1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zio_compress.h> 47 #include <sys/sa.h> 48 #include <sys/zfeature.h> 49 #ifdef _KERNEL 50 #include <sys/vmsystm.h> 51 #include <sys/zfs_znode.h> 52 #endif 53 54 /* 55 * Enable/disable nopwrite feature. 56 */ 57 int zfs_nopwrite_enabled = 1; 58 59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 60 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 61 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 62 { DMU_BSWAP_UINT64, TRUE, "object array" }, 63 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 64 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 65 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 66 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 67 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 68 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 69 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 70 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 71 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 72 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 73 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 74 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 75 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 76 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 77 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 78 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 79 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 80 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 81 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 82 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 83 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 84 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 85 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 86 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 87 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 88 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 89 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 90 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 91 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 92 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 93 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 94 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 95 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 96 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 97 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 98 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 99 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 100 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 101 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 102 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 103 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 104 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 105 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 106 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 107 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 108 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 109 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 110 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 111 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 112 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 113 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 114 }; 115 116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 117 { byteswap_uint8_array, "uint8" }, 118 { byteswap_uint16_array, "uint16" }, 119 { byteswap_uint32_array, "uint32" }, 120 { byteswap_uint64_array, "uint64" }, 121 { zap_byteswap, "zap" }, 122 { dnode_buf_byteswap, "dnode" }, 123 { dmu_objset_byteswap, "objset" }, 124 { zfs_znode_byteswap, "znode" }, 125 { zfs_oldacl_byteswap, "oldacl" }, 126 { zfs_acl_byteswap, "acl" } 127 }; 128 129 int 130 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 131 void *tag, dmu_buf_t **dbp) 132 { 133 dnode_t *dn; 134 uint64_t blkid; 135 dmu_buf_impl_t *db; 136 int err; 137 138 err = dnode_hold(os, object, FTAG, &dn); 139 if (err) 140 return (err); 141 blkid = dbuf_whichblock(dn, 0, offset); 142 rw_enter(&dn->dn_struct_rwlock, RW_READER); 143 db = dbuf_hold(dn, blkid, tag); 144 rw_exit(&dn->dn_struct_rwlock); 145 dnode_rele(dn, FTAG); 146 147 if (db == NULL) { 148 *dbp = NULL; 149 return (SET_ERROR(EIO)); 150 } 151 152 *dbp = &db->db; 153 return (err); 154 } 155 156 int 157 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 158 void *tag, dmu_buf_t **dbp, int flags) 159 { 160 int err; 161 int db_flags = DB_RF_CANFAIL; 162 163 if (flags & DMU_READ_NO_PREFETCH) 164 db_flags |= DB_RF_NOPREFETCH; 165 166 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 167 if (err == 0) { 168 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 169 err = dbuf_read(db, NULL, db_flags); 170 if (err != 0) { 171 dbuf_rele(db, tag); 172 *dbp = NULL; 173 } 174 } 175 176 return (err); 177 } 178 179 int 180 dmu_bonus_max(void) 181 { 182 return (DN_MAX_BONUSLEN); 183 } 184 185 int 186 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 187 { 188 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 189 dnode_t *dn; 190 int error; 191 192 DB_DNODE_ENTER(db); 193 dn = DB_DNODE(db); 194 195 if (dn->dn_bonus != db) { 196 error = SET_ERROR(EINVAL); 197 } else if (newsize < 0 || newsize > db_fake->db_size) { 198 error = SET_ERROR(EINVAL); 199 } else { 200 dnode_setbonuslen(dn, newsize, tx); 201 error = 0; 202 } 203 204 DB_DNODE_EXIT(db); 205 return (error); 206 } 207 208 int 209 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 210 { 211 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 212 dnode_t *dn; 213 int error; 214 215 DB_DNODE_ENTER(db); 216 dn = DB_DNODE(db); 217 218 if (!DMU_OT_IS_VALID(type)) { 219 error = SET_ERROR(EINVAL); 220 } else if (dn->dn_bonus != db) { 221 error = SET_ERROR(EINVAL); 222 } else { 223 dnode_setbonus_type(dn, type, tx); 224 error = 0; 225 } 226 227 DB_DNODE_EXIT(db); 228 return (error); 229 } 230 231 dmu_object_type_t 232 dmu_get_bonustype(dmu_buf_t *db_fake) 233 { 234 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 235 dnode_t *dn; 236 dmu_object_type_t type; 237 238 DB_DNODE_ENTER(db); 239 dn = DB_DNODE(db); 240 type = dn->dn_bonustype; 241 DB_DNODE_EXIT(db); 242 243 return (type); 244 } 245 246 int 247 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 248 { 249 dnode_t *dn; 250 int error; 251 252 error = dnode_hold(os, object, FTAG, &dn); 253 dbuf_rm_spill(dn, tx); 254 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 255 dnode_rm_spill(dn, tx); 256 rw_exit(&dn->dn_struct_rwlock); 257 dnode_rele(dn, FTAG); 258 return (error); 259 } 260 261 /* 262 * returns ENOENT, EIO, or 0. 