1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/dmu.h> 26 #include <sys/dmu_impl.h> 27 #include <sys/dmu_tx.h> 28 #include <sys/dbuf.h> 29 #include <sys/dnode.h> 30 #include <sys/zfs_context.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_traverse.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_pool.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_prop.h> 38 #include <sys/dmu_zfetch.h> 39 #include <sys/zfs_ioctl.h> 40 #include <sys/zap.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/sa.h> 43 #ifdef _KERNEL 44 #include <sys/vmsystm.h> 45 #include <sys/zfs_znode.h> 46 #endif 47 48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 49 { byteswap_uint8_array, TRUE, "unallocated" }, 50 { zap_byteswap, TRUE, "object directory" }, 51 { byteswap_uint64_array, TRUE, "object array" }, 52 { byteswap_uint8_array, TRUE, "packed nvlist" }, 53 { byteswap_uint64_array, TRUE, "packed nvlist size" }, 54 { byteswap_uint64_array, TRUE, "bplist" }, 55 { byteswap_uint64_array, TRUE, "bplist header" }, 56 { byteswap_uint64_array, TRUE, "SPA space map header" }, 57 { byteswap_uint64_array, TRUE, "SPA space map" }, 58 { byteswap_uint64_array, TRUE, "ZIL intent log" }, 59 { dnode_buf_byteswap, TRUE, "DMU dnode" }, 60 { dmu_objset_byteswap, TRUE, "DMU objset" }, 61 { byteswap_uint64_array, TRUE, "DSL directory" }, 62 { zap_byteswap, TRUE, "DSL directory child map"}, 63 { zap_byteswap, TRUE, "DSL dataset snap map" }, 64 { zap_byteswap, TRUE, "DSL props" }, 65 { byteswap_uint64_array, TRUE, "DSL dataset" }, 66 { zfs_znode_byteswap, TRUE, "ZFS znode" }, 67 { zfs_oldacl_byteswap, TRUE, "ZFS V0 ACL" }, 68 { byteswap_uint8_array, FALSE, "ZFS plain file" }, 69 { zap_byteswap, TRUE, "ZFS directory" }, 70 { zap_byteswap, TRUE, "ZFS master node" }, 71 { zap_byteswap, TRUE, "ZFS delete queue" }, 72 { byteswap_uint8_array, FALSE, "zvol object" }, 73 { zap_byteswap, TRUE, "zvol prop" }, 74 { byteswap_uint8_array, FALSE, "other uint8[]" }, 75 { byteswap_uint64_array, FALSE, "other uint64[]" }, 76 { zap_byteswap, TRUE, "other ZAP" }, 77 { zap_byteswap, TRUE, "persistent error log" }, 78 { byteswap_uint8_array, TRUE, "SPA history" }, 79 { byteswap_uint64_array, TRUE, "SPA history offsets" }, 80 { zap_byteswap, TRUE, "Pool properties" }, 81 { zap_byteswap, TRUE, "DSL permissions" }, 82 { zfs_acl_byteswap, TRUE, "ZFS ACL" }, 83 { byteswap_uint8_array, TRUE, "ZFS SYSACL" }, 84 { byteswap_uint8_array, TRUE, "FUID table" }, 85 { byteswap_uint64_array, TRUE, "FUID table size" }, 86 { zap_byteswap, TRUE, "DSL dataset next clones"}, 87 { zap_byteswap, TRUE, "scan work queue" }, 88 { zap_byteswap, TRUE, "ZFS user/group used" }, 89 { zap_byteswap, TRUE, "ZFS user/group quota" }, 90 { zap_byteswap, TRUE, "snapshot refcount tags"}, 91 { zap_byteswap, TRUE, "DDT ZAP algorithm" }, 92 { zap_byteswap, TRUE, "DDT statistics" }, 93 { byteswap_uint8_array, TRUE, "System attributes" }, 94 { zap_byteswap, TRUE, "SA master node" }, 95 { zap_byteswap, TRUE, "SA attr registration" }, 96 { zap_byteswap, TRUE, "SA attr layouts" }, 97 { zap_byteswap, TRUE, "scan translations" }, 98 { byteswap_uint8_array, FALSE, "deduplicated block" }, 99 }; 100 101 int 102 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 103 void *tag, dmu_buf_t **dbp, int flags) 104 { 105 dnode_t *dn; 106 uint64_t blkid; 107 dmu_buf_impl_t *db; 108 int err; 109 int db_flags = DB_RF_CANFAIL; 110 111 if (flags & DMU_READ_NO_PREFETCH) 112 db_flags |= DB_RF_NOPREFETCH; 113 114 err = dnode_hold(os, object, FTAG, &dn); 115 if (err) 116 return (err); 117 blkid = dbuf_whichblock(dn, offset); 118 rw_enter(&dn->dn_struct_rwlock, RW_READER); 119 db = dbuf_hold(dn, blkid, tag); 120 rw_exit(&dn->dn_struct_rwlock); 121 if (db == NULL) { 122 err = EIO; 123 } else { 124 err = dbuf_read(db, NULL, db_flags); 125 if (err) { 126 dbuf_rele(db, tag); 127 db = NULL; 128 } 129 } 130 131 dnode_rele(dn, FTAG); 132 *dbp = &db->db; 133 return (err); 134 } 135 136 int 137 dmu_bonus_max(void) 138 { 139 return (DN_MAX_BONUSLEN); 140 } 141 142 int 143 dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx) 144 { 145 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 146 147 if (dn->dn_bonus != (dmu_buf_impl_t *)db) 148 return (EINVAL); 149 if (newsize < 0 || newsize > db->db_size) 150 return (EINVAL); 151 dnode_setbonuslen(dn, newsize, tx); 152 return (0); 153 } 154 155 int 156 dmu_set_bonustype(dmu_buf_t *db, dmu_object_type_t type, dmu_tx_t *tx) 157 { 158 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 159 160 if (type > DMU_OT_NUMTYPES) 161 return (EINVAL); 162 163 if (dn->dn_bonus != (dmu_buf_impl_t *)db) 164 return (EINVAL); 165 166 dnode_setbonus_type(dn, type, tx); 167 return (0); 168 } 169 170 int 171 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 172 { 173 dnode_t *dn; 174 int error; 175 176 error = dnode_hold(os, object, FTAG, &dn); 177 dbuf_rm_spill(dn, tx); 178 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 179 dnode_rm_spill(dn, tx); 180 rw_exit(&dn->dn_struct_rwlock); 181 dnode_rele(dn, FTAG); 182 return (error); 183 } 184 185 /* 186 * returns ENOENT, EIO, or 0. 