xref: /titanic_41/usr/src/uts/common/fs/zfs/dmu.c (revision 16e76cdd6e3cfaac7d91c3b0644ee1bc6cf52347)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/dmu.h>
26 #include <sys/dmu_impl.h>
27 #include <sys/dmu_tx.h>
28 #include <sys/dbuf.h>
29 #include <sys/dnode.h>
30 #include <sys/zfs_context.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_traverse.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_pool.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_prop.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/zfs_ioctl.h>
40 #include <sys/zap.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/sa.h>
43 #ifdef _KERNEL
44 #include <sys/vmsystm.h>
45 #include <sys/zfs_znode.h>
46 #endif
47 
48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
49 	{	byteswap_uint8_array,	TRUE,	"unallocated"		},
50 	{	zap_byteswap,		TRUE,	"object directory"	},
51 	{	byteswap_uint64_array,	TRUE,	"object array"		},
52 	{	byteswap_uint8_array,	TRUE,	"packed nvlist"		},
53 	{	byteswap_uint64_array,	TRUE,	"packed nvlist size"	},
54 	{	byteswap_uint64_array,	TRUE,	"bpobj"			},
55 	{	byteswap_uint64_array,	TRUE,	"bpobj header"		},
56 	{	byteswap_uint64_array,	TRUE,	"SPA space map header"	},
57 	{	byteswap_uint64_array,	TRUE,	"SPA space map"		},
58 	{	byteswap_uint64_array,	TRUE,	"ZIL intent log"	},
59 	{	dnode_buf_byteswap,	TRUE,	"DMU dnode"		},
60 	{	dmu_objset_byteswap,	TRUE,	"DMU objset"		},
61 	{	byteswap_uint64_array,	TRUE,	"DSL directory"		},
62 	{	zap_byteswap,		TRUE,	"DSL directory child map"},
63 	{	zap_byteswap,		TRUE,	"DSL dataset snap map"	},
64 	{	zap_byteswap,		TRUE,	"DSL props"		},
65 	{	byteswap_uint64_array,	TRUE,	"DSL dataset"		},
66 	{	zfs_znode_byteswap,	TRUE,	"ZFS znode"		},
67 	{	zfs_oldacl_byteswap,	TRUE,	"ZFS V0 ACL"		},
68 	{	byteswap_uint8_array,	FALSE,	"ZFS plain file"	},
69 	{	zap_byteswap,		TRUE,	"ZFS directory"		},
70 	{	zap_byteswap,		TRUE,	"ZFS master node"	},
71 	{	zap_byteswap,		TRUE,	"ZFS delete queue"	},
72 	{	byteswap_uint8_array,	FALSE,	"zvol object"		},
73 	{	zap_byteswap,		TRUE,	"zvol prop"		},
74 	{	byteswap_uint8_array,	FALSE,	"other uint8[]"		},
75 	{	byteswap_uint64_array,	FALSE,	"other uint64[]"	},
76 	{	zap_byteswap,		TRUE,	"other ZAP"		},
77 	{	zap_byteswap,		TRUE,	"persistent error log"	},
78 	{	byteswap_uint8_array,	TRUE,	"SPA history"		},
79 	{	byteswap_uint64_array,	TRUE,	"SPA history offsets"	},
80 	{	zap_byteswap,		TRUE,	"Pool properties"	},
81 	{	zap_byteswap,		TRUE,	"DSL permissions"	},
82 	{	zfs_acl_byteswap,	TRUE,	"ZFS ACL"		},
83 	{	byteswap_uint8_array,	TRUE,	"ZFS SYSACL"		},
84 	{	byteswap_uint8_array,	TRUE,	"FUID table"		},
85 	{	byteswap_uint64_array,	TRUE,	"FUID table size"	},
86 	{	zap_byteswap,		TRUE,	"DSL dataset next clones"},
87 	{	zap_byteswap,		TRUE,	"scan work queue"	},
88 	{	zap_byteswap,		TRUE,	"ZFS user/group used"	},
89 	{	zap_byteswap,		TRUE,	"ZFS user/group quota"	},
90 	{	zap_byteswap,		TRUE,	"snapshot refcount tags"},
91 	{	zap_byteswap,		TRUE,	"DDT ZAP algorithm"	},
92 	{	zap_byteswap,		TRUE,	"DDT statistics"	},
93 	{	byteswap_uint8_array,	TRUE,	"System attributes"	},
94 	{	zap_byteswap,		TRUE,	"SA master node"	},
95 	{	zap_byteswap,		TRUE,	"SA attr registration"	},
96 	{	zap_byteswap,		TRUE,	"SA attr layouts"	},
97 	{	zap_byteswap,		TRUE,	"scan translations"	},
98 	{	byteswap_uint8_array,	FALSE,	"deduplicated block"	},
99 	{	zap_byteswap,		TRUE,	"DSL deadlist map"	},
100 	{	byteswap_uint64_array,	TRUE,	"DSL deadlist map hdr"	},
101 	{	zap_byteswap,		TRUE,	"DSL dir clones"	},
102 	{	byteswap_uint64_array,	TRUE,	"bpobj subobj"		},
103 };
104 
105 int
106 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
107     void *tag, dmu_buf_t **dbp, int flags)
108 {
109 	dnode_t *dn;
110 	uint64_t blkid;
111 	dmu_buf_impl_t *db;
112 	int err;
113 	int db_flags = DB_RF_CANFAIL;
114 
115 	if (flags & DMU_READ_NO_PREFETCH)
116 		db_flags |= DB_RF_NOPREFETCH;
117 
118 	err = dnode_hold(os, object, FTAG, &dn);
119 	if (err)
120 		return (err);
121 	blkid = dbuf_whichblock(dn, offset);
122 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
123 	db = dbuf_hold(dn, blkid, tag);
124 	rw_exit(&dn->dn_struct_rwlock);
125 	if (db == NULL) {
126 		err = EIO;
127 	} else {
128 		err = dbuf_read(db, NULL, db_flags);
129 		if (err) {
130 			dbuf_rele(db, tag);
131 			db = NULL;
132 		}
133 	}
134 
135 	dnode_rele(dn, FTAG);
136 	*dbp = &db->db; /* NULL db plus first field offset is NULL */
137 	return (err);
138 }
139 
140 int
141 dmu_bonus_max(void)
142 {
143 	return (DN_MAX_BONUSLEN);
144 }
145 
146 int
147 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
148 {
149 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
150 	dnode_t *dn;
151 	int error;
152 
153 	DB_DNODE_ENTER(db);
154 	dn = DB_DNODE(db);
155 
156 	if (dn->dn_bonus != db) {
157 		error = EINVAL;
158 	} else if (newsize < 0 || newsize > db_fake->db_size) {
159 		error = EINVAL;
160 	} else {
161 		dnode_setbonuslen(dn, newsize, tx);
162 		error = 0;
163 	}
164 
165 	DB_DNODE_EXIT(db);
166 	return (error);
167 }
168 
169 int
170 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
171 {
172 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
173 	dnode_t *dn;
174 	int error;
175 
176 	DB_DNODE_ENTER(db);
177 	dn = DB_DNODE(db);
178 
179 	if (type > DMU_OT_NUMTYPES) {
180 		error = EINVAL;
181 	} else if (dn->dn_bonus != db) {
182 		error = EINVAL;
183 	} else {
184 		dnode_setbonus_type(dn, type, tx);
185 		error = 0;
186 	}
187 
188 	DB_DNODE_EXIT(db);
189 	return (error);
190 }
191 
192 dmu_object_type_t
193 dmu_get_bonustype(dmu_buf_t *db_fake)
194 {
195 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
196 	dnode_t *dn;
197 	dmu_object_type_t type;
198 
199 	DB_DNODE_ENTER(db);
200 	dn = DB_DNODE(db);
201 	type = dn->dn_bonustype;
202 	DB_DNODE_EXIT(db);
203 
204 	return (type);
205 }
206 
207 int
208 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
209 {
210 	dnode_t *dn;
211 	int error;
212 
213 	error = dnode_hold(os, object, FTAG, &dn);
214 	dbuf_rm_spill(dn, tx);
215 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
216 	dnode_rm_spill(dn, tx);
217 	rw_exit(&dn->dn_struct_rwlock);
218 	dnode_rele(dn, FTAG);
219 	return (error);
220 }
221 
222 /*
223  * returns ENOENT, EIO, or 0.
