1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dbuf.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/spa.h> 37 #include <sys/zio.h> 38 #include <sys/dmu_zfetch.h> 39 40 static void dbuf_destroy(dmu_buf_impl_t *db); 41 static int dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 42 static arc_done_func_t dbuf_write_done; 43 44 /* 45 * Global data structures and functions for the dbuf cache. 46 */ 47 taskq_t *dbuf_tq; 48 static kmem_cache_t *dbuf_cache; 49 50 /* ARGSUSED */ 51 static int 52 dbuf_cons(void *vdb, void *unused, int kmflag) 53 { 54 dmu_buf_impl_t *db = vdb; 55 bzero(db, sizeof (dmu_buf_impl_t)); 56 57 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 58 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 59 refcount_create(&db->db_holds); 60 return (0); 61 } 62 63 /* ARGSUSED */ 64 static void 65 dbuf_dest(void *vdb, void *unused) 66 { 67 dmu_buf_impl_t *db = vdb; 68 mutex_destroy(&db->db_mtx); 69 cv_destroy(&db->db_changed); 70 refcount_destroy(&db->db_holds); 71 } 72 73 /* 74 * dbuf hash table routines 75 */ 76 static dbuf_hash_table_t dbuf_hash_table; 77 78 static uint64_t dbuf_hash_count; 79 80 static uint64_t 81 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 82 { 83 uintptr_t osv = (uintptr_t)os; 84 uint64_t crc = -1ULL; 85 86 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 87 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 88 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 89 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 90 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 91 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 92 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 93 94 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 95 96 return (crc); 97 } 98 99 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 100 101 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 102 ((dbuf)->db.db_object == (obj) && \ 103 (dbuf)->db_objset == (os) && \ 104 (dbuf)->db_level == (level) && \ 105 (dbuf)->db_blkid == (blkid)) 106 107 dmu_buf_impl_t * 108 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) 109 { 110 dbuf_hash_table_t *h = &dbuf_hash_table; 111 objset_impl_t *os = dn->dn_objset; 112 uint64_t obj = dn->dn_object; 113 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 114 uint64_t idx = hv & h->hash_table_mask; 115 dmu_buf_impl_t *db; 116 117 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 118 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 119 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 120 mutex_enter(&db->db_mtx); 121 if (db->db_state != DB_EVICTING) { 122 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 123 return (db); 124 } 125 mutex_exit(&db->db_mtx); 126 } 127 } 128 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 129 return (NULL); 130 } 131 132 /* 133 * Insert an entry into the hash table. If there is already an element 134 * equal to elem in the hash table, then the already existing element 135 * will be returned and the new element will not be inserted. 136 * Otherwise returns NULL. 137 */ 138 static dmu_buf_impl_t * 139 dbuf_hash_insert(dmu_buf_impl_t *db) 140 { 141 dbuf_hash_table_t *h = &dbuf_hash_table; 142 objset_impl_t *os = db->db_objset; 143 uint64_t obj = db->db.db_object; 144 int level = db->db_level; 145 uint64_t blkid = db->db_blkid; 146 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 147 uint64_t idx = hv & h->hash_table_mask; 148 dmu_buf_impl_t *dbf; 149 150 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 151 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 152 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 153 mutex_enter(&dbf->db_mtx); 154 if (dbf->db_state != DB_EVICTING) { 155 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 156 return (dbf); 157 } 158 mutex_exit(&dbf->db_mtx); 159 } 160 } 161 162 mutex_enter(&db->db_mtx); 163 db->db_hash_next = h->hash_table[idx]; 164 h->hash_table[idx] = db; 165 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 166 atomic_add_64(&dbuf_hash_count, 1); 167 168 return (NULL); 169 } 170 171 /* 172 * Remove an entry from the hash table. This operation will 173 * fail if there are any existing holds on the db. 174 */ 175 static void 176 dbuf_hash_remove(dmu_buf_impl_t *db) 177 { 178 dbuf_hash_table_t *h = &dbuf_hash_table; 179 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 180 db->db_level, db->db_blkid); 181 uint64_t idx = hv & h->hash_table_mask; 182 dmu_buf_impl_t *dbf, **dbp; 183 184 /* 185 * We musn't hold db_mtx to maintin lock ordering: 186 * DBUF_HASH_MUTEX > db_mtx. 187 */ 188 ASSERT(refcount_is_zero(&db->db_holds)); 189 ASSERT(db->db_state == DB_EVICTING); 190 ASSERT(!MUTEX_HELD(&db->db_mtx)); 191 192 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 193 dbp = &h->hash_table[idx]; 194 while ((dbf = *dbp) != db) { 195 dbp = &dbf->db_hash_next; 196 ASSERT(dbf != NULL); 197 } 198 *dbp = db->db_hash_next; 199 db->db_hash_next = NULL; 200 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 201 atomic_add_64(&dbuf_hash_count, -1); 202 } 203 204 static arc_evict_func_t dbuf_do_evict; 205 206 static void 207 dbuf_evict_user(dmu_buf_impl_t *db) 208 { 209 ASSERT(MUTEX_HELD(&db->db_mtx)); 210 211 if (db->db_level != 0 || db->db_d.db_evict_func == NULL) 212 return; 213 214 if (db->db_d.db_user_data_ptr_ptr) 215 *db->db_d.db_user_data_ptr_ptr = db->db.db_data; 216 db->db_d.db_evict_func(&db->db, db->db_d.db_user_ptr); 217 db->db_d.db_user_ptr = NULL; 218 db->db_d.db_user_data_ptr_ptr = NULL; 219 db->db_d.db_evict_func = NULL; 220 } 221 222 void 223 dbuf_evict(dmu_buf_impl_t *db) 224 { 225 int i; 226 227 ASSERT(MUTEX_HELD(&db->db_mtx)); 228 ASSERT(db->db_buf == NULL); 229 230 #ifdef ZFS_DEBUG 231 for (i = 0; i < TXG_SIZE; i++) { 232 ASSERT(!list_link_active(&db->db_dirty_node[i])); 233 ASSERT(db->db_level != 0 || db->db_d.db_data_old[i] == NULL); 234 } 235 #endif 236 dbuf_clear(db); 237 dbuf_destroy(db); 238 } 239 240 void 241 dbuf_init(void) 242 { 243 uint64_t hsize = 1ULL << 16; 244 dbuf_hash_table_t *h = &dbuf_hash_table; 245 int i; 246 247 /* 248 * The hash table is big enough to fill all of physical memory 249 * with an average 4K block size. The table will take up 250 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 251 */ 252 while (hsize * 4096 < physmem * PAGESIZE) 253 hsize <<= 1; 254 255 retry: 256 h->hash_table_mask = hsize - 1; 257 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 258 if (h->hash_table == NULL) { 259 /* XXX - we should really return an error instead of assert */ 260 ASSERT(hsize > (1ULL << 10)); 261 hsize >>= 1; 262 goto retry; 263 } 264 265 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 266 sizeof (dmu_buf_impl_t), 267 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 268 dbuf_tq = taskq_create("dbuf_tq", 8, maxclsyspri, 50, INT_MAX, 269 TASKQ_PREPOPULATE); 270 271 for (i = 0; i < DBUF_MUTEXES; i++) 272 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 273 } 274 275 void 276 dbuf_fini(void) 277 { 278 dbuf_hash_table_t *h = &dbuf_hash_table; 279 int i; 280 281 taskq_destroy(dbuf_tq); 282 dbuf_tq = NULL; 283 284 for (i = 0; i < DBUF_MUTEXES; i++) 285 mutex_destroy(&h->hash_mutexes[i]); 286 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 287 kmem_cache_destroy(dbuf_cache); 288 } 289 290 /* 291 * Other stuff. 