187 */ 188 int 189 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 190 { 191 dnode_t *dn; 192 dmu_buf_impl_t *db; 193 int error; 194 195 error = dnode_hold(os, object, FTAG, &dn); 196 if (error) 197 return (error); 198 199 rw_enter(&dn->dn_struct_rwlock, RW_READER); 200 if (dn->dn_bonus == NULL) { 201 rw_exit(&dn->dn_struct_rwlock); 202 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 203 if (dn->dn_bonus == NULL) 204 dbuf_create_bonus(dn); 205 } 206 db = dn->dn_bonus; 207 rw_exit(&dn->dn_struct_rwlock); 208 209 /* as long as the bonus buf is held, the dnode will be held */ 210 if (refcount_add(&db->db_holds, tag) == 1) 211 VERIFY(dnode_add_ref(dn, db)); 212 213 dnode_rele(dn, FTAG); 214 215 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 216 217 *dbp = &db->db; 218 return (0); 219 } 220 221 /* 222 * returns ENOENT, EIO, or 0. 223 * 224 * This interface will allocate a blank spill dbuf when a spill blk 225 * doesn't already exist on the dnode. 226 * 227 * if you only want to find an already existing spill db, then 228 * dmu_spill_hold_existing() should be used. 229 */ 230 int 231 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 232 { 233 dmu_buf_impl_t *db = NULL; 234 int err; 235 236 if ((flags & DB_RF_HAVESTRUCT) == 0) 237 rw_enter(&dn->dn_struct_rwlock, RW_READER); 238 239 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 240 241 if ((flags & DB_RF_HAVESTRUCT) == 0) 242 rw_exit(&dn->dn_struct_rwlock); 243 244 ASSERT(db != NULL); 245 err = dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | flags); 246 *dbp = &db->db; 247 return (err); 248 } 249 250 int 251 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 252 { 253 dnode_t *dn = ((dmu_buf_impl_t *)bonus)->db_dnode; 254 int err; 255 256 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) 257 return (EINVAL); 258 rw_enter(&dn->dn_struct_rwlock, RW_READER); 259 260 if (!dn->dn_have_spill) { 261 rw_exit(&dn->dn_struct_rwlock); 262 return (ENOENT); 263 } 264 err = dmu_spill_hold_by_dnode(dn, DB_RF_HAVESTRUCT, tag, dbp); 265 rw_exit(&dn->dn_struct_rwlock); 266 return (err); 267 } 268 269 int 270 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 271 { 272 return (dmu_spill_hold_by_dnode(((dmu_buf_impl_t *)bonus)->db_dnode, 273 0, tag, dbp)); 274 } 275 276 /* 277 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 278 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 279 * and can induce severe lock contention when writing to several files 280 * whose dnodes are in the same block. 281 */ 282 static int 283 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 284 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 285 { 286 dsl_pool_t *dp = NULL; 287 dmu_buf_t **dbp; 288 uint64_t blkid, nblks, i; 289 uint32_t dbuf_flags; 290 int err; 291 zio_t *zio; 292 hrtime_t start; 293 294 ASSERT(length <= DMU_MAX_ACCESS); 295 296 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 297 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 298 dbuf_flags |= DB_RF_NOPREFETCH; 299 300 rw_enter(&dn->dn_struct_rwlock, RW_READER); 301 if (dn->dn_datablkshift) { 302 int blkshift = dn->dn_datablkshift; 303 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 304 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 305 } else { 306 if (offset + length > dn->dn_datablksz) { 307 zfs_panic_recover("zfs: accessing past end of object " 308 "%llx/%llx (size=%u access=%llu+%llu)", 309 (longlong_t)dn->dn_objset-> 310 os_dsl_dataset->ds_object, 311 (longlong_t)dn->dn_object, dn->dn_datablksz, 312 (longlong_t)offset, (longlong_t)length); 313 rw_exit(&dn->dn_struct_rwlock); 314 return (EIO); 315 } 316 nblks = 1; 317 } 318 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 319 320 if (dn->dn_objset->os_dsl_dataset) 321 dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool; 322 if (dp && dsl_pool_sync_context(dp)) 323 start = gethrtime(); 324 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 325 blkid = dbuf_whichblock(dn, offset); 326 for (i = 0; i < nblks; i++) { 327 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 328 if (db == NULL) { 329 rw_exit(&dn->dn_struct_rwlock); 330 dmu_buf_rele_array(dbp, nblks, tag); 331 zio_nowait(zio); 332 return (EIO); 333 } 334 /* initiate async i/o */ 335 if (read) { 336 (void) dbuf_read(db, zio, dbuf_flags); 337 } 338 dbp[i] = &db->db; 339 } 340 rw_exit(&dn->dn_struct_rwlock); 341 342 /* wait for async i/o */ 343 err = zio_wait(zio); 344 /* track read overhead when we are in sync context */ 345 if (dp && dsl_pool_sync_context(dp)) 346 dp->dp_read_overhead += gethrtime() - start; 347 if (err) { 348 dmu_buf_rele_array(dbp, nblks, tag); 349 return (err); 350 } 351 352 /* wait for other io to complete */ 353 if (read) { 354 for (i = 0; i < nblks; i++) { 355 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 356 mutex_enter(&db->db_mtx); 357 while (db->db_state == DB_READ || 358 db->db_state == DB_FILL) 359 cv_wait(&db->db_changed, &db->db_mtx); 360 if (db->db_state == DB_UNCACHED) 361 err = EIO; 362 mutex_exit(&db->db_mtx); 363 if (err) { 364 dmu_buf_rele_array(dbp, nblks, tag); 365 return (err); 366 } 367 } 368 } 369 370 *numbufsp = nblks; 371 *dbpp = dbp; 372 return (0); 373 } 374 375 static int 376 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 377 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 378 { 379 dnode_t *dn; 380 int err; 381 382 err = dnode_hold(os, object, FTAG, &dn); 383 if (err) 384 return (err); 385 386 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 387 numbufsp, dbpp, DMU_READ_PREFETCH); 388 389 dnode_rele(dn, FTAG); 390 391 return (err); 392 } 393 394 int 395 dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 