 dmu_free_long_range(objset_t *os, uint64_t object, 649 uint64_t offset, uint64_t length) 650 { 651 dnode_t *dn; 652 int err; 653 654 err = dnode_hold(os, object, FTAG, &dn); 655 if (err != 0) 656 return (err); 657 err = dmu_free_long_range_impl(os, dn, offset, length, FALSE); 658 dnode_rele(dn, FTAG); 659 return (err); 660 } 661 662 int 663 dmu_free_object(objset_t *os, uint64_t object) 664 { 665 dnode_t *dn; 666 dmu_tx_t *tx; 667 int err; 668 669 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 670 FTAG, &dn); 671 if (err != 0) 672 return (err); 673 if (dn->dn_nlevels == 1) { 674 tx = dmu_tx_create(os); 675 dmu_tx_hold_bonus(tx, object); 676 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END); 677 err = dmu_tx_assign(tx, TXG_WAIT); 678 if (err == 0) { 679 dnode_free_range(dn, 0, DMU_OBJECT_END, tx); 680 dnode_free(dn, tx); 681 dmu_tx_commit(tx); 682 } else { 683 dmu_tx_abort(tx); 684 } 685 } else { 686 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE); 687 } 688 dnode_rele(dn, FTAG); 689 return (err); 690 } 691 692 int 693 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 694 uint64_t size, dmu_tx_t *tx) 695 { 696 dnode_t *dn; 697 int err = dnode_hold(os, object, FTAG, &dn); 698 if (err) 699 return (err); 700 ASSERT(offset < UINT64_MAX); 701 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 702 dnode_free_range(dn, offset, size, tx); 703 dnode_rele(dn, FTAG); 704 return (0); 705 } 706 707 int 708 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 709 void *buf, uint32_t flags) 710 { 711 dnode_t *dn; 712 dmu_buf_t **dbp; 713 int numbufs, err; 714 715 err = dnode_hold(os, object, FTAG, &dn); 716 if (err) 717 return (err); 718 719 /* 720 * Deal with odd block sizes, where there can't be data past the first 721 * block. If we ever do the tail block optimization, we will need to 722 * handle that here as well. 723 */ 724 if (dn->dn_maxblkid == 0) { 725 int newsz = offset > dn->dn_datablksz ? 0 : 726 MIN(size, dn->dn_datablksz - offset); 727 bzero((char *)buf + newsz, size - newsz); 728 size = newsz; 729 } 730 731 while (size > 0) { 732 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 733 int i; 734 735 /* 736 * NB: we could do this block-at-a-time, but it's nice 737 * to be reading in parallel. 738 */ 739 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 740 TRUE, FTAG, &numbufs, &dbp, flags); 741 if (err) 742 break; 743 744 for (i = 0; i < numbufs; i++) { 745 int tocpy; 746 int bufoff; 747 dmu_buf_t *db = dbp[i]; 748 749 ASSERT(size > 0); 750 751 bufoff = offset - db->db_offset; 752 tocpy = (int)MIN(db->db_size - bufoff, size); 753 754 bcopy((char *)db->db_data + bufoff, buf, tocpy); 755 756 offset += tocpy; 757 size -= tocpy; 758 buf = (char *)buf + tocpy; 759 } 760 dmu_buf_rele_array(dbp, numbufs, FTAG); 761 } 762 dnode_rele(dn, FTAG); 763 return (err); 764 } 765 766 void 767 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 768 const void *buf, dmu_tx_t *tx) 769 { 770 dmu_buf_t **dbp; 771 int numbufs, i; 772 773 if (size == 0) 774 return; 775 776 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 777 FALSE, FTAG, &numbufs, &dbp)); 778 779 for (i = 0; i < numbufs; i++) { 780 int tocpy; 781 int bufoff; 782 dmu_buf_t *db = dbp[i]; 783 784 ASSERT(size > 0); 785 786 bufoff = offset - db->db_offset; 787 tocpy = (int)MIN(db->db_size - bufoff, size); 788 789 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 790 791 if (tocpy == db->db_size) 792 dmu_buf_will_fill(db, tx); 793 else 794 dmu_buf_will_dirty(db, tx); 795 796 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 