292 */ 293 294 #ifdef ZFS_DEBUG 295 static void 296 dbuf_verify(dmu_buf_impl_t *db) 297 { 298 int i; 299 dnode_t *dn = db->db_dnode; 300 301 ASSERT(MUTEX_HELD(&db->db_mtx)); 302 303 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 304 return; 305 306 ASSERT(db->db_objset != NULL); 307 if (dn == NULL) { 308 ASSERT(db->db_parent == NULL); 309 ASSERT(db->db_blkptr == NULL); 310 } else { 311 ASSERT3U(db->db.db_object, ==, dn->dn_object); 312 ASSERT3P(db->db_objset, ==, dn->dn_objset); 313 ASSERT3U(db->db_level, <, dn->dn_nlevels); 314 ASSERT(db->db_blkid == DB_BONUS_BLKID || 315 list_head(&dn->dn_dbufs)); 316 } 317 if (db->db_blkid == DB_BONUS_BLKID) { 318 ASSERT(dn != NULL); 319 ASSERT3U(db->db.db_size, ==, dn->dn_bonuslen); 320 ASSERT3U(db->db.db_offset, ==, DB_BONUS_BLKID); 321 } else { 322 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 323 } 324 325 if (db->db_level == 0) { 326 /* we can be momentarily larger in dnode_set_blksz() */ 327 if (db->db_blkid != DB_BONUS_BLKID && dn) { 328 ASSERT3U(db->db.db_size, >=, dn->dn_datablksz); 329 } 330 if (db->db.db_object == DMU_META_DNODE_OBJECT) { 331 for (i = 0; i < TXG_SIZE; i++) { 332 /* 333 * it should only be modified in syncing 334 * context, so make sure we only have 335 * one copy of the data. 336 */ 337 ASSERT(db->db_d.db_data_old[i] == NULL || 338 db->db_d.db_data_old[i] == db->db_buf); 339 } 340 } 341 } 342 343 /* verify db->db_blkptr */ 344 if (db->db_blkptr) { 345 if (db->db_parent == dn->dn_dbuf) { 346 /* db is pointed to by the dnode */ 347 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 348 if (db->db.db_object == DMU_META_DNODE_OBJECT) 349 ASSERT(db->db_parent == NULL); 350 else 351 ASSERT(db->db_parent != NULL); 352 ASSERT3P(db->db_blkptr, ==, 353 &dn->dn_phys->dn_blkptr[db->db_blkid]); 354 } else { 355 /* db is pointed to by an indirect block */ 356 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 357 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 358 ASSERT3U(db->db_parent->db.db_object, ==, 359 db->db.db_object); 360 /* 361 * dnode_grow_indblksz() can make this fail if we don't 362 * have the struct_rwlock. XXX indblksz no longer 363 * grows. safe to do this now? 364 */ 365 if (RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)) { 366 ASSERT3P(db->db_blkptr, ==, 367 ((blkptr_t *)db->db_parent->db.db_data + 368 db->db_blkid % epb)); 369 } 370 } 371 } 372 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 373 db->db.db_data && db->db_blkid != DB_BONUS_BLKID && 374 db->db_state != DB_FILL && !dn->dn_free_txg) { 375 /* 376 * If the blkptr isn't set but they have nonzero data, 377 * it had better be dirty, otherwise we'll lose that 378 * data when we evict this buffer. 379 */ 380 if (db->db_dirtycnt == 0) { 381 uint64_t *buf = db->db.db_data; 382 int i; 383 384 for (i = 0; i < db->db.db_size >> 3; i++) { 385 ASSERT(buf[i] == 0); 386 } 387 } 388 } 389 } 390 #endif 391 392 static void 393 dbuf_update_data(dmu_buf_impl_t *db) 394 { 395 ASSERT(MUTEX_HELD(&db->db_mtx)); 396 if (db->db_level == 0 && db->db_d.db_user_data_ptr_ptr) { 397 ASSERT(!refcount_is_zero(&db->db_holds)); 398 *db->db_d.db_user_data_ptr_ptr = db->db.db_data; 399 } 400 } 401 402 static void 403 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 404 { 405 ASSERT(MUTEX_HELD(&db->db_mtx)); 406 ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf)); 407 db->db_buf = buf; 408 if (buf != NULL) { 409 ASSERT(buf->b_data != NULL); 410 db->db.db_data = buf->b_data; 411 if (!arc_released(buf)) 412 arc_set_callback(buf, dbuf_do_evict, db); 413 dbuf_update_data(db); 414 } else { 415 dbuf_evict_user(db); 416 db->db.db_data = NULL; 417 db->db_state = DB_UNCACHED; 418 } 419 } 420 421 uint64_t 422 dbuf_whichblock(dnode_t *dn, uint64_t offset) 423 { 424 if (dn->dn_datablkshift) { 425 return (offset >> dn->dn_datablkshift); 426 } else { 427 ASSERT3U(offset, <, dn->dn_datablksz); 428 return (0); 429 } 430 } 431 432 static void 433 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 434 { 435 dmu_buf_impl_t *db = vdb; 436 437 mutex_enter(&db->db_mtx); 438 ASSERT3U(db->db_state, ==, DB_READ); 439 /* 440 * All reads are synchronous, so we must have a hold on the dbuf 441 */ 442 ASSERT(refcount_count(&db->db_holds) > 0); 443 ASSERT(db->db_buf == NULL); 444 ASSERT(db->db.db_data == NULL); 445 if (db->db_level == 0 && db->db_d.db_freed_in_flight) { 446 /* we were freed in flight; disregard any error */ 447 arc_release(buf, db); 448 bzero(buf->b_data, db->db.db_size); 449 db->db_d.db_freed_in_flight = FALSE; 450 dbuf_set_data(db, buf); 451 db->db_state = DB_CACHED; 452 } else if (zio == NULL || zio->io_error == 0) { 453 dbuf_set_data(db, buf); 454 db->db_state = DB_CACHED; 455 } else { 456 ASSERT(db->db_blkid != DB_BONUS_BLKID); 457 ASSERT3P(db->db_buf, ==, NULL); 458 VERIFY(arc_buf_remove_ref(buf, db) == 1); 459 db->db_state = DB_UNCACHED; 460 } 461 cv_broadcast(&db->db_changed); 462 mutex_exit(&db->db_mtx); 463 dbuf_rele(db, NULL); 464 } 465 466 static void 467 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 468 { 469 blkptr_t *bp; 470 zbookmark_t zb; 471 472 ASSERT(!refcount_is_zero(&db->db_holds)); 473 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 474 ASSERT(RW_LOCK_HELD(&db->db_dnode->dn_struct_rwlock)); 475 ASSERT(MUTEX_HELD(&db->db_mtx)); 476 ASSERT(db->db_state == DB_UNCACHED); 477 ASSERT(db->db_buf == NULL); 478 479 if (db->db_blkid == DB_BONUS_BLKID) { 480 ASSERT3U(db->db_dnode->dn_bonuslen, ==, db->db.db_size); 481 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 482 if (db->db.db_size < DN_MAX_BONUSLEN) 483 bzero(db->db.db_data, DN_MAX_BONUSLEN); 484 bcopy(DN_BONUS(db->db_dnode->dn_phys), db->db.db_data, 485 db->db.db_size); 486 dbuf_update_data(db); 487 db->db_state = DB_CACHED; 488 mutex_exit(&db->db_mtx); 489 return; 490 } 491 492 if (db->db_level == 0 && dnode_block_freed(db->db_dnode, db->db_blkid)) 493 bp = NULL; 494 else 495 bp = db->db_blkptr; 496 497 if (bp == NULL) 498 dprintf_dbuf(db, "blkptr: %s\n", "NULL"); 499 else 500 dprintf_dbuf_bp(db, bp, "%s", "blkptr:"); 501 502 if (bp == NULL || BP_IS_HOLE(bp)) { 503 ASSERT(bp == NULL || BP_IS_HOLE(bp)); 504 dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa, 505 db->db.db_size, db)); 506 bzero(db->db.db_data, db->db.db_size); 507 db->db_state = DB_CACHED; 508 mutex_exit(&db->db_mtx); 509 return; 510 } 511 512 db->db_state = DB_READ; 513 mutex_exit(&db->db_mtx); 514 515 zb.zb_objset = db->db_objset->os_dsl_dataset ? 516 db->db_objset->os_dsl_dataset->ds_object : 0; 517 zb.zb_object = db->db.db_object; 518 zb.zb_level = db->db_level; 519 zb.zb_blkid = db->db_blkid; 520 521 dbuf_add_ref(db, NULL); 522 /* ZIO_FLAG_CANFAIL callers have to check the parent zio's error */ 523 (void) arc_read(zio, db->db_dnode->dn_objset->os_spa, bp, 524 db->db_level > 0 ? byteswap_uint64_array : 525 dmu_ot[db->db_dnode->dn_type].ot_byteswap, 526 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 527 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 528 ARC_NOWAIT, &zb); 529 } 530 531 int 532 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 533 { 534 int err = 0; 535 int havepzio = (zio != NULL); 536 537 /* 538 * We don't have to hold the mutex to check db_state because it 539 * can't be freed while we have a hold on the buffer. 540 */ 541 ASSERT(!refcount_is_zero(&db->db_holds)); 542 if (db->db_state == DB_CACHED) 543 return (0); 544 545 if ((flags & DB_RF_HAVESTRUCT) == 0) 546 rw_enter(&db->db_dnode->dn_struct_rwlock, RW_READER); 547 548 mutex_enter(&db->db_mtx); 549 if (db->db_state == DB_CACHED) { 550 mutex_exit(&db->db_mtx); 551 if ((flags & DB_RF_HAVESTRUCT) == 0) 552 rw_exit(&db->db_dnode->dn_struct_rwlock); 553 } else if (db->db_state == DB_UNCACHED) { 554 if (zio == NULL) { 555 zio = zio_root(db->db_dnode->dn_objset->os_spa, 556 NULL, NULL, ZIO_FLAG_CANFAIL); 557 } 558 dbuf_read_impl(db, zio, flags); 559 /* dbuf_read_impl has dropped db_mtx for us */ 560 561 if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID && 562 (flags & DB_RF_NOPREFETCH) == 0 && 563 db->db_dnode != NULL) { 564 dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset, 565 db->db.db_size); 566 } 567 568 if ((flags & DB_RF_HAVESTRUCT) == 0) 569 rw_exit(&db->db_dnode->dn_struct_rwlock); 570 571 if (!havepzio) 572 err = zio_wait(zio); 573 } else { 574 if ((flags & DB_RF_HAVESTRUCT) == 0) 575 rw_exit(&db->db_dnode->dn_struct_rwlock); 576 if ((flags & DB_RF_NEVERWAIT) == 0) { 577 while (db->db_state == DB_READ || 578 db->db_state == DB_FILL) { 579 ASSERT(db->db_state == DB_READ || 580 (flags & DB_RF_HAVESTRUCT) == 0); 581 cv_wait(&db->db_changed, &db->db_mtx); 582 } 583 if (db->db_state == DB_UNCACHED) 584 err = EIO; 585 } 586 mutex_exit(&db->db_mtx); 587 } 588 589 ASSERT(err || havepzio || db->db_state == DB_CACHED); 590 return (err); 591 } 592 593 static void 594 dbuf_noread(dmu_buf_impl_t *db) 595 { 596 ASSERT(!refcount_is_zero(&db->db_holds)); 597 ASSERT(db->db_blkid != DB_BONUS_BLKID); 598 mutex_enter(&db->db_mtx); 599 while (db->db_state == DB_READ || db->db_state == DB_FILL) 600 cv_wait(&db->db_changed, &db->db_mtx); 601 if (db->db_state == DB_UNCACHED) { 602 ASSERT(db->db_buf == NULL); 603 ASSERT(db->db.db_data == NULL); 604 dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa, 605 db->db.db_size, db)); 606 db->db_state = DB_FILL; 607 } else { 608 ASSERT3U(db->db_state, ==, DB_CACHED); 609 } 610 mutex_exit(&db->db_mtx); 611 } 612 613 /* 614 * This is our just-in-time copy function. It makes a copy of 615 * buffers, that have been modified in a previous transaction 616 * group, before we modify them in the current active group. 