xref: /titanic_41/usr/src/uts/common/fs/zfs/dmu.c (revision 0f6ca53ff33a1d65d31757e0169d600daeef32d9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  */
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 
28 #include <sys/dmu.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dbuf.h>
32 #include <sys/dnode.h>
33 #include <sys/zfs_context.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dmu_traverse.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dsl_pool.h>
39 #include <sys/dsl_synctask.h>
40 #include <sys/dsl_prop.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/zfs_ioctl.h>
43 #include <sys/zap.h>
44 #include <sys/zio_checksum.h>
45 #include <sys/zio_compress.h>
46 #include <sys/sa.h>
47 #ifdef _KERNEL
48 #include <sys/vmsystm.h>
49 #include <sys/zfs_znode.h>
50 #endif
51 
52 /*
53  * Enable/disable nopwrite feature.
54  */
55 int zfs_nopwrite_enabled = 1;
56 
57 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
58 	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
59 	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
60 	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
61 	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
62 	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
63 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
64 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
65 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
66 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
67 	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
68 	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
69 	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
70 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
71 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
72 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
73 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
74 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
75 	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
76 	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
77 	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
78 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
79 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
80 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
81 	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
82 	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
83 	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
84 	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
85 	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
86 	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
87 	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
88 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
89 	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
90 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
91 	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
92 	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
93 	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
94 	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
95 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
96 	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
97 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
98 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
99 	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
100 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
101 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
102 	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
103 	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
104 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
105 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
106 	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
107 	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
108 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
109 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
110 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
111 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
112 };
113 
114 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
115 	{	byteswap_uint8_array,	"uint8"		},
116 	{	byteswap_uint16_array,	"uint16"	},
117 	{	byteswap_uint32_array,	"uint32"	},
118 	{	byteswap_uint64_array,	"uint64"	},
119 	{	zap_byteswap,		"zap"		},
120 	{	dnode_buf_byteswap,	"dnode"		},
121 	{	dmu_objset_byteswap,	"objset"	},
122 	{	zfs_znode_byteswap,	"znode"		},
123 	{	zfs_oldacl_byteswap,	"oldacl"	},
124 	{	zfs_acl_byteswap,	"acl"		}
125 };
126 
127 int
128 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
129     void *tag, dmu_buf_t **dbp, int flags)
130 {
131 	dnode_t *dn;
132 	uint64_t blkid;
133 	dmu_buf_impl_t *db;
134 	int err;
135 	int db_flags = DB_RF_CANFAIL;
136 
137 	if (flags & DMU_READ_NO_PREFETCH)
138 		db_flags |= DB_RF_NOPREFETCH;
139 
140 	err = dnode_hold(os, object, FTAG, &dn);
141 	if (err)
142 		return (err);
143 	blkid = dbuf_whichblock(dn, offset);
144 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
145 	db = dbuf_hold(dn, blkid, tag);
146 	rw_exit(&dn->dn_struct_rwlock);
147 	if (db == NULL) {
148 		err = SET_ERROR(EIO);
149 	} else {
150 		err = dbuf_read(db, NULL, db_flags);
151 		if (err) {
152 			dbuf_rele(db, tag);
153 			db = NULL;
154 		}
155 	}
156 
157 	dnode_rele(dn, FTAG);
158 	*dbp = &db->db; /* NULL db plus first field offset is NULL */
159 	return (err);
160 }
161 
162 int
163 dmu_bonus_max(void)
164 {
165 	return (DN_MAX_BONUSLEN);
166 }
167 
168 int
169 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
170 {
171 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
172 	dnode_t *dn;
173 	int error;
174 
175 	DB_DNODE_ENTER(db);
176 	dn = DB_DNODE(db);
177 
178 	if (dn->dn_bonus != db) {
179 		error = SET_ERROR(EINVAL);
180 	} else if (newsize < 0 || newsize > db_fake->db_size) {
181 		error = SET_ERROR(EINVAL);
182 	} else {
183 		dnode_setbonuslen(dn, newsize, tx);
184 		error = 0;
185 	}
186 
187 	DB_DNODE_EXIT(db);
188 	return (error);
189 }
190 
191 int
192 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
193 {
194 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
195 	dnode_t *dn;
196 	int error;
197 
198 	DB_DNODE_ENTER(db);
199 	dn = DB_DNODE(db);
200 
201 	if (!DMU_OT_IS_VALID(type)) {
202 		error = SET_ERROR(EINVAL);
203 	} else if (dn->dn_bonus != db) {
204 		error = SET_ERROR(EINVAL);
205 	} else {
206 		dnode_setbonus_type(dn, type, tx);
207 		error = 0;
208 	}
209 
210 	DB_DNODE_EXIT(db);
211 	return (error);
212 }
213 
214 dmu_object_type_t
215 dmu_get_bonustype(dmu_buf_t *db_fake)
216 {
217 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
218 	dnode_t *dn;
219 	dmu_object_type_t type;
220 
221 	DB_DNODE_ENTER(db);
222 	dn = DB_DNODE(db);
223 	type = dn->dn_bonustype;
224 	DB_DNODE_EXIT(db);
225 
226 	return (type);
227 }
228 
229 int
230 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
231 {
232 	dnode_t *dn;
233 	int error;
234 
235 	error = dnode_hold(os, object, FTAG, &dn);
236 	dbuf_rm_spill(dn, tx);
237 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
238 	dnode_rm_spill(dn, tx);
239 	rw_exit(&dn->dn_struct_rwlock);
240 	dnode_rele(dn, FTAG);
241 	return (error);
242 }
243 
244 /*
245  * returns ENOENT, EIO, or 0.
246  */
247 int
248 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
249 {
250 	dnode_t *dn;
251 	dmu_buf_impl_t *db;
252 	int error;
253 
254 	error = dnode_hold(os, object, FTAG, &dn);
255 	if (error)
256 		return (error);
257 
258 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
259 	if (dn->dn_bonus == NULL) {
260 		rw_exit(&dn->dn_struct_rwlock);
261 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
262 		if (dn->dn_bonus == NULL)
263 			dbuf_create_bonus(dn);
264 	}
265 	db = dn->dn_bonus;
266 
267 	/* as long as the bonus buf is held, the dnode will be held */
268 	if (refcount_add(&db->db_holds, tag) == 1) {
269 		VERIFY(dnode_add_ref(dn, db));
270 		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
271 	}
272 
273 	/*
274 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
275 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
276 	 * a dnode hold for every dbuf.