797 798 if (tocpy == db->db_size) 799 dmu_buf_fill_done(db, tx); 800 801 offset += tocpy; 802 size -= tocpy; 803 buf = (char *)buf + tocpy; 804 } 805 dmu_buf_rele_array(dbp, numbufs, FTAG); 806 } 807 808 void 809 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 810 dmu_tx_t *tx) 811 { 812 dmu_buf_t **dbp; 813 int numbufs, i; 814 815 if (size == 0) 816 return; 817 818 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 819 FALSE, FTAG, &numbufs, &dbp)); 820 821 for (i = 0; i < numbufs; i++) { 822 dmu_buf_t *db = dbp[i]; 823 824 dmu_buf_will_not_fill(db, tx); 825 } 826 dmu_buf_rele_array(dbp, numbufs, FTAG); 827 } 828 829 /* 830 * DMU support for xuio 831 */ 832 kstat_t *xuio_ksp = NULL; 833 834 int 835 dmu_xuio_init(xuio_t *xuio, int nblk) 836 { 837 dmu_xuio_t *priv; 838 uio_t *uio = &xuio->xu_uio; 839 840 uio->uio_iovcnt = nblk; 841 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 842 843 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 844 priv->cnt = nblk; 845 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 846 priv->iovp = uio->uio_iov; 847 XUIO_XUZC_PRIV(xuio) = priv; 848 849 if (XUIO_XUZC_RW(xuio) == UIO_READ) 850 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 851 else 852 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 853 854 return (0); 855 } 856 857 void 858 dmu_xuio_fini(xuio_t *xuio) 859 { 860 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 861 int nblk = priv->cnt; 862 863 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 864 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 865 kmem_free(priv, sizeof (dmu_xuio_t)); 866 867 if (XUIO_XUZC_RW(xuio) == UIO_READ) 868 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 869 else 870 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 871 } 872 873 /* 874 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 875 * and increase priv->next by 1. 876 */ 877 int 878 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 879 { 880 struct iovec *iov; 881 uio_t *uio = &xuio->xu_uio; 882 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 883 int i = priv->next++; 884 885 ASSERT(i < priv->cnt); 886 ASSERT(off + n <= arc_buf_size(abuf)); 887 iov = uio->uio_iov + i; 888 iov->iov_base = (char *)abuf->b_data + off; 889 iov->iov_len = n; 890 priv->bufs[i] = abuf; 891 return (0); 892 } 893 894 int 895 dmu_xuio_cnt(xuio_t *xuio) 896 { 897 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 898 return (priv->cnt); 899 } 900 901 arc_buf_t * 902 dmu_xuio_arcbuf(xuio_t *xuio, int i) 903 { 904 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 905 906 ASSERT(i < priv->cnt); 907 return (priv->bufs[i]); 908 } 909 910 void 911 dmu_xuio_clear(xuio_t *xuio, int i) 912 { 913 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 914 915 ASSERT(i < priv->cnt); 916 priv->bufs[i] = NULL; 917 } 918 919 static void 920 xuio_stat_init(void) 921 { 922 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 923 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 924 KSTAT_FLAG_VIRTUAL); 925 if (xuio_ksp != NULL) { 926 xuio_ksp->ks_data = &xuio_stats; 927 kstat_install(xuio_ksp); 928 } 929 } 930 931 static void 932 xuio_stat_fini(void) 933 { 934 if (xuio_ksp != NULL) { 935 kstat_delete(xuio_ksp); 936 xuio_ksp = NULL; 937 } 938 } 939 940 void 941 xuio_stat_wbuf_copied() 942 { 943 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 944 } 945 946 void 947 xuio_stat_wbuf_nocopy() 948 { 949 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 950 } 951 952 #ifdef _KERNEL 953 int 954 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 955 { 956 dmu_buf_t **dbp; 957 int numbufs, i, err; 958 xuio_t *xuio = NULL; 959 960 /* 961 * NB: we could do this block-at-a-time, but it's nice 962 * to be reading in parallel. 