617 * 618 * This function is used in two places: when we are dirtying a 619 * buffer for the first time in a txg, and when we are freeing 620 * a range in a dnode that includes this buffer. 621 * 622 * Note that when we are called from dbuf_free_range() we do 623 * not put a hold on the buffer, we just traverse the active 624 * dbuf list for the dnode. 625 */ 626 static void 627 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 628 { 629 arc_buf_t **quiescing, **syncing; 630 631 ASSERT(MUTEX_HELD(&db->db_mtx)); 632 ASSERT(db->db.db_data != NULL); 633 ASSERT(db->db_blkid != DB_BONUS_BLKID); 634 635 quiescing = (arc_buf_t **)&db->db_d.db_data_old[(txg-1)&TXG_MASK]; 636 syncing = (arc_buf_t **)&db->db_d.db_data_old[(txg-2)&TXG_MASK]; 637 638 /* 639 * If this buffer is referenced from the current quiescing 640 * transaction group: either make a copy and reset the reference 641 * to point to the copy, or (if there a no active holders) just 642 * null out the current db_data pointer. 643 */ 644 if (*quiescing == db->db_buf) { 645 /* 646 * If the quiescing txg is "dirty", then we better not 647 * be referencing the same buffer from the syncing txg. 648 */ 649 ASSERT(*syncing != db->db_buf); 650 if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 651 int size = db->db.db_size; 652 *quiescing = arc_buf_alloc( 653 db->db_dnode->dn_objset->os_spa, size, db); 654 bcopy(db->db.db_data, (*quiescing)->b_data, size); 655 } else { 656 dbuf_set_data(db, NULL); 657 } 658 return; 659 } 660 661 /* 662 * If this buffer is referenced from the current syncing 663 * transaction group: either 664 * 1 - make a copy and reset the reference, or 665 * 2 - if there are no holders, just null the current db_data. 666 */ 667 if (*syncing == db->db_buf) { 668 ASSERT3P(*quiescing, ==, NULL); 669 ASSERT3U(db->db_dirtycnt, ==, 1); 670 if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 671 int size = db->db.db_size; 672 /* we can't copy if we have already started a write */ 673 ASSERT(*syncing != db->db_data_pending); 674 *syncing = arc_buf_alloc( 675 db->db_dnode->dn_objset->os_spa, size, db); 676 bcopy(db->db.db_data, (*syncing)->b_data, size); 677 } else { 678 dbuf_set_data(db, NULL); 679 } 680 } 681 } 682 683 /* 684 * This is the "bonus buffer" version of the above routine 685 */ 686 static void 687 dbuf_fix_old_bonus_data(dmu_buf_impl_t *db, uint64_t txg) 688 { 689 void **quiescing, **syncing; 690 691 ASSERT(MUTEX_HELD(&db->db_mtx)); 692 ASSERT(db->db.db_data != NULL); 693 ASSERT(db->db_blkid == DB_BONUS_BLKID); 694 695 quiescing = &db->db_d.db_data_old[(txg-1)&TXG_MASK]; 696 syncing = &db->db_d.db_data_old[(txg-2)&TXG_MASK]; 697 698 if (*quiescing == db->db.db_data) { 699 ASSERT(*syncing != db->db.db_data); 700 *quiescing = zio_buf_alloc(DN_MAX_BONUSLEN); 701 bcopy(db->db.db_data, *quiescing, DN_MAX_BONUSLEN); 702 } else if (*syncing == db->db.db_data) { 703 ASSERT3P(*quiescing, ==, NULL); 704 ASSERT3U(db->db_dirtycnt, ==, 1); 705 *syncing = zio_buf_alloc(DN_MAX_BONUSLEN); 706 bcopy(db->db.db_data, *syncing, DN_MAX_BONUSLEN); 707 } 708 } 709 710 void 711 dbuf_unoverride(dmu_buf_impl_t *db, uint64_t txg) 712 { 713 ASSERT(db->db_blkid != DB_BONUS_BLKID); 714 ASSERT(MUTEX_HELD(&db->db_mtx)); 715 ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK] != IN_DMU_SYNC); 716 717 if (db->db_d.db_overridden_by[txg&TXG_MASK] != NULL) { 718 /* free this block */ 719 ASSERT(list_link_active(&db->db_dirty_node[txg&TXG_MASK]) || 720 db->db_dnode->dn_free_txg == txg); 721 if (!BP_IS_HOLE(db->db_d.db_overridden_by[txg&TXG_MASK])) { 722 /* XXX can get silent EIO here */ 723 (void) arc_free(NULL, db->db_dnode->dn_objset->os_spa, 724 txg, db->db_d.db_overridden_by[txg&TXG_MASK], 725 NULL, NULL, ARC_WAIT); 726 } 727 kmem_free(db->db_d.db_overridden_by[txg&TXG_MASK], 728 sizeof (blkptr_t)); 729 db->db_d.db_overridden_by[txg&TXG_MASK] = NULL; 730 /* release the already-written buffer */ 731 arc_release(db->db_d.db_data_old[txg&TXG_MASK], db); 732 } 733 } 734 735 void 736 dbuf_free_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx) 737 { 738 dmu_buf_impl_t *db, *db_next; 739 uint64_t txg = tx->tx_txg; 740 741 dprintf_dnode(dn, "blkid=%llu nblks=%llu\n", blkid, nblks); 742 mutex_enter(&dn->dn_dbufs_mtx); 743 for (db = list_head(&dn->dn_dbufs); db; db = db_next) { 744 db_next = list_next(&dn->dn_dbufs, db); 745 ASSERT(db->db_blkid != DB_BONUS_BLKID); 746 if (db->db_level != 0) 747 continue; 748 dprintf_dbuf(db, "found buf %s\n", ""); 749 if (db->db_blkid < blkid || 750 db->db_blkid >= blkid+nblks) 751 continue; 752 753 /* found a level 0 buffer in the range */ 754 if (dbuf_undirty(db, tx)) 755 continue; 756 757 mutex_enter(&db->db_mtx); 758 if (db->db_state == DB_UNCACHED || 759 db->db_state == DB_EVICTING) { 760 ASSERT(db->db.db_data == NULL); 761 mutex_exit(&db->db_mtx); 762 continue; 763 } 764 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 765 /* will be handled in dbuf_read_done or dbuf_rele */ 766 db->db_d.db_freed_in_flight = TRUE; 767 mutex_exit(&db->db_mtx); 768 continue; 769 } 770 if (refcount_count(&db->db_holds) == 0) { 771 ASSERT(db->db_buf); 772 dbuf_clear(db); 773 continue; 774 } 775 /* The dbuf is CACHED and referenced */ 776 777 if (!list_link_active(&db->db_dirty_node[txg & TXG_MASK])) { 778 /* 779 * This dbuf is not currently dirty. We will either 780 * uncache it (if its not referenced in the open 781 * context) or reset its contents to empty. 782 */ 783 dbuf_fix_old_data(db, txg); 784 } else if (db->db_d.db_overridden_by[txg & TXG_MASK] != NULL) { 785 /* 786 * This dbuf is overridden. Clear that state. 787 */ 788 dbuf_unoverride(db, txg); 789 } 790 /* fill in with appropriate data */ 791 if (db->db_state == DB_CACHED) { 792 ASSERT(db->db.db_data != NULL); 793 arc_release(db->db_buf, db); 794 bzero(db->db.db_data, db->db.db_size); 795 } 796 797 mutex_exit(&db->db_mtx); 798 } 799 mutex_exit(&dn->dn_dbufs_mtx); 800 } 801 802 static int 803 dbuf_new_block(dmu_buf_impl_t *db) 804 { 805 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 806 uint64_t birth_txg = 0; 807 808 /* Don't count meta-objects */ 809 if (ds == NULL) 810 return (FALSE); 811 812 /* 813 * We don't need any locking to protect db_blkptr: 814 * If it's syncing, then db_dirtied will be set so we'll 815 * ignore db_blkptr. 816 */ 817 ASSERT(MUTEX_HELD(&db->db_mtx)); /* XXX strictly necessary? */ 818 /* If we have been dirtied since the last snapshot, its not new */ 819 if (db->db_dirtied) 820 birth_txg = db->db_dirtied; 821 else if (db->db_blkptr) 822 birth_txg = db->db_blkptr->blk_birth; 823 824 if (birth_txg) 825 return (!dsl_dataset_block_freeable(ds, birth_txg)); 826 else 827 return (TRUE); 828 } 829 830 void 831 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 832 { 833 arc_buf_t *buf, *obuf; 834 int osize = db->db.db_size; 835 836 ASSERT(db->db_blkid != DB_BONUS_BLKID); 837 838 /* XXX does *this* func really need the lock? */ 839 ASSERT(RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)); 840 841 /* 842 * This call to dbuf_will_dirty() with the dn_struct_rwlock held 843 * is OK, because there can be no other references to the db 844 * when we are changing its size, so no concurrent DB_FILL can 845 * be happening. 