263 */ 264 int 265 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 266 { 267 dnode_t *dn; 268 dmu_buf_impl_t *db; 269 int error; 270 271 error = dnode_hold(os, object, FTAG, &dn); 272 if (error) 273 return (error); 274 275 rw_enter(&dn->dn_struct_rwlock, RW_READER); 276 if (dn->dn_bonus == NULL) { 277 rw_exit(&dn->dn_struct_rwlock); 278 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 279 if (dn->dn_bonus == NULL) 280 dbuf_create_bonus(dn); 281 } 282 db = dn->dn_bonus; 283 284 /* as long as the bonus buf is held, the dnode will be held */ 285 if (refcount_add(&db->db_holds, tag) == 1) { 286 VERIFY(dnode_add_ref(dn, db)); 287 atomic_inc_32(&dn->dn_dbufs_count); 288 } 289 290 /* 291 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 292 * hold and incrementing the dbuf count to ensure that dnode_move() sees 293 * a dnode hold for every dbuf. 294 */ 295 rw_exit(&dn->dn_struct_rwlock); 296 297 dnode_rele(dn, FTAG); 298 299 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 300 301 *dbp = &db->db; 302 return (0); 303 } 304 305 /* 306 * returns ENOENT, EIO, or 0. 307 * 308 * This interface will allocate a blank spill dbuf when a spill blk 309 * doesn't already exist on the dnode. 310 * 311 * if you only want to find an already existing spill db, then 312 * dmu_spill_hold_existing() should be used. 313 */ 314 int 315 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 316 { 317 dmu_buf_impl_t *db = NULL; 318 int err; 319 320 if ((flags & DB_RF_HAVESTRUCT) == 0) 321 rw_enter(&dn->dn_struct_rwlock, RW_READER); 322 323 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 324 325 if ((flags & DB_RF_HAVESTRUCT) == 0) 326 rw_exit(&dn->dn_struct_rwlock); 327 328 ASSERT(db != NULL); 329 err = dbuf_read(db, NULL, flags); 330 if (err == 0) 331 *dbp = &db->db; 332 else 333 dbuf_rele(db, tag); 334 return (err); 335 } 336 337 int 338 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 339 { 340 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 341 dnode_t *dn; 342 int err; 343 344 DB_DNODE_ENTER(db); 345 dn = DB_DNODE(db); 346 347 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 348 err = SET_ERROR(EINVAL); 349 } else { 350 rw_enter(&dn->dn_struct_rwlock, RW_READER); 351 352 if (!dn->dn_have_spill) { 353 err = SET_ERROR(ENOENT); 354 } else { 355 err = dmu_spill_hold_by_dnode(dn, 356 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 357 } 358 359 rw_exit(&dn->dn_struct_rwlock); 360 } 361 362 DB_DNODE_EXIT(db); 363 return (err); 364 } 365 366 int 367 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 368 { 369 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 370 dnode_t *dn; 371 int err; 372 373 DB_DNODE_ENTER(db); 374 dn = DB_DNODE(db); 375 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 376 DB_DNODE_EXIT(db); 377 378 return (err); 379 } 380 381 /* 382 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 383 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 384 * and can induce severe lock contention when writing to several files 385 * whose dnodes are in the same block. 386 */ 387 static int 388 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 389 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 390 { 391 dmu_buf_t **dbp; 392 uint64_t blkid, nblks, i; 393 uint32_t dbuf_flags; 394 int err; 395 zio_t *zio; 396 397 ASSERT(length <= DMU_MAX_ACCESS); 398 399 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 400 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 401 dbuf_flags |= DB_RF_NOPREFETCH; 402 403 rw_enter(&dn->dn_struct_rwlock, RW_READER); 404 if (dn->dn_datablkshift) { 405 int blkshift = dn->dn_datablkshift; 406 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 407 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 408 } else { 409 if (offset + length > dn->dn_datablksz) { 410 zfs_panic_recover("zfs: accessing past end of object " 411 "%llx/%llx (size=%u access=%llu+%llu)", 412 (longlong_t)dn->dn_objset-> 413 os_dsl_dataset->ds_object, 414 (longlong_t)dn->dn_object, dn->dn_datablksz, 415 (longlong_t)offset, (longlong_t)length); 416 rw_exit(&dn->dn_struct_rwlock); 417 return (SET_ERROR(EIO)); 418 } 419 nblks = 1; 420 } 421 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 422 423 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 424 blkid = dbuf_whichblock(dn, 0, offset); 425 for (i = 0; i < nblks; i++) { 426 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 427 if (db == NULL) { 428 rw_exit(&dn->dn_struct_rwlock); 429 dmu_buf_rele_array(dbp, nblks, tag); 430 zio_nowait(zio); 431 return (SET_ERROR(EIO)); 432 } 433 /* initiate async i/o */ 434 if (read) { 435 (void) dbuf_read(db, zio, dbuf_flags); 436 } 437 dbp[i] = &db->db; 438 } 439 rw_exit(&dn->dn_struct_rwlock); 440 441 /* wait for async i/o */ 442 err = zio_wait(zio); 443 if (err) { 444 dmu_buf_rele_array(dbp, nblks, tag); 445 return (err); 446 } 447 448 /* wait for other io to complete */ 449 if (read) { 450 for (i = 0; i < nblks; i++) { 451 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 452 mutex_enter(&db->db_mtx); 453 while (db->db_state == DB_READ || 454 db->db_state == DB_FILL) 455 cv_wait(&db->db_changed, &db->db_mtx); 456 if (db->db_state == DB_UNCACHED) 457 err = SET_ERROR(EIO); 458 mutex_exit(&db->db_mtx); 459 if (err) { 460 dmu_buf_rele_array(dbp, nblks, tag); 461 return (err); 462 } 463 } 464 } 465 466 *numbufsp = nblks; 467 *dbpp = dbp; 468 return (0); 469 } 470 471 static int 472 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 473 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 474 { 475 dnode_t *dn; 476 int err; 477 478 err = dnode_hold(os, object, FTAG, &dn); 479 if (err) 480 return (err); 481 482 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 483 numbufsp, dbpp, DMU_READ_PREFETCH); 484 485 dnode_rele(dn, FTAG); 486 487 return (err); 488 } 489 490 int 491 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 492 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 493 { 494 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 495 dnode_t *dn; 496 int err; 497 498 DB_DNODE_ENTER(db); 499 dn = DB_DNODE(db); 500 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 501 numbufsp, dbpp, DMU_READ_PREFETCH); 502 DB_DNODE_EXIT(db); 503 504 return (err); 505 } 506 507 void 508 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 509 { 510 int i; 511 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 512 513 if (numbufs == 0) 514 return; 515 516 for (i = 0; i < numbufs; i++) { 517 if (dbp[i]) 518 dbuf_rele(dbp[i], tag); 519 } 520 521 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 522 } 523 524 /* 525 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 526 * indirect blocks prefeteched will be those that point to the blocks containing 527 * the data starting at offset, and continuing to offset + len. 528 * 529 * Note that if the indirect blocks above the blocks being prefetched are not in 530 * cache, they will be asychronously read in. 531 */ 532 void 533 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 534 uint64_t len, zio_priority_t pri) 535 { 536 dnode_t *dn; 537 uint64_t blkid; 538 int nblks, err; 539 540 if (zfs_prefetch_disable) 541 return; 542 543 if (len == 0) { /* they're interested in the bonus buffer */ 544 dn = DMU_META_DNODE(os); 545 546 if (object == 0 || object >= DN_MAX_OBJECT) 547 return; 548 549 rw_enter(&dn->dn_struct_rwlock, RW_READER); 550 blkid = dbuf_whichblock(dn, level, 551 object * sizeof (dnode_phys_t)); 552 dbuf_prefetch(dn, level, blkid, pri, 0); 553 rw_exit(&dn->dn_struct_rwlock); 554 return; 555 } 556 557 /* 558 * XXX - Note, if the dnode for the requested object is not 559 * already cached, we will do a *synchronous* read in the 560 * dnode_hold() call. The same is true for any indirects. 