277 	 */
278 	rw_exit(&dn->dn_struct_rwlock);
279 
280 	dnode_rele(dn, FTAG);
281 
282 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
283 
284 	*dbp = &db->db;
285 	return (0);
286 }
287 
288 /*
289  * returns ENOENT, EIO, or 0.
290  *
291  * This interface will allocate a blank spill dbuf when a spill blk
292  * doesn't already exist on the dnode.
293  *
294  * if you only want to find an already existing spill db, then
295  * dmu_spill_hold_existing() should be used.
296  */
297 int
298 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
299 {
300 	dmu_buf_impl_t *db = NULL;
301 	int err;
302 
303 	if ((flags & DB_RF_HAVESTRUCT) == 0)
304 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
305 
306 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
307 
308 	if ((flags & DB_RF_HAVESTRUCT) == 0)
309 		rw_exit(&dn->dn_struct_rwlock);
310 
311 	ASSERT(db != NULL);
312 	err = dbuf_read(db, NULL, flags);
313 	if (err == 0)
314 		*dbp = &db->db;
315 	else
316 		dbuf_rele(db, tag);
317 	return (err);
318 }
319 
320 int
321 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
322 {
323 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
324 	dnode_t *dn;
325 	int err;
326 
327 	DB_DNODE_ENTER(db);
328 	dn = DB_DNODE(db);
329 
330 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
331 		err = SET_ERROR(EINVAL);
332 	} else {
333 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
334 
335 		if (!dn->dn_have_spill) {
336 			err = SET_ERROR(ENOENT);
337 		} else {
338 			err = dmu_spill_hold_by_dnode(dn,
339 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
340 		}
341 
342 		rw_exit(&dn->dn_struct_rwlock);
343 	}
344 
345 	DB_DNODE_EXIT(db);
346 	return (err);
347 }
348 
349 int
350 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
351 {
352 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
353 	dnode_t *dn;
354 	int err;
355 
356 	DB_DNODE_ENTER(db);
357 	dn = DB_DNODE(db);
358 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
359 	DB_DNODE_EXIT(db);
360 
361 	return (err);
362 }
363 
364 /*
365  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
366  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
367  * and can induce severe lock contention when writing to several files
368  * whose dnodes are in the same block.
369  */
370 static int
371 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
372     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
373 {
374 	dmu_buf_t **dbp;
375 	uint64_t blkid, nblks, i;
376 	uint32_t dbuf_flags;
377 	int err;
378 	zio_t *zio;
379 
380 	ASSERT(length <= DMU_MAX_ACCESS);
381 
382 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
383 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
384 		dbuf_flags |= DB_RF_NOPREFETCH;
385 
386 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
387 	if (dn->dn_datablkshift) {
388 		int blkshift = dn->dn_datablkshift;
389 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
390 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
391 	} else {
392 		if (offset + length > dn->dn_datablksz) {
393 			zfs_panic_recover("zfs: accessing past end of object "
394 			    "%llx/%llx (size=%u access=%llu+%llu)",
395 			    (longlong_t)dn->dn_objset->
396 			    os_dsl_dataset->ds_object,
397 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
398 			    (longlong_t)offset, (longlong_t)length);
399 			rw_exit(&dn->dn_struct_rwlock);
400 			return (SET_ERROR(EIO));
401 		}
402 		nblks = 1;
403 	}
404 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
405 
406 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
407 	blkid = dbuf_whichblock(dn, offset);
408 	for (i = 0; i < nblks; i++) {
409 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
410 		if (db == NULL) {
411 			rw_exit(&dn->dn_struct_rwlock);
412 			dmu_buf_rele_array(dbp, nblks, tag);
413 			zio_nowait(zio);
414 			return (SET_ERROR(EIO));
415 		}
416 		/* initiate async i/o */
417 		if (read) {
418 			(void) dbuf_read(db, zio, dbuf_flags);
419 		}
420 		dbp[i] = &db->db;
421 	}
422 	rw_exit(&dn->dn_struct_rwlock);
423 
424 	/* wait for async i/o */
425 	err = zio_wait(zio);
426 	if (err) {
427 		dmu_buf_rele_array(dbp, nblks, tag);
428 		return (err);
429 	}
430 
431 	/* wait for other io to complete */
432 	if (read) {
433 		for (i = 0; i < nblks; i++) {
434 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
435 			mutex_enter(&db->db_mtx);
436 			while (db->db_state == DB_READ ||
437 			    db->db_state == DB_FILL)
438 				cv_wait(&db->db_changed, &db->db_mtx);
439 			if (db->db_state == DB_UNCACHED)
440 				err = SET_ERROR(EIO);
441 			mutex_exit(&db->db_mtx);
442 			if (err) {
443 				dmu_buf_rele_array(dbp, nblks, tag);
444 				return (err);
445 			}
446 		}
447 	}
448 
449 	*numbufsp = nblks;
450 	*dbpp = dbp;
451 	return (0);
452 }
453 
454 static int
455 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
456     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
457 {
458 	dnode_t *dn;
459 	int err;
460 
461 	err = dnode_hold(os, object, FTAG, &dn);
462 	if (err)
463 		return (err);
464 
465 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
466 	    numbufsp, dbpp, DMU_READ_PREFETCH);
467 
468 	dnode_rele(dn, FTAG);
469 
470 	return (err);
471 }
472 
473 int
474 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
475     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
476 {
477 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
478 	dnode_t *dn;
479 	int err;
480 
481 	DB_DNODE_ENTER(db);
482 	dn = DB_DNODE(db);
483 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
484 	    numbufsp, dbpp, DMU_READ_PREFETCH);
485 	DB_DNODE_EXIT(db);
486 
487 	return (err);
488 }
489 
490 void
491 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
492 {
493 	int i;
494 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
495 
496 	if (numbufs == 0)
497 		return;
498 
499 	for (i = 0; i < numbufs; i++) {
500 		if (dbp[i])
501 			dbuf_rele(dbp[i], tag);
502 	}
503 
504 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
505 }
506 
507 /*
508  * Issue prefetch i/os for the given blocks.
509  *
510  * Note: The assumption is that we *know* these blocks will be needed
511  * almost immediately.  Therefore, the prefetch i/os will be issued at
512  * ZIO_PRIORITY_SYNC_READ
513  *
514  * Note: indirect blocks and other metadata will be read synchronously,
515  * causing this function to block if they are not already cached.