224  */
225 int
226 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
227 {
228 	dnode_t *dn;
229 	dmu_buf_impl_t *db;
230 	int error;
231 
232 	error = dnode_hold(os, object, FTAG, &dn);
233 	if (error)
234 		return (error);
235 
236 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
237 	if (dn->dn_bonus == NULL) {
238 		rw_exit(&dn->dn_struct_rwlock);
239 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
240 		if (dn->dn_bonus == NULL)
241 			dbuf_create_bonus(dn);
242 	}
243 	db = dn->dn_bonus;
244 
245 	/* as long as the bonus buf is held, the dnode will be held */
246 	if (refcount_add(&db->db_holds, tag) == 1) {
247 		VERIFY(dnode_add_ref(dn, db));
248 		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
249 	}
250 
251 	/*
252 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
253 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
254 	 * a dnode hold for every dbuf.
255 	 */
256 	rw_exit(&dn->dn_struct_rwlock);
257 
258 	dnode_rele(dn, FTAG);
259 
260 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
261 
262 	*dbp = &db->db;
263 	return (0);
264 }
265 
266 /*
267  * returns ENOENT, EIO, or 0.
268  *
269  * This interface will allocate a blank spill dbuf when a spill blk
270  * doesn't already exist on the dnode.
271  *
272  * if you only want to find an already existing spill db, then
273  * dmu_spill_hold_existing() should be used.
274  */
275 int
276 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
277 {
278 	dmu_buf_impl_t *db = NULL;
279 	int err;
280 
281 	if ((flags & DB_RF_HAVESTRUCT) == 0)
282 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
283 
284 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
285 
286 	if ((flags & DB_RF_HAVESTRUCT) == 0)
287 		rw_exit(&dn->dn_struct_rwlock);
288 
289 	ASSERT(db != NULL);
290 	err = dbuf_read(db, NULL, flags);
291 	if (err == 0)
292 		*dbp = &db->db;
293 	else
294 		dbuf_rele(db, tag);
295 	return (err);
296 }
297 
298 int
299 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
300 {
301 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
302 	dnode_t *dn;
303 	int err;
304 
305 	DB_DNODE_ENTER(db);
306 	dn = DB_DNODE(db);
307 
308 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
309 		err = EINVAL;
310 	} else {
311 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
312 
313 		if (!dn->dn_have_spill) {
314 			err = ENOENT;
315 		} else {
316 			err = dmu_spill_hold_by_dnode(dn,
317 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
318 		}
319 
320 		rw_exit(&dn->dn_struct_rwlock);
321 	}
322 
323 	DB_DNODE_EXIT(db);
324 	return (err);
325 }
326 
327 int
328 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
329 {
330 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
331 	dnode_t *dn;
332 	int err;
333 
334 	DB_DNODE_ENTER(db);
335 	dn = DB_DNODE(db);
336 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
337 	DB_DNODE_EXIT(db);
338 
339 	return (err);
340 }
341 
342 /*
343  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
344  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
345  * and can induce severe lock contention when writing to several files
346  * whose dnodes are in the same block.