963 */ 964 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 965 &numbufs, &dbp); 966 if (err) 967 return (err); 968 969 if (uio->uio_extflg == UIO_XUIO) 970 xuio = (xuio_t *)uio; 971 972 for (i = 0; i < numbufs; i++) { 973 int tocpy; 974 int bufoff; 975 dmu_buf_t *db = dbp[i]; 976 977 ASSERT(size > 0); 978 979 bufoff = uio->uio_loffset - db->db_offset; 980 tocpy = (int)MIN(db->db_size - bufoff, size); 981 982 if (xuio) { 983 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 984 arc_buf_t *dbuf_abuf = dbi->db_buf; 985 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 986 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 987 if (!err) { 988 uio->uio_resid -= tocpy; 989 uio->uio_loffset += tocpy; 990 } 991 992 if (abuf == dbuf_abuf) 993 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 994 else 995 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 996 } else { 997 err = uiomove((char *)db->db_data + bufoff, tocpy, 998 UIO_READ, uio); 999 } 1000 if (err) 1001 break; 1002 1003 size -= tocpy; 1004 } 1005 dmu_buf_rele_array(dbp, numbufs, FTAG); 1006 1007 return (err); 1008 } 1009 1010 static int 1011 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1012 { 1013 dmu_buf_t **dbp; 1014 int numbufs; 1015 int err = 0; 1016 int i; 1017 1018 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1019 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1020 if (err) 1021 return (err); 1022 1023 for (i = 0; i < numbufs; i++) { 1024 int tocpy; 1025 int bufoff; 1026 dmu_buf_t *db = dbp[i]; 1027 1028 ASSERT(size > 0); 1029 1030 bufoff = uio->uio_loffset - db->db_offset; 1031 tocpy = (int)MIN(db->db_size - bufoff, size); 1032 1033 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1034 1035 if (tocpy == db->db_size) 1036 dmu_buf_will_fill(db, tx); 1037 else 1038 dmu_buf_will_dirty(db, tx); 1039 1040 /* 1041 * XXX uiomove could block forever (eg. nfs-backed 1042 * pages). There needs to be a uiolockdown() function 1043 * to lock the pages in memory, so that uiomove won't 1044 * block. 1045 */ 1046 err = uiomove((char *)db->db_data + bufoff, tocpy, 1047 UIO_WRITE, uio); 1048 1049 if (tocpy == db->db_size) 1050 dmu_buf_fill_done(db, tx); 1051 1052 if (err) 1053 break; 1054 1055 size -= tocpy; 1056 } 1057 1058 dmu_buf_rele_array(dbp, numbufs, FTAG); 1059 return (err); 1060 } 1061 1062 int 1063 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1064 dmu_tx_t *tx) 1065 { 1066 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1067 dnode_t *dn; 1068 int err; 1069 1070 if (size == 0) 1071 return (0); 1072 1073 DB_DNODE_ENTER(db); 1074 dn = DB_DNODE(db); 1075 err = dmu_write_uio_dnode(dn, uio, size, tx); 1076 DB_DNODE_EXIT(db); 1077 1078 return (err); 1079 } 1080 1081 int 1082 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1083 dmu_tx_t *tx) 1084 { 1085 dnode_t *dn; 1086 int err; 1087 1088 if (size == 0) 1089 return (0); 1090 1091 err = dnode_hold(os, object, FTAG, &dn); 1092 if (err) 1093 return (err); 1094 1095 err = dmu_write_uio_dnode(dn, uio, size, tx); 1096 1097 dnode_rele(dn, FTAG); 1098 1099 return (err); 1100 } 1101 1102 int 1103 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1104 page_t *pp, dmu_tx_t *tx) 1105 { 1106 dmu_buf_t **dbp; 1107 int numbufs, i; 1108 int err; 1109 1110 if (size == 0) 1111 return (0); 1112 1113 err = dmu_buf_hold_array(os, object, offset, size, 