846 */ 847 /* 848 * XXX we should be doing a dbuf_read, checking the return 849 * value and returning that up to our callers 850 */ 851 dbuf_will_dirty(db, tx); 852 853 /* create the data buffer for the new block */ 854 buf = arc_buf_alloc(db->db_dnode->dn_objset->os_spa, size, db); 855 856 /* copy old block data to the new block */ 857 obuf = db->db_buf; 858 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 859 /* zero the remainder */ 860 if (size > osize) 861 bzero((uint8_t *)buf->b_data + osize, size - osize); 862 863 mutex_enter(&db->db_mtx); 864 dbuf_set_data(db, buf); 865 VERIFY(arc_buf_remove_ref(obuf, db) == 1); 866 db->db.db_size = size; 867 868 if (db->db_level == 0) 869 db->db_d.db_data_old[tx->tx_txg&TXG_MASK] = buf; 870 mutex_exit(&db->db_mtx); 871 872 dnode_willuse_space(db->db_dnode, size-osize, tx); 873 } 874 875 void 876 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 877 { 878 dnode_t *dn = db->db_dnode; 879 objset_impl_t *os = dn->dn_objset; 880 int drop_struct_lock = FALSE; 881 int txgoff = tx->tx_txg & TXG_MASK; 882 883 ASSERT(tx->tx_txg != 0); 884 ASSERT(!refcount_is_zero(&db->db_holds)); 885 DMU_TX_DIRTY_BUF(tx, db); 886 887 /* 888 * Shouldn't dirty a regular buffer in syncing context. Private 889 * objects may be dirtied in syncing context, but only if they 890 * were already pre-dirtied in open context. 891 * XXX We may want to prohibit dirtying in syncing context even 892 * if they did pre-dirty. 893 */ 894 ASSERT(!(dmu_tx_is_syncing(tx) && 895 !BP_IS_HOLE(&dn->dn_objset->os_rootbp) && 896 dn->dn_object != DMU_META_DNODE_OBJECT && 897 dn->dn_objset->os_dsl_dataset != NULL && 898 !dsl_dir_is_private( 899 dn->dn_objset->os_dsl_dataset->ds_dir))); 900 901 /* 902 * We make this assert for private objects as well, but after we 903 * check if we're already dirty. They are allowed to re-dirty 904 * in syncing context. 905 */ 906 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 907 dn->dn_dirtyctx == DN_UNDIRTIED || 908 dn->dn_dirtyctx == 909 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 910 911 mutex_enter(&db->db_mtx); 912 /* XXX make this true for indirects too? */ 913 ASSERT(db->db_level != 0 || db->db_state == DB_CACHED || 914 db->db_state == DB_FILL); 915 916 /* 917 * If this buffer is currently part of an "overridden" region, 918 * we now need to remove it from that region. 919 */ 920 if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID && 921 db->db_d.db_overridden_by[txgoff] != NULL) { 922 dbuf_unoverride(db, tx->tx_txg); 923 } 924 925 mutex_enter(&dn->dn_mtx); 926 /* 927 * Don't set dirtyctx to SYNC if we're just modifying this as we 928 * initialize the objset. 929 */ 930 if (dn->dn_dirtyctx == DN_UNDIRTIED && 931 !BP_IS_HOLE(&dn->dn_objset->os_rootbp)) { 932 dn->dn_dirtyctx = 933 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 934 ASSERT(dn->dn_dirtyctx_firstset == NULL); 935 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 936 } 937 mutex_exit(&dn->dn_mtx); 938 939 /* 940 * If this buffer is already dirty, we're done. 941 */ 942 if (list_link_active(&db->db_dirty_node[txgoff])) { 943 mutex_exit(&db->db_mtx); 944 return; 945 } 946 947 /* 948 * Only valid if not already dirty. 949 */ 950 ASSERT(dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 951 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 952 953 ASSERT3U(dn->dn_nlevels, >, db->db_level); 954 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 955 dn->dn_phys->dn_nlevels > db->db_level || 956 dn->dn_next_nlevels[txgoff] > db->db_level || 957 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 958 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 959 960 /* 961 * We should only be dirtying in syncing context if it's the 962 * mos, a spa os, or we're initializing the os. However, we are 963 * allowed to dirty in syncing context provided we already 964 * dirtied it in open context. Hence we must make this 965 * assertion only if we're not already dirty. 966 */ 967 ASSERT(!dmu_tx_is_syncing(tx) || 968 os->os_dsl_dataset == NULL || 969 !dsl_dir_is_private(os->os_dsl_dataset->ds_dir) || 970 !BP_IS_HOLE(&os->os_rootbp)); 971 ASSERT(db->db.db_size != 0); 972 973 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 974 975 /* 976 * If this buffer is dirty in an old transaction group we need 977 * to make a copy of it so that the changes we make in this 978 * transaction group won't leak out when we sync the older txg. 979 */ 980 if (db->db_blkid == DB_BONUS_BLKID) { 981 ASSERT(db->db.db_data != NULL); 982 ASSERT(db->db_d.db_data_old[txgoff] == NULL); 983 dbuf_fix_old_bonus_data(db, tx->tx_txg); 984 db->db_d.db_data_old[txgoff] = db->db.db_data; 985 } else if (db->db_level == 0) { 986 /* 987 * Release the data buffer from the cache so that we 988 * can modify it without impacting possible other users 989 * of this cached data block. Note that indirect blocks 990 * and private objects are not released until the syncing 991 * state (since they are only modified then). 992 */ 993 ASSERT(db->db_buf != NULL); 994 ASSERT(db->db_d.db_data_old[txgoff] == NULL); 995 if (db->db.db_object != DMU_META_DNODE_OBJECT) { 996 arc_release(db->db_buf, db); 997 dbuf_fix_old_data(db, tx->tx_txg); 998 ASSERT(db->db_buf != NULL); 999 } 1000 db->db_d.db_data_old[txgoff] = db->db_buf; 1001 } 1002 1003 mutex_enter(&dn->dn_mtx); 1004 /* 1005 * We could have been freed_in_flight between the dbuf_noread 1006 * and dbuf_dirty. We win, as though the dbuf_noread() had 1007 * happened after the free. 1008 */ 1009 if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID) { 1010 dnode_clear_range(dn, db->db_blkid, 1, tx); 1011 db->db_d.db_freed_in_flight = FALSE; 1012 } 1013 1014 db->db_dirtied = tx->tx_txg; 1015 list_insert_tail(&dn->dn_dirty_dbufs[txgoff], db); 1016 mutex_exit(&dn->dn_mtx); 1017 1018 if (db->db_blkid != DB_BONUS_BLKID) { 1019 /* 1020 * Update the accounting. 1021 */ 1022 if (!dbuf_new_block(db) && db->db_blkptr) { 1023 /* 1024 * This is only a guess -- if the dbuf is dirty 1025 * in a previous txg, we don't know how much 1026 * space it will use on disk yet. We should 1027 * really have the struct_rwlock to access 1028 * db_blkptr, but since this is just a guess, 1029 * it's OK if we get an odd answer. 1030 */ 1031 dnode_willuse_space(dn, 1032 -bp_get_dasize(os->os_spa, db->db_blkptr), tx); 1033 } 1034 dnode_willuse_space(dn, db->db.db_size, tx); 1035 } 1036 1037 /* 1038 * This buffer is now part of this txg 1039 */ 1040 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1041 db->db_dirtycnt += 1; 1042 ASSERT3U(db->db_dirtycnt, <=, 3); 1043 1044 mutex_exit(&db->db_mtx); 1045 1046 if (db->db_blkid == DB_BONUS_BLKID) { 1047 dnode_setdirty(dn, tx); 1048 return; 1049 } 1050 1051 if (db->db_level == 0) 1052 dnode_new_blkid(dn, db->db_blkid, tx); 1053 1054 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1055 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1056 drop_struct_lock = TRUE; 1057 } 1058 1059 if (db->db_level < dn->dn_nlevels-1) { 1060 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1061 dmu_buf_impl_t *parent; 1062 parent = dbuf_hold_level(dn, db->db_level+1, 1063 db->db_blkid >> epbs, FTAG); 1064 if (drop_struct_lock) 1065 rw_exit(&dn->dn_struct_rwlock); 1066 dbuf_dirty(parent, tx); 1067 dbuf_rele(parent, FTAG); 1068 } else { 1069 if (drop_struct_lock) 1070 rw_exit(&dn->dn_struct_rwlock); 1071 } 1072 1073 dnode_setdirty(dn, tx); 1074 } 1075 1076 static int 1077 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1078 { 1079 dnode_t *dn = db->db_dnode; 1080 int txgoff = tx->tx_txg & TXG_MASK; 1081 int64_t holds; 1082 1083 ASSERT(tx->tx_txg != 0); 1084 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1085 1086 mutex_enter(&db->db_mtx); 1087 1088 /* 1089 * If this buffer is not dirty, we're done. 1090 */ 1091 if (!list_link_active(&db->db_dirty_node[txgoff])) { 1092 mutex_exit(&db->db_mtx); 1093 return (0); 1094 } 1095 1096 /* 1097 * If this buffer is currently held, we cannot undirty 1098 * it, since one of the current holders may be in the 1099 * middle of an update. Note that users of dbuf_undirty() 1100 * should not place a hold on the dbuf before the call. 1101 * XXX - this check assumes we are being called from 1102 * dbuf_free_range(), perhaps we should move it there? 