516  */
517 void
518 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
519 {
520 	dnode_t *dn;
521 	uint64_t blkid;
522 	int nblks, err;
523 
524 	if (zfs_prefetch_disable)
525 		return;
526 
527 	if (len == 0) {  /* they're interested in the bonus buffer */
528 		dn = DMU_META_DNODE(os);
529 
530 		if (object == 0 || object >= DN_MAX_OBJECT)
531 			return;
532 
533 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
534 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
535 		dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
536 		rw_exit(&dn->dn_struct_rwlock);
537 		return;
538 	}
539 
540 	/*
541 	 * XXX - Note, if the dnode for the requested object is not
542 	 * already cached, we will do a *synchronous* read in the
543 	 * dnode_hold() call.  The same is true for any indirects.
544 	 */
545 	err = dnode_hold(os, object, FTAG, &dn);
546 	if (err != 0)
547 		return;
548 
549 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
550 	if (dn->dn_datablkshift) {
551 		int blkshift = dn->dn_datablkshift;
552 		nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
553 		    P2ALIGN(offset, 1 << blkshift)) >> blkshift;
554 	} else {
555 		nblks = (offset < dn->dn_datablksz);
556 	}
557 
558 	if (nblks != 0) {
559 		blkid = dbuf_whichblock(dn, offset);
560 		for (int i = 0; i < nblks; i++)
561 			dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
562 	}
563 
564 	rw_exit(&dn->dn_struct_rwlock);
565 
566 	dnode_rele(dn, FTAG);
567 }
568 
569 /*
570  * Get the next "chunk" of file data to free.  We traverse the file from
571  * the end so that the file gets shorter over time (if we crashes in the
572  * middle, this will leave us in a better state).  We find allocated file
573  * data by simply searching the allocated level 1 indirects.
574  *
575  * On input, *start should be the first offset that does not need to be
576  * freed (e.g. "offset + length").  On return, *start will be the first
577  * offset that should be freed.
578  */
579 static int
580 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
581 {
582 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
583 	/* bytes of data covered by a level-1 indirect block */
584 	uint64_t iblkrange =
585 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
586 
587 	ASSERT3U(minimum, <=, *start);
588 
589 	if (*start - minimum <= iblkrange * maxblks) {
590 		*start = minimum;
591 		return (0);
592 	}
593 	ASSERT(ISP2(iblkrange));
594 
595 	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
596 		int err;
597 
598 		/*
599 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
600 		 * indirect block at or before the input offset.  We must
601 		 * decrement *start so that it is at the end of the region
602 		 * to search.
603 		 */
604 		(*start)--;
605 		err = dnode_next_offset(dn,
606 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
607 
608 		/* if there are no indirect blocks before start, we are done */
609 		if (err == ESRCH) {
610 			*start = minimum;
611 			break;
612 		} else if (err != 0) {
613 			return (err);
614 		}
615 
616 		/* set start to the beginning of this L1 indirect */
617 		*start = P2ALIGN(*start, iblkrange);
618 	}
619 	if (*start < minimum)
620 		*start = minimum;
621 	return (0);
622 }
623 
624 static int
625 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
626     uint64_t length)
627 {
628 	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
629 	int err;
630 
631 	if (offset >= object_size)
632 		return (0);
633 
634 	if (length == DMU_OBJECT_END || offset + length > object_size)
635 		length = object_size - offset;
636 
637 	while (length != 0) {
638 		uint64_t chunk_end, chunk_begin;
639 
640 		chunk_end = chunk_begin = offset + length;
641 
642 		/* move chunk_begin backwards to the beginning of this chunk */
643 		err = get_next_chunk(dn, &chunk_begin, offset);
644 		if (err)
645 			return (err);
646 		ASSERT3U(chunk_begin, >=, offset);
647 		ASSERT3U(chunk_begin, <=, chunk_end);
648 
649 		dmu_tx_t *tx = dmu_tx_create(os);
650 		dmu_tx_hold_free(tx, dn->dn_object,
651 		    chunk_begin, chunk_end - chunk_begin);
652 		err = dmu_tx_assign(tx, TXG_WAIT);
653 		if (err) {
654 			dmu_tx_abort(tx);
655 			return (err);
656 		}
657 		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
658 		dmu_tx_commit(tx);
659 
660 		length -= chunk_end - chunk_begin;
661 	}
662 	return (0);
663 }
664 
665 int
666 dmu_free_long_range(objset_t *os, uint64_t object,
667     uint64_t offset, uint64_t length)
668 {
669 	dnode_t *dn;
670 	int err;
671 
672 	err = dnode_hold(os, object, FTAG, &dn);
673 	if (err != 0)
674 		return (err);
675 	err = dmu_free_long_range_impl(os, dn, offset, length);
676 
677 	/*
678 	 * It is important to zero out the maxblkid when freeing the entire
679 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
680 	 * will take the fast path, and (b) dnode_reallocate() can verify
681 	 * that the entire file has been freed.
682 	 */
683 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
684 		dn->dn_maxblkid = 0;
685 
686 	dnode_rele(dn, FTAG);
687 	return (err);
688 }
689 
690 int
691 dmu_free_long_object(objset_t *os, uint64_t object)
692 {
693 	dmu_tx_t *tx;
694 	int err;
695 
696 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
697 	if (err != 0)
698 		return (err);
699 
700 	tx = dmu_tx_create(os);
701 	dmu_tx_hold_bonus(tx, object);
702 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
703 	err = dmu_tx_assign(tx, TXG_WAIT);
704 	if (err == 0) {
705 		err = dmu_object_free(os, object, tx);
706 		dmu_tx_commit(tx);
707 	} else {
708 		dmu_tx_abort(tx);
709 	}
710 
711 	return (err);
712 }
713 
714 int
715 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
716     uint64_t size, dmu_tx_t *tx)
717 {
718 	dnode_t *dn;
719 	int err = dnode_hold(os, object, FTAG, &dn);
720 	if (err)
721 		return (err);
722 	ASSERT(offset < UINT64_MAX);
723 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
724 	dnode_free_range(dn, offset, size, tx);
725 	dnode_rele(dn, FTAG);
726 	return (0);
727 }
728 
729 int
730 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
731     void *buf, uint32_t flags)
732 {
733 	dnode_t *dn;
734 	dmu_buf_t **dbp;
735 	int numbufs, err;
736 
737 	err = dnode_hold(os, object, FTAG, &dn);
738 	if (err)
739 		return (err);
740 
741 	/*
742 	 * Deal with odd block sizes, where there can't be data past the first
743 	 * block.  If we ever do the tail block optimization, we will need to
744 	 * handle that here as well.