1114 FALSE, FTAG, &numbufs, &dbp); 1115 if (err) 1116 return (err); 1117 1118 for (i = 0; i < numbufs; i++) { 1119 int tocpy, copied, thiscpy; 1120 int bufoff; 1121 dmu_buf_t *db = dbp[i]; 1122 caddr_t va; 1123 1124 ASSERT(size > 0); 1125 ASSERT3U(db->db_size, >=, PAGESIZE); 1126 1127 bufoff = offset - db->db_offset; 1128 tocpy = (int)MIN(db->db_size - bufoff, size); 1129 1130 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1131 1132 if (tocpy == db->db_size) 1133 dmu_buf_will_fill(db, tx); 1134 else 1135 dmu_buf_will_dirty(db, tx); 1136 1137 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1138 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1139 thiscpy = MIN(PAGESIZE, tocpy - copied); 1140 va = zfs_map_page(pp, S_READ); 1141 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1142 zfs_unmap_page(pp, va); 1143 pp = pp->p_next; 1144 bufoff += PAGESIZE; 1145 } 1146 1147 if (tocpy == db->db_size) 1148 dmu_buf_fill_done(db, tx); 1149 1150 offset += tocpy; 1151 size -= tocpy; 1152 } 1153 dmu_buf_rele_array(dbp, numbufs, FTAG); 1154 return (err); 1155 } 1156 #endif 1157 1158 /* 1159 * Allocate a loaned anonymous arc buffer. 1160 */ 1161 arc_buf_t * 1162 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1163 { 1164 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1165 spa_t *spa; 1166 1167 DB_GET_SPA(&spa, db); 1168 return (arc_loan_buf(spa, size)); 1169 } 1170 1171 /* 1172 * Free a loaned arc buffer. 1173 */ 1174 void 1175 dmu_return_arcbuf(arc_buf_t *buf) 1176 { 1177 arc_return_buf(buf, FTAG); 1178 VERIFY(arc_buf_remove_ref(buf, FTAG) == 1); 1179 } 1180 1181 /* 1182 * When possible directly assign passed loaned arc buffer to a dbuf. 1183 * If this is not possible copy the contents of passed arc buf via 1184 * dmu_write(). 1185 */ 1186 void 1187 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1188 dmu_tx_t *tx) 1189 { 1190 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1191 dnode_t *dn; 1192 dmu_buf_impl_t *db; 1193 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1194 uint64_t blkid; 1195 1196 DB_DNODE_ENTER(dbuf); 1197 dn = DB_DNODE(dbuf); 1198 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1199 blkid = dbuf_whichblock(dn, offset); 1200 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1201 rw_exit(&dn->dn_struct_rwlock); 1202 DB_DNODE_EXIT(dbuf); 1203 1204 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1205 dbuf_assign_arcbuf(db, buf, tx); 1206 dbuf_rele(db, FTAG); 1207 } else { 1208 objset_t *os; 1209 uint64_t object; 1210 1211 DB_DNODE_ENTER(dbuf); 1212 dn = DB_DNODE(dbuf); 1213 os = dn->dn_objset; 1214 object = dn->dn_object; 1215 DB_DNODE_EXIT(dbuf); 1216 1217 dbuf_rele(db, FTAG); 1218 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1219 dmu_return_arcbuf(buf); 1220 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1221 } 1222 } 1223 1224 typedef struct { 1225 dbuf_dirty_record_t *dsa_dr; 1226 dmu_sync_cb_t *dsa_done; 1227 zgd_t *dsa_zgd; 1228 dmu_tx_t *dsa_tx; 1229 } dmu_sync_arg_t; 1230 1231 /* ARGSUSED */ 1232 static void 1233 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1234 { 1235 dmu_sync_arg_t *dsa = varg; 1236 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1237 blkptr_t *bp = zio->io_bp; 1238 1239 if (zio->io_error == 0) { 1240 if (BP_IS_HOLE(bp)) { 1241 /* 1242 * A block of zeros may compress to a hole, but the 1243 * block size still needs to be known for replay. 