1103 */ 1104 if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1105 mutex_exit(&db->db_mtx); 1106 mutex_enter(&dn->dn_mtx); 1107 dnode_clear_range(dn, db->db_blkid, 1, tx); 1108 mutex_exit(&dn->dn_mtx); 1109 return (0); 1110 } 1111 1112 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1113 1114 dbuf_unoverride(db, tx->tx_txg); 1115 1116 ASSERT(db->db.db_size != 0); 1117 if (db->db_level == 0) { 1118 ASSERT(db->db_buf != NULL); 1119 ASSERT(db->db_d.db_data_old[txgoff] != NULL); 1120 if (db->db_d.db_data_old[txgoff] != db->db_buf) 1121 VERIFY(arc_buf_remove_ref( 1122 db->db_d.db_data_old[txgoff], db) == 1); 1123 db->db_d.db_data_old[txgoff] = NULL; 1124 } 1125 1126 /* XXX would be nice to fix up dn_towrite_space[] */ 1127 /* XXX undo db_dirtied? but how? */ 1128 /* db->db_dirtied = tx->tx_txg; */ 1129 1130 mutex_enter(&dn->dn_mtx); 1131 list_remove(&dn->dn_dirty_dbufs[txgoff], db); 1132 mutex_exit(&dn->dn_mtx); 1133 1134 ASSERT(db->db_dirtycnt > 0); 1135 db->db_dirtycnt -= 1; 1136 1137 if ((holds = refcount_remove(&db->db_holds, 1138 (void *)(uintptr_t)tx->tx_txg)) == 0) { 1139 arc_buf_t *buf = db->db_buf; 1140 1141 ASSERT(arc_released(buf)); 1142 dbuf_set_data(db, NULL); 1143 VERIFY(arc_buf_remove_ref(buf, db) == 1); 1144 dbuf_evict(db); 1145 return (1); 1146 } 1147 ASSERT(holds > 0); 1148 1149 mutex_exit(&db->db_mtx); 1150 return (0); 1151 } 1152 1153 #pragma weak dmu_buf_will_dirty = dbuf_will_dirty 1154 void 1155 dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1156 { 1157 int rf = DB_RF_MUST_SUCCEED; 1158 1159 ASSERT(tx->tx_txg != 0); 1160 ASSERT(!refcount_is_zero(&db->db_holds)); 1161 1162 if (RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)) 1163 rf |= DB_RF_HAVESTRUCT; 1164 (void) dbuf_read(db, NULL, rf); 1165 dbuf_dirty(db, tx); 1166 } 1167 1168 void 1169 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1170 { 1171 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1172 1173 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1174 ASSERT(tx->tx_txg != 0); 1175 ASSERT(db->db_level == 0); 1176 ASSERT(!refcount_is_zero(&db->db_holds)); 1177 1178 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1179 dmu_tx_private_ok(tx)); 1180 1181 dbuf_noread(db); 1182 dbuf_dirty(db, tx); 1183 } 1184 1185 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1186 /* ARGSUSED */ 1187 void 1188 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1189 { 1190 mutex_enter(&db->db_mtx); 1191 DBUF_VERIFY(db); 1192 1193 if (db->db_state == DB_FILL) { 1194 if (db->db_level == 0 && db->db_d.db_freed_in_flight) { 1195 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1196 /* we were freed while filling */ 1197 /* XXX dbuf_undirty? */ 1198 bzero(db->db.db_data, db->db.db_size); 1199 db->db_d.db_freed_in_flight = FALSE; 1200 } 1201 db->db_state = DB_CACHED; 1202 cv_broadcast(&db->db_changed); 1203 } 1204 mutex_exit(&db->db_mtx); 1205 } 1206 1207 /* 1208 * "Clear" the contents of this dbuf. This will mark the dbuf 1209 * EVICTING and clear *most* of its references. Unfortunetely, 1210 * when we are not holding the dn_dbufs_mtx, we can't clear the 1211 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1212 * in this case. For callers from the DMU we will usually see: 1213 * dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy() 1214 * For the arc callback, we will usually see: 1215 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1216 * Sometimes, though, we will get a mix of these two: 1217 * DMU: dbuf_clear()->arc_buf_evict() 1218 * ARC: dbuf_do_evict()->dbuf_destroy() 1219 */ 1220 void 1221 dbuf_clear(dmu_buf_impl_t *db) 1222 { 1223 dnode_t *dn = db->db_dnode; 1224 dmu_buf_impl_t *parent = db->db_parent; 1225 dmu_buf_impl_t *dndb = dn->dn_dbuf; 1226 int dbuf_gone = FALSE; 1227 1228 ASSERT(MUTEX_HELD(&db->db_mtx)); 1229 ASSERT(refcount_is_zero(&db->db_holds)); 1230 1231 dbuf_evict_user(db); 1232 1233 if (db->db_state == DB_CACHED) { 1234 ASSERT(db->db.db_data != NULL); 1235 if (db->db_blkid == DB_BONUS_BLKID) 1236 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1237 db->db.db_data = NULL; 1238 db->db_state = DB_UNCACHED; 1239 } 1240 1241 ASSERT3U(db->db_state, ==, DB_UNCACHED); 1242 ASSERT(db->db_data_pending == NULL); 1243 1244 db->db_state = DB_EVICTING; 1245 db->db_blkptr = NULL; 1246 1247 if (db->db_blkid != DB_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1248 list_remove(&dn->dn_dbufs, db); 1249 dnode_rele(dn, db); 1250 } 1251 1252 if (db->db_buf) 1253 dbuf_gone = arc_buf_evict(db->db_buf); 1254 1255 if (!dbuf_gone) 1256 mutex_exit(&db->db_mtx); 1257 1258 /* 1259 * If this dbuf is referened from an indirect dbuf, 1260 * decrement the ref count on the indirect dbuf. 1261 */ 1262 if (parent && parent != dndb) 1263 dbuf_rele(parent, db); 1264 } 1265 1266 static int 1267 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1268 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1269 { 1270 int nlevels, epbs; 1271 1272 ASSERT(blkid != DB_BONUS_BLKID); 1273 1274 if (dn->dn_phys->dn_nlevels == 0) 1275 nlevels = 1; 1276 else 1277 nlevels = dn->dn_phys->dn_nlevels; 1278 1279 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1280 1281 ASSERT3U(level * epbs, <, 64); 1282 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1283 if (level >= nlevels || 1284 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1285 /* the buffer has no parent yet */ 1286 *parentp = NULL; 1287 *bpp = NULL; 1288 return (ENOENT); 1289 } else if (level < nlevels-1) { 1290 /* this block is referenced from an indirect block */ 1291 int err = dbuf_hold_impl(dn, level+1, 1292 blkid >> epbs, fail_sparse, NULL, parentp); 1293 if (err) 1294 return (err); 1295 err = dbuf_read(*parentp, NULL, 1296 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1297 if (err) { 1298 dbuf_rele(*parentp, NULL); 1299 *parentp = NULL; 1300 return (err); 1301 } 1302 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1303 (blkid & ((1ULL << epbs) - 1)); 1304 return (0); 1305 } else { 1306 /* the block is referenced from the dnode */ 1307 ASSERT3U(level, ==, nlevels-1); 1308 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1309 blkid < dn->dn_phys->dn_nblkptr); 1310 if (dn->dn_dbuf) { 1311 dbuf_add_ref(dn->dn_dbuf, NULL); 1312 *parentp = dn->dn_dbuf; 1313 } 1314 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1315 return (0); 1316 } 1317 } 1318 1319 static dmu_buf_impl_t * 1320 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1321 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1322 { 1323 objset_impl_t *os = dn->dn_objset; 1324 dmu_buf_impl_t *db, *odb; 1325 1326 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1327 ASSERT(dn->dn_type != DMU_OT_NONE); 1328 1329 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1330 1331 db->db_objset = os; 1332 db->db.db_object = dn->dn_object; 1333 db->db_level = level; 1334 db->db_blkid = blkid; 1335 db->db_dirtied = 0; 1336 db->db_dirtycnt = 0; 1337 db->db_dnode = dn; 1338 db->db_parent = parent; 1339 db->db_blkptr = blkptr; 1340 1341 bzero(&db->db_d, sizeof (db->db_d)); 1342 1343 if (blkid == DB_BONUS_BLKID) { 1344 ASSERT3P(parent, ==, dn->dn_dbuf); 1345 db->db.db_size = dn->dn_bonuslen; 1346 db->db.db_offset = DB_BONUS_BLKID; 1347 db->db_state = DB_UNCACHED; 1348 /* the bonus dbuf is not placed in the hash table */ 1349 return (db); 1350 } else { 1351 int blocksize = 1352 db->db_level ? 