347  */
348 static int
349 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
350     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
351 {
352 	dsl_pool_t *dp = NULL;
353 	dmu_buf_t **dbp;
354 	uint64_t blkid, nblks, i;
355 	uint32_t dbuf_flags;
356 	int err;
357 	zio_t *zio;
358 	hrtime_t start;
359 
360 	ASSERT(length <= DMU_MAX_ACCESS);
361 
362 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
363 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
364 		dbuf_flags |= DB_RF_NOPREFETCH;
365 
366 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
367 	if (dn->dn_datablkshift) {
368 		int blkshift = dn->dn_datablkshift;
369 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
370 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
371 	} else {
372 		if (offset + length > dn->dn_datablksz) {
373 			zfs_panic_recover("zfs: accessing past end of object "
374 			    "%llx/%llx (size=%u access=%llu+%llu)",
375 			    (longlong_t)dn->dn_objset->
376 			    os_dsl_dataset->ds_object,
377 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
378 			    (longlong_t)offset, (longlong_t)length);
379 			rw_exit(&dn->dn_struct_rwlock);
380 			return (EIO);
381 		}
382 		nblks = 1;
383 	}
384 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
385 
386 	if (dn->dn_objset->os_dsl_dataset)
387 		dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool;
388 	if (dp && dsl_pool_sync_context(dp))
389 		start = gethrtime();
390 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
391 	blkid = dbuf_whichblock(dn, offset);
392 	for (i = 0; i < nblks; i++) {
393 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
394 		if (db == NULL) {
395 			rw_exit(&dn->dn_struct_rwlock);
396 			dmu_buf_rele_array(dbp, nblks, tag);
397 			zio_nowait(zio);
398 			return (EIO);
399 		}
400 		/* initiate async i/o */
401 		if (read) {
402 			(void) dbuf_read(db, zio, dbuf_flags);
403 		}
404 		dbp[i] = &db->db;
405 	}
406 	rw_exit(&dn->dn_struct_rwlock);
407 
408 	/* wait for async i/o */
409 	err = zio_wait(zio);
410 	/* track read overhead when we are in sync context */
411 	if (dp && dsl_pool_sync_context(dp))
412 		dp->dp_read_overhead += gethrtime() - start;
413 	if (err) {
414 		dmu_buf_rele_array(dbp, nblks, tag);
415 		return (err);
416 	}
417 
418 	/* wait for other io to complete */
419 	if (read) {
420 		for (i = 0; i < nblks; i++) {
421 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
422 			mutex_enter(&db->db_mtx);
423 			while (db->db_state == DB_READ ||
424 			    db->db_state == DB_FILL)
425 				cv_wait(&db->db_changed, &db->db_mtx);
426 			if (db->db_state == DB_UNCACHED)
427 				err = EIO;
428 			mutex_exit(&db->db_mtx);
429 			if (err) {
430 				dmu_buf_rele_array(dbp, nblks, tag);
431 				return (err);
432 			}
433 		}
434 	}
435 
436 	*numbufsp = nblks;
437 	*dbpp = dbp;
438 	return (0);
439 }
440 
441 static int
442 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
443     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
444 {
445 	dnode_t *dn;
446 	int err;
447 
448 	err = dnode_hold(os, object, FTAG, &dn);
449 	if (err)
450 		return (err);
451 
452 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
453 	    numbufsp, dbpp, DMU_READ_PREFETCH);
454 
455 	dnode_rele(dn, FTAG);
456 
457 	return (err);
458 }
459 
460 int
461 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
462     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
463 {
464 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
465 	dnode_t *dn;
466 	int err;
467 
468 	DB_DNODE_ENTER(db);
469 	dn = DB_DNODE(db);
470 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
471 	    numbufsp, dbpp, DMU_READ_PREFETCH);
472 	DB_DNODE_EXIT(db);
473 
474 	return (err);
475 }
476 
477 void
478 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
479 {
480 	int i;
481 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
482 
483 	if (numbufs == 0)
484 		return;
485 
486 	for (i = 0; i < numbufs; i++) {
487 		if (dbp[i])
488 			dbuf_rele(dbp[i], tag);
489 	}
490 
491 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
492 }
493 
494 void
495 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
496 {
497 	dnode_t *dn;
498 	uint64_t blkid;
499 	int nblks, i, err;
500 
501 	if (zfs_prefetch_disable)
502 		return;
503 
504 	if (len == 0) {  /* they're interested in the bonus buffer */
505 		dn = DMU_META_DNODE(os);
506 
507 		if (object == 0 || object >= DN_MAX_OBJECT)
508 			return;
509 
510 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
511 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
512 		dbuf_prefetch(dn, blkid);
513 		rw_exit(&dn->dn_struct_rwlock);
514 		return;
515 	}
516 
517 	/*
518 	 * XXX - Note, if the dnode for the requested object is not
519 	 * already cached, we will do a *synchronous* read in the
520 	 * dnode_hold() call.  The same is true for any indirects.
521 	 */
522 	err = dnode_hold(os, object, FTAG, &dn);
523 	if (err != 0)
524 		return;
525 
526 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
527 	if (dn->dn_datablkshift) {
528 		int blkshift = dn->dn_datablkshift;
529 		nblks = (P2ROUNDUP(offset+len, 1<<blkshift) -
530 		    P2ALIGN(offset, 1<<blkshift)) >> blkshift;
531 	} else {
532 		nblks = (offset < dn->dn_datablksz);
533 	}
534 
535 	if (nblks != 0) {
536 		blkid = dbuf_whichblock(dn, offset);
537 		for (i = 0; i < nblks; i++)
538 			dbuf_prefetch(dn, blkid+i);
539 	}
540 
541 	rw_exit(&dn->dn_struct_rwlock);
542 
543 	dnode_rele(dn, FTAG);
544 }
545 
546 /*
547  * Get the next "chunk" of file data to free.  We traverse the file from
548  * the end so that the file gets shorter over time (if we crashes in the
549  * middle, this will leave us in a better state).  We find allocated file
550  * data by simply searching the allocated level 1 indirects.
551  */
552 static int
553 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit)
554 {
555 	uint64_t len = *start - limit;
556 	uint64_t blkcnt = 0;
557 	uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1));
558 	uint64_t iblkrange =
559 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
560 
561 	ASSERT(limit <= *start);
562 
563 	if (len <= iblkrange * maxblks) {
564 		*start = limit;
565 		return (0);
566 	}
567 	ASSERT(ISP2(iblkrange));
568 
569 	while (*start > limit && blkcnt < maxblks) {
570 		int err;
571 
572 		/* find next allocated L1 indirect */
573 		err = dnode_next_offset(dn,
574 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
575 
576 		/* if there are no more, then we are done */
577 		if (err == ESRCH) {
578 			*start = limit;
579 			return (0);
580 		} else if (err) {
581 			return (err);
582 		}
583 		blkcnt += 1;
584 
585 		/* reset offset to end of "next" block back */
586 		*start = P2ALIGN(*start, iblkrange);
587 		if (*start <= limit)
588 			*start = limit;
589 		else
590 			*start -= 1;
591 	}
592 	return (0);
593 }
594 
595 static int
596 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
597     uint64_t length, boolean_t free_dnode)
598 {