396 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 397 { 398 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 399 int err; 400 401 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 402 numbufsp, dbpp, DMU_READ_PREFETCH); 403 404 return (err); 405 } 406 407 void 408 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 409 { 410 int i; 411 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 412 413 if (numbufs == 0) 414 return; 415 416 for (i = 0; i < numbufs; i++) { 417 if (dbp[i]) 418 dbuf_rele(dbp[i], tag); 419 } 420 421 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 422 } 423 424 void 425 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 426 { 427 dnode_t *dn; 428 uint64_t blkid; 429 int nblks, i, err; 430 431 if (zfs_prefetch_disable) 432 return; 433 434 if (len == 0) { /* they're interested in the bonus buffer */ 435 dn = os->os_meta_dnode; 436 437 if (object == 0 || object >= DN_MAX_OBJECT) 438 return; 439 440 rw_enter(&dn->dn_struct_rwlock, RW_READER); 441 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 442 dbuf_prefetch(dn, blkid); 443 rw_exit(&dn->dn_struct_rwlock); 444 return; 445 } 446 447 /* 448 * XXX - Note, if the dnode for the requested object is not 449 * already cached, we will do a *synchronous* read in the 450 * dnode_hold() call. The same is true for any indirects. 451 */ 452 err = dnode_hold(os, object, FTAG, &dn); 453 if (err != 0) 454 return; 455 456 rw_enter(&dn->dn_struct_rwlock, RW_READER); 457 if (dn->dn_datablkshift) { 458 int blkshift = dn->dn_datablkshift; 459 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 460 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 461 } else { 462 nblks = (offset < dn->dn_datablksz); 463 } 464 465 if (nblks != 0) { 466 blkid = dbuf_whichblock(dn, offset); 467 for (i = 0; i < nblks; i++) 468 dbuf_prefetch(dn, blkid+i); 469 } 470 471 rw_exit(&dn->dn_struct_rwlock); 472 473 dnode_rele(dn, FTAG); 474 } 475 476 /* 477 * Get the next "chunk" of file data to free. We traverse the file from 478 * the end so that the file gets shorter over time (if we crashes in the 479 * middle, this will leave us in a better state). We find allocated file 480 * data by simply searching the allocated level 1 indirects. 481 */ 482 static int 483 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit) 484 { 485 uint64_t len = *start - limit; 486 uint64_t blkcnt = 0; 487 uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1)); 488 uint64_t iblkrange = 489 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 490 491 ASSERT(limit <= *start); 492 493 if (len <= iblkrange * maxblks) { 494 *start = limit; 495 return (0); 496 } 497 ASSERT(ISP2(iblkrange)); 498 499 while (*start > limit && blkcnt < maxblks) { 500 int err; 501 502 /* find next allocated L1 indirect */ 503 err = dnode_next_offset(dn, 504 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 505 506 /* if there are no more, then we are done */ 507 if (err == ESRCH) { 508 *start = limit; 509 return (0); 510 } else if (err) { 511 return (err); 512 } 513 blkcnt += 1; 514 515 /* reset offset to end of "next" block back */ 516 *start = P2ALIGN(*start, iblkrange); 517 if (*start <= limit) 518 *start = limit; 519 else 520 *start -= 1; 521 } 522 return (0); 523 } 524 525 static int 526 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 527 uint64_t length, boolean_t free_dnode) 528 { 529 dmu_tx_t *tx; 530 uint64_t object_size, start, end, len; 531 boolean_t trunc = (length == DMU_OBJECT_END); 532 int align, err; 533 534 align = 1 << dn->dn_datablkshift; 535 ASSERT(align > 0); 536 object_size = align == 1 ? dn->dn_datablksz : 537 (dn->dn_maxblkid + 1) << dn->dn_datablkshift; 538 539 end = offset + length; 540 if (trunc || end > object_size) 541 end = object_size; 542 if (end <= offset) 543 return (0); 544 length = end - offset; 545 546 while (length) { 547 start = end; 548 /* assert(offset <= start) */ 549 err = get_next_chunk(dn, &start, offset); 550 if (err) 551 return (err); 552 len = trunc ? DMU_OBJECT_END : end - start; 553 554 tx = dmu_tx_create(os); 555 dmu_tx_hold_free(tx, dn->dn_object, start, len); 556 err = dmu_tx_assign(tx, TXG_WAIT); 557 if (err) { 558 dmu_tx_abort(tx); 559 return (err); 560 } 561 562 dnode_free_range(dn, start, trunc ? -1 : len, tx); 563 564 if (start == 0 && free_dnode) { 565 ASSERT(trunc); 566 dnode_free(dn, tx); 567 } 568 569 length -= end - start; 570 571 dmu_tx_commit(tx); 572 end = start; 573 } 574 return (0); 575 } 576 577 int 578 dmu_free_long_range(objset_t *os, uint64_t object, 579 uint64_t offset, uint64_t length) 580 { 581 dnode_t *dn; 582 int err; 583 584 err = dnode_hold(os, object, FTAG, &dn); 585 if (err != 0) 586 return (err); 587 err = dmu_free_long_range_impl(os, dn, offset, length, FALSE); 588 dnode_rele(dn, FTAG); 589 return (err); 590 } 591 592 int 593 dmu_free_object(objset_t *os, uint64_t object) 594 { 595 dnode_t *dn; 596 dmu_tx_t *tx; 597 int err; 598 599 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 600 FTAG, &dn); 601 if (err != 0) 602 return (err); 603 if (dn->dn_nlevels == 1) { 604 tx = dmu_tx_create(os); 605 dmu_tx_hold_bonus(tx, object); 606 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END); 607 err = dmu_tx_assign(tx, TXG_WAIT); 608 if (err == 0) { 609 dnode_free_range(dn, 0, DMU_OBJECT_END, tx); 610 dnode_free(dn, tx); 611 dmu_tx_commit(tx); 