1<<dn->dn_indblkshift : dn->dn_datablksz; 1353 db->db.db_size = blocksize; 1354 db->db.db_offset = db->db_blkid * blocksize; 1355 } 1356 1357 /* 1358 * Hold the dn_dbufs_mtx while we get the new dbuf 1359 * in the hash table *and* added to the dbufs list. 1360 * This prevents a possible deadlock with someone 1361 * trying to look up this dbuf before its added to the 1362 * dn_dbufs list. 1363 */ 1364 mutex_enter(&dn->dn_dbufs_mtx); 1365 db->db_state = DB_EVICTING; 1366 if ((odb = dbuf_hash_insert(db)) != NULL) { 1367 /* someone else inserted it first */ 1368 kmem_cache_free(dbuf_cache, db); 1369 mutex_exit(&dn->dn_dbufs_mtx); 1370 return (odb); 1371 } 1372 list_insert_head(&dn->dn_dbufs, db); 1373 db->db_state = DB_UNCACHED; 1374 mutex_exit(&dn->dn_dbufs_mtx); 1375 1376 if (parent && parent != dn->dn_dbuf) 1377 dbuf_add_ref(parent, db); 1378 1379 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1380 refcount_count(&dn->dn_holds) > 0); 1381 (void) refcount_add(&dn->dn_holds, db); 1382 1383 dprintf_dbuf(db, "db=%p\n", db); 1384 1385 return (db); 1386 } 1387 1388 static int 1389 dbuf_do_evict(void *private) 1390 { 1391 arc_buf_t *buf = private; 1392 dmu_buf_impl_t *db = buf->b_private; 1393 1394 if (!MUTEX_HELD(&db->db_mtx)) 1395 mutex_enter(&db->db_mtx); 1396 1397 ASSERT(refcount_is_zero(&db->db_holds)); 1398 1399 if (db->db_state != DB_EVICTING) { 1400 ASSERT(db->db_state == DB_CACHED); 1401 DBUF_VERIFY(db); 1402 db->db_buf = NULL; 1403 dbuf_evict(db); 1404 } else { 1405 mutex_exit(&db->db_mtx); 1406 dbuf_destroy(db); 1407 } 1408 return (0); 1409 } 1410 1411 static void 1412 dbuf_destroy(dmu_buf_impl_t *db) 1413 { 1414 ASSERT(refcount_is_zero(&db->db_holds)); 1415 1416 if (db->db_blkid != DB_BONUS_BLKID) { 1417 dnode_t *dn = db->db_dnode; 1418 1419 /* 1420 * If this dbuf is still on the dn_dbufs list, 1421 * remove it from that list. 1422 */ 1423 if (list_link_active(&db->db_link)) { 1424 mutex_enter(&dn->dn_dbufs_mtx); 1425 list_remove(&dn->dn_dbufs, db); 1426 mutex_exit(&dn->dn_dbufs_mtx); 1427 1428 dnode_rele(dn, db); 1429 } 1430 dbuf_hash_remove(db); 1431 } 1432 db->db_parent = NULL; 1433 db->db_dnode = NULL; 1434 db->db_buf = NULL; 1435 1436 ASSERT(db->db.db_data == NULL); 1437 ASSERT(db->db_hash_next == NULL); 1438 ASSERT(db->db_blkptr == NULL); 1439 ASSERT(db->db_data_pending == NULL); 1440 1441 kmem_cache_free(dbuf_cache, db); 1442 } 1443 1444 void 1445 dbuf_prefetch(dnode_t *dn, uint64_t blkid) 1446 { 1447 dmu_buf_impl_t *db, *parent = NULL; 1448 blkptr_t *bp = NULL; 1449 1450 ASSERT(blkid != DB_BONUS_BLKID); 1451 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1452 1453 if (dnode_block_freed(dn, blkid)) 1454 return; 1455 1456 /* dbuf_find() returns with db_mtx held */ 1457 if (db = dbuf_find(dn, 0, blkid)) { 1458 /* 1459 * This dbuf is already in the cache. We assume that 1460 * it is already CACHED, or else about to be either 1461 * read or filled. 1462 */ 1463 mutex_exit(&db->db_mtx); 1464 return; 1465 } 1466 1467 if (dbuf_findbp(dn, 0, blkid, TRUE, &parent, &bp) == 0) { 1468 if (bp && !BP_IS_HOLE(bp)) { 1469 zbookmark_t zb; 1470 zb.zb_objset = dn->dn_objset->os_dsl_dataset ? 1471 dn->dn_objset->os_dsl_dataset->ds_object : 0; 1472 zb.zb_object = dn->dn_object; 1473 zb.zb_level = 0; 1474 zb.zb_blkid = blkid; 1475 1476 (void) arc_read(NULL, dn->dn_objset->os_spa, bp, 1477 dmu_ot[dn->dn_type].ot_byteswap, 1478 NULL, NULL, ZIO_PRIORITY_ASYNC_READ, 1479 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1480 (ARC_NOWAIT | ARC_PREFETCH), &zb); 1481 } 1482 if (parent) 1483 dbuf_rele(parent, NULL); 1484 } 1485 } 1486 1487 /* 1488 * Returns with db_holds incremented, and db_mtx not held. 1489 * Note: dn_struct_rwlock must be held. 1490 */ 1491 int 1492 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, 1493 void *tag, dmu_buf_impl_t **dbp) 1494 { 1495 dmu_buf_impl_t *db, *parent = NULL; 1496 1497 ASSERT(blkid != DB_BONUS_BLKID); 1498 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1499 ASSERT3U(dn->dn_nlevels, >, level); 1500 1501 *dbp = NULL; 1502 top: 1503 /* dbuf_find() returns with db_mtx held */ 1504 db = dbuf_find(dn, level, blkid); 1505 1506 if (db == NULL) { 1507 blkptr_t *bp = NULL; 1508 int err; 1509 1510 ASSERT3P(parent, ==, NULL); 1511 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 1512 if (fail_sparse) { 1513 if (err == 0 && bp && BP_IS_HOLE(bp)) 1514 err = ENOENT; 1515 if (err) { 1516 if (parent) 1517 dbuf_rele(parent, NULL); 1518 return (err); 1519 } 1520 } 1521 if (err && err != ENOENT) 1522 return (err); 1523 db = dbuf_create(dn, level, blkid, parent, bp); 1524 } 1525 1526 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 1527 arc_buf_add_ref(db->db_buf, db); 1528 if (db->db_buf->b_data == NULL) { 1529 dbuf_clear(db); 1530 if (parent) { 1531 dbuf_rele(parent, NULL); 1532 parent = NULL; 1533 } 1534 goto top; 1535 } 1536 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 1537 } 1538 1539 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 1540 1541 /* 1542 * If this buffer is currently syncing out, and we are 1543 * are still referencing it from db_data, we need to make 1544 * a copy of it in case we decide we want to dirty it 1545 * again in this txg. 1546 */ 1547 if (db->db_level == 0 && db->db_state == DB_CACHED && 1548 dn->dn_object != DMU_META_DNODE_OBJECT && 1549 db->db_data_pending == db->db_buf) { 1550 int size = (db->db_blkid == DB_BONUS_BLKID) ? 1551 DN_MAX_BONUSLEN : db->db.db_size; 1552 1553 dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa, 1554 size, db)); 1555 bcopy(db->db_data_pending->b_data, db->db.db_data, 1556 db->db.db_size); 1557 } 1558 1559 (void) refcount_add(&db->db_holds, tag); 1560 dbuf_update_data(db); 1561 DBUF_VERIFY(db); 1562 mutex_exit(&db->db_mtx); 1563 1564 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 1565 if (parent) 1566 dbuf_rele(parent, NULL); 1567 1568 ASSERT3P(db->db_dnode, ==, dn); 1569 ASSERT3U(db->db_blkid, ==, blkid); 1570 ASSERT3U(db->db_level, ==, level); 1571 *dbp = db; 1572 1573 return (0); 1574 } 1575 1576 dmu_buf_impl_t * 1577 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 1578 { 1579 dmu_buf_impl_t *db; 1580 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); 1581 return (err ? NULL : db); 1582 } 1583 1584 dmu_buf_impl_t * 1585 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 1586 { 1587 dmu_buf_impl_t *db; 1588 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); 1589 return (err ? NULL : db); 1590 } 1591 1592 dmu_buf_impl_t * 1593 dbuf_create_bonus(dnode_t *dn) 1594 { 1595 dmu_buf_impl_t *db = dn->dn_bonus; 1596 1597 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1598 1599 ASSERT(dn->dn_bonus == NULL); 1600 db = dbuf_create(dn, 0, DB_BONUS_BLKID, dn->dn_dbuf, NULL); 1601 return (db); 1602 } 1603 1604 #pragma weak dmu_buf_add_ref = dbuf_add_ref 1605 void 1606 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 1607 { 1608 int64_t holds = refcount_add(&db->db_holds, tag); 1609 ASSERT(holds > 1); 1610 } 1611 1612 #pragma weak dmu_buf_rele = dbuf_rele 1613 void 1614 dbuf_rele(dmu_buf_impl_t *db, void *tag) 1615 { 1616 int64_t holds; 1617 1618 mutex_enter(&db->db_mtx); 1619 DBUF_VERIFY(db); 1620 1621 holds = refcount_remove(&db->db_holds, tag); 1622 ASSERT(holds >= 0); 1623 1624 if (holds == db->db_dirtycnt && 1625 db->db_level == 0 && db->db_d.db_immediate_evict) 1626 dbuf_evict_user(db); 1627 1628 if (holds == 0) { 1629 if (db->db_blkid == DB_BONUS_BLKID) { 1630 mutex_exit(&db->db_mtx); 1631 dnode_rele(db->db_dnode, db); 1632 } else if (db->db_buf == NULL) { 1633 /* 1634 * This is a special case: we never associated this 1635 * dbuf with any data allocated from the ARC. 1636 */ 1637 ASSERT3U(db->db_state, ==, DB_UNCACHED); 1638 dbuf_evict(db); 1639 } else if (arc_released(db->db_buf)) { 1640 arc_buf_t *buf = db->db_buf; 1641 /* 1642 * This dbuf has anonymous data associated with it. 1643 */ 1644 dbuf_set_data(db, NULL); 1645 VERIFY(arc_buf_remove_ref(buf, db) == 1); 1646 dbuf_evict(db); 1647 } else { 1648 VERIFY(arc_buf_remove_ref(db->db_buf, db) == 0); 1649 mutex_exit(&db->db_mtx); 1650 } 1651 } else { 1652 mutex_exit(&db->db_mtx); 1653 } 1654 } 1655 1656 #pragma weak dmu_buf_refcount = dbuf_refcount 1657 uint64_t 1658 dbuf_refcount(dmu_buf_impl_t *db) 1659 { 1660 return (refcount_count(&db->db_holds)); 1661 } 1662 1663 void * 1664 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 1665 dmu_buf_evict_func_t *evict_func) 1666 { 1667 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 1668 user_data_ptr_ptr, evict_func)); 1669 } 1670 1671 void * 1672 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 1673 dmu_buf_evict_func_t *evict_func) 1674 { 1675 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1676 1677 db->db_d.db_immediate_evict = TRUE; 1678 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 1679 user_data_ptr_ptr, evict_func)); 1680 } 1681 1682 void * 1683 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, 