599 	dmu_tx_t *tx;
600 	uint64_t object_size, start, end, len;
601 	boolean_t trunc = (length == DMU_OBJECT_END);
602 	int align, err;
603 
604 	align = 1 << dn->dn_datablkshift;
605 	ASSERT(align > 0);
606 	object_size = align == 1 ? dn->dn_datablksz :
607 	    (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
608 
609 	end = offset + length;
610 	if (trunc || end > object_size)
611 		end = object_size;
612 	if (end <= offset)
613 		return (0);
614 	length = end - offset;
615 
616 	while (length) {
617 		start = end;
618 		/* assert(offset <= start) */
619 		err = get_next_chunk(dn, &start, offset);
620 		if (err)
621 			return (err);
622 		len = trunc ? DMU_OBJECT_END : end - start;
623 
624 		tx = dmu_tx_create(os);
625 		dmu_tx_hold_free(tx, dn->dn_object, start, len);
626 		err = dmu_tx_assign(tx, TXG_WAIT);
627 		if (err) {
628 			dmu_tx_abort(tx);
629 			return (err);
630 		}
631 
632 		dnode_free_range(dn, start, trunc ? -1 : len, tx);
633 
634 		if (start == 0 && free_dnode) {
635 			ASSERT(trunc);
636 			dnode_free(dn, tx);
637 		}
638 
639 		length -= end - start;
640 
641 		dmu_tx_commit(tx);
642 		end = start;
643 	}
644 	return (0);
645 }
646 
647 int
648 dmu_free_long_range(objset_t *os, uint64_t object,
649     uint64_t offset, uint64_t length)
650 {
651 	dnode_t *dn;
652 	int err;
653 
654 	err = dnode_hold(os, object, FTAG, &dn);
655 	if (err != 0)
656 		return (err);
657 	err = dmu_free_long_range_impl(os, dn, offset, length, FALSE);
658 	dnode_rele(dn, FTAG);
659 	return (err);
660 }
661 
662 int
663 dmu_free_object(objset_t *os, uint64_t object)
664 {
665 	dnode_t *dn;
666 	dmu_tx_t *tx;
667 	int err;
668 
669 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED,
670 	    FTAG, &dn);
671 	if (err != 0)
672 		return (err);
673 	if (dn->dn_nlevels == 1) {
674 		tx = dmu_tx_create(os);
675 		dmu_tx_hold_bonus(tx, object);
676 		dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END);
677 		err = dmu_tx_assign(tx, TXG_WAIT);
678 		if (err == 0) {
679 			dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
680 			dnode_free(dn, tx);
681 			dmu_tx_commit(tx);
682 		} else {
683 			dmu_tx_abort(tx);
684 		}
685 	} else {
686 		err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE);
687 	}
688 	dnode_rele(dn, FTAG);
689 	return (err);
690 }
691 
692 int
693 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
694     uint64_t size, dmu_tx_t *tx)
695 {
696 	dnode_t *dn;
697 	int err = dnode_hold(os, object, FTAG, &dn);
698 	if (err)
699 		return (err);
700 	ASSERT(offset < UINT64_MAX);
701 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
702 	dnode_free_range(dn, offset, size, tx);
703 	dnode_rele(dn, FTAG);
704 	return (0);
705 }
706 
707 int
708 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
709     void *buf, uint32_t flags)
710 {
711 	dnode_t *dn;
712 	dmu_buf_t **dbp;
713 	int numbufs, err;
714 
715 	err = dnode_hold(os, object, FTAG, &dn);
716 	if (err)
717 		return (err);
718 
719 	/*
720 	 * Deal with odd block sizes, where there can't be data past the first
721 	 * block.  If we ever do the tail block optimization, we will need to
722 	 * handle that here as well.
723 	 */
724 	if (dn->dn_maxblkid == 0) {
725 		int newsz = offset > dn->dn_datablksz ? 0 :
726 		    MIN(size, dn->dn_datablksz - offset);
727 		bzero((char *)buf + newsz, size - newsz);
728 		size = newsz;
729 	}
730 
731 	while (size > 0) {
732 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
733 		int i;
734 
735 		/*
736 		 * NB: we could do this block-at-a-time, but it's nice
737 		 * to be reading in parallel.
738 		 */
739 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
740 		    TRUE, FTAG, &numbufs, &dbp, flags);
741 		if (err)
742 			break;
743 
744 		for (i = 0; i < numbufs; i++) {
745 			int tocpy;
746 			int bufoff;
747 			dmu_buf_t *db = dbp[i];
748 
749 			ASSERT(size > 0);
750 
751 			bufoff = offset - db->db_offset;
752 			tocpy = (int)MIN(db->db_size - bufoff, size);
753 
754 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
755 
756 			offset += tocpy;
757 			size -= tocpy;
758 			buf = (char *)buf + tocpy;
759 		}
760 		dmu_buf_rele_array(dbp, numbufs, FTAG);
761 	}
762 	dnode_rele(dn, FTAG);
763 	return (err);
764 }
765 
766 void
767 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
768     const void *buf, dmu_tx_t *tx)
769 {
770 	dmu_buf_t **dbp;
771 	int numbufs, i;
772 
773 	if (size == 0)
774 		return;
775 
776 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
777 	    FALSE, FTAG, &numbufs, &dbp));
778 
779 	for (i = 0; i < numbufs; i++) {
780 		int tocpy;
781 		int bufoff;
782 		dmu_buf_t *db = dbp[i];
783 
784 		ASSERT(size > 0);
785 
786 		bufoff = offset - db->db_offset;
787 		tocpy = (int)MIN(db->db_size - bufoff, size);
788 
789 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
790 
791 		if (tocpy == db->db_size)
792 			dmu_buf_will_fill(db, tx);
793 		else
794 			dmu_buf_will_dirty(db, tx);
795 
796 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
797 
798 		if (tocpy == db->db_size)
799 			dmu_buf_fill_done(db, tx);
800 
801 		offset += tocpy;
802 		size -= tocpy;
803 		buf = (char *)buf + tocpy;
804 	}
805 	dmu_buf_rele_array(dbp, numbufs, FTAG);
806 }
807 
808 void
809 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
810     dmu_tx_t *tx)
811 {
812 	dmu_buf_t **dbp;
813 	int numbufs, i;
814 
815 	if (size == 0)
816 		return;
817 
818 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
819 	    FALSE, FTAG, &numbufs, &dbp));
820 
821 	for (i = 0; i < numbufs; i++) {
822 		dmu_buf_t *db = dbp[i];
823 
824 		dmu_buf_will_not_fill(db, tx);
825 	}
826 	dmu_buf_rele_array(dbp, numbufs, FTAG);
827 }
828 
829 /*
830  * DMU support for xuio
831  */
832 kstat_t *xuio_ksp = NULL;
833 
834 int
835 dmu_xuio_init(xuio_t *xuio, int nblk)
836 {
837 	dmu_xuio_t *priv;
838 	uio_t *uio = &xuio->xu_uio;
839 
840 	uio->uio_iovcnt = nblk;
841 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
842 
843 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
844 	priv->cnt = nblk;
845 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
846 	priv->iovp = uio->uio_iov;
847 	XUIO_XUZC_PRIV(xuio) = priv;
848 
849 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
850 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
851 	else
852 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
853 
854 	return (0);
855 }
856 
857 void
858 dmu_xuio_fini(xuio_t *xuio)
859 {
860 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
861 	int nblk = priv->cnt;
862 
863 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
864 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
865 	kmem_free(priv, sizeof (dmu_xuio_t));
866 
867 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
868 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
869 	else
870 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
871 }
872 
873 /*
874  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
875  * and increase priv->next by 1.