612 } else { 613 dmu_tx_abort(tx); 614 } 615 } else { 616 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE); 617 } 618 dnode_rele(dn, FTAG); 619 return (err); 620 } 621 622 int 623 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 624 uint64_t size, dmu_tx_t *tx) 625 { 626 dnode_t *dn; 627 int err = dnode_hold(os, object, FTAG, &dn); 628 if (err) 629 return (err); 630 ASSERT(offset < UINT64_MAX); 631 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 632 dnode_free_range(dn, offset, size, tx); 633 dnode_rele(dn, FTAG); 634 return (0); 635 } 636 637 int 638 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 639 void *buf, uint32_t flags) 640 { 641 dnode_t *dn; 642 dmu_buf_t **dbp; 643 int numbufs, err; 644 645 err = dnode_hold(os, object, FTAG, &dn); 646 if (err) 647 return (err); 648 649 /* 650 * Deal with odd block sizes, where there can't be data past the first 651 * block. If we ever do the tail block optimization, we will need to 652 * handle that here as well. 653 */ 654 if (dn->dn_maxblkid == 0) { 655 int newsz = offset > dn->dn_datablksz ? 0 : 656 MIN(size, dn->dn_datablksz - offset); 657 bzero((char *)buf + newsz, size - newsz); 658 size = newsz; 659 } 660 661 while (size > 0) { 662 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 663 int i; 664 665 /* 666 * NB: we could do this block-at-a-time, but it's nice 667 * to be reading in parallel. 668 */ 669 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 670 TRUE, FTAG, &numbufs, &dbp, flags); 671 if (err) 672 break; 673 674 for (i = 0; i < numbufs; i++) { 675 int tocpy; 676 int bufoff; 677 dmu_buf_t *db = dbp[i]; 678 679 ASSERT(size > 0); 680 681 bufoff = offset - db->db_offset; 682 tocpy = (int)MIN(db->db_size - bufoff, size); 683 684 bcopy((char *)db->db_data + bufoff, buf, tocpy); 685 686 offset += tocpy; 687 size -= tocpy; 688 buf = (char *)buf + tocpy; 689 } 690 dmu_buf_rele_array(dbp, numbufs, FTAG); 691 } 692 dnode_rele(dn, FTAG); 693 return (err); 694 } 695 696 void 697 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 698 const void *buf, dmu_tx_t *tx) 699 { 700 dmu_buf_t **dbp; 701 int numbufs, i; 702 703 if (size == 0) 704 return; 705 706 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 707 FALSE, FTAG, &numbufs, &dbp)); 708 709 for (i = 0; i < numbufs; i++) { 710 int tocpy; 711 int bufoff; 712 dmu_buf_t *db = dbp[i]; 713 714 ASSERT(size > 0); 715 716 bufoff = offset - db->db_offset; 717 tocpy = (int)MIN(db->db_size - bufoff, size); 718 719 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 720 721 if (tocpy == db->db_size) 722 dmu_buf_will_fill(db, tx); 723 else 724 dmu_buf_will_dirty(db, tx); 725 726 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 727 728 if (tocpy == db->db_size) 729 dmu_buf_fill_done(db, tx); 730 731 offset += tocpy; 732 size -= tocpy; 733 buf = (char *)buf + tocpy; 734 } 735 dmu_buf_rele_array(dbp, numbufs, FTAG); 736 } 737 738 void 739 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 740 dmu_tx_t *tx) 741 { 742 dmu_buf_t **dbp; 743 int numbufs, i; 744 745 if (size == 0) 746 return; 747 748 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 749 FALSE, FTAG, &numbufs, &dbp)); 750 751 for (i = 0; i < numbufs; i++) { 752 dmu_buf_t *db = dbp[i]; 753 754 dmu_buf_will_not_fill(db, tx); 755 } 756 dmu_buf_rele_array(dbp, numbufs, FTAG); 757 } 758 759 /* 760 * DMU support for xuio 761 */ 762 kstat_t *xuio_ksp = NULL; 763 764 int 765 dmu_xuio_init(xuio_t *xuio, int nblk) 766 { 767 dmu_xuio_t *priv; 768 uio_t *uio = &xuio->xu_uio; 769 770 uio->uio_iovcnt = nblk; 771 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 772 773 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 774 priv->cnt = nblk; 775 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 776 priv->iovp = uio->uio_iov; 777 XUIO_XUZC_PRIV(xuio) = priv; 778 779 if (XUIO_XUZC_RW(xuio) == UIO_READ) 780 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 781 else 782 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 783 784 return (0); 785 } 786 787 void 788 dmu_xuio_fini(xuio_t *xuio) 789 { 790 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 791 int nblk = priv->cnt; 792 793 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 794 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 795 kmem_free(priv, sizeof (dmu_xuio_t)); 796 797 if (XUIO_XUZC_RW(xuio) == UIO_READ) 798 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 799 else 800 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 801 } 802 803 /* 804 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 805 * and increase priv->next by 1. 