745 	 */
746 	if (dn->dn_maxblkid == 0) {
747 		int newsz = offset > dn->dn_datablksz ? 0 :
748 		    MIN(size, dn->dn_datablksz - offset);
749 		bzero((char *)buf + newsz, size - newsz);
750 		size = newsz;
751 	}
752 
753 	while (size > 0) {
754 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
755 		int i;
756 
757 		/*
758 		 * NB: we could do this block-at-a-time, but it's nice
759 		 * to be reading in parallel.
760 		 */
761 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
762 		    TRUE, FTAG, &numbufs, &dbp, flags);
763 		if (err)
764 			break;
765 
766 		for (i = 0; i < numbufs; i++) {
767 			int tocpy;
768 			int bufoff;
769 			dmu_buf_t *db = dbp[i];
770 
771 			ASSERT(size > 0);
772 
773 			bufoff = offset - db->db_offset;
774 			tocpy = (int)MIN(db->db_size - bufoff, size);
775 
776 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
777 
778 			offset += tocpy;
779 			size -= tocpy;
780 			buf = (char *)buf + tocpy;
781 		}
782 		dmu_buf_rele_array(dbp, numbufs, FTAG);
783 	}
784 	dnode_rele(dn, FTAG);
785 	return (err);
786 }
787 
788 void
789 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
790     const void *buf, dmu_tx_t *tx)
791 {
792 	dmu_buf_t **dbp;
793 	int numbufs, i;
794 
795 	if (size == 0)
796 		return;
797 
798 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
799 	    FALSE, FTAG, &numbufs, &dbp));
800 
801 	for (i = 0; i < numbufs; i++) {
802 		int tocpy;
803 		int bufoff;
804 		dmu_buf_t *db = dbp[i];
805 
806 		ASSERT(size > 0);
807 
808 		bufoff = offset - db->db_offset;
809 		tocpy = (int)MIN(db->db_size - bufoff, size);
810 
811 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
812 
813 		if (tocpy == db->db_size)
814 			dmu_buf_will_fill(db, tx);
815 		else
816 			dmu_buf_will_dirty(db, tx);
817 
818 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
819 
820 		if (tocpy == db->db_size)
821 			dmu_buf_fill_done(db, tx);
822 
823 		offset += tocpy;
824 		size -= tocpy;
825 		buf = (char *)buf + tocpy;
826 	}
827 	dmu_buf_rele_array(dbp, numbufs, FTAG);
828 }
829 
830 void
831 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
832     dmu_tx_t *tx)
833 {
834 	dmu_buf_t **dbp;
835 	int numbufs, i;
836 
837 	if (size == 0)
838 		return;
839 
840 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
841 	    FALSE, FTAG, &numbufs, &dbp));
842 
843 	for (i = 0; i < numbufs; i++) {
844 		dmu_buf_t *db = dbp[i];
845 
846 		dmu_buf_will_not_fill(db, tx);
847 	}
848 	dmu_buf_rele_array(dbp, numbufs, FTAG);
849 }
850 
851 /*
852  * DMU support for xuio
853  */
854 kstat_t *xuio_ksp = NULL;
855 
856 int
857 dmu_xuio_init(xuio_t *xuio, int nblk)
858 {
859 	dmu_xuio_t *priv;
860 	uio_t *uio = &xuio->xu_uio;
861 
862 	uio->uio_iovcnt = nblk;
863 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
864 
865 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
866 	priv->cnt = nblk;
867 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
868 	priv->iovp = uio->uio_iov;
869 	XUIO_XUZC_PRIV(xuio) = priv;
870 
871 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
872 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
873 	else
874 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
875 
876 	return (0);
877 }
878 
879 void
880 dmu_xuio_fini(xuio_t *xuio)
881 {
882 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
883 	int nblk = priv->cnt;
884 
885 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
886 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
887 	kmem_free(priv, sizeof (dmu_xuio_t));
888 
889 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
890 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
891 	else
892 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
893 }
894 
895 /*
896  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
897  * and increase priv->next by 1.
898  */
899 int
900 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
901 {
902 	struct iovec *iov;
903 	uio_t *uio = &xuio->xu_uio;
904 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
905 	int i = priv->next++;
906 
907 	ASSERT(i < priv->cnt);
908 	ASSERT(off + n <= arc_buf_size(abuf));
909 	iov = uio->uio_iov + i;
910 	iov->iov_base = (char *)abuf->b_data + off;
911 	iov->iov_len = n;
912 	priv->bufs[i] = abuf;
913 	return (0);
914 }
915 
916 int
917 dmu_xuio_cnt(xuio_t *xuio)
918 {
919 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
920 	return (priv->cnt);
921 }
922 
923 arc_buf_t *
924 dmu_xuio_arcbuf(xuio_t *xuio, int i)
925 {
926 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
927 
928 	ASSERT(i < priv->cnt);
929 	return (priv->bufs[i]);
930 }
931 
932 void
933 dmu_xuio_clear(xuio_t *xuio, int i)
934 {
935 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
936 
937 	ASSERT(i < priv->cnt);
938 	priv->bufs[i] = NULL;
939 }
940 
941 static void
942 xuio_stat_init(void)
943 {
944 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
945 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
946 	    KSTAT_FLAG_VIRTUAL);
947 	if (xuio_ksp != NULL) {
948 		xuio_ksp->ks_data = &xuio_stats;
949 		kstat_install(xuio_ksp);
950 	}
951 }
952 
953 static void
954 xuio_stat_fini(void)
955 {
956 	if (xuio_ksp != NULL) {
957 		kstat_delete(xuio_ksp);
958 		xuio_ksp = NULL;
959 	}
960 }
961 
962 void
963 xuio_stat_wbuf_copied()
964 {
965 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
966 }
967 
968 void
969 xuio_stat_wbuf_nocopy()
970 {
971 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
972 }
973 
974 #ifdef _KERNEL
975 int
976 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
977 {
978 	dmu_buf_t **dbp;
979 	int numbufs, i, err;
980 	xuio_t *xuio = NULL;
981 
982 	/*
983 	 * NB: we could do this block-at-a-time, but it's nice
984 	 * to be reading in parallel.
