1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dbuf.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/spa.h> 37 #include <sys/zio.h> 38 #include <sys/dmu_zfetch.h> 39 40 static void dbuf_destroy(dmu_buf_impl_t *db); 41 static int dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 42 static arc_done_func_t dbuf_write_done; 43 44 /* 45 * Global data structures and functions for the dbuf cache. 46 */ 47 taskq_t *dbuf_tq; 48 static kmem_cache_t *dbuf_cache; 49 50 /* ARGSUSED */ 51 static int 52 dbuf_cons(void *vdb, void *unused, int kmflag) 53 { 54 dmu_buf_impl_t *db = vdb; 55 bzero(db, sizeof (dmu_buf_impl_t)); 56 57 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 58 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 59 refcount_create(&db->db_holds); 60 return (0); 61 } 62 63 /* ARGSUSED */ 64 static void 65 dbuf_dest(void *vdb, void *unused) 66 { 67 dmu_buf_impl_t *db = vdb; 68 mutex_destroy(&db->db_mtx); 69 cv_destroy(&db->db_changed); 70 refcount_destroy(&db->db_holds); 71 } 72 73 /* 74 * dbuf hash table routines 75 */ 76 static dbuf_hash_table_t dbuf_hash_table; 77 78 static uint64_t dbuf_hash_count; 79 80 static uint64_t 81 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 82 { 83 uintptr_t osv = (uintptr_t)os; 84 uint64_t crc = -1ULL; 85 86 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 87 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 88 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 89 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 90 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 91 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 92 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 93 94 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 95 96 return (crc); 97 } 98 99 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 100 101 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 102 ((dbuf)->db.db_object == (obj) && \ 103 (dbuf)->db_objset == (os) && \ 104 (dbuf)->db_level == (level) && \ 105 (dbuf)->db_blkid == (blkid)) 106 107 dmu_buf_impl_t * 108 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) 109 { 110 dbuf_hash_table_t *h = &dbuf_hash_table; 111 objset_impl_t *os = dn->dn_objset; 112 uint64_t obj = dn->dn_object; 113 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 114 uint64_t idx = hv & h->hash_table_mask; 115 dmu_buf_impl_t *db; 116 117 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 118 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 119 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 120 mutex_enter(&db->db_mtx); 121 if (db->db_state != DB_EVICTING) { 122 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 123 return (db); 124 } 125 mutex_exit(&db->db_mtx); 126 } 127 } 128 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 129 return (NULL); 130 } 131 132 /* 133 * Insert an entry into the hash table. If there is already an element 134 * equal to elem in the hash table, then the already existing element 135 * will be returned and the new element will not be inserted. 136 * Otherwise returns NULL. 137 */ 138 static dmu_buf_impl_t * 139 dbuf_hash_insert(dmu_buf_impl_t *db) 140 { 141 dbuf_hash_table_t *h = &dbuf_hash_table; 142 objset_impl_t *os = db->db_objset; 143 uint64_t obj = db->db.db_object; 144 int level = db->db_level; 145 uint64_t blkid = db->db_blkid; 146 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 147 uint64_t idx = hv & h->hash_table_mask; 148 dmu_buf_impl_t *dbf; 149 150 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 151 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 152 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 153 mutex_enter(&dbf->db_mtx); 154 if (dbf->db_state != DB_EVICTING) { 155 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 156 return (dbf); 157 } 158 mutex_exit(&dbf->db_mtx); 159 } 160 } 161 162 mutex_enter(&db->db_mtx); 163 db->db_hash_next = h->hash_table[idx]; 