806 */ 807 int 808 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 809 { 810 struct iovec *iov; 811 uio_t *uio = &xuio->xu_uio; 812 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 813 int i = priv->next++; 814 815 ASSERT(i < priv->cnt); 816 ASSERT(off + n <= arc_buf_size(abuf)); 817 iov = uio->uio_iov + i; 818 iov->iov_base = (char *)abuf->b_data + off; 819 iov->iov_len = n; 820 priv->bufs[i] = abuf; 821 return (0); 822 } 823 824 int 825 dmu_xuio_cnt(xuio_t *xuio) 826 { 827 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 828 return (priv->cnt); 829 } 830 831 arc_buf_t * 832 dmu_xuio_arcbuf(xuio_t *xuio, int i) 833 { 834 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 835 836 ASSERT(i < priv->cnt); 837 return (priv->bufs[i]); 838 } 839 840 void 841 dmu_xuio_clear(xuio_t *xuio, int i) 842 { 843 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 844 845 ASSERT(i < priv->cnt); 846 priv->bufs[i] = NULL; 847 } 848 849 static void 850 xuio_stat_init(void) 851 { 852 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 853 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 854 KSTAT_FLAG_VIRTUAL); 855 if (xuio_ksp != NULL) { 856 xuio_ksp->ks_data = &xuio_stats; 857 kstat_install(xuio_ksp); 858 } 859 } 860 861 static void 862 xuio_stat_fini(void) 863 { 864 if (xuio_ksp != NULL) { 865 kstat_delete(xuio_ksp); 866 xuio_ksp = NULL; 867 } 868 } 869 870 void 871 xuio_stat_wbuf_copied() 872 { 873 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 874 } 875 876 void 877 xuio_stat_wbuf_nocopy() 878 { 879 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 880 } 881 882 #ifdef _KERNEL 883 int 884 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 885 { 886 dmu_buf_t **dbp; 887 int numbufs, i, err; 888 xuio_t *xuio = NULL; 889 890 /* 891 * NB: we could do this block-at-a-time, but it's nice 892 * to be reading in parallel. 893 */ 894 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 895 &numbufs, &dbp); 896 if (err) 897 return (err); 898 899 if (uio->uio_extflg == UIO_XUIO) 900 xuio = (xuio_t *)uio; 901 902 for (i = 0; i < numbufs; i++) { 903 int tocpy; 904 int bufoff; 905 dmu_buf_t *db = dbp[i]; 906 907 ASSERT(size > 0); 908 909 bufoff = uio->uio_loffset - db->db_offset; 910 tocpy = (int)MIN(db->db_size - bufoff, size); 911 912 if (xuio) { 913 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 914 arc_buf_t *dbuf_abuf = dbi->db_buf; 915 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 916 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 917 if (!err) { 918 uio->uio_resid -= tocpy; 919 uio->uio_loffset += tocpy; 920 } 921 922 if (abuf == dbuf_abuf) 923 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 924 else 925 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 926 } else { 927 err = uiomove((char *)db->db_data + bufoff, tocpy, 928 UIO_READ, uio); 929 } 930 if (err) 931 break; 932 933 size -= tocpy; 934 } 935 dmu_buf_rele_array(dbp, numbufs, FTAG); 936 937 return (err); 938 } 939 940 static int 941 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 942 { 943 dmu_buf_t **dbp; 944 int numbufs; 945 int err = 0; 946 int i; 947 948 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 949 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 950 if (err) 951 return (err); 952 953 for (i = 0; i < numbufs; i++) { 954 int tocpy; 955 int bufoff; 956 dmu_buf_t *db = dbp[i]; 957 958 ASSERT(size > 0); 959 960 bufoff = uio->uio_loffset - db->db_offset; 961 tocpy = (int)MIN(db->db_size - bufoff, size); 962 963 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 964 965 if (tocpy == db->db_size) 966 dmu_buf_will_fill(db, tx); 967 else 968 dmu_buf_will_dirty(db, tx); 969 970 /* 971 * XXX uiomove could block forever (eg. nfs-backed 972 * pages). There needs to be a uiolockdown() function 973 * to lock the pages in memory, so that uiomove won't 974 * block. 975 */ 976 err = uiomove((char *)db->db_data + bufoff, tocpy, 977 UIO_WRITE, uio); 978 979 if (tocpy == db->db_size) 980 dmu_buf_fill_done(db, tx); 981 982 if (err) 983 break; 984 985 size -= tocpy; 986 } 987 988 dmu_buf_rele_array(dbp, numbufs, FTAG); 989 return (err); 990 } 991 992 int 993 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 994 dmu_tx_t *tx) 995 { 996 if (size == 0) 997 return (0); 998 999 return (dmu_write_uio_dnode(((dmu_buf_impl_t *)zdb)->db_dnode, 1000 uio, size, tx)); 1001 } 1002 1003 int 1004 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1005 dmu_tx_t *tx) 1006 { 1007 dnode_t *dn; 1008 int err; 1009 1010 if (size == 0) 1011 return (0); 1012 1013 err = dnode_hold(os, object, FTAG, &dn); 1014 if (err) 1015 return (err); 1016 1017 err = dmu_write_uio_dnode(dn, uio, size, tx); 1018 1019 dnode_rele(dn, FTAG); 1020 1021 return (err); 1022 } 1023 1024 int 1025 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1026 page_t *pp, dmu_tx_t *tx) 1027 { 1028 dmu_buf_t **dbp; 1029 int numbufs, i; 1030 int err; 1031 1032 if (size == 0) 1033 return (0); 1034 1035 err = dmu_buf_hold_array(os, object, offset, size, 1036 FALSE, FTAG, &numbufs, &dbp); 1037 if (err) 1038 return (err); 1039 1040 for (i = 0; i < numbufs; i++) { 1041 int tocpy, copied, thiscpy; 1042 int bufoff; 1043 dmu_buf_t *db = dbp[i]; 1044 caddr_t va; 1045 1046 ASSERT(size > 0); 1047 ASSERT3U(db->db_size, >=, PAGESIZE); 1048 1049 bufoff = offset - db->db_offset; 1050 tocpy = (int)MIN(db->db_size - bufoff, size); 1051 1052 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1053 1054 if (tocpy == db->db_size) 1055 dmu_buf_will_fill(db, tx); 1056 else 1057 dmu_buf_will_dirty(db, tx); 1058 1059 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1060 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1061 thiscpy = MIN(PAGESIZE, tocpy - copied); 1062 va = zfs_map_page(pp, S_READ); 1063 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1064 zfs_unmap_page(pp, va); 1065 pp = pp->p_next; 1066 bufoff += PAGESIZE; 1067 } 1068 1069 if (tocpy == db->db_size) 1070 dmu_buf_fill_done(db, tx); 1071 1072 offset += tocpy; 1073 size -= tocpy; 1074 } 1075 dmu_buf_rele_array(dbp, numbufs, FTAG); 1076 return (err); 1077 } 1078 #endif 1079 1080 /* 1081 * Allocate a loaned anonymous arc buffer. 