1244 */ 1245 BP_SET_LSIZE(bp, db->db_size); 1246 } else { 1247 ASSERT(BP_GET_LEVEL(bp) == 0); 1248 bp->blk_fill = 1; 1249 } 1250 } 1251 } 1252 1253 static void 1254 dmu_sync_late_arrival_ready(zio_t *zio) 1255 { 1256 dmu_sync_ready(zio, NULL, zio->io_private); 1257 } 1258 1259 /* ARGSUSED */ 1260 static void 1261 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1262 { 1263 dmu_sync_arg_t *dsa = varg; 1264 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1265 dmu_buf_impl_t *db = dr->dr_dbuf; 1266 1267 mutex_enter(&db->db_mtx); 1268 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1269 if (zio->io_error == 0) { 1270 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1271 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1272 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1273 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1274 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1275 } else { 1276 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1277 } 1278 cv_broadcast(&db->db_changed); 1279 mutex_exit(&db->db_mtx); 1280 1281 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1282 1283 kmem_free(dsa, sizeof (*dsa)); 1284 } 1285 1286 static void 1287 dmu_sync_late_arrival_done(zio_t *zio) 1288 { 1289 blkptr_t *bp = zio->io_bp; 1290 dmu_sync_arg_t *dsa = zio->io_private; 1291 1292 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1293 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1294 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1295 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1296 } 1297 1298 dmu_tx_commit(dsa->dsa_tx); 1299 1300 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1301 1302 kmem_free(dsa, sizeof (*dsa)); 1303 } 1304 1305 static int 1306 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1307 zio_prop_t *zp, zbookmark_t *zb) 1308 { 1309 dmu_sync_arg_t *dsa; 1310 dmu_tx_t *tx; 1311 1312 tx = dmu_tx_create(os); 1313 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1314 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1315 dmu_tx_abort(tx); 1316 return (EIO); /* Make zl_get_data do txg_waited_synced() */ 1317 } 1318 1319 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1320 dsa->dsa_dr = NULL; 1321 dsa->dsa_done = done; 1322 dsa->dsa_zgd = zgd; 1323 dsa->dsa_tx = tx; 1324 1325 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1326 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1327 dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa, 1328 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1329 1330 return (0); 1331 } 1332 1333 /* 1334 * Intent log support: sync the block associated with db to disk. 1335 * N.B. and XXX: the caller is responsible for making sure that the 1336 * data isn't changing while dmu_sync() is writing it. 1337 * 1338 * Return values: 1339 * 1340 * EEXIST: this txg has already been synced, so there's nothing to to. 1341 * The caller should not log the write. 1342 * 1343 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1344 * The caller should not log the write. 1345 * 1346 * EALREADY: this block is already in the process of being synced. 1347 * The caller should track its progress (somehow). 1348 * 1349 * EIO: could not do the I/O. 1350 * The caller should do a txg_wait_synced(). 1351 * 1352 * 0: the I/O has been initiated. 1353 * The caller should log this blkptr in the done callback. 1354 * It is possible that the I/O will fail, in which case 1355 * the error will be reported to the done callback and 1356 * propagated to pio from zio_done(). 