985 	 */
986 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
987 	    &numbufs, &dbp);
988 	if (err)
989 		return (err);
990 
991 	if (uio->uio_extflg == UIO_XUIO)
992 		xuio = (xuio_t *)uio;
993 
994 	for (i = 0; i < numbufs; i++) {
995 		int tocpy;
996 		int bufoff;
997 		dmu_buf_t *db = dbp[i];
998 
999 		ASSERT(size > 0);
1000 
1001 		bufoff = uio->uio_loffset - db->db_offset;
1002 		tocpy = (int)MIN(db->db_size - bufoff, size);
1003 
1004 		if (xuio) {
1005 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1006 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1007 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1008 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1009 			if (!err) {
1010 				uio->uio_resid -= tocpy;
1011 				uio->uio_loffset += tocpy;
1012 			}
1013 
1014 			if (abuf == dbuf_abuf)
1015 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1016 			else
1017 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1018 		} else {
1019 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1020 			    UIO_READ, uio);
1021 		}
1022 		if (err)
1023 			break;
1024 
1025 		size -= tocpy;
1026 	}
1027 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1028 
1029 	return (err);
1030 }
1031 
1032 static int
1033 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1034 {
1035 	dmu_buf_t **dbp;
1036 	int numbufs;
1037 	int err = 0;
1038 	int i;
1039 
1040 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1041 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1042 	if (err)
1043 		return (err);
1044 
1045 	for (i = 0; i < numbufs; i++) {
1046 		int tocpy;
1047 		int bufoff;
1048 		dmu_buf_t *db = dbp[i];
1049 
1050 		ASSERT(size > 0);
1051 
1052 		bufoff = uio->uio_loffset - db->db_offset;
1053 		tocpy = (int)MIN(db->db_size - bufoff, size);
1054 
1055 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1056 
1057 		if (tocpy == db->db_size)
1058 			dmu_buf_will_fill(db, tx);
1059 		else
1060 			dmu_buf_will_dirty(db, tx);
1061 
1062 		/*
1063 		 * XXX uiomove could block forever (eg. nfs-backed
1064 		 * pages).  There needs to be a uiolockdown() function
1065 		 * to lock the pages in memory, so that uiomove won't
1066 		 * block.
1067 		 */
1068 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1069 		    UIO_WRITE, uio);
1070 
1071 		if (tocpy == db->db_size)
1072 			dmu_buf_fill_done(db, tx);
1073 
1074 		if (err)
1075 			break;
1076 
1077 		size -= tocpy;
1078 	}
1079 
1080 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1081 	return (err);
1082 }
1083 
1084 int
1085 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1086     dmu_tx_t *tx)
1087 {
1088 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1089 	dnode_t *dn;
1090 	int err;
1091 
1092 	if (size == 0)
1093 		return (0);
1094 
1095 	DB_DNODE_ENTER(db);
1096 	dn = DB_DNODE(db);
1097 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1098 	DB_DNODE_EXIT(db);
1099 
1100 	return (err);
1101 }
1102 
1103 int
1104 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1105     dmu_tx_t *tx)
1106 {
1107 	dnode_t *dn;
1108 	int err;
1109 
1110 	if (size == 0)
1111 		return (0);
1112 
1113 	err = dnode_hold(os, object, FTAG, &dn);
1114 	if (err)
1115 		return (err);
1116 
1117 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1118 
1119 	dnode_rele(dn, FTAG);
1120 
1121 	return (err);
1122 }
1123 
1124 int
1125 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1126     page_t *pp, dmu_tx_t *tx)
1127 {
1128 	dmu_buf_t **dbp;
1129 	int numbufs, i;
1130 	int err;
1131 
1132 	if (size == 0)
1133 		return (0);
1134 
1135 	err = dmu_buf_hold_array(os, object, offset, size,
1136 	    FALSE, FTAG, &numbufs, &dbp);
1137 	if (err)
1138 		return (err);
1139 
1140 	for (i = 0; i < numbufs; i++) {
1141 		int tocpy, copied, thiscpy;
1142 		int bufoff;
1143 		dmu_buf_t *db = dbp[i];
1144 		caddr_t va;
1145 
1146 		ASSERT(size > 0);
1147 		ASSERT3U(db->db_size, >=, PAGESIZE);
1148 
1149 		bufoff = offset - db->db_offset;
1150 		tocpy = (int)MIN(db->db_size - bufoff, size);
1151 
1152 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1153 
1154 		if (tocpy == db->db_size)
1155 			dmu_buf_will_fill(db, tx);
1156 		else
1157 			dmu_buf_will_dirty(db, tx);
1158 
1159 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1160 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1161 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1162 			va = zfs_map_page(pp, S_READ);
1163 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1164 			zfs_unmap_page(pp, va);
1165 			pp = pp->p_next;
1166 			bufoff += PAGESIZE;
1167 		}
1168 
1169 		if (tocpy == db->db_size)
1170 			dmu_buf_fill_done(db, tx);
1171 
1172 		offset += tocpy;
1173 		size -= tocpy;
1174 	}
1175 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1176 	return (err);
1177 }
1178 #endif
1179 
1180 /*
1181  * Allocate a loaned anonymous arc buffer.
1182  */
1183 arc_buf_t *
1184 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1185 {
1186 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1187 
1188 	return (arc_loan_buf(db->db_objset->os_spa, size));
1189 }
1190 
1191 /*
1192  * Free a loaned arc buffer.
1193  */
1194 void
1195 dmu_return_arcbuf(arc_buf_t *buf)
1196 {
1197 	arc_return_buf(buf, FTAG);
1198 	VERIFY(arc_buf_remove_ref(buf, FTAG));
1199 }
1200 
1201 /*
1202  * When possible directly assign passed loaned arc buffer to a dbuf.
1203  * If this is not possible copy the contents of passed arc buf via
1204  * dmu_write().