1082 */ 1083 arc_buf_t * 1084 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1085 { 1086 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; 1087 1088 return (arc_loan_buf(dn->dn_objset->os_spa, size)); 1089 } 1090 1091 /* 1092 * Free a loaned arc buffer. 1093 */ 1094 void 1095 dmu_return_arcbuf(arc_buf_t *buf) 1096 { 1097 arc_return_buf(buf, FTAG); 1098 VERIFY(arc_buf_remove_ref(buf, FTAG) == 1); 1099 } 1100 1101 /* 1102 * When possible directly assign passed loaned arc buffer to a dbuf. 1103 * If this is not possible copy the contents of passed arc buf via 1104 * dmu_write(). 1105 */ 1106 void 1107 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1108 dmu_tx_t *tx) 1109 { 1110 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; 1111 dmu_buf_impl_t *db; 1112 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1113 uint64_t blkid; 1114 1115 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1116 blkid = dbuf_whichblock(dn, offset); 1117 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1118 rw_exit(&dn->dn_struct_rwlock); 1119 1120 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1121 dbuf_assign_arcbuf(db, buf, tx); 1122 dbuf_rele(db, FTAG); 1123 } else { 1124 dbuf_rele(db, FTAG); 1125 dmu_write(dn->dn_objset, dn->dn_object, offset, blksz, 1126 buf->b_data, tx); 1127 dmu_return_arcbuf(buf); 1128 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1129 } 1130 } 1131 1132 typedef struct { 1133 dbuf_dirty_record_t *dsa_dr; 1134 dmu_sync_cb_t *dsa_done; 1135 zgd_t *dsa_zgd; 1136 dmu_tx_t *dsa_tx; 1137 } dmu_sync_arg_t; 1138 1139 /* ARGSUSED */ 1140 static void 1141 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1142 { 1143 dmu_sync_arg_t *dsa = varg; 1144 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1145 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1146 blkptr_t *bp = zio->io_bp; 1147 1148 if (zio->io_error == 0) { 1149 if (BP_IS_HOLE(bp)) { 1150 /* 1151 * A block of zeros may compress to a hole, but the 1152 * block size still needs to be known for replay. 1153 */ 1154 BP_SET_LSIZE(bp, db->db_size); 1155 } else { 1156 ASSERT(BP_GET_TYPE(bp) == dn->dn_type); 1157 ASSERT(BP_GET_LEVEL(bp) == 0); 1158 bp->blk_fill = 1; 1159 } 1160 } 1161 } 1162 1163 static void 1164 dmu_sync_late_arrival_ready(zio_t *zio) 1165 { 1166 dmu_sync_ready(zio, NULL, zio->io_private); 1167 } 1168 1169 /* ARGSUSED */ 1170 static void 1171 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1172 { 1173 dmu_sync_arg_t *dsa = varg; 1174 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1175 dmu_buf_impl_t *db = dr->dr_dbuf; 1176 1177 mutex_enter(&db->db_mtx); 1178 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1179 if (zio->io_error == 0) { 1180 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1181 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1182 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1183 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1184 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1185 } else { 1186 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1187 } 1188 cv_broadcast(&db->db_changed); 1189 mutex_exit(&db->db_mtx); 1190 1191 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1192 1193 kmem_free(dsa, sizeof (*dsa)); 1194 } 1195 1196 static void 1197 dmu_sync_late_arrival_done(zio_t *zio) 1198 { 1199 blkptr_t *bp = zio->io_bp; 1200 dmu_sync_arg_t *dsa = zio->io_private; 1201 1202 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1203 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1204 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1205 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1206 } 1207 1208 dmu_tx_commit(dsa->dsa_tx); 1209 1210 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1211 1212 kmem_free(dsa, sizeof (*dsa)); 1213 } 1214 1215 static int 1216 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1217 zio_prop_t *zp, zbookmark_t *zb) 1218 { 1219 dmu_sync_arg_t *dsa; 1220 dmu_tx_t *tx; 1221 1222 tx = dmu_tx_create(os); 1223 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1224 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1225 dmu_tx_abort(tx); 1226 return (EIO); /* Make zl_get_data do txg_waited_synced() */ 1227 } 1228 1229 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1230 dsa->dsa_dr = NULL; 1231 dsa->dsa_done = done; 1232 dsa->dsa_zgd = zgd; 1233 dsa->dsa_tx = tx; 1234 1235 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1236 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1237 dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa, 1238 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1239 1240 return (0); 1241 } 1242 1243 /* 1244 * Intent log support: sync the block associated with db to disk. 1245 * N.B. and XXX: the caller is responsible for making sure that the 1246 * data isn't changing while dmu_sync() is writing it. 1247 * 1248 * Return values: 1249 * 1250 * EEXIST: this txg has already been synced, so there's nothing to to. 1251 * The caller should not log the write. 1252 * 1253 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1254 * The caller should not log the write. 1255 * 1256 * EALREADY: this block is already in the process of being synced. 1257 * The caller should track its progress (somehow). 1258 * 1259 * EIO: could not do the I/O. 1260 * The caller should do a txg_wait_synced(). 