164 h->hash_table[idx] = db; 165 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 166 atomic_add_64(&dbuf_hash_count, 1); 167 168 return (NULL); 169 } 170 171 /* 172 * Remove an entry from the hash table. This operation will 173 * fail if there are any existing holds on the db. 174 */ 175 static void 176 dbuf_hash_remove(dmu_buf_impl_t *db) 177 { 178 dbuf_hash_table_t *h = &dbuf_hash_table; 179 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 180 db->db_level, db->db_blkid); 181 uint64_t idx = hv & h->hash_table_mask; 182 dmu_buf_impl_t *dbf, **dbp; 183 184 /* 185 * We musn't hold db_mtx to maintin lock ordering: 186 * DBUF_HASH_MUTEX > db_mtx. 187 */ 188 ASSERT(refcount_is_zero(&db->db_holds)); 189 ASSERT(db->db_state == DB_EVICTING); 190 ASSERT(!MUTEX_HELD(&db->db_mtx)); 191 192 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 193 dbp = &h->hash_table[idx]; 194 while ((dbf = *dbp) != db) { 195 dbp = &dbf->db_hash_next; 196 ASSERT(dbf != NULL); 197 } 198 *dbp = db->db_hash_next; 199 db->db_hash_next = NULL; 200 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 201 atomic_add_64(&dbuf_hash_count, -1); 202 } 203 204 static arc_evict_func_t dbuf_do_evict; 205 206 static void 207 dbuf_evict_user(dmu_buf_impl_t *db) 208 { 209 ASSERT(MUTEX_HELD(&db->db_mtx)); 210 211 if (db->db_level != 0 || db->db_d.db_evict_func == NULL) 212 return; 213 214 if (db->db_d.db_user_data_ptr_ptr) 215 *db->db_d.db_user_data_ptr_ptr = db->db.db_data; 216 db->db_d.db_evict_func(&db->db, db->db_d.db_user_ptr); 217 db->db_d.db_user_ptr = NULL; 218 db->db_d.db_user_data_ptr_ptr = NULL; 219 db->db_d.db_evict_func = NULL; 220 } 221 222 void 223 dbuf_evict(dmu_buf_impl_t *db) 224 { 225 int i; 226 227 ASSERT(MUTEX_HELD(&db->db_mtx)); 228 ASSERT(db->db_buf == NULL); 229 230 #ifdef ZFS_DEBUG 231 for (i = 0; i < TXG_SIZE; i++) { 232 ASSERT(!list_link_active(&db->db_dirty_node[i])); 233 ASSERT(db->db_level != 0 || db->db_d.db_data_old[i] == NULL); 234 } 235 #endif 236 dbuf_clear(db); 237 dbuf_destroy(db); 238 } 239 240 void 241 dbuf_init(void) 242 { 243 uint64_t hsize = 1ULL << 16; 244 dbuf_hash_table_t *h = &dbuf_hash_table; 245 int i; 246 247 /* 248 * The hash table is big enough to fill all of physical memory 249 * with an average 4K block size. The table will take up 250 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 251 */ 252 while (hsize * 4096 < physmem * PAGESIZE) 253 hsize <<= 1; 254 255 retry: 256 h->hash_table_mask = hsize - 1; 257 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 258 if (h->hash_table == NULL) { 259 /* XXX - we should really return an error instead of assert */ 260 ASSERT(hsize > (1ULL << 10)); 261 hsize >>= 1; 262 goto retry; 263 } 264 265 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 266 sizeof (dmu_buf_impl_t), 267 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 268 dbuf_tq = taskq_create("dbuf_tq", 8, maxclsyspri, 50, INT_MAX, 269 TASKQ_PREPOPULATE); 270 271 for (i = 0; i < DBUF_MUTEXES; i++) 272 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 273 } 274 275 void 276 dbuf_fini(void) 277 { 278 dbuf_hash_table_t *h = &dbuf_hash_table; 279 int i; 280 281 taskq_destroy(dbuf_tq); 282 dbuf_tq = NULL; 283 284 for (i = 0; i < DBUF_MUTEXES; i++) 285 mutex_destroy(&h->hash_mutexes[i]); 286 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 287 kmem_cache_destroy(dbuf_cache); 288 } 289 290 /* 291 * Other stuff. 292 */ 293 294 #ifdef ZFS_DEBUG 295 static void 296 dbuf_verify(dmu_buf_impl_t *db) 297 { 298 int i; 299 dnode_t *dn = db->db_dnode; 300 301 ASSERT(MUTEX_HELD(&db->db_mtx)); 302 303 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 304 return; 305 306 ASSERT(db->db_objset != NULL); 307 if (dn == NULL) { 308 ASSERT(db->db_parent == NULL); 309 ASSERT(db->db_blkptr == NULL); 310 } else { 311 ASSERT3U(db->db.db_object, ==, dn->dn_object); 312 ASSERT3P(db->db_objset, ==, dn->dn_objset); 313 