1205  */
1206 void
1207 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1208     dmu_tx_t *tx)
1209 {
1210 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1211 	dnode_t *dn;
1212 	dmu_buf_impl_t *db;
1213 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1214 	uint64_t blkid;
1215 
1216 	DB_DNODE_ENTER(dbuf);
1217 	dn = DB_DNODE(dbuf);
1218 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1219 	blkid = dbuf_whichblock(dn, offset);
1220 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1221 	rw_exit(&dn->dn_struct_rwlock);
1222 	DB_DNODE_EXIT(dbuf);
1223 
1224 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1225 		dbuf_assign_arcbuf(db, buf, tx);
1226 		dbuf_rele(db, FTAG);
1227 	} else {
1228 		objset_t *os;
1229 		uint64_t object;
1230 
1231 		DB_DNODE_ENTER(dbuf);
1232 		dn = DB_DNODE(dbuf);
1233 		os = dn->dn_objset;
1234 		object = dn->dn_object;
1235 		DB_DNODE_EXIT(dbuf);
1236 
1237 		dbuf_rele(db, FTAG);
1238 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1239 		dmu_return_arcbuf(buf);
1240 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1241 	}
1242 }
1243 
1244 typedef struct {
1245 	dbuf_dirty_record_t	*dsa_dr;
1246 	dmu_sync_cb_t		*dsa_done;
1247 	zgd_t			*dsa_zgd;
1248 	dmu_tx_t		*dsa_tx;
1249 } dmu_sync_arg_t;
1250 
1251 /* ARGSUSED */
1252 static void
1253 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1254 {
1255 	dmu_sync_arg_t *dsa = varg;
1256 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1257 	blkptr_t *bp = zio->io_bp;
1258 
1259 	if (zio->io_error == 0) {
1260 		if (BP_IS_HOLE(bp)) {
1261 			/*
1262 			 * A block of zeros may compress to a hole, but the
1263 			 * block size still needs to be known for replay.
1264 			 */
1265 			BP_SET_LSIZE(bp, db->db_size);
1266 		} else {
1267 			ASSERT(BP_GET_LEVEL(bp) == 0);
1268 			bp->blk_fill = 1;
1269 		}
1270 	}
1271 }
1272 
1273 static void
1274 dmu_sync_late_arrival_ready(zio_t *zio)
1275 {
1276 	dmu_sync_ready(zio, NULL, zio->io_private);
1277 }
1278 
1279 /* ARGSUSED */
1280 static void
1281 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1282 {
1283 	dmu_sync_arg_t *dsa = varg;
1284 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1285 	dmu_buf_impl_t *db = dr->dr_dbuf;
1286 
1287 	mutex_enter(&db->db_mtx);
1288 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1289 	if (zio->io_error == 0) {
1290 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1291 		if (dr->dt.dl.dr_nopwrite) {
1292 			blkptr_t *bp = zio->io_bp;
1293 			blkptr_t *bp_orig = &zio->io_bp_orig;
1294 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1295 
1296 			ASSERT(BP_EQUAL(bp, bp_orig));
1297 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1298 			ASSERT(zio_checksum_table[chksum].ci_dedup);
1299 		}
1300 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1301 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1302 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1303 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1304 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1305 	} else {
1306 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1307 	}
1308 	cv_broadcast(&db->db_changed);
1309 	mutex_exit(&db->db_mtx);
1310 
1311 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1312 
1313 	kmem_free(dsa, sizeof (*dsa));
1314 }
1315 
1316 static void
1317 dmu_sync_late_arrival_done(zio_t *zio)
1318 {
1319 	blkptr_t *bp = zio->io_bp;
1320 	dmu_sync_arg_t *dsa = zio->io_private;
1321 	blkptr_t *bp_orig = &zio->io_bp_orig;
1322 
1323 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1324 		/*
1325 		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1326 		 * then there is nothing to do here. Otherwise, free the
1327 		 * newly allocated block in this txg.
1328 		 */
1329 		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1330 			ASSERT(BP_EQUAL(bp, bp_orig));
1331 		} else {
1332 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1333 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1334 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1335 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1336 		}
1337 	}
1338 
1339 	dmu_tx_commit(dsa->dsa_tx);
1340 
1341 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1342 
1343 	kmem_free(dsa, sizeof (*dsa));
1344 }
1345 
1346 static int
1347 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1348     zio_prop_t *zp, zbookmark_t *zb)
1349 {
1350 	dmu_sync_arg_t *dsa;
1351 	dmu_tx_t *tx;
1352 
1353 	tx = dmu_tx_create(os);
1354 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1355 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1356 		dmu_tx_abort(tx);
1357 		/* Make zl_get_data do txg_waited_synced() */
1358 		return (SET_ERROR(EIO));
1359 	}
1360 
1361 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1362 	dsa->dsa_dr = NULL;
1363 	dsa->dsa_done = done;
1364 	dsa->dsa_zgd = zgd;
1365 	dsa->dsa_tx = tx;
1366 
1367 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1368 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1369 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1370 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1371 
1372 	return (0);
1373 }
1374 
1375 /*
1376  * Intent log support: sync the block associated with db to disk.
1377  * N.B. and XXX: the caller is responsible for making sure that the
1378  * data isn't changing while dmu_sync() is writing it.
1379  *
1380  * Return values:
1381  *
1382  *	EEXIST: this txg has already been synced, so there's nothing to do.
1383  *		The caller should not log the write.
1384  *
1385  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1386  *		The caller should not log the write.
1387  *
1388  *	EALREADY: this block is already in the process of being synced.
1389  *		The caller should track its progress (somehow).
1390  *
1391  *	EIO: could not do the I/O.
1392  *		The caller should do a txg_wait_synced().
1393  *
1394  *	0: the I/O has been initiated.
1395  *		The caller should log this blkptr in the done callback.
1396  *		It is possible that the I/O will fail, in which case
1397  *		the error will be reported to the done callback and
1398  *		propagated to pio from zio_done().
1399  */
1400 int
1401 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1402 {
1403 	blkptr_t *bp = zgd->zgd_bp;
1404 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1405 	objset_t *os = db->db_objset;
1406 	dsl_dataset_t *ds = os->os_dsl_dataset;
1407 	dbuf_dirty_record_t *dr;
1408 	dmu_sync_arg_t *dsa;
1409 	zbookmark_t zb;
1410 	zio_prop_t zp;
1411 	dnode_t *dn;
1412 
1413 	ASSERT(pio != NULL);
1414 	ASSERT(txg != 0);
1415 
1416 	SET_BOOKMARK(&zb, ds->ds_object,
1417 	    db->db.db_object, db->db_level, db->db_blkid);
1418 
1419 	DB_DNODE_ENTER(db);
1420 	dn = DB_DNODE(db);
1421 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1422 	DB_DNODE_EXIT(db);
1423 
1424 	/*
1425 	 * If we're frozen (running ziltest), we always need to generate a bp.
1426 	 */
1427 	if (txg > spa_freeze_txg(os->os_spa))
1428 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1429 
1430 	/*
1431 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1432 	 * and us.  If we determine that this txg is not yet syncing,
1433 	 * but it begins to sync a moment later, that's OK because the
1434 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1435 	 */
1436 	mutex_enter(&db->db_mtx);
1437 
1438 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1439 		/*
1440 		 * This txg has already synced.  There's nothing to do.