1261 * 1262 * 0: the I/O has been initiated. 1263 * The caller should log this blkptr in the done callback. 1264 * It is possible that the I/O will fail, in which case 1265 * the error will be reported to the done callback and 1266 * propagated to pio from zio_done(). 1267 */ 1268 int 1269 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1270 { 1271 blkptr_t *bp = zgd->zgd_bp; 1272 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1273 objset_t *os = db->db_objset; 1274 dsl_dataset_t *ds = os->os_dsl_dataset; 1275 dbuf_dirty_record_t *dr; 1276 dmu_sync_arg_t *dsa; 1277 zbookmark_t zb; 1278 zio_prop_t zp; 1279 1280 ASSERT(pio != NULL); 1281 ASSERT(BP_IS_HOLE(bp)); 1282 ASSERT(txg != 0); 1283 1284 SET_BOOKMARK(&zb, ds->ds_object, 1285 db->db.db_object, db->db_level, db->db_blkid); 1286 1287 dmu_write_policy(os, db->db_dnode, db->db_level, WP_DMU_SYNC, &zp); 1288 1289 /* 1290 * If we're frozen (running ziltest), we always need to generate a bp. 1291 */ 1292 if (txg > spa_freeze_txg(os->os_spa)) 1293 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1294 1295 /* 1296 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1297 * and us. If we determine that this txg is not yet syncing, 1298 * but it begins to sync a moment later, that's OK because the 1299 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1300 */ 1301 mutex_enter(&db->db_mtx); 1302 1303 if (txg <= spa_last_synced_txg(os->os_spa)) { 1304 /* 1305 * This txg has already synced. There's nothing to do. 1306 */ 1307 mutex_exit(&db->db_mtx); 1308 return (EEXIST); 1309 } 1310 1311 if (txg <= spa_syncing_txg(os->os_spa)) { 1312 /* 1313 * This txg is currently syncing, so we can't mess with 1314 * the dirty record anymore; just write a new log block. 1315 */ 1316 mutex_exit(&db->db_mtx); 1317 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1318 } 1319 1320 dr = db->db_last_dirty; 1321 while (dr && dr->dr_txg != txg) 1322 dr = dr->dr_next; 1323 1324 if (dr == NULL) { 1325 /* 1326 * There's no dr for this dbuf, so it must have been freed. 1327 * There's no need to log writes to freed blocks, so we're done. 1328 */ 1329 mutex_exit(&db->db_mtx); 1330 return (ENOENT); 1331 } 1332 1333 ASSERT(dr->dr_txg == txg); 1334 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1335 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1336 /* 1337 * We have already issued a sync write for this buffer, 1338 * or this buffer has already been synced. It could not 1339 * have been dirtied since, or we would have cleared the state. 1340 */ 1341 mutex_exit(&db->db_mtx); 1342 return (EALREADY); 1343 } 1344 1345 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1346 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1347 mutex_exit(&db->db_mtx); 1348 1349 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1350 dsa->dsa_dr = dr; 1351 dsa->dsa_done = done; 1352 dsa->dsa_zgd = zgd; 1353 dsa->dsa_tx = NULL; 1354 1355 zio_nowait(arc_write(pio, os->os_spa, txg, 1356 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp, 1357 dmu_sync_ready, dmu_sync_done, dsa, 1358 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1359 1360 return (0); 1361 } 1362 1363 int 1364 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1365 dmu_tx_t *tx) 1366 { 1367 dnode_t *dn; 1368 int err; 1369 1370 err = dnode_hold(os, object, FTAG, &dn); 1371 if (err) 1372 return (err); 1373 err = dnode_set_blksz(dn, size, ibs, tx); 1374 dnode_rele(dn, FTAG); 1375 return (err); 1376 } 1377 1378 void 1379 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1380 dmu_tx_t *tx) 1381 { 1382 dnode_t *dn; 1383 1384 /* XXX assumes dnode_hold will not get an i/o error */ 1385 (void) dnode_hold(os, object, FTAG, &dn); 1386 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1387 dn->dn_checksum = checksum; 1388 dnode_setdirty(dn, tx); 1389 dnode_rele(dn, FTAG); 1390 } 1391 1392 void 1393 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1394 dmu_tx_t *tx) 1395 { 1396 dnode_t *dn; 1397 1398 /* XXX assumes dnode_hold will not get an i/o error */ 1399 (void) dnode_hold(os, object, FTAG, &dn); 1400 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1401 dn->dn_compress = compress; 1402 dnode_setdirty(dn, tx); 1403 dnode_rele(dn, FTAG); 1404 } 1405 1406 int zfs_mdcomp_disable = 0; 1407 1408 void 1409 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1410 { 1411 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1412 boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata); 1413 enum zio_checksum checksum = os->os_checksum; 1414 enum zio_compress compress = os->os_compress; 1415 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1416 boolean_t dedup; 1417 boolean_t dedup_verify = os->os_dedup_verify; 1418 int copies = os->os_copies; 1419 1420 /* 1421 * Determine checksum setting. 1422 */ 1423 if (ismd) { 1424 /* 1425 * Metadata always gets checksummed. If the data 1426 * checksum is multi-bit correctable, and it's not a 1427 * ZBT-style checksum, then it's suitable for metadata 1428 * as well. Otherwise, the metadata checksum defaults 1429 * to fletcher4. 1430 */ 1431 if (zio_checksum_table[checksum].ci_correctable < 1 || 1432 zio_checksum_table[checksum].ci_eck) 1433 checksum = ZIO_CHECKSUM_FLETCHER_4; 1434 } else { 1435 checksum = zio_checksum_select(dn->dn_checksum, checksum); 1436 } 1437 1438 /* 1439 * Determine compression setting. 