1357 */ 1358 int 1359 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1360 { 1361 blkptr_t *bp = zgd->zgd_bp; 1362 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1363 objset_t *os = db->db_objset; 1364 dsl_dataset_t *ds = os->os_dsl_dataset; 1365 dbuf_dirty_record_t *dr; 1366 dmu_sync_arg_t *dsa; 1367 zbookmark_t zb; 1368 zio_prop_t zp; 1369 dnode_t *dn; 1370 1371 ASSERT(pio != NULL); 1372 ASSERT(BP_IS_HOLE(bp)); 1373 ASSERT(txg != 0); 1374 1375 SET_BOOKMARK(&zb, ds->ds_object, 1376 db->db.db_object, db->db_level, db->db_blkid); 1377 1378 DB_DNODE_ENTER(db); 1379 dn = DB_DNODE(db); 1380 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1381 DB_DNODE_EXIT(db); 1382 1383 /* 1384 * If we're frozen (running ziltest), we always need to generate a bp. 1385 */ 1386 if (txg > spa_freeze_txg(os->os_spa)) 1387 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1388 1389 /* 1390 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1391 * and us. If we determine that this txg is not yet syncing, 1392 * but it begins to sync a moment later, that's OK because the 1393 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1394 */ 1395 mutex_enter(&db->db_mtx); 1396 1397 if (txg <= spa_last_synced_txg(os->os_spa)) { 1398 /* 1399 * This txg has already synced. There's nothing to do. 1400 */ 1401 mutex_exit(&db->db_mtx); 1402 return (EEXIST); 1403 } 1404 1405 if (txg <= spa_syncing_txg(os->os_spa)) { 1406 /* 1407 * This txg is currently syncing, so we can't mess with 1408 * the dirty record anymore; just write a new log block. 1409 */ 1410 mutex_exit(&db->db_mtx); 1411 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1412 } 1413 1414 dr = db->db_last_dirty; 1415 while (dr && dr->dr_txg != txg) 1416 dr = dr->dr_next; 1417 1418 if (dr == NULL) { 1419 /* 1420 * There's no dr for this dbuf, so it must have been freed. 1421 * There's no need to log writes to freed blocks, so we're done. 1422 */ 1423 mutex_exit(&db->db_mtx); 1424 return (ENOENT); 1425 } 1426 1427 ASSERT(dr->dr_txg == txg); 1428 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1429 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1430 /* 1431 * We have already issued a sync write for this buffer, 1432 * or this buffer has already been synced. It could not 1433 * have been dirtied since, or we would have cleared the state. 1434 */ 1435 mutex_exit(&db->db_mtx); 1436 return (EALREADY); 1437 } 1438 1439 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1440 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1441 mutex_exit(&db->db_mtx); 1442 1443 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1444 dsa->dsa_dr = dr; 1445 dsa->dsa_done = done; 1446 dsa->dsa_zgd = zgd; 1447 dsa->dsa_tx = NULL; 1448 1449 zio_nowait(arc_write(pio, os->os_spa, txg, 1450 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp, 1451 dmu_sync_ready, dmu_sync_done, dsa, 1452 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1453 1454 return (0); 1455 } 1456 1457 int 1458 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1459 dmu_tx_t *tx) 1460 { 1461 dnode_t *dn; 1462 int err; 1463 1464 err = dnode_hold(os, object, FTAG, &dn); 1465 if (err) 1466 return (err); 1467 err = dnode_set_blksz(dn, size, ibs, tx); 1468 dnode_rele(dn, FTAG); 1469 return (err); 1470 } 1471 1472 void 1473 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1474 dmu_tx_t *tx) 1475 { 1476 dnode_t *dn; 1477 1478 /* XXX assumes dnode_hold will not get an i/o error */ 1479 (void) dnode_hold(os, object, FTAG, &dn); 1480 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1481 dn->dn_checksum = checksum; 1482 dnode_setdirty(dn, tx); 1483 dnode_rele(dn, FTAG); 1484 } 1485 1486 void 1487 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1488 