1441 		 */
1442 		mutex_exit(&db->db_mtx);
1443 		return (SET_ERROR(EEXIST));
1444 	}
1445 
1446 	if (txg <= spa_syncing_txg(os->os_spa)) {
1447 		/*
1448 		 * This txg is currently syncing, so we can't mess with
1449 		 * the dirty record anymore; just write a new log block.
1450 		 */
1451 		mutex_exit(&db->db_mtx);
1452 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1453 	}
1454 
1455 	dr = db->db_last_dirty;
1456 	while (dr && dr->dr_txg != txg)
1457 		dr = dr->dr_next;
1458 
1459 	if (dr == NULL) {
1460 		/*
1461 		 * There's no dr for this dbuf, so it must have been freed.
1462 		 * There's no need to log writes to freed blocks, so we're done.
1463 		 */
1464 		mutex_exit(&db->db_mtx);
1465 		return (SET_ERROR(ENOENT));
1466 	}
1467 
1468 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1469 
1470 	/*
1471 	 * Assume the on-disk data is X, the current syncing data is Y,
1472 	 * and the current in-memory data is Z (currently in dmu_sync).
1473 	 * X and Z are identical but Y is has been modified. Normally,
1474 	 * when X and Z are the same we will perform a nopwrite but if Y
1475 	 * is different we must disable nopwrite since the resulting write
1476 	 * of Y to disk can free the block containing X. If we allowed a
1477 	 * nopwrite to occur the block pointing to Z would reference a freed
1478 	 * block. Since this is a rare case we simplify this by disabling
1479 	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1480 	 * a previous transaction.
1481 	 */
1482 	if (dr->dr_next)
1483 		zp.zp_nopwrite = B_FALSE;
1484 
1485 	ASSERT(dr->dr_txg == txg);
1486 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1487 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1488 		/*
1489 		 * We have already issued a sync write for this buffer,
1490 		 * or this buffer has already been synced.  It could not
1491 		 * have been dirtied since, or we would have cleared the state.
1492 		 */
1493 		mutex_exit(&db->db_mtx);
1494 		return (SET_ERROR(EALREADY));
1495 	}
1496 
1497 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1498 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1499 	mutex_exit(&db->db_mtx);
1500 
1501 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1502 	dsa->dsa_dr = dr;
1503 	dsa->dsa_done = done;
1504 	dsa->dsa_zgd = zgd;
1505 	dsa->dsa_tx = NULL;
1506 
1507 	zio_nowait(arc_write(pio, os->os_spa, txg,
1508 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1509 	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1510 	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1511 	    ZIO_FLAG_CANFAIL, &zb));
1512 
1513 	return (0);
1514 }
1515 
1516 int
1517 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1518 	dmu_tx_t *tx)
1519 {
1520 	dnode_t *dn;
1521 	int err;
1522 
1523 	err = dnode_hold(os, object, FTAG, &dn);
1524 	if (err)
1525 		return (err);
1526 	err = dnode_set_blksz(dn, size, ibs, tx);
1527 	dnode_rele(dn, FTAG);
1528 	return (err);
1529 }
1530 
1531 void
1532 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1533 	dmu_tx_t *tx)
1534 {
1535 	dnode_t *dn;
1536 
1537 	/* XXX assumes dnode_hold will not get an i/o error */
1538 	(void) dnode_hold(os, object, FTAG, &dn);
1539 	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1540 	dn->dn_checksum = checksum;
1541 	dnode_setdirty(dn, tx);
1542 	dnode_rele(dn, FTAG);
1543 }
1544 
1545 void
1546 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1547 	dmu_tx_t *tx)
1548 {
1549 	dnode_t *dn;
1550 
1551 	/* XXX assumes dnode_hold will not get an i/o error */
1552 	(void) dnode_hold(os, object, FTAG, &dn);
1553 	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1554 	dn->dn_compress = compress;
1555 	dnode_setdirty(dn, tx);
1556 	dnode_rele(dn, FTAG);
1557 }
1558 
1559 int zfs_mdcomp_disable = 0;
1560 
1561 void
1562 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1563 {
1564 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1565 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1566 	    (wp & WP_SPILL));
1567 	enum zio_checksum checksum = os->os_checksum;
1568 	enum zio_compress compress = os->os_compress;
1569 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1570 	boolean_t dedup = B_FALSE;
1571 	boolean_t nopwrite = B_FALSE;
1572 	boolean_t dedup_verify = os->os_dedup_verify;
1573 	int copies = os->os_copies;
1574 
1575 	/*
1576 	 * We maintain different write policies for each of the following
1577 	 * types of data:
1578 	 *	 1. metadata
1579 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1580 	 *	 3. all other level 0 blocks
1581 	 */
1582 	if (ismd) {
1583 		/*
1584 		 * XXX -- we should design a compression algorithm
1585 		 * that specializes in arrays of bps.
1586 		 */
1587 		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1588 		    ZIO_COMPRESS_LZJB;
1589 
1590 		/*
1591 		 * Metadata always gets checksummed.  If the data
1592 		 * checksum is multi-bit correctable, and it's not a
1593 		 * ZBT-style checksum, then it's suitable for metadata
1594 		 * as well.  Otherwise, the metadata checksum defaults
1595 		 * to fletcher4.
1596 		 */
1597 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1598 		    zio_checksum_table[checksum].ci_eck)
1599 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1600 	} else if (wp & WP_NOFILL) {
1601 		ASSERT(level == 0);
1602 
1603 		/*
1604 		 * If we're writing preallocated blocks, we aren't actually
1605 		 * writing them so don't set any policy properties.  These
1606 		 * blocks are currently only used by an external subsystem
1607 		 * outside of zfs (i.e. dump) and not written by the zio
1608 		 * pipeline.
1609 		 */
1610 		compress = ZIO_COMPRESS_OFF;
1611 		checksum = ZIO_CHECKSUM_NOPARITY;
1612 	} else {
1613 		compress = zio_compress_select(dn->dn_compress, compress);
1614 
1615 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1616 		    zio_checksum_select(dn->dn_checksum, checksum) :
1617 		    dedup_checksum;
1618 
1619 		/*
1620 		 * Determine dedup setting.  If we are in dmu_sync(),
1621 		 * we won't actually dedup now because that's all
1622 		 * done in syncing context; but we do want to use the
1623 		 * dedup checkum.  If the checksum is not strong
1624 		 * enough to ensure unique signatures, force
1625 		 * dedup_verify.