876  */
877 int
878 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
879 {
880 	struct iovec *iov;
881 	uio_t *uio = &xuio->xu_uio;
882 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
883 	int i = priv->next++;
884 
885 	ASSERT(i < priv->cnt);
886 	ASSERT(off + n <= arc_buf_size(abuf));
887 	iov = uio->uio_iov + i;
888 	iov->iov_base = (char *)abuf->b_data + off;
889 	iov->iov_len = n;
890 	priv->bufs[i] = abuf;
891 	return (0);
892 }
893 
894 int
895 dmu_xuio_cnt(xuio_t *xuio)
896 {
897 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
898 	return (priv->cnt);
899 }
900 
901 arc_buf_t *
902 dmu_xuio_arcbuf(xuio_t *xuio, int i)
903 {
904 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
905 
906 	ASSERT(i < priv->cnt);
907 	return (priv->bufs[i]);
908 }
909 
910 void
911 dmu_xuio_clear(xuio_t *xuio, int i)
912 {
913 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
914 
915 	ASSERT(i < priv->cnt);
916 	priv->bufs[i] = NULL;
917 }
918 
919 static void
920 xuio_stat_init(void)
921 {
922 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
923 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
924 	    KSTAT_FLAG_VIRTUAL);
925 	if (xuio_ksp != NULL) {
926 		xuio_ksp->ks_data = &xuio_stats;
927 		kstat_install(xuio_ksp);
928 	}
929 }
930 
931 static void
932 xuio_stat_fini(void)
933 {
934 	if (xuio_ksp != NULL) {
935 		kstat_delete(xuio_ksp);
936 		xuio_ksp = NULL;
937 	}
938 }
939 
940 void
941 xuio_stat_wbuf_copied()
942 {
943 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
944 }
945 
946 void
947 xuio_stat_wbuf_nocopy()
948 {
949 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
950 }
951 
952 #ifdef _KERNEL
953 int
954 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
955 {
956 	dmu_buf_t **dbp;
957 	int numbufs, i, err;
958 	xuio_t *xuio = NULL;
959 
960 	/*
961 	 * NB: we could do this block-at-a-time, but it's nice
962 	 * to be reading in parallel.
963 	 */
964 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
965 	    &numbufs, &dbp);
966 	if (err)
967 		return (err);
968 
969 	if (uio->uio_extflg == UIO_XUIO)
970 		xuio = (xuio_t *)uio;
971 
972 	for (i = 0; i < numbufs; i++) {
973 		int tocpy;
974 		int bufoff;
975 		dmu_buf_t *db = dbp[i];
976 
977 		ASSERT(size > 0);
978 
979 		bufoff = uio->uio_loffset - db->db_offset;
980 		tocpy = (int)MIN(db->db_size - bufoff, size);
981 
982 		if (xuio) {
983 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
984 			arc_buf_t *dbuf_abuf = dbi->db_buf;
985 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
986 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
987 			if (!err) {
988 				uio->uio_resid -= tocpy;
989 				uio->uio_loffset += tocpy;
990 			}
991 
992 			if (abuf == dbuf_abuf)
993 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
994 			else
995 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
996 		} else {
997 			err = uiomove((char *)db->db_data + bufoff, tocpy,
998 			    UIO_READ, uio);
999 		}
1000 		if (err)
1001 			break;
1002 
1003 		size -= tocpy;
1004 	}
1005 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1006 
1007 	return (err);
1008 }
1009 
1010 static int
1011 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1012 {
1013 	dmu_buf_t **dbp;
1014 	int numbufs;
1015 	int err = 0;
1016 	int i;
1017 
1018 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1019 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1020 	if (err)
1021 		return (err);
1022 
1023 	for (i = 0; i < numbufs; i++) {
1024 		int tocpy;
1025 		int bufoff;
1026 		dmu_buf_t *db = dbp[i];
1027 
1028 		ASSERT(size > 0);
1029 
1030 		bufoff = uio->uio_loffset - db->db_offset;
1031 		tocpy = (int)MIN(db->db_size - bufoff, size);
1032 
1033 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1034 
1035 		if (tocpy == db->db_size)
1036 			dmu_buf_will_fill(db, tx);
1037 		else
1038 			dmu_buf_will_dirty(db, tx);
1039 
1040 		/*
1041 		 * XXX uiomove could block forever (eg. nfs-backed
1042 		 * pages).  There needs to be a uiolockdown() function
1043 		 * to lock the pages in memory, so that uiomove won't
1044 		 * block.
1045 		 */
1046 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1047 		    UIO_WRITE, uio);
1048 
1049 		if (tocpy == db->db_size)
1050 			dmu_buf_fill_done(db, tx);
1051 
1052 		if (err)
1053 			break;
1054 
1055 		size -= tocpy;
1056 	}
1057 
1058 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1059 	return (err);
1060 }
1061 
1062 int
1063 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1064     dmu_tx_t *tx)
1065 {
1066 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1067 	dnode_t *dn;
1068 	int err;
1069 
1070 	if (size == 0)
1071 		return (0);
1072 
1073 	DB_DNODE_ENTER(db);
1074 	dn = DB_DNODE(db);
1075 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1076 	DB_DNODE_EXIT(db);
1077 
1078 	return (err);
1079 }
1080 
1081 int
1082 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1083     dmu_tx_t *tx)
1084 {
1085 	dnode_t *dn;
1086 	int err;
1087 
1088 	if (size == 0)
1089 		return (0);
1090 
1091 	err = dnode_hold(os, object, FTAG, &dn);
1092 	if (err)
1093 		return (err);
1094 
1095 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1096 
1097 	dnode_rele(dn, FTAG);
1098 
1099 	return (err);
1100 }
1101 
1102 int
1103 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1104     page_t *pp, dmu_tx_t *tx)
1105 {
1106 	dmu_buf_t **dbp;
1107 	int numbufs, i;
1108 	int err;
1109 
1110 	if (size == 0)
1111 		return (0);
1112 
1113 	err = dmu_buf_hold_array(os, object, offset, size,
1114 	    FALSE, FTAG, &numbufs, &dbp);
1115 	if (err)
1116 		return (err);
1117 
1118 	for (i = 0; i < numbufs; i++) {
1119 		int tocpy, copied, thiscpy;
1120 		int bufoff;
1121 		dmu_buf_t *db = dbp[i];
1122 		caddr_t va;
1123 
1124 		ASSERT(size > 0);
1125 		ASSERT3U(db->db_size, >=, PAGESIZE);
1126 
1127 		bufoff = offset - db->db_offset;
1128 		tocpy = (int)MIN(db->db_size - bufoff, size);
1129 
1130 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1131 
1132 		if (tocpy == db->db_size)
1133 			dmu_buf_will_fill(db, tx);
1134 		else
1135 			dmu_buf_will_dirty(db, tx);
1136 
1137 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1138 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1139 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1140 			va = zfs_map_page(pp, S_READ);
1141 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1142 			zfs_unmap_page(pp, va);
1143 			pp = pp->p_next;
1144 			bufoff += PAGESIZE;
1145 		}
1146 
1147 		if (tocpy == db->db_size)
1148 			dmu_buf_fill_done(db, tx);
1149 
1150 		offset += tocpy;
1151 		size -= tocpy;
1152 	}
1153 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1154 	return (err);
1155 }
1156 #endif
1157 
1158 /*
1159  * Allocate a loaned anonymous arc buffer.