dmu_tx_t *tx) 1489 { 1490 dnode_t *dn; 1491 1492 /* XXX assumes dnode_hold will not get an i/o error */ 1493 (void) dnode_hold(os, object, FTAG, &dn); 1494 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1495 dn->dn_compress = compress; 1496 dnode_setdirty(dn, tx); 1497 dnode_rele(dn, FTAG); 1498 } 1499 1500 int zfs_mdcomp_disable = 0; 1501 1502 void 1503 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1504 { 1505 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1506 boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata || 1507 (wp & WP_SPILL)); 1508 enum zio_checksum checksum = os->os_checksum; 1509 enum zio_compress compress = os->os_compress; 1510 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1511 boolean_t dedup; 1512 boolean_t dedup_verify = os->os_dedup_verify; 1513 int copies = os->os_copies; 1514 1515 /* 1516 * Determine checksum setting. 1517 */ 1518 if (ismd) { 1519 /* 1520 * Metadata always gets checksummed. If the data 1521 * checksum is multi-bit correctable, and it's not a 1522 * ZBT-style checksum, then it's suitable for metadata 1523 * as well. Otherwise, the metadata checksum defaults 1524 * to fletcher4. 1525 */ 1526 if (zio_checksum_table[checksum].ci_correctable < 1 || 1527 zio_checksum_table[checksum].ci_eck) 1528 checksum = ZIO_CHECKSUM_FLETCHER_4; 1529 } else { 1530 checksum = zio_checksum_select(dn->dn_checksum, checksum); 1531 } 1532 1533 /* 1534 * Determine compression setting. 1535 */ 1536 if (ismd) { 1537 /* 1538 * XXX -- we should design a compression algorithm 1539 * that specializes in arrays of bps. 1540 */ 1541 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 1542 ZIO_COMPRESS_LZJB; 1543 } else { 1544 compress = zio_compress_select(dn->dn_compress, compress); 1545 } 1546 1547 /* 1548 * Determine dedup setting. If we are in dmu_sync(), we won't 1549 * actually dedup now because that's all done in syncing context; 1550 * but we do want to use the dedup checkum. If the checksum is not 1551 * strong enough to ensure unique signatures, force dedup_verify. 1552 */ 1553 dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF); 1554 if (dedup) { 1555 checksum = dedup_checksum; 1556 if (!zio_checksum_table[checksum].ci_dedup) 1557 dedup_verify = 1; 1558 } 1559 1560 if (wp & WP_DMU_SYNC) 1561 dedup = 0; 1562 1563 if (wp & WP_NOFILL) { 1564 ASSERT(!ismd && level == 0); 1565 checksum = ZIO_CHECKSUM_OFF; 1566 compress = ZIO_COMPRESS_OFF; 1567 dedup = B_FALSE; 1568 } 1569 1570 zp->zp_checksum = checksum; 1571 zp->zp_compress = compress; 1572 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1573 zp->zp_level = level; 1574 zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa)); 1575 zp->zp_dedup = dedup; 1576 zp->zp_dedup_verify = dedup && dedup_verify; 1577 } 1578 1579 int 1580 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1581 { 1582 dnode_t *dn; 1583 int i, err; 1584 1585 err = dnode_hold(os, object, FTAG, &dn); 1586 if (err) 1587 return (err); 1588 /* 1589 * Sync any current changes before 1590 * we go trundling through the block pointers. 