1684 void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) 1685 { 1686 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1687 ASSERT(db->db_level == 0); 1688 1689 ASSERT((user_ptr == NULL) == (evict_func == NULL)); 1690 1691 mutex_enter(&db->db_mtx); 1692 1693 if (db->db_d.db_user_ptr == old_user_ptr) { 1694 db->db_d.db_user_ptr = user_ptr; 1695 db->db_d.db_user_data_ptr_ptr = user_data_ptr_ptr; 1696 db->db_d.db_evict_func = evict_func; 1697 1698 dbuf_update_data(db); 1699 } else { 1700 old_user_ptr = db->db_d.db_user_ptr; 1701 } 1702 1703 mutex_exit(&db->db_mtx); 1704 return (old_user_ptr); 1705 } 1706 1707 void * 1708 dmu_buf_get_user(dmu_buf_t *db_fake) 1709 { 1710 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1711 ASSERT(!refcount_is_zero(&db->db_holds)); 1712 1713 return (db->db_d.db_user_ptr); 1714 } 1715 1716 void 1717 dbuf_sync(dmu_buf_impl_t *db, zio_t *zio, dmu_tx_t *tx) 1718 { 1719 arc_buf_t **data; 1720 uint64_t txg = tx->tx_txg; 1721 dnode_t *dn = db->db_dnode; 1722 objset_impl_t *os = dn->dn_objset; 1723 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 1724 int checksum, compress; 1725 zbookmark_t zb; 1726 int blksz; 1727 1728 ASSERT(dmu_tx_is_syncing(tx)); 1729 1730 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 1731 1732 mutex_enter(&db->db_mtx); 1733 /* 1734 * To be synced, we must be dirtied. But we 1735 * might have been freed after the dirty. 1736 */ 1737 if (db->db_state == DB_UNCACHED) { 1738 /* This buffer has been freed since it was dirtied */ 1739 ASSERT(db->db.db_data == NULL); 1740 } else if (db->db_state == DB_FILL) { 1741 /* This buffer was freed and is now being re-filled */ 1742 ASSERT(db->db.db_data != db->db_d.db_data_old[txg&TXG_MASK]); 1743 } else { 1744 ASSERT3U(db->db_state, ==, DB_CACHED); 1745 } 1746 DBUF_VERIFY(db); 1747 1748 /* 1749 * Don't need a lock on db_dirty (dn_mtx), because it can't 1750 * be modified yet. 1751 */ 1752 1753 if (db->db_blkid == DB_BONUS_BLKID) { 1754 void **datap = &db->db_d.db_data_old[txg&TXG_MASK]; 1755 /* 1756 * Simply copy the bonus data into the dnode. It will 1757 * be written out when the dnode is synced (and it will 1758 * be synced, since it must have been dirty for dbuf_sync 1759 * to be called). 1760 */ 1761 /* 1762 * Use dn_phys->dn_bonuslen since db.db_size is the length 1763 * of the bonus buffer in the open transaction rather than 1764 * the syncing transaction. 1765 */ 1766 ASSERT(*datap != NULL); 1767 ASSERT3U(db->db_level, ==, 0); 1768 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 1769 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 1770 if (*datap != db->db.db_data) 1771 zio_buf_free(*datap, DN_MAX_BONUSLEN); 1772 db->db_d.db_data_old[txg&TXG_MASK] = NULL; 1773 db->db_data_pending = NULL; 1774 if (db->db_dirtied == txg) 1775 db->db_dirtied = 0; 1776 ASSERT(db->db_dirtycnt > 0); 1777 db->db_dirtycnt -= 1; 1778 mutex_exit(&db->db_mtx); 1779 dbuf_rele(db, (void *)(uintptr_t)txg); 1780 return; 1781 } 1782 1783 if (db->db_level == 0) { 1784 data = (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK]; 1785 blksz = arc_buf_size(*data); 1786 1787 /* 1788 * This buffer is in the middle of an immdiate write. 1789 * Wait for the synchronous IO to complete. 1790 */ 1791 while (db->db_d.db_overridden_by[txg&TXG_MASK] == IN_DMU_SYNC) { 1792 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 1793 cv_wait(&db->db_changed, &db->db_mtx); 1794 ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK]); 1795 } 1796 /* 1797 * If this buffer is currently "in use" (i.e., there are 1798 * active holds and db_data still references it), then make 1799 * a copy before we start the write so that any modifications 1800 * from the open txg will not leak into this write. 1801 * 1802 * NOTE: this copy does not need to be made for objects only 1803 * modified in the syncing context (e.g. DNONE_DNODE blocks) 1804 * or if there is no actual write involved (bonus blocks). 1805 */ 1806 if (dn->dn_object != DMU_META_DNODE_OBJECT && 1807 db->db_d.db_overridden_by[txg&TXG_MASK] == NULL) { 1808 if (refcount_count(&db->db_holds) > 1 && 1809 *data == db->db_buf) { 1810 *data = arc_buf_alloc(os->os_spa, blksz, db); 1811 bcopy(db->db.db_data, (*data)->b_data, blksz); 1812 } 1813 db->db_data_pending = *data; 1814 } else if (dn->dn_object == DMU_META_DNODE_OBJECT) { 1815 /* 1816 * Private object buffers are released here rather 1817 * than in dbuf_dirty() since they are only modified 1818 * in the syncing context and we don't want the 1819 * overhead of making multiple copies of the data. 1820 */ 1821 arc_release(db->db_buf, db); 1822 } 1823 } else { 1824 data = &db->db_buf; 1825 if (*data == NULL) { 1826 /* 1827 * This can happen if we dirty and then free 1828 * the level-0 data blocks in the same txg. So 1829 * this indirect remains unchanged. 1830 */ 1831 if (db->db_dirtied == txg) 1832 db->db_dirtied = 0; 1833 ASSERT(db->db_dirtycnt > 0); 1834 db->db_dirtycnt -= 1; 1835 mutex_exit(&db->db_mtx); 1836 dbuf_rele(db, (void *)(uintptr_t)txg); 1837 return; 1838 } 1839 blksz = db->db.db_size; 1840 ASSERT3U(blksz, ==, 1<<dn->dn_phys->dn_indblkshift); 1841 } 1842 1843 ASSERT(*data != NULL); 1844 1845 if (db->db_level > 0 && !arc_released(db->db_buf)) { 1846 /* 1847 * This indirect buffer was marked dirty, but 1848 * never modified (if it had been modified, then 1849 * we would have released the buffer). There is 1850 * no reason to write anything. 1851 */ 1852 db->db_data_pending = NULL; 1853 if (db->db_dirtied == txg) 1854 db->db_dirtied = 0; 1855 ASSERT(db->db_dirtycnt > 0); 1856 db->db_dirtycnt -= 1; 1857 mutex_exit(&db->db_mtx); 1858 dbuf_rele(db, (void *)(uintptr_t)txg); 1859 return; 1860 } else if (db->db_blkptr == NULL && 1861 db->db_level == dn->dn_phys->dn_nlevels-1 && 1862 db->db_blkid < dn->dn_phys->dn_nblkptr) { 1863 /* 1864 * This buffer was allocated at a time when there was 1865 * no available blkptrs from the dnode, or it was 1866 * inappropriate to hook it in (i.e., nlevels mis-match). 1867 */ 1868 ASSERT(db->db_blkptr == NULL); 1869 ASSERT(db->db_parent == NULL); 1870 db->db_parent = dn->dn_dbuf; 1871 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 1872 DBUF_VERIFY(db); 1873 mutex_exit(&db->db_mtx); 1874 } else if (db->db_blkptr == NULL) { 1875 dmu_buf_impl_t *parent = db->db_parent; 1876 1877 mutex_exit(&db->db_mtx); 1878 ASSERT(dn->dn_phys->dn_nlevels > 1); 1879 if (parent == NULL) { 1880 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1881 (void) dbuf_hold_impl(dn, db->db_level+1, 1882 db->db_blkid >> epbs, FALSE, FTAG, &parent); 1883 rw_exit(&dn->dn_struct_rwlock); 1884 dbuf_add_ref(parent, db); 1885 db->db_parent = parent; 1886 dbuf_rele(parent, FTAG); 1887 } 1888 (void) dbuf_read(parent, NULL, DB_RF_MUST_SUCCEED); 1889 } else { 1890 mutex_exit(&db->db_mtx); 1891 } 1892 1893 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || db->db_parent != NULL); 1894 1895 if (db->db_level > 0 && 1896 db->db_blkid > dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)) { 1897 /* 1898 * Don't write indirect blocks past EOF. 1899 * We get these when we truncate a file *after* dirtying 1900 * blocks in the truncate range (we undirty the level 0 1901 * blocks in dbuf_free_range(), but not the indirects). 1902 */ 1903 #ifdef ZFS_DEBUG 1904 /* 1905 * Verify that this indirect block is empty. 1906 */ 1907 blkptr_t *bplist; 1908 int i; 1909 1910 mutex_enter(&db->db_mtx); 1911 bplist = db->db.db_data; 1912 for (i = 0; i < (1 << epbs); i++) { 1913 if (!BP_IS_HOLE(&bplist[i])) { 1914 panic("data past EOF: " 1915 "db=%p level=%d id=%llu i=%d\n", 1916 db, db->db_level, 1917 (u_longlong_t)db->db_blkid, i); 1918 } 1919 } 1920 mutex_exit(&db->db_mtx); 1921 #endif 1922 ASSERT(db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)); 1923 mutex_enter(&db->db_mtx); 1924 db->db_dirtycnt -= 1; 1925 mutex_exit(&db->db_mtx); 1926 dbuf_rele(db, (void *)(uintptr_t)txg); 1927 return; 1928 } 1929 1930 if (db->db_parent != dn->dn_dbuf) { 1931 dmu_buf_impl_t *parent = db->db_parent; 1932 1933 mutex_enter(&db->db_mtx); 1934 ASSERT(db->db_level == parent->db_level-1); 1935 ASSERT(list_link_active(&parent->db_dirty_node[txg&TXG_MASK])); 1936 /* 1937 * We may have read this indirect block after we dirtied it, 1938 * so never released it from the cache. 