1160  */
1161 arc_buf_t *
1162 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1163 {
1164 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1165 	spa_t *spa;
1166 
1167 	DB_GET_SPA(&spa, db);
1168 	return (arc_loan_buf(spa, size));
1169 }
1170 
1171 /*
1172  * Free a loaned arc buffer.
1173  */
1174 void
1175 dmu_return_arcbuf(arc_buf_t *buf)
1176 {
1177 	arc_return_buf(buf, FTAG);
1178 	VERIFY(arc_buf_remove_ref(buf, FTAG) == 1);
1179 }
1180 
1181 /*
1182  * When possible directly assign passed loaned arc buffer to a dbuf.
1183  * If this is not possible copy the contents of passed arc buf via
1184  * dmu_write().
1185  */
1186 void
1187 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1188     dmu_tx_t *tx)
1189 {
1190 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1191 	dnode_t *dn;
1192 	dmu_buf_impl_t *db;
1193 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1194 	uint64_t blkid;
1195 
1196 	DB_DNODE_ENTER(dbuf);
1197 	dn = DB_DNODE(dbuf);
1198 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1199 	blkid = dbuf_whichblock(dn, offset);
1200 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1201 	rw_exit(&dn->dn_struct_rwlock);
1202 	DB_DNODE_EXIT(dbuf);
1203 
1204 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1205 		dbuf_assign_arcbuf(db, buf, tx);
1206 		dbuf_rele(db, FTAG);
1207 	} else {
1208 		objset_t *os;
1209 		uint64_t object;
1210 
1211 		DB_DNODE_ENTER(dbuf);
1212 		dn = DB_DNODE(dbuf);
1213 		os = dn->dn_objset;
1214 		object = dn->dn_object;
1215 		DB_DNODE_EXIT(dbuf);
1216 
1217 		dbuf_rele(db, FTAG);
1218 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1219 		dmu_return_arcbuf(buf);
1220 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1221 	}
1222 }
1223 
1224 typedef struct {
1225 	dbuf_dirty_record_t	*dsa_dr;
1226 	dmu_sync_cb_t		*dsa_done;
1227 	zgd_t			*dsa_zgd;
1228 	dmu_tx_t		*dsa_tx;
1229 } dmu_sync_arg_t;
1230 
1231 /* ARGSUSED */
1232 static void
1233 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1234 {
1235 	dmu_sync_arg_t *dsa = varg;
1236 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1237 	blkptr_t *bp = zio->io_bp;
1238 
1239 	if (zio->io_error == 0) {
1240 		if (BP_IS_HOLE(bp)) {
1241 			/*
1242 			 * A block of zeros may compress to a hole, but the
1243 			 * block size still needs to be known for replay.
1244 			 */
1245 			BP_SET_LSIZE(bp, db->db_size);
1246 		} else {
1247 			ASSERT(BP_GET_LEVEL(bp) == 0);
1248 			bp->blk_fill = 1;
1249 		}
1250 	}
1251 }
1252 
1253 static void
1254 dmu_sync_late_arrival_ready(zio_t *zio)
1255 {
1256 	dmu_sync_ready(zio, NULL, zio->io_private);
1257 }
1258 
1259 /* ARGSUSED */
1260 static void
1261 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1262 {
1263 	dmu_sync_arg_t *dsa = varg;
1264 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1265 	dmu_buf_impl_t *db = dr->dr_dbuf;
1266 
1267 	mutex_enter(&db->db_mtx);
1268 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1269 	if (zio->io_error == 0) {
1270 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1271 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1272 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1273 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1274 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1275 	} else {
1276 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1277 	}
1278 	cv_broadcast(&db->db_changed);
1279 	mutex_exit(&db->db_mtx);
1280 
1281 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1282 
1283 	kmem_free(dsa, sizeof (*dsa));
1284 }
1285 
1286 static void
1287 dmu_sync_late_arrival_done(zio_t *zio)
1288 {
1289 	blkptr_t *bp = zio->io_bp;
1290 	dmu_sync_arg_t *dsa = zio->io_private;
1291 
1292 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1293 		ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1294 		ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1295 		zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1296 	}
1297 
1298 	dmu_tx_commit(dsa->dsa_tx);
1299 
1300 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1301 
1302 	kmem_free(dsa, sizeof (*dsa));
1303 }
1304 
1305 static int
1306 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1307     zio_prop_t *zp, zbookmark_t *zb)
1308 {
1309 	dmu_sync_arg_t *dsa;
1310 	dmu_tx_t *tx;
1311 
1312 	tx = dmu_tx_create(os);
1313 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1314 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1315 		dmu_tx_abort(tx);
1316 		return (EIO);	/* Make zl_get_data do txg_waited_synced() */
1317 	}
1318 
1319 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1320 	dsa->dsa_dr = NULL;
1321 	dsa->dsa_done = done;
1322 	dsa->dsa_zgd = zgd;
1323 	dsa->dsa_tx = tx;
1324 
1325 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1326 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1327 	    dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa,
1328 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1329 
1330 	return (0);
1331 }
1332 
1333 /*
1334  * Intent log support: sync the block associated with db to disk.
1335  * N.B. and XXX: the caller is responsible for making sure that the
1336  * data isn't changing while dmu_sync() is writing it.
1337  *
1338  * Return values:
1339  *
1340  *	EEXIST: this txg has already been synced, so there's nothing to to.
1341  *		The caller should not log the write.
1342  *
1343  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1344  *		The caller should not log the write.
1345  *
1346  *	EALREADY: this block is already in the process of being synced.
1347  *		The caller should track its progress (somehow).
1348  *
1349  *	EIO: could not do the I/O.