561 */ 562 err = dnode_hold(os, object, FTAG, &dn); 563 if (err != 0) 564 return; 565 566 rw_enter(&dn->dn_struct_rwlock, RW_READER); 567 /* 568 * offset + len - 1 is the last byte we want to prefetch for, and offset 569 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 570 * last block we want to prefetch, and dbuf_whichblock(dn, level, 571 * offset) is the first. Then the number we need to prefetch is the 572 * last - first + 1. 573 */ 574 if (level > 0 || dn->dn_datablkshift != 0) { 575 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 576 dbuf_whichblock(dn, level, offset) + 1; 577 } else { 578 nblks = (offset < dn->dn_datablksz); 579 } 580 581 if (nblks != 0) { 582 blkid = dbuf_whichblock(dn, level, offset); 583 for (int i = 0; i < nblks; i++) 584 dbuf_prefetch(dn, level, blkid + i, pri, 0); 585 } 586 587 rw_exit(&dn->dn_struct_rwlock); 588 589 dnode_rele(dn, FTAG); 590 } 591 592 /* 593 * Get the next "chunk" of file data to free. We traverse the file from 594 * the end so that the file gets shorter over time (if we crashes in the 595 * middle, this will leave us in a better state). We find allocated file 596 * data by simply searching the allocated level 1 indirects. 597 * 598 * On input, *start should be the first offset that does not need to be 599 * freed (e.g. "offset + length"). On return, *start will be the first 600 * offset that should be freed. 601 */ 602 static int 603 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 604 { 605 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 606 /* bytes of data covered by a level-1 indirect block */ 607 uint64_t iblkrange = 608 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 609 610 ASSERT3U(minimum, <=, *start); 611 612 if (*start - minimum <= iblkrange * maxblks) { 613 *start = minimum; 614 return (0); 615 } 616 ASSERT(ISP2(iblkrange)); 617 618 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 619 int err; 620 621 /* 622 * dnode_next_offset(BACKWARDS) will find an allocated L1 623 * indirect block at or before the input offset. We must 624 * decrement *start so that it is at the end of the region 625 * to search. 626 */ 627 (*start)--; 628 err = dnode_next_offset(dn, 629 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 630 631 /* if there are no indirect blocks before start, we are done */ 632 if (err == ESRCH) { 633 *start = minimum; 634 break; 635 } else if (err != 0) { 636 return (err); 637 } 638 639 /* set start to the beginning of this L1 indirect */ 640 *start = P2ALIGN(*start, iblkrange); 641 } 642 if (*start < minimum) 643 *start = minimum; 644 return (0); 645 } 646 647 static int 648 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 649 uint64_t length) 650 { 651 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 652 int err; 653 654 if (offset >= object_size) 655 return (0); 656 657 if (length == DMU_OBJECT_END || offset + length > object_size) 658 length = object_size - offset; 659 660 while (length != 0) { 661 uint64_t chunk_end, chunk_begin; 662 663 chunk_end = chunk_begin = offset + length; 664 665 /* move chunk_begin backwards to the beginning of this chunk */ 666 err = get_next_chunk(dn, &chunk_begin, offset); 667 if (err) 668 return (err); 669 ASSERT3U(chunk_begin, >=, offset); 670 ASSERT3U(chunk_begin, <=, chunk_end); 671 672 dmu_tx_t *tx = dmu_tx_create(os); 673 dmu_tx_hold_free(tx, dn->dn_object, 674 chunk_begin, chunk_end - chunk_begin); 675 676 /* 677 * Mark this transaction as typically resulting in a net 678 * reduction in space used. 679 */ 680 dmu_tx_mark_netfree(tx); 681 err = dmu_tx_assign(tx, TXG_WAIT); 682 if (err) { 683 dmu_tx_abort(tx); 684 return (err); 685 } 686 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx); 687 dmu_tx_commit(tx); 688 689 length -= chunk_end - chunk_begin; 690 } 691 return (0); 692 } 693 694 int 695 dmu_free_long_range(objset_t *os, uint64_t object, 696 uint64_t offset, uint64_t length) 697 { 698 dnode_t *dn; 699 int err; 700 701 err = dnode_hold(os, object, FTAG, &dn); 702 if (err != 0) 703 return (err); 704 err = dmu_free_long_range_impl(os, dn, offset, length); 705 706 /* 707 * It is important to zero out the maxblkid when freeing the entire 708 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 709 * will take the fast path, and (b) dnode_reallocate() can verify 710 * that the entire file has been freed. 711 */ 712 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 713 dn->dn_maxblkid = 0; 714 715 dnode_rele(dn, FTAG); 716 return (err); 717 } 718 719 int 720 dmu_free_long_object(objset_t *os, uint64_t object) 721 { 722 dmu_tx_t *tx; 723 int err; 724 725 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 726 if (err != 0) 727 return (err); 728 729 tx = dmu_tx_create(os); 730 dmu_tx_hold_bonus(tx, object); 731 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 732 dmu_tx_mark_netfree(tx); 733 err = dmu_tx_assign(tx, TXG_WAIT); 734 if (err == 0) { 735 err = dmu_object_free(os, object, tx); 736 dmu_tx_commit(tx); 737 } else { 738 dmu_tx_abort(tx); 739 } 740 741 return (err); 742 } 743 744 int 745 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 746 uint64_t size, dmu_tx_t *tx) 747 { 748 dnode_t *dn; 749 int err = dnode_hold(os, object, FTAG, &dn); 750 if (err) 751 return (err); 752 ASSERT(offset < UINT64_MAX); 753 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 754 dnode_free_range(dn, offset, size, tx); 755 dnode_rele(dn, FTAG); 756 return (0); 757 } 758 759 int 760 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 761 void *buf, uint32_t flags) 762 { 763 dnode_t *dn; 764 dmu_buf_t **dbp; 765 int numbufs, err; 766 767 err = dnode_hold(os, object, FTAG, &dn); 768 if (err) 769 return (err); 770 771 /* 772 * Deal with odd block sizes, where there can't be data past the first 773 * block. If we ever do the tail block optimization, we will need to 774 * handle that here as well. 775 */ 776 if (dn->dn_maxblkid == 0) { 777 int newsz = offset > dn->dn_datablksz ? 