1591 */ 1592 for (i = 0; i < TXG_SIZE; i++) { 1593 if (list_link_active(&dn->dn_dirty_link[i])) 1594 break; 1595 } 1596 if (i != TXG_SIZE) { 1597 dnode_rele(dn, FTAG); 1598 txg_wait_synced(dmu_objset_pool(os), 0); 1599 err = dnode_hold(os, object, FTAG, &dn); 1600 if (err) 1601 return (err); 1602 } 1603 1604 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1605 dnode_rele(dn, FTAG); 1606 1607 return (err); 1608 } 1609 1610 void 1611 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1612 { 1613 dnode_phys_t *dnp; 1614 1615 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1616 mutex_enter(&dn->dn_mtx); 1617 1618 dnp = dn->dn_phys; 1619 1620 doi->doi_data_block_size = dn->dn_datablksz; 1621 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1622 1ULL << dn->dn_indblkshift : 0; 1623 doi->doi_type = dn->dn_type; 1624 doi->doi_bonus_type = dn->dn_bonustype; 1625 doi->doi_bonus_size = dn->dn_bonuslen; 1626 doi->doi_indirection = dn->dn_nlevels; 1627 doi->doi_checksum = dn->dn_checksum; 1628 doi->doi_compress = dn->dn_compress; 1629 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1630 doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz; 1631 doi->doi_fill_count = 0; 1632 for (int i = 0; i < dnp->dn_nblkptr; i++) 1633 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1634 1635 mutex_exit(&dn->dn_mtx); 1636 rw_exit(&dn->dn_struct_rwlock); 1637 } 1638 1639 /* 1640 * Get information on a DMU object. 1641 * If doi is NULL, just indicates whether the object exists. 1642 */ 1643 int 1644 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1645 { 1646 dnode_t *dn; 1647 int err = dnode_hold(os, object, FTAG, &dn); 1648 1649 if (err) 1650 return (err); 1651 1652 if (doi != NULL) 1653 dmu_object_info_from_dnode(dn, doi); 1654 1655 dnode_rele(dn, FTAG); 1656 return (0); 1657 } 1658 1659 /* 1660 * As above, but faster; can be used when you have a held dbuf in hand. 1661 */ 1662 void 1663 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1664 { 1665 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1666 1667 DB_DNODE_ENTER(db); 1668 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1669 DB_DNODE_EXIT(db); 1670 } 1671 1672 /* 1673 * Faster still when you only care about the size. 1674 * This is specifically optimized for zfs_getattr(). 1675 */ 1676 void 1677 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1678 u_longlong_t *nblk512) 1679 { 1680 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1681 dnode_t *dn; 1682 1683 DB_DNODE_ENTER(db); 1684 dn = DB_DNODE(db); 1685 1686 *blksize = dn->dn_datablksz; 1687 /* add 1 for dnode space */ 1688 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1689 SPA_MINBLOCKSHIFT) + 1; 1690 DB_DNODE_EXIT(db); 1691 } 1692 1693 void 1694 byteswap_uint64_array(void *vbuf, size_t size) 1695 { 1696 uint64_t *buf = vbuf; 1697 size_t count = size >> 3; 1698 int i; 1699 1700 ASSERT((size & 7) == 0); 1701 1702 for (i = 0; i < count; i++) 1703 buf[i] = BSWAP_64(buf[i]); 1704 } 1705 1706 void 1707 byteswap_uint32_array(void *vbuf, size_t size) 1708 { 1709 uint32_t *buf = vbuf; 1710 size_t count = size >> 2; 1711 int i; 1712 1713 ASSERT((size & 3) == 0); 1714 1715 for (i = 0; i < count; i++) 1716 buf[i] = BSWAP_32(buf[i]); 1717 } 1718 1719 void 1720 byteswap_uint16_array(void *vbuf, size_t size) 1721 { 1722 uint16_t *buf = vbuf; 1723 size_t count = size >> 1; 1724 int i; 1725 1726 ASSERT((size & 1) == 0); 1727 1728 for (i = 0; i < count; i++) 1729 buf[i] = BSWAP_16(buf[i]); 1730 } 1731 1732 /* ARGSUSED */ 1733 void 1734 byteswap_uint8_array(void *vbuf, size_t size) 1735 { 1736 } 1737 1738 void 1739 dmu_init(void) 1740 { 1741 zfs_dbgmsg_init(); 1742 sa_cache_init(); 1743 xuio_stat_init(); 1744 dmu_objset_init(); 1745 dnode_init(); 1746 dbuf_init(); 1747 zfetch_init(); 1748 arc_init(); 1749 l2arc_init(); 1750 } 1751 1752 void 1753 dmu_fini(void) 1754 { 1755 l2arc_fini(); 1756 arc_fini(); 1757 zfetch_fini(); 1758 dbuf_fini(); 1759 dnode_fini(); 1760 dmu_objset_fini(); 1761 xuio_stat_fini(); 1762 sa_cache_fini(); 1763 zfs_dbgmsg_fini(); 1764 } 1765