1350  *		The caller should do a txg_wait_synced().
1351  *
1352  *	0: the I/O has been initiated.
1353  *		The caller should log this blkptr in the done callback.
1354  *		It is possible that the I/O will fail, in which case
1355  *		the error will be reported to the done callback and
1356  *		propagated to pio from zio_done().
1357  */
1358 int
1359 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1360 {
1361 	blkptr_t *bp = zgd->zgd_bp;
1362 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1363 	objset_t *os = db->db_objset;
1364 	dsl_dataset_t *ds = os->os_dsl_dataset;
1365 	dbuf_dirty_record_t *dr;
1366 	dmu_sync_arg_t *dsa;
1367 	zbookmark_t zb;
1368 	zio_prop_t zp;
1369 	dnode_t *dn;
1370 
1371 	ASSERT(pio != NULL);
1372 	ASSERT(BP_IS_HOLE(bp));
1373 	ASSERT(txg != 0);
1374 
1375 	SET_BOOKMARK(&zb, ds->ds_object,
1376 	    db->db.db_object, db->db_level, db->db_blkid);
1377 
1378 	DB_DNODE_ENTER(db);
1379 	dn = DB_DNODE(db);
1380 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1381 	DB_DNODE_EXIT(db);
1382 
1383 	/*
1384 	 * If we're frozen (running ziltest), we always need to generate a bp.
1385 	 */
1386 	if (txg > spa_freeze_txg(os->os_spa))
1387 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1388 
1389 	/*
1390 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1391 	 * and us.  If we determine that this txg is not yet syncing,
1392 	 * but it begins to sync a moment later, that's OK because the
1393 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1394 	 */
1395 	mutex_enter(&db->db_mtx);
1396 
1397 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1398 		/*
1399 		 * This txg has already synced.  There's nothing to do.
1400 		 */
1401 		mutex_exit(&db->db_mtx);
1402 		return (EEXIST);
1403 	}
1404 
1405 	if (txg <= spa_syncing_txg(os->os_spa)) {
1406 		/*
1407 		 * This txg is currently syncing, so we can't mess with
1408 		 * the dirty record anymore; just write a new log block.
1409 		 */
1410 		mutex_exit(&db->db_mtx);
1411 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1412 	}
1413 
1414 	dr = db->db_last_dirty;
1415 	while (dr && dr->dr_txg != txg)
1416 		dr = dr->dr_next;
1417 
1418 	if (dr == NULL) {
1419 		/*
1420 		 * There's no dr for this dbuf, so it must have been freed.
1421 		 * There's no need to log writes to freed blocks, so we're done.
1422 		 */
1423 		mutex_exit(&db->db_mtx);
1424 		return (ENOENT);
1425 	}
1426 
1427 	ASSERT(dr->dr_txg == txg);
1428 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1429 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1430 		/*
1431 		 * We have already issued a sync write for this buffer,
1432 		 * or this buffer has already been synced.  It could not
1433 		 * have been dirtied since, or we would have cleared the state.
1434 		 */
1435 		mutex_exit(&db->db_mtx);
1436 		return (EALREADY);
1437 	}
1438 
1439 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1440 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1441 	mutex_exit(&db->db_mtx);
1442 
1443 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1444 	dsa->dsa_dr = dr;
1445 	dsa->dsa_done = done;
1446 	dsa->dsa_zgd = zgd;
1447 	dsa->dsa_tx = NULL;
1448 
1449 	zio_nowait(arc_write(pio, os->os_spa, txg,
1450 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp,
1451 	    dmu_sync_ready, dmu_sync_done, dsa,
1452 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1453 
1454 	return (0);
1455 }
1456 
1457 int
1458 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1459 	dmu_tx_t *tx)
1460 {
1461 	dnode_t *dn;
1462 	int err;
1463 
1464 	err = dnode_hold(os, object, FTAG, &dn);
1465 	if (err)
1466 		return (err);
1467 	err = dnode_set_blksz(dn, size, ibs, tx);
1468 	dnode_rele(dn, FTAG);
1469 	return (err);
1470 }
1471 
1472 void
1473 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1474 	dmu_tx_t *tx)
1475 {
1476 	dnode_t *dn;
1477 
1478 	/* XXX assumes dnode_hold will not get an i/o error */
1479 	(void) dnode_hold(os, object, FTAG, &dn);
1480 	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1481 	dn->dn_checksum = checksum;
1482 	dnode_setdirty(dn, tx);
1483 	dnode_rele(dn, FTAG);
1484 }
1485 
1486 void
1487 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1488 	dmu_tx_t *tx)
1489 {
1490 	dnode_t *dn;
1491 
1492 	/* XXX assumes dnode_hold will not get an i/o error */
1493 	(void) dnode_hold(os, object, FTAG, &dn);
1494 	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1495 	dn->dn_compress = compress;
1496 	dnode_setdirty(dn, tx);
1497 	dnode_rele(dn, FTAG);
1498 }
1499 
1500 int zfs_mdcomp_disable = 0;
1501 
1502 void
1503 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1504 {
1505 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1506 	boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata ||
1507 	    (wp & WP_SPILL));
1508 	enum zio_checksum checksum = os->os_checksum;
1509 	enum zio_compress compress = os->os_compress;
1510 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1511 	boolean_t dedup;
1512 	boolean_t dedup_verify = os->os_dedup_verify;
1513 	int copies = os->os_copies;
1514 
1515 	/*
1516 	 * Determine checksum setting.
1517 	 */
1518 	if (ismd) {
1519 		/*
1520 		 * Metadata always gets checksummed.  If the data
1521 		 * checksum is multi-bit correctable, and it's not a
1522 		 * ZBT-style checksum, then it's suitable for metadata
1523 		 * as well.  Otherwise, the metadata checksum defaults
1524 		 * to fletcher4.
1525 		 */
1526 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1527 		    zio_checksum_table[checksum].ci_eck)
1528 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1529 	} else {
1530 		checksum = zio_checksum_select(dn->dn_checksum, checksum);
1531 	}
1532 
1533 	/*
1534 	 * Determine compression setting.
1535 	 */
1536 	if (ismd) {
1537 		/*
1538 		 * XXX -- we should design a compression algorithm
1539 		 * that specializes in arrays of bps.
1540 		 */
1541 		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1542 		    ZIO_COMPRESS_LZJB;
1543 	} else {
1544 		compress = zio_compress_select(dn->dn_compress, compress);
1545 	}
1546 
1547 	/*
1548 	 * Determine dedup setting.  If we are in dmu_sync(), we won't
1549 	 * actually dedup now because that's all done in syncing context;
1550 	 * but we do want to use the dedup checkum.  If the checksum is not
1551 	 * strong enough to ensure unique signatures, force dedup_verify.