0 : 778 MIN(size, dn->dn_datablksz - offset); 779 bzero((char *)buf + newsz, size - newsz); 780 size = newsz; 781 } 782 783 while (size > 0) { 784 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 785 int i; 786 787 /* 788 * NB: we could do this block-at-a-time, but it's nice 789 * to be reading in parallel. 790 */ 791 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 792 TRUE, FTAG, &numbufs, &dbp, flags); 793 if (err) 794 break; 795 796 for (i = 0; i < numbufs; i++) { 797 int tocpy; 798 int bufoff; 799 dmu_buf_t *db = dbp[i]; 800 801 ASSERT(size > 0); 802 803 bufoff = offset - db->db_offset; 804 tocpy = (int)MIN(db->db_size - bufoff, size); 805 806 bcopy((char *)db->db_data + bufoff, buf, tocpy); 807 808 offset += tocpy; 809 size -= tocpy; 810 buf = (char *)buf + tocpy; 811 } 812 dmu_buf_rele_array(dbp, numbufs, FTAG); 813 } 814 dnode_rele(dn, FTAG); 815 return (err); 816 } 817 818 void 819 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 820 const void *buf, dmu_tx_t *tx) 821 { 822 dmu_buf_t **dbp; 823 int numbufs, i; 824 825 if (size == 0) 826 return; 827 828 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 829 FALSE, FTAG, &numbufs, &dbp)); 830 831 for (i = 0; i < numbufs; i++) { 832 int tocpy; 833 int bufoff; 834 dmu_buf_t *db = dbp[i]; 835 836 ASSERT(size > 0); 837 838 bufoff = offset - db->db_offset; 839 tocpy = (int)MIN(db->db_size - bufoff, size); 840 841 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 842 843 if (tocpy == db->db_size) 844 dmu_buf_will_fill(db, tx); 845 else 846 dmu_buf_will_dirty(db, tx); 847 848 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 849 850 if (tocpy == db->db_size) 851 dmu_buf_fill_done(db, tx); 852 853 offset += tocpy; 854 size -= tocpy; 855 buf = (char *)buf + tocpy; 856 } 857 dmu_buf_rele_array(dbp, numbufs, FTAG); 858 } 859 860 void 861 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 862 dmu_tx_t *tx) 863 { 864 dmu_buf_t **dbp; 865 int numbufs, i; 866 867 if (size == 0) 868 return; 869 870 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 871 FALSE, FTAG, &numbufs, &dbp)); 872 873 for (i = 0; i < numbufs; i++) { 874 dmu_buf_t *db = dbp[i]; 875 876 dmu_buf_will_not_fill(db, tx); 877 } 878 dmu_buf_rele_array(dbp, numbufs, FTAG); 879 } 880 881 void 882 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 883 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 884 int compressed_size, int byteorder, dmu_tx_t *tx) 885 { 886 dmu_buf_t *db; 887 888 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 889 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 890 VERIFY0(dmu_buf_hold_noread(os, object, offset, 891 FTAG, &db)); 892 893 dmu_buf_write_embedded(db, 894 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 895 uncompressed_size, compressed_size, byteorder, tx); 896 897 dmu_buf_rele(db, FTAG); 898 } 899 900 /* 901 * DMU support for xuio 902 */ 903 kstat_t *xuio_ksp = NULL; 904 905 int 906 dmu_xuio_init(xuio_t *xuio, int nblk) 907 { 908 dmu_xuio_t *priv; 909 uio_t *uio = &xuio->xu_uio; 910 911 uio->uio_iovcnt = nblk; 912 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 913 914 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 915 priv->cnt = nblk; 916 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 917 priv->iovp = uio->uio_iov; 918 XUIO_XUZC_PRIV(xuio) = priv; 919 920 if (XUIO_XUZC_RW(xuio) == UIO_READ) 921 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 922 else 923 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 924 925 return (0); 926 } 927 928 void 929 dmu_xuio_fini(xuio_t *xuio) 930 { 931 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 932 int nblk = priv->cnt; 933 934 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 935 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 936 kmem_free(priv, sizeof (dmu_xuio_t)); 937 938 if (XUIO_XUZC_RW(xuio) == UIO_READ) 939 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 940 else 941 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 942 } 943 944 /* 945 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 946 * and increase priv->next by 1. 947 */ 948 int 949 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 950 { 951 struct iovec *iov; 952 uio_t *uio = &xuio->xu_uio; 953 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 954 int i = priv->next++; 955 956 ASSERT(i < priv->cnt); 957 ASSERT(off + n <= arc_buf_size(abuf)); 958 iov = uio->uio_iov + i; 959 iov->iov_base = (char *)abuf->b_data + off; 960 iov->iov_len = n; 961 priv->bufs[i] = abuf; 962 return (0); 963 } 964 965 int 966 dmu_xuio_cnt(xuio_t *xuio) 967 { 968 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 969 return (priv->cnt); 970 } 971 972 arc_buf_t * 973 dmu_xuio_arcbuf(xuio_t *xuio, int i) 974 { 975 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 976 977 ASSERT(i < priv->cnt); 978 return (priv->bufs[i]); 979 } 980 981 void 982 dmu_xuio_clear(xuio_t *xuio, int i) 983 { 984 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 985 986 ASSERT(i < priv->cnt); 987 priv->bufs[i] = NULL; 988 } 989 990 static void 991 xuio_stat_init(void) 992 { 993 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 994 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 995 KSTAT_FLAG_VIRTUAL); 996 if (xuio_ksp != NULL) { 997 xuio_ksp->ks_data = &xuio_stats; 998 kstat_install(xuio_ksp); 999 } 1000 } 1001 1002 static void 1003 xuio_stat_fini(void) 1004 { 1005 if (xuio_ksp != NULL) { 1006 kstat_delete(xuio_ksp); 1007 xuio_ksp = NULL; 1008 } 1009 } 1010 1011 void 1012 xuio_stat_wbuf_copied() 1013 { 1014 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1015 } 1016 1017 void 1018 xuio_stat_wbuf_nocopy() 1019 { 1020 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1021 } 1022 1023 #ifdef _KERNEL 1024 static int 1025 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1026 { 1027 dmu_buf_t **dbp; 1028 int numbufs, i, err; 1029 xuio_t *xuio = NULL; 1030 1031 /* 1032 * NB: we could do this block-at-a-time, but it's nice 1033 * to be reading in parallel. 1034 */ 1035 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1036 TRUE, FTAG, &numbufs, &dbp, 0); 1037 if (err) 1038 return (err); 1039 1040 if (uio->uio_extflg == UIO_XUIO) 1041 xuio = (xuio_t *)uio; 1042 1043 for (i = 0; i < numbufs; i++) { 1044 int tocpy; 1045 int bufoff; 1046 dmu_buf_t *db = dbp[i]; 1047 1048 ASSERT(size > 0); 1049 1050 bufoff = uio->uio_loffset - db->db_offset; 1051 tocpy = (int)MIN(db->db_size - bufoff, size); 1052 1053 if (xuio) { 1054 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1055 arc_buf_t *dbuf_abuf = dbi->db_buf; 1056 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1057 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1058 if (!err) { 1059 uio->uio_resid -= tocpy; 1060 uio->uio_loffset += tocpy; 1061 } 1062 1063 if (abuf == dbuf_abuf) 1064 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1065 else 1066 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1067 } else { 1068 err = uiomove((char *)db->db_data + bufoff, tocpy, 1069 UIO_READ, uio); 1070 } 1071 if (err) 1072 break; 1073 1074 size -= tocpy; 1075 } 1076 dmu_buf_rele_array(dbp, numbufs, FTAG); 1077 1078 return (err); 1079 } 1080 1081 /* 1082 * Read 'size' bytes into the uio buffer. 