1939 */ 1940 arc_release(parent->db_buf, db->db_parent); 1941 1942 db->db_blkptr = (blkptr_t *)parent->db.db_data + 1943 (db->db_blkid & ((1ULL << epbs) - 1)); 1944 DBUF_VERIFY(db); 1945 mutex_exit(&db->db_mtx); 1946 #ifdef ZFS_DEBUG 1947 } else { 1948 /* 1949 * We don't need to dnode_setdirty(dn) because if we got 1950 * here then the parent is already dirty. 1951 */ 1952 ASSERT(db->db_level == dn->dn_phys->dn_nlevels-1); 1953 ASSERT3P(db->db_blkptr, ==, 1954 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1955 #endif 1956 } 1957 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1958 1959 if (db->db_level == 0 && 1960 db->db_d.db_overridden_by[txg&TXG_MASK] != NULL) { 1961 arc_buf_t **old = 1962 (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK]; 1963 blkptr_t **bpp = &db->db_d.db_overridden_by[txg&TXG_MASK]; 1964 int old_size = bp_get_dasize(os->os_spa, db->db_blkptr); 1965 int new_size = bp_get_dasize(os->os_spa, *bpp); 1966 1967 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1968 1969 dnode_diduse_space(dn, new_size-old_size); 1970 mutex_enter(&dn->dn_mtx); 1971 if (db->db_blkid > dn->dn_phys->dn_maxblkid) 1972 dn->dn_phys->dn_maxblkid = db->db_blkid; 1973 mutex_exit(&dn->dn_mtx); 1974 1975 dsl_dataset_block_born(os->os_dsl_dataset, *bpp, tx); 1976 if (!BP_IS_HOLE(db->db_blkptr)) 1977 dsl_dataset_block_kill(os->os_dsl_dataset, 1978 db->db_blkptr, os->os_synctx); 1979 1980 mutex_enter(&db->db_mtx); 1981 *db->db_blkptr = **bpp; 1982 kmem_free(*bpp, sizeof (blkptr_t)); 1983 *bpp = NULL; 1984 1985 if (*old != db->db_buf) 1986 VERIFY(arc_buf_remove_ref(*old, db) == 1); 1987 else if (!BP_IS_HOLE(db->db_blkptr)) 1988 arc_set_callback(db->db_buf, dbuf_do_evict, db); 1989 else 1990 ASSERT(arc_released(db->db_buf)); 1991 *old = NULL; 1992 db->db_data_pending = NULL; 1993 1994 cv_broadcast(&db->db_changed); 1995 1996 ASSERT(db->db_dirtycnt > 0); 1997 db->db_dirtycnt -= 1; 1998 mutex_exit(&db->db_mtx); 1999 dbuf_rele(db, (void *)(uintptr_t)txg); 2000 return; 2001 } 2002 2003 if (db->db_level > 0) { 2004 /* 2005 * XXX -- we should design a compression algorithm 2006 * that specializes in arrays of bps. 2007 */ 2008 checksum = ZIO_CHECKSUM_FLETCHER_4; 2009 compress = ZIO_COMPRESS_LZJB; 2010 } else { 2011 /* 2012 * Allow dnode settings to override objset settings, 2013 * except for metadata checksums. 2014 */ 2015 if (dmu_ot[dn->dn_type].ot_metadata) { 2016 checksum = os->os_md_checksum; 2017 compress = zio_compress_select(dn->dn_compress, 2018 os->os_md_compress); 2019 } else { 2020 checksum = zio_checksum_select(dn->dn_checksum, 2021 os->os_checksum); 2022 compress = zio_compress_select(dn->dn_compress, 2023 os->os_compress); 2024 } 2025 } 2026 #ifdef ZFS_DEBUG 2027 if (db->db_parent) { 2028 ASSERT(list_link_active( 2029 &db->db_parent->db_dirty_node[txg&TXG_MASK])); 2030 ASSERT(db->db_parent == dn->dn_dbuf || 2031 db->db_parent->db_level > 0); 2032 if (dn->dn_object == DMU_META_DNODE_OBJECT || db->db_level > 0) 2033 ASSERT(*data == db->db_buf); 2034 } 2035 #endif 2036 ASSERT3U(db->db_blkptr->blk_birth, <=, tx->tx_txg); 2037 zb.zb_objset = os->os_dsl_dataset ? os->os_dsl_dataset->ds_object : 0; 2038 zb.zb_object = db->db.db_object; 2039 zb.zb_level = db->db_level; 2040 zb.zb_blkid = db->db_blkid; 2041 2042 (void) arc_write(zio, os->os_spa, checksum, compress, 2043 dmu_get_replication_level(os->os_spa, &zb, dn->dn_type), txg, 2044 db->db_blkptr, *data, dbuf_write_done, db, 2045 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, ARC_NOWAIT, &zb); 2046 /* 2047 * We can't access db after arc_write, since it could finish 2048 * and be freed, and we have no locks on it. 2049 */ 2050 } 2051 2052 struct dbuf_arg { 2053 objset_impl_t *os; 2054 blkptr_t bp; 2055 }; 2056 2057 static void 2058 dbuf_do_born(void *arg) 2059 { 2060 struct dbuf_arg *da = arg; 2061 dsl_dataset_block_born(da->os->os_dsl_dataset, 2062 &da->bp, da->os->os_synctx); 2063 kmem_free(da, sizeof (struct dbuf_arg)); 2064 } 2065 2066 static void 2067 dbuf_do_kill(void *arg) 2068 { 2069 struct dbuf_arg *da = arg; 2070 dsl_dataset_block_kill(da->os->os_dsl_dataset, 2071 &da->bp, da->os->os_synctx); 2072 kmem_free(da, sizeof (struct dbuf_arg)); 2073 } 2074 2075 /* ARGSUSED */ 2076 static void 2077 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2078 { 2079 dmu_buf_impl_t *db = vdb; 2080 dnode_t *dn = db->db_dnode; 2081 objset_impl_t *os = dn->dn_objset; 2082 uint64_t txg = zio->io_txg; 2083 uint64_t fill = 0; 2084 int i; 2085 int old_size, new_size; 2086 2087 ASSERT3U(zio->io_error, ==, 0); 2088 2089 dprintf_dbuf_bp(db, &zio->io_bp_orig, "bp_orig: %s", ""); 2090 2091 old_size = bp_get_dasize(os->os_spa, &zio->io_bp_orig); 2092 new_size = bp_get_dasize(os->os_spa, zio->io_bp); 2093 2094 dnode_diduse_space(dn, new_size-old_size); 2095 2096 mutex_enter(&db->db_mtx); 2097 2098 ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK] == NULL); 2099 2100 if (db->db_dirtied == txg) 2101 db->db_dirtied = 0; 2102 2103 if (db->db_level == 0) { 2104 arc_buf_t **old = 2105 (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK]; 2106 2107 ASSERT(db->db_blkid != DB_BONUS_BLKID); 2108 2109 if (*old != db->db_buf) 2110 VERIFY(arc_buf_remove_ref(*old, db) == 1); 2111 else if (!BP_IS_HOLE(db->db_blkptr)) 2112 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2113 else 2114 ASSERT(arc_released(db->db_buf)); 2115 *old = NULL; 2116 db->db_data_pending = NULL; 2117 2118 mutex_enter(&dn->dn_mtx); 2119 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2120 !BP_IS_HOLE(db->db_blkptr)) 2121 dn->dn_phys->dn_maxblkid = db->db_blkid; 2122 mutex_exit(&dn->dn_mtx); 2123 2124 if (dn->dn_type == DMU_OT_DNODE) { 2125 dnode_phys_t *dnp = db->db.db_data; 2126 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2127 i--, dnp++) { 2128 if (dnp->dn_type != DMU_OT_NONE) 2129 fill++; 2130 } 2131 } else { 2132 if (!BP_IS_HOLE(db->db_blkptr)) 2133 fill = 1; 2134 } 2135 } else { 2136 blkptr_t *bp = db->db.db_data; 2137 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2138 if (!BP_IS_HOLE(db->db_blkptr)) { 2139 int epbs = 2140 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2141 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, db->db.db_size); 2142 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 2143 db->db.db_size); 2144 ASSERT3U(dn->dn_phys->dn_maxblkid 2145 >> (db->db_level * epbs), >=, db->db_blkid); 2146 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2147 } 2148 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, bp++) { 2149 if (BP_IS_HOLE(bp)) 2150 continue; 2151 ASSERT3U(BP_GET_LSIZE(bp), ==, 2152 db->db_level == 1 ? dn->dn_datablksz : 2153 (1<<dn->dn_phys->dn_indblkshift)); 2154 fill += bp->blk_fill; 2155 } 2156 } 2157 2158 if (!BP_IS_HOLE(db->db_blkptr)) { 2159 db->db_blkptr->blk_fill = fill; 2160 BP_SET_TYPE(db->db_blkptr, dn->dn_type); 2161 BP_SET_LEVEL(db->db_blkptr, db->db_level); 2162 } else { 2163 ASSERT3U(fill, ==, 0); 2164 ASSERT3U(db->db_blkptr->blk_fill, ==, 0); 2165 } 2166 2167 dprintf_dbuf_bp(db, db->db_blkptr, 2168 "wrote %llu bytes to blkptr:", zio->io_size); 2169 2170 ASSERT(db->db_parent == NULL || 2171 list_link_active(&db->db_parent->db_dirty_node[txg&TXG_MASK])); 2172 cv_broadcast(&db->db_changed); 2173 ASSERT(db->db_dirtycnt > 0); 2174 db->db_dirtycnt -= 1; 2175 mutex_exit(&db->db_mtx); 2176 2177 /* We must do this after we've set the bp's type and level */ 2178 if (!DVA_EQUAL(BP_IDENTITY(zio->io_bp), 2179 BP_IDENTITY(&zio->io_bp_orig))) { 2180 struct dbuf_arg *da; 2181 da = kmem_alloc(sizeof (struct dbuf_arg), KM_SLEEP); 2182 da->os = os; 2183 da->bp = *zio->io_bp; 2184 (void) taskq_dispatch(dbuf_tq, dbuf_do_born, da, 0); 2185 if (!BP_IS_HOLE(&zio->io_bp_orig)) { 2186 da = kmem_alloc(sizeof (struct dbuf_arg), KM_SLEEP); 2187 da->os = os; 2188 da->bp = zio->io_bp_orig; 2189 (void) taskq_dispatch(dbuf_tq, dbuf_do_kill, da, 0); 2190 } 2191 } 2192 2193 dbuf_rele(db, (void *)(uintptr_t)txg); 2194 } 2195