1440 */ 1441 if (ismd) { 1442 /* 1443 * XXX -- we should design a compression algorithm 1444 * that specializes in arrays of bps. 1445 */ 1446 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 1447 ZIO_COMPRESS_LZJB; 1448 } else { 1449 compress = zio_compress_select(dn->dn_compress, compress); 1450 } 1451 1452 /* 1453 * Determine dedup setting. If we are in dmu_sync(), we won't 1454 * actually dedup now because that's all done in syncing context; 1455 * but we do want to use the dedup checkum. If the checksum is not 1456 * strong enough to ensure unique signatures, force dedup_verify. 1457 */ 1458 dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF); 1459 if (dedup) { 1460 checksum = dedup_checksum; 1461 if (!zio_checksum_table[checksum].ci_dedup) 1462 dedup_verify = 1; 1463 } 1464 1465 if (wp & WP_DMU_SYNC) 1466 dedup = 0; 1467 1468 if (wp & WP_NOFILL) { 1469 ASSERT(!ismd && level == 0); 1470 checksum = ZIO_CHECKSUM_OFF; 1471 compress = ZIO_COMPRESS_OFF; 1472 dedup = B_FALSE; 1473 } 1474 1475 zp->zp_checksum = checksum; 1476 zp->zp_compress = compress; 1477 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1478 zp->zp_level = level; 1479 zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa)); 1480 zp->zp_dedup = dedup; 1481 zp->zp_dedup_verify = dedup && dedup_verify; 1482 } 1483 1484 int 1485 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1486 { 1487 dnode_t *dn; 1488 int i, err; 1489 1490 err = dnode_hold(os, object, FTAG, &dn); 1491 if (err) 1492 return (err); 1493 /* 1494 * Sync any current changes before 1495 * we go trundling through the block pointers. 1496 */ 1497 for (i = 0; i < TXG_SIZE; i++) { 1498 if (list_link_active(&dn->dn_dirty_link[i])) 1499 break; 1500 } 1501 if (i != TXG_SIZE) { 1502 dnode_rele(dn, FTAG); 1503 txg_wait_synced(dmu_objset_pool(os), 0); 1504 err = dnode_hold(os, object, FTAG, &dn); 1505 if (err) 1506 return (err); 1507 } 1508 1509 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1510 dnode_rele(dn, FTAG); 1511 1512 return (err); 1513 } 1514 1515 void 1516 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1517 { 1518 dnode_phys_t *dnp; 1519 1520 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1521 mutex_enter(&dn->dn_mtx); 1522 1523 dnp = dn->dn_phys; 1524 1525 doi->doi_data_block_size = dn->dn_datablksz; 1526 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1527 1ULL << dn->dn_indblkshift : 0; 1528 doi->doi_type = dn->dn_type; 1529 doi->doi_bonus_type = dn->dn_bonustype; 1530 doi->doi_bonus_size = dn->dn_bonuslen; 1531 doi->doi_indirection = dn->dn_nlevels; 1532 doi->doi_checksum = dn->dn_checksum; 1533 doi->doi_compress = dn->dn_compress; 1534 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1535 doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz; 1536 doi->doi_fill_count = 0; 1537 for (int i = 0; i < dnp->dn_nblkptr; i++) 1538 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1539 1540 mutex_exit(&dn->dn_mtx); 1541 rw_exit(&dn->dn_struct_rwlock); 1542 } 1543 1544 /* 1545 * Get information on a DMU object. 1546 * If doi is NULL, just indicates whether the object exists. 1547 */ 1548 int 1549 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1550 { 1551 dnode_t *dn; 1552 int err = dnode_hold(os, object, FTAG, &dn); 1553 1554 if (err) 1555 return (err); 1556 1557 if (doi != NULL) 1558 dmu_object_info_from_dnode(dn, doi); 1559 1560 dnode_rele(dn, FTAG); 1561 return (0); 1562 } 1563 1564 /* 1565 * As above, but faster; can be used when you have a held dbuf in hand. 1566 */ 1567 void 1568 dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi) 1569 { 1570 dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi); 1571 } 1572 1573 /* 1574 * Faster still when you only care about the size. 1575 * This is specifically optimized for zfs_getattr(). 1576 */ 1577 void 1578 dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512) 1579 { 1580 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1581 1582 *blksize = dn->dn_datablksz; 1583 /* add 1 for dnode space */ 1584 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1585 SPA_MINBLOCKSHIFT) + 1; 1586 } 1587 1588 void 1589 byteswap_uint64_array(void *vbuf, size_t size) 1590 { 1591 uint64_t *buf = vbuf; 1592 size_t count = size >> 3; 1593 int i; 1594 1595 ASSERT((size & 7) == 0); 1596 1597 for (i = 0; i < count; i++) 1598 buf[i] = BSWAP_64(buf[i]); 1599 } 1600 1601 void 1602 byteswap_uint32_array(void *vbuf, size_t size) 1603 { 1604 uint32_t *buf = vbuf; 1605 size_t count = size >> 2; 1606 int i; 1607 1608 ASSERT((size & 3) == 0); 1609 1610 for (i = 0; i < count; i++) 1611 buf[i] = BSWAP_32(buf[i]); 1612 } 1613 1614 void 1615 byteswap_uint16_array(void *vbuf, size_t size) 1616 { 1617 uint16_t *buf = vbuf; 1618 size_t count = size >> 1; 1619 int i; 1620 1621 ASSERT((size & 1) == 0); 1622 1623 for (i = 0; i < count; i++) 1624 buf[i] = BSWAP_16(buf[i]); 1625 } 1626 1627 /* ARGSUSED */ 1628 void 1629 byteswap_uint8_array(void *vbuf, size_t size) 1630 { 1631 } 1632 1633 void 1634 dmu_init(void) 1635 { 1636 zfs_dbgmsg_init(); 1637 dbuf_init(); 1638 dnode_init(); 1639 zfetch_init(); 1640 arc_init(); 1641 l2arc_init(); 1642 xuio_stat_init(); 1643 sa_cache_init(); 1644 } 1645 1646 void 1647 dmu_fini(void) 1648 { 1649 arc_fini(); 1650 zfetch_fini(); 1651 dnode_fini(); 1652 dbuf_fini(); 1653 l2arc_fini(); 1654 xuio_stat_fini(); 1655 sa_cache_fini(); 1656 zfs_dbgmsg_fini(); 1657 } 1658