1083 * From object zdb->db_object. 1084 * Starting at offset uio->uio_loffset. 1085 * 1086 * If the caller already has a dbuf in the target object 1087 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1088 * because we don't have to find the dnode_t for the object. 1089 */ 1090 int 1091 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1092 { 1093 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1094 dnode_t *dn; 1095 int err; 1096 1097 if (size == 0) 1098 return (0); 1099 1100 DB_DNODE_ENTER(db); 1101 dn = DB_DNODE(db); 1102 err = dmu_read_uio_dnode(dn, uio, size); 1103 DB_DNODE_EXIT(db); 1104 1105 return (err); 1106 } 1107 1108 /* 1109 * Read 'size' bytes into the uio buffer. 1110 * From the specified object 1111 * Starting at offset uio->uio_loffset. 1112 */ 1113 int 1114 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1115 { 1116 dnode_t *dn; 1117 int err; 1118 1119 if (size == 0) 1120 return (0); 1121 1122 err = dnode_hold(os, object, FTAG, &dn); 1123 if (err) 1124 return (err); 1125 1126 err = dmu_read_uio_dnode(dn, uio, size); 1127 1128 dnode_rele(dn, FTAG); 1129 1130 return (err); 1131 } 1132 1133 static int 1134 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1135 { 1136 dmu_buf_t **dbp; 1137 int numbufs; 1138 int err = 0; 1139 int i; 1140 1141 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1142 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1143 if (err) 1144 return (err); 1145 1146 for (i = 0; i < numbufs; i++) { 1147 int tocpy; 1148 int bufoff; 1149 dmu_buf_t *db = dbp[i]; 1150 1151 ASSERT(size > 0); 1152 1153 bufoff = uio->uio_loffset - db->db_offset; 1154 tocpy = (int)MIN(db->db_size - bufoff, size); 1155 1156 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1157 1158 if (tocpy == db->db_size) 1159 dmu_buf_will_fill(db, tx); 1160 else 1161 dmu_buf_will_dirty(db, tx); 1162 1163 /* 1164 * XXX uiomove could block forever (eg. nfs-backed 1165 * pages). There needs to be a uiolockdown() function 1166 * to lock the pages in memory, so that uiomove won't 1167 * block. 1168 */ 1169 err = uiomove((char *)db->db_data + bufoff, tocpy, 1170 UIO_WRITE, uio); 1171 1172 if (tocpy == db->db_size) 1173 dmu_buf_fill_done(db, tx); 1174 1175 if (err) 1176 break; 1177 1178 size -= tocpy; 1179 } 1180 1181 dmu_buf_rele_array(dbp, numbufs, FTAG); 1182 return (err); 1183 } 1184 1185 /* 1186 * Write 'size' bytes from the uio buffer. 1187 * To object zdb->db_object. 1188 * Starting at offset uio->uio_loffset. 1189 * 1190 * If the caller already has a dbuf in the target object 1191 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1192 * because we don't have to find the dnode_t for the object. 1193 */ 1194 int 1195 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1196 dmu_tx_t *tx) 1197 { 1198 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1199 dnode_t *dn; 1200 int err; 1201 1202 if (size == 0) 1203 return (0); 1204 1205 DB_DNODE_ENTER(db); 1206 dn = DB_DNODE(db); 1207 err = dmu_write_uio_dnode(dn, uio, size, tx); 1208 DB_DNODE_EXIT(db); 1209 1210 return (err); 1211 } 1212 1213 /* 1214 * Write 'size' bytes from the uio buffer. 1215 * To the specified object. 1216 * Starting at offset uio->uio_loffset. 1217 */ 1218 int 1219 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1220 dmu_tx_t *tx) 1221 { 1222 dnode_t *dn; 1223 int err; 1224 1225 if (size == 0) 1226 return (0); 1227 1228 err = dnode_hold(os, object, FTAG, &dn); 1229 if (err) 1230 return (err); 1231 1232 err = dmu_write_uio_dnode(dn, uio, size, tx); 1233 1234 dnode_rele(dn, FTAG); 1235 1236 return (err); 1237 } 1238 1239 int 1240 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1241 page_t *pp, dmu_tx_t *tx) 1242 { 1243 dmu_buf_t **dbp; 1244 int numbufs, i; 1245 int err; 1246 1247 if (size == 0) 1248 return (0); 1249 1250 err = dmu_buf_hold_array(os, object, offset, size, 1251 FALSE, FTAG, &numbufs, &dbp); 1252 if (err) 1253 return (err); 1254 1255 for (i = 0; i < numbufs; i++) { 1256 int tocpy, copied, thiscpy; 1257 int bufoff; 1258 dmu_buf_t *db = dbp[i]; 1259 caddr_t va; 1260 1261 ASSERT(size > 0); 1262 ASSERT3U(db->db_size, >=, PAGESIZE); 1263 1264 bufoff = offset - db->db_offset; 1265 tocpy = (int)MIN(db->db_size - bufoff, size); 1266 1267 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1268 1269 if (tocpy == db->db_size) 1270 dmu_buf_will_fill(db, tx); 1271 else 1272 dmu_buf_will_dirty(db, tx); 1273 1274 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1275 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1276 thiscpy = MIN(PAGESIZE, tocpy - copied); 1277 va = zfs_map_page(pp, S_READ); 1278 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1279 zfs_unmap_page(pp, va); 1280 pp = pp->p_next; 1281 bufoff += PAGESIZE; 1282 } 1283 1284 if (tocpy == db->db_size) 1285 dmu_buf_fill_done(db, tx); 1286 1287 offset += tocpy; 1288 size -= tocpy; 1289 } 1290 dmu_buf_rele_array(dbp, numbufs, FTAG); 1291 return (err); 1292 } 1293 #endif 1294 1295 /* 1296 * Allocate a loaned anonymous arc buffer. 1297 */ 1298 arc_buf_t * 1299 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1300 { 1301 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1302 1303 return (arc_loan_buf(db->db_objset->os_spa, size)); 1304 } 1305 1306 /* 1307 * Free a loaned arc buffer. 1308 */ 1309 void 1310 dmu_return_arcbuf(arc_buf_t *buf) 1311 { 1312 arc_return_buf(buf, FTAG); 1313 VERIFY(arc_buf_remove_ref(buf, FTAG)); 1314 } 1315 1316 /* 1317 * When possible directly assign passed loaned arc buffer to a dbuf. 1318 * If this is not possible copy the contents of passed arc buf via 1319 * dmu_write(). 1320 */ 1321 void 1322 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1323 dmu_tx_t *tx) 1324 { 1325 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1326 dnode_t *dn; 1327 dmu_buf_impl_t *db; 1328 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1329 uint64_t blkid; 1330 1331 DB_DNODE_ENTER(dbuf); 1332 dn = DB_DNODE(dbuf); 1333 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1334 blkid = dbuf_whichblock(dn, 0, offset); 1335 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1336 rw_exit(&dn->dn_struct_rwlock); 1337 DB_DNODE_EXIT(dbuf); 1338 1339 /* 1340 * We can only assign if the offset is aligned, the arc buf is the 1341 * same size as the dbuf, and the dbuf is not metadata. It 1342 * can't be metadata because the loaned arc buf comes from the 1343 * user-data kmem arena. 1344 */ 1345 if (offset == db->db.db_offset && blksz == db->db.db_size && 1346 DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) { 1347 dbuf_assign_arcbuf(db, buf, tx); 1348 dbuf_rele(db, FTAG); 1349 } else { 1350 objset_t *os; 1351 uint64_t object; 1352 1353 DB_DNODE_ENTER(dbuf); 1354 dn = DB_DNODE(dbuf); 1355 os = dn->dn_objset; 1356 object = dn->dn_object; 1357 DB_DNODE_EXIT(dbuf); 1358 1359 dbuf_rele(db, FTAG); 1360 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1361 dmu_return_arcbuf(buf); 1362 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1363 } 1364 } 1365 1366 typedef struct { 1367 dbuf_dirty_record_t *dsa_dr; 1368 dmu_sync_cb_t *dsa_done; 1369 zgd_t *dsa_zgd; 1370 dmu_tx_t *dsa_tx; 1371 } dmu_sync_arg_t; 1372 1373 /* ARGSUSED */ 1374 static void 1375 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1376 { 1377 dmu_sync_arg_t *dsa = varg; 1378 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1379 blkptr_t *bp = zio->io_bp; 1380 1381 if (zio->io_error == 0) { 1382 if (BP_IS_HOLE(bp)) { 1383 /* 1384 * A block of zeros may compress to a hole, but the 1385 * block size still needs to be known for replay. 1386 */ 1387 BP_SET_LSIZE(bp, db->db_size); 1388 } else if (!BP_IS_EMBEDDED(bp)) { 1389 ASSERT(BP_GET_LEVEL(bp) == 0); 1390 bp->blk_fill = 1; 1391 } 1392 } 1393 } 1394 1395 static void 1396 dmu_sync_late_arrival_ready(zio_t *zio) 1397 { 1398 dmu_sync_ready(zio, NULL, zio->io_private); 1399 } 1400 1401 /* ARGSUSED */ 1402 static void 1403 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1404 { 1405 dmu_sync_arg_t *dsa = varg; 1406 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1407 dmu_buf_impl_t *db = dr->dr_dbuf; 1408 1409 mutex_enter(&db->db_mtx); 1410 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1411 if (zio->io_error == 0) { 1412 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1413 if (dr->dt.dl.dr_nopwrite) { 1414 blkptr_t *bp = zio->io_bp; 1415 blkptr_t *bp_orig = &zio->io_bp_orig; 1416 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1417 1418 ASSERT(BP_EQUAL(bp, bp_orig)); 1419 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1420 ASSERT(zio_checksum_table[chksum].ci_dedup); 1421 } 1422 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1423 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1424 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1425 1426 /* 1427 * Old style holes are filled with all zeros, whereas 1428 * new-style holes maintain their lsize, type, level, 1429 * and birth time (see zio_write_compress). While we 1430 * need to reset the BP_SET_LSIZE() call that happened 1431 * in dmu_sync_ready for old style holes, we do *not* 1432 * want to wipe out the information contained in new 1433 * style holes. Thus, only zero out the block pointer if 1434 * it's an old style hole. 1435 */ 1436 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1437 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1438 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1439 } else { 1440 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1441 } 1442 cv_broadcast(&db->db_changed); 1443 mutex_exit(&db->db_mtx); 1444 1445 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1446 1447 kmem_free(dsa, sizeof (*dsa)); 1448 } 1449 1450 static void 1451 dmu_sync_late_arrival_done(zio_t *zio) 1452 { 1453 blkptr_t *bp = zio->io_bp; 1454 dmu_sync_arg_t *dsa = zio->io_private; 1455 blkptr_t *bp_orig = &zio->io_bp_orig; 1456 1457 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1458 /* 1459 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1460 * then there is nothing to do here. Otherwise, free the 1461 * newly allocated block in this txg. 1462 */ 1463 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1464 ASSERT(BP_EQUAL(bp, bp_orig)); 1465 } else { 1466 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1467 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1468 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1469 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1470 } 1471 } 1472 1473 dmu_tx_commit(dsa->dsa_tx); 1474 1475 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1476 1477 kmem_free(dsa, sizeof (*dsa)); 1478 } 1479 1480 static int 1481 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1482 zio_prop_t *zp, zbookmark_phys_t *zb) 1483 { 1484 dmu_sync_arg_t *dsa; 1485 dmu_tx_t *tx; 1486 1487 tx = dmu_tx_create(os); 1488 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1489 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1490 dmu_tx_abort(tx); 1491 /* Make zl_get_data do txg_waited_synced() */ 1492 return (SET_ERROR(EIO)); 1493 } 1494 1495 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1496 dsa->dsa_dr = NULL; 1497 dsa->dsa_done = done; 1498 dsa->dsa_zgd = zgd; 1499 dsa->dsa_tx = tx; 1500 1501 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1502 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1503 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa, 1504 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1505 1506 return (0); 1507 } 1508 1509 /* 1510 * Intent log support: sync the block associated with db to disk. 1511 * N.B. and XXX: the caller is responsible for making sure that the 1512 * data isn't changing while dmu_sync() is writing it. 1513 * 1514 * Return values: 1515 * 1516 * EEXIST: this txg has already been synced, so there's nothing to do. 1517 * The caller should not log the write. 1518 * 1519 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1520 * The caller should not log the write. 1521 * 1522 * EALREADY: this block is already in the process of being synced. 1523 * The caller should track its progress (somehow). 1524 * 1525 * EIO: could not do the I/O. 1526 * The caller should do a txg_wait_synced(). 1527 * 1528 * 0: the I/O has been initiated. 1529 * The caller should log this blkptr in the done callback. 1530 * It is possible that the I/O will fail, in which case 1531 * the error will be reported to the done callback and 1532 * propagated to pio from zio_done(). 1533 */ 1534 int 1535 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1536 { 1537 blkptr_t *bp = zgd->zgd_bp; 1538 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1539 objset_t *os = db->db_objset; 1540 dsl_dataset_t *ds = os->os_dsl_dataset; 1541 dbuf_dirty_record_t *dr; 1542 dmu_sync_arg_t *dsa; 1543 zbookmark_phys_t zb; 1544 zio_prop_t zp; 1545 dnode_t *dn; 1546 1547 ASSERT(pio != NULL); 1548 ASSERT(txg != 0); 1549 1550 SET_BOOKMARK(&zb, ds->ds_object, 1551 db->db.db_object, db->db_level, db->db_blkid); 1552 1553 DB_DNODE_ENTER(db); 1554 dn = DB_DNODE(db); 1555 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1556 DB_DNODE_EXIT(db); 1557 1558 /* 1559 * If we're frozen (running ziltest), we always need to generate a bp. 1560 */ 1561 if (txg > spa_freeze_txg(os->os_spa)) 1562 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1563 1564 /* 1565 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1566 * and us. If we determine that this txg is not yet syncing, 1567 * but it begins to sync a moment later, that's OK because the 1568 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1569 */ 1570 mutex_enter(&db->db_mtx); 1571 1572 if (txg <= spa_last_synced_txg(os->os_spa)) { 1573 /* 1574 * This txg has already synced. There's nothing to do. 1575 */ 1576 mutex_exit(&db->db_mtx); 1577 return (SET_ERROR(EEXIST)); 1578 } 1579 1580 if (txg <= spa_syncing_txg(os->os_spa)) { 1581 /* 1582 * This txg is currently syncing, so we can't mess with 1583 * the dirty record anymore; just write a new log block. 