1552 	 */
1553 	dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF);
1554 	if (dedup) {
1555 		checksum = dedup_checksum;
1556 		if (!zio_checksum_table[checksum].ci_dedup)
1557 			dedup_verify = 1;
1558 	}
1559 
1560 	if (wp & WP_DMU_SYNC)
1561 		dedup = 0;
1562 
1563 	if (wp & WP_NOFILL) {
1564 		ASSERT(!ismd && level == 0);
1565 		checksum = ZIO_CHECKSUM_OFF;
1566 		compress = ZIO_COMPRESS_OFF;
1567 		dedup = B_FALSE;
1568 	}
1569 
1570 	zp->zp_checksum = checksum;
1571 	zp->zp_compress = compress;
1572 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1573 	zp->zp_level = level;
1574 	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1575 	zp->zp_dedup = dedup;
1576 	zp->zp_dedup_verify = dedup && dedup_verify;
1577 }
1578 
1579 int
1580 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1581 {
1582 	dnode_t *dn;
1583 	int i, err;
1584 
1585 	err = dnode_hold(os, object, FTAG, &dn);
1586 	if (err)
1587 		return (err);
1588 	/*
1589 	 * Sync any current changes before
1590 	 * we go trundling through the block pointers.
1591 	 */
1592 	for (i = 0; i < TXG_SIZE; i++) {
1593 		if (list_link_active(&dn->dn_dirty_link[i]))
1594 			break;
1595 	}
1596 	if (i != TXG_SIZE) {
1597 		dnode_rele(dn, FTAG);
1598 		txg_wait_synced(dmu_objset_pool(os), 0);
1599 		err = dnode_hold(os, object, FTAG, &dn);
1600 		if (err)
1601 			return (err);
1602 	}
1603 
1604 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1605 	dnode_rele(dn, FTAG);
1606 
1607 	return (err);
1608 }
1609 
1610 void
1611 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1612 {
1613 	dnode_phys_t *dnp;
1614 
1615 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1616 	mutex_enter(&dn->dn_mtx);
1617 
1618 	dnp = dn->dn_phys;
1619 
1620 	doi->doi_data_block_size = dn->dn_datablksz;
1621 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1622 	    1ULL << dn->dn_indblkshift : 0;
1623 	doi->doi_type = dn->dn_type;
1624 	doi->doi_bonus_type = dn->dn_bonustype;
1625 	doi->doi_bonus_size = dn->dn_bonuslen;
1626 	doi->doi_indirection = dn->dn_nlevels;
1627 	doi->doi_checksum = dn->dn_checksum;
1628 	doi->doi_compress = dn->dn_compress;
1629 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1630 	doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz;
1631 	doi->doi_fill_count = 0;
1632 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1633 		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1634 
1635 	mutex_exit(&dn->dn_mtx);
1636 	rw_exit(&dn->dn_struct_rwlock);
1637 }
1638 
1639 /*
1640  * Get information on a DMU object.
1641  * If doi is NULL, just indicates whether the object exists.
1642  */
1643 int
1644 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1645 {
1646 	dnode_t *dn;
1647 	int err = dnode_hold(os, object, FTAG, &dn);
1648 
1649 	if (err)
1650 		return (err);
1651 
1652 	if (doi != NULL)
1653 		dmu_object_info_from_dnode(dn, doi);
1654 
1655 	dnode_rele(dn, FTAG);
1656 	return (0);
1657 }
1658 
1659 /*
1660  * As above, but faster; can be used when you have a held dbuf in hand.
1661  */
1662 void
1663 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1664 {
1665 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1666 
1667 	DB_DNODE_ENTER(db);
1668 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1669 	DB_DNODE_EXIT(db);
1670 }
1671 
1672 /*
1673  * Faster still when you only care about the size.
1674  * This is specifically optimized for zfs_getattr().
1675  */
1676 void
1677 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1678     u_longlong_t *nblk512)
1679 {
1680 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1681 	dnode_t *dn;
1682 
1683 	DB_DNODE_ENTER(db);
1684 	dn = DB_DNODE(db);
1685 
1686 	*blksize = dn->dn_datablksz;
1687 	/* add 1 for dnode space */
1688 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1689 	    SPA_MINBLOCKSHIFT) + 1;
1690 	DB_DNODE_EXIT(db);
1691 }
1692 
1693 void
1694 byteswap_uint64_array(void *vbuf, size_t size)
1695 {
1696 	uint64_t *buf = vbuf;
1697 	size_t count = size >> 3;
1698 	int i;
1699 
1700 	ASSERT((size & 7) == 0);
1701 
1702 	for (i = 0; i < count; i++)
1703 		buf[i] = BSWAP_64(buf[i]);
1704 }
1705 
1706 void
1707 byteswap_uint32_array(void *vbuf, size_t size)
1708 {
1709 	uint32_t *buf = vbuf;
1710 	size_t count = size >> 2;
1711 	int i;
1712 
1713 	ASSERT((size & 3) == 0);
1714 
1715 	for (i = 0; i < count; i++)
1716 		buf[i] = BSWAP_32(buf[i]);
1717 }
1718 
1719 void
1720 byteswap_uint16_array(void *vbuf, size_t size)
1721 {
1722 	uint16_t *buf = vbuf;
1723 	size_t count = size >> 1;
1724 	int i;
1725 
1726 	ASSERT((size & 1) == 0);
1727 
1728 	for (i = 0; i < count; i++)
1729 		buf[i] = BSWAP_16(buf[i]);
1730 }
1731 
1732 /* ARGSUSED */
1733 void
1734 byteswap_uint8_array(void *vbuf, size_t size)
1735 {
1736 }
1737 
1738 void
1739 dmu_init(void)
1740 {
1741 	zfs_dbgmsg_init();
1742 	sa_cache_init();
1743 	xuio_stat_init();
1744 	dmu_objset_init();
1745 	dnode_init();
1746 	dbuf_init();
1747 	zfetch_init();
1748 	arc_init();
1749 	l2arc_init();
1750 }
1751 
1752 void
1753 dmu_fini(void)
1754 {
1755 	l2arc_fini();
1756 	arc_fini();
1757 	zfetch_fini();
1758 	dbuf_fini();
1759 	dnode_fini();
1760 	dmu_objset_fini();
1761 	xuio_stat_fini();
1762 	sa_cache_fini();
1763 	zfs_dbgmsg_fini();
1764 }
1765