1626 		 */
1627 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1628 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1629 			if (!zio_checksum_table[checksum].ci_dedup)
1630 				dedup_verify = B_TRUE;
1631 		}
1632 
1633 		/*
1634 		 * Enable nopwrite if we have a cryptographically secure
1635 		 * checksum that has no known collisions (i.e. SHA-256)
1636 		 * and compression is enabled.  We don't enable nopwrite if
1637 		 * dedup is enabled as the two features are mutually exclusive.
1638 		 */
1639 		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1640 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1641 	}
1642 
1643 	zp->zp_checksum = checksum;
1644 	zp->zp_compress = compress;
1645 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1646 	zp->zp_level = level;
1647 	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1648 	zp->zp_dedup = dedup;
1649 	zp->zp_dedup_verify = dedup && dedup_verify;
1650 	zp->zp_nopwrite = nopwrite;
1651 }
1652 
1653 int
1654 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1655 {
1656 	dnode_t *dn;
1657 	int i, err;
1658 
1659 	err = dnode_hold(os, object, FTAG, &dn);
1660 	if (err)
1661 		return (err);
1662 	/*
1663 	 * Sync any current changes before
1664 	 * we go trundling through the block pointers.
1665 	 */
1666 	for (i = 0; i < TXG_SIZE; i++) {
1667 		if (list_link_active(&dn->dn_dirty_link[i]))
1668 			break;
1669 	}
1670 	if (i != TXG_SIZE) {
1671 		dnode_rele(dn, FTAG);
1672 		txg_wait_synced(dmu_objset_pool(os), 0);
1673 		err = dnode_hold(os, object, FTAG, &dn);
1674 		if (err)
1675 			return (err);
1676 	}
1677 
1678 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1679 	dnode_rele(dn, FTAG);
1680 
1681 	return (err);
1682 }
1683 
1684 void
1685 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1686 {
1687 	dnode_phys_t *dnp;
1688 
1689 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1690 	mutex_enter(&dn->dn_mtx);
1691 
1692 	dnp = dn->dn_phys;
1693 
1694 	doi->doi_data_block_size = dn->dn_datablksz;
1695 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1696 	    1ULL << dn->dn_indblkshift : 0;
1697 	doi->doi_type = dn->dn_type;
1698 	doi->doi_bonus_type = dn->dn_bonustype;
1699 	doi->doi_bonus_size = dn->dn_bonuslen;
1700 	doi->doi_indirection = dn->dn_nlevels;
1701 	doi->doi_checksum = dn->dn_checksum;
1702 	doi->doi_compress = dn->dn_compress;
1703 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1704 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1705 	doi->doi_fill_count = 0;
1706 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1707 		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1708 
1709 	mutex_exit(&dn->dn_mtx);
1710 	rw_exit(&dn->dn_struct_rwlock);
1711 }
1712 
1713 /*
1714  * Get information on a DMU object.
1715  * If doi is NULL, just indicates whether the object exists.
1716  */
1717 int
1718 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1719 {
1720 	dnode_t *dn;
1721 	int err = dnode_hold(os, object, FTAG, &dn);
1722 
1723 	if (err)
1724 		return (err);
1725 
1726 	if (doi != NULL)
1727 		dmu_object_info_from_dnode(dn, doi);
1728 
1729 	dnode_rele(dn, FTAG);
1730 	return (0);
1731 }
1732 
1733 /*
1734  * As above, but faster; can be used when you have a held dbuf in hand.
1735  */
1736 void
1737 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1738 {
1739 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1740 
1741 	DB_DNODE_ENTER(db);
1742 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1743 	DB_DNODE_EXIT(db);
1744 }
1745 
1746 /*
1747  * Faster still when you only care about the size.
1748  * This is specifically optimized for zfs_getattr().
1749  */
1750 void
1751 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1752     u_longlong_t *nblk512)
1753 {
1754 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1755 	dnode_t *dn;
1756 
1757 	DB_DNODE_ENTER(db);
1758 	dn = DB_DNODE(db);
1759 
1760 	*blksize = dn->dn_datablksz;
1761 	/* add 1 for dnode space */
1762 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1763 	    SPA_MINBLOCKSHIFT) + 1;
1764 	DB_DNODE_EXIT(db);
1765 }
1766 
1767 void
1768 byteswap_uint64_array(void *vbuf, size_t size)
1769 {
1770 	uint64_t *buf = vbuf;
1771 	size_t count = size >> 3;
1772 	int i;
1773 
1774 	ASSERT((size & 7) == 0);
1775 
1776 	for (i = 0; i < count; i++)
1777 		buf[i] = BSWAP_64(buf[i]);
1778 }
1779 
1780 void
1781 byteswap_uint32_array(void *vbuf, size_t size)
1782 {
1783 	uint32_t *buf = vbuf;
1784 	size_t count = size >> 2;
1785 	int i;
1786 
1787 	ASSERT((size & 3) == 0);
1788 
1789 	for (i = 0; i < count; i++)
1790 		buf[i] = BSWAP_32(buf[i]);
1791 }
1792 
1793 void
1794 byteswap_uint16_array(void *vbuf, size_t size)
1795 {
1796 	uint16_t *buf = vbuf;
1797 	size_t count = size >> 1;
1798 	int i;
1799 
1800 	ASSERT((size & 1) == 0);
1801 
1802 	for (i = 0; i < count; i++)
1803 		buf[i] = BSWAP_16(buf[i]);
1804 }
1805 
1806 /* ARGSUSED */
1807 void
1808 byteswap_uint8_array(void *vbuf, size_t size)
1809 {
1810 }
1811 
1812 void
1813 dmu_init(void)
1814 {
1815 	zfs_dbgmsg_init();
1816 	sa_cache_init();
1817 	xuio_stat_init();
1818 	dmu_objset_init();
1819 	dnode_init();
1820 	dbuf_init();
1821 	zfetch_init();
1822 	l2arc_init();
1823 	arc_init();
1824 }
1825 
1826 void
1827 dmu_fini(void)
1828 {
1829 	arc_fini(); /* arc depends on l2arc, so arc must go first */
1830 	l2arc_fini();
1831 	zfetch_fini();
1832 	dbuf_fini();
1833 	dnode_fini();
1834 	dmu_objset_fini();
1835 	xuio_stat_fini();
1836 	sa_cache_fini();
1837 	zfs_dbgmsg_fini();
1838 }
1839