1584 */ 1585 mutex_exit(&db->db_mtx); 1586 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1587 } 1588 1589 dr = db->db_last_dirty; 1590 while (dr && dr->dr_txg != txg) 1591 dr = dr->dr_next; 1592 1593 if (dr == NULL) { 1594 /* 1595 * There's no dr for this dbuf, so it must have been freed. 1596 * There's no need to log writes to freed blocks, so we're done. 1597 */ 1598 mutex_exit(&db->db_mtx); 1599 return (SET_ERROR(ENOENT)); 1600 } 1601 1602 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1603 1604 /* 1605 * Assume the on-disk data is X, the current syncing data (in 1606 * txg - 1) is Y, and the current in-memory data is Z (currently 1607 * in dmu_sync). 1608 * 1609 * We usually want to perform a nopwrite if X and Z are the 1610 * same. However, if Y is different (i.e. the BP is going to 1611 * change before this write takes effect), then a nopwrite will 1612 * be incorrect - we would override with X, which could have 1613 * been freed when Y was written. 1614 * 1615 * (Note that this is not a concern when we are nop-writing from 1616 * syncing context, because X and Y must be identical, because 1617 * all previous txgs have been synced.) 1618 * 1619 * Therefore, we disable nopwrite if the current BP could change 1620 * before this TXG. There are two ways it could change: by 1621 * being dirty (dr_next is non-NULL), or by being freed 1622 * (dnode_block_freed()). This behavior is verified by 1623 * zio_done(), which VERIFYs that the override BP is identical 1624 * to the on-disk BP. 1625 */ 1626 DB_DNODE_ENTER(db); 1627 dn = DB_DNODE(db); 1628 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1629 zp.zp_nopwrite = B_FALSE; 1630 DB_DNODE_EXIT(db); 1631 1632 ASSERT(dr->dr_txg == txg); 1633 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1634 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1635 /* 1636 * We have already issued a sync write for this buffer, 1637 * or this buffer has already been synced. It could not 1638 * have been dirtied since, or we would have cleared the state. 1639 */ 1640 mutex_exit(&db->db_mtx); 1641 return (SET_ERROR(EALREADY)); 1642 } 1643 1644 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1645 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1646 mutex_exit(&db->db_mtx); 1647 1648 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1649 dsa->dsa_dr = dr; 1650 dsa->dsa_done = done; 1651 dsa->dsa_zgd = zgd; 1652 dsa->dsa_tx = NULL; 1653 1654 zio_nowait(arc_write(pio, os->os_spa, txg, 1655 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1656 DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready, 1657 NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, 1658 ZIO_FLAG_CANFAIL, &zb)); 1659 1660 return (0); 1661 } 1662 1663 int 1664 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1665 dmu_tx_t *tx) 1666 { 1667 dnode_t *dn; 1668 int err; 1669 1670 err = dnode_hold(os, object, FTAG, &dn); 1671 if (err) 1672 return (err); 1673 err = dnode_set_blksz(dn, size, ibs, tx); 1674 dnode_rele(dn, FTAG); 1675 return (err); 1676 } 1677 1678 void 1679 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1680 dmu_tx_t *tx) 1681 { 1682 dnode_t *dn; 1683 1684 /* 1685 * Send streams include each object's checksum function. This 1686 * check ensures that the receiving system can understand the 1687 * checksum function transmitted. 1688 */ 1689 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1690 1691 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1692 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1693 dn->dn_checksum = checksum; 1694 dnode_setdirty(dn, tx); 1695 dnode_rele(dn, FTAG); 1696 } 1697 1698 void 1699 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1700 dmu_tx_t *tx) 1701 { 1702 dnode_t *dn; 1703 1704 /* 1705 * Send streams include each object's compression function. This 1706 * check ensures that the receiving system can understand the 1707 * compression function transmitted. 1708 */ 1709 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1710 1711 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1712 dn->dn_compress = compress; 1713 dnode_setdirty(dn, tx); 1714 dnode_rele(dn, FTAG); 1715 } 1716 1717 int zfs_mdcomp_disable = 0; 1718 1719 /* 1720 * When the "redundant_metadata" property is set to "most", only indirect 1721 * blocks of this level and higher will have an additional ditto block. 1722 */ 1723 int zfs_redundant_metadata_most_ditto_level = 2; 1724 1725 void 1726 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1727 { 1728 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1729 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1730 (wp & WP_SPILL)); 1731 enum zio_checksum checksum = os->os_checksum; 1732 enum zio_compress compress = os->os_compress; 1733 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1734 boolean_t dedup = B_FALSE; 1735 boolean_t nopwrite = B_FALSE; 1736 boolean_t dedup_verify = os->os_dedup_verify; 1737 int copies = os->os_copies; 1738 1739 /* 1740 * We maintain different write policies for each of the following 1741 * types of data: 1742 * 1. metadata 1743 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1744 * 3. all other level 0 blocks 1745 */ 1746 if (ismd) { 1747 if (zfs_mdcomp_disable) { 1748 compress = ZIO_COMPRESS_EMPTY; 1749 } else { 1750 /* 1751 * XXX -- we should design a compression algorithm 1752 * that specializes in arrays of bps. 1753 */ 1754 compress = zio_compress_select(os->os_spa, 1755 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1756 } 1757 1758 /* 1759 * Metadata always gets checksummed. If the data 1760 * checksum is multi-bit correctable, and it's not a 1761 * ZBT-style checksum, then it's suitable for metadata 1762 * as well. Otherwise, the metadata checksum defaults 1763 * to fletcher4. 1764 */ 1765 if (zio_checksum_table[checksum].ci_correctable < 1 || 1766 zio_checksum_table[checksum].ci_eck) 1767 checksum = ZIO_CHECKSUM_FLETCHER_4; 1768 1769 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1770 (os->os_redundant_metadata == 1771 ZFS_REDUNDANT_METADATA_MOST && 1772 (level >= zfs_redundant_metadata_most_ditto_level || 1773 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1774 copies++; 1775 } else if (wp & WP_NOFILL) { 1776 ASSERT(level == 0); 1777 1778 /* 1779 * If we're writing preallocated blocks, we aren't actually 1780 * writing them so don't set any policy properties. These 1781 * blocks are currently only used by an external subsystem 1782 * outside of zfs (i.e. dump) and not written by the zio 1783 * pipeline. 1784 */ 1785 compress = ZIO_COMPRESS_OFF; 1786 checksum = ZIO_CHECKSUM_NOPARITY; 1787 } else { 1788 compress = zio_compress_select(os->os_spa, dn->dn_compress, 1789 compress); 1790 1791 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1792 zio_checksum_select(dn->dn_checksum, checksum) : 1793 dedup_checksum; 1794 1795 /* 1796 * Determine dedup setting. If we are in dmu_sync(), 1797 * we won't actually dedup now because that's all 1798 * done in syncing context; but we do want to use the 1799 * dedup checkum. If the checksum is not strong 1800 * enough to ensure unique signatures, force 1801 * dedup_verify. 1802 */ 1803 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1804 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1805 if (!zio_checksum_table[checksum].ci_dedup) 1806 dedup_verify = B_TRUE; 1807 } 1808 1809 /* 1810 * Enable nopwrite if we have a cryptographically secure 1811 * checksum that has no known collisions (i.e. SHA-256) 1812 * and compression is enabled. We don't enable nopwrite if 1813 * dedup is enabled as the two features are mutually exclusive. 1814 */ 1815 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup && 1816 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1817 } 1818 1819 zp->zp_checksum = checksum; 1820 zp->zp_compress = compress; 1821 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1822 zp->zp_level = level; 1823 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 1824 zp->zp_dedup = dedup; 1825 zp->zp_dedup_verify = dedup && dedup_verify; 1826 zp->zp_nopwrite = nopwrite; 1827 } 1828 1829 int 1830 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1831 { 1832 dnode_t *dn; 1833 int err; 1834 1835 /* 1836 * Sync any current changes before 1837 * we go trundling through the block pointers. 1838 */ 1839 err = dmu_object_wait_synced(os, object); 1840 if (err) { 1841 return (err); 1842 } 1843 1844 err = dnode_hold(os, object, FTAG, &dn); 1845 if (err) { 1846 return (err); 1847 } 1848 1849 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1850 dnode_rele(dn, FTAG); 1851 1852 return (err); 1853 } 1854 1855 /* 1856 * Given the ZFS object, if it contains any dirty nodes 1857 * this function flushes all dirty blocks to disk. This 1858 * ensures the DMU object info is updated. A more efficient 1859 * future version might just find the TXG with the maximum 1860 * ID and wait for that to be synced. 1861 */ 1862 int 1863 dmu_object_wait_synced(objset_t *os, uint64_t object) { 1864 dnode_t *dn; 1865 int error, i; 1866 1867 error = dnode_hold(os, object, FTAG, &dn); 1868 if (error) { 1869 return (error); 1870 } 1871 1872 for (i = 0; i < TXG_SIZE; i++) { 1873 if (list_link_active(&dn->dn_dirty_link[i])) { 1874 break; 1875 } 1876 } 1877 dnode_rele(dn, FTAG); 1878 if (i != TXG_SIZE) { 1879 txg_wait_synced(dmu_objset_pool(os), 0); 1880 } 1881 1882 return (0); 1883 } 1884 1885 void 1886 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1887 { 1888 dnode_phys_t *dnp; 1889 1890 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1891 mutex_enter(&dn->dn_mtx); 1892 1893 dnp = dn->dn_phys; 1894 1895 doi->doi_data_block_size = dn->dn_datablksz; 1896 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1897 1ULL << dn->dn_indblkshift : 0; 1898 doi->doi_type = dn->dn_type; 1899 doi->doi_bonus_type = dn->dn_bonustype; 1900 doi->doi_bonus_size = dn->dn_bonuslen; 1901 doi->doi_indirection = dn->dn_nlevels; 1902 doi->doi_checksum = dn->dn_checksum; 1903 doi->doi_compress = dn->dn_compress; 1904 doi->doi_nblkptr = dn->dn_nblkptr; 1905 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1906 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 1907 doi->doi_fill_count = 0; 1908 for (int i = 0; i < dnp->dn_nblkptr; i++) 1909 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 1910 1911 mutex_exit(&dn->dn_mtx); 1912 rw_exit(&dn->dn_struct_rwlock); 1913 } 1914 1915 /* 1916 * Get information on a DMU object. 1917 * If doi is NULL, just indicates whether the object exists. 1918 */ 1919 int 1920 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1921 { 1922 dnode_t *dn; 1923 int err = dnode_hold(os, object, FTAG, &dn); 1924 1925 if (err) 1926 return (err); 1927 1928 if (doi != NULL) 1929 dmu_object_info_from_dnode(dn, doi); 1930 1931 dnode_rele(dn, FTAG); 1932 return (0); 1933 } 1934 1935 /* 1936 * As above, but faster; can be used when you have a held dbuf in hand. 1937 */ 1938 void 1939 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1940 { 1941 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1942 1943 DB_DNODE_ENTER(db); 1944 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1945 DB_DNODE_EXIT(db); 1946 } 1947 1948 /* 1949 * Faster still when you only care about the size. 1950 * This is specifically optimized for zfs_getattr(). 1951 */ 1952 void 1953 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1954 u_longlong_t *nblk512) 1955 { 1956 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1957 dnode_t *dn; 1958 1959 DB_DNODE_ENTER(db); 1960 dn = DB_DNODE(db); 1961 1962 *blksize = dn->dn_datablksz; 1963 /* add 1 for dnode space */ 1964 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1965 SPA_MINBLOCKSHIFT) + 1; 1966 DB_DNODE_EXIT(db); 1967 } 1968 1969 void 1970 byteswap_uint64_array(void *vbuf, size_t size) 1971 { 1972 uint64_t *buf = vbuf; 1973 size_t count = size >> 3; 1974 int i; 1975 1976 ASSERT((size & 7) == 0); 1977 1978 for (i = 0; i < count; i++) 1979 buf[i] = BSWAP_64(buf[i]); 1980 } 1981 1982 void 1983 byteswap_uint32_array(void *vbuf, size_t size) 1984 { 1985 uint32_t *buf = vbuf; 1986 size_t count = size >> 2; 1987 int i; 1988 1989 ASSERT((size & 3) == 0); 1990 1991 for (i = 0; i < count; i++) 1992 buf[i] = BSWAP_32(buf[i]); 1993 } 1994 1995 void 1996 byteswap_uint16_array(void *vbuf, size_t size) 1997 { 1998 uint16_t *buf = vbuf; 1999 size_t count = size >> 1; 2000 int i; 2001 2002 ASSERT((size & 1) == 0); 2003 2004 for (i = 0; i < count; i++) 2005 buf[i] = BSWAP_16(buf[i]); 2006 } 2007 2008 /* ARGSUSED */ 2009 void 2010 byteswap_uint8_array(void *vbuf, size_t size) 2011 { 2012 } 2013 2014 void 2015 dmu_init(void) 2016 { 2017 zfs_dbgmsg_init(); 2018 sa_cache_init(); 2019 xuio_stat_init(); 2020 dmu_objset_init(); 2021 dnode_init(); 2022 dbuf_init(); 2023 zfetch_init(); 2024 l2arc_init(); 2025 arc_init(); 2026 } 2027 2028 void 2029 dmu_fini(void) 2030 { 2031 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2032 l2arc_fini(); 2033 zfetch_fini(); 2034 dbuf_fini(); 2035 dnode_fini(); 2036 dmu_objset_fini(); 2037 xuio_stat_fini(); 2038 sa_cache_fini(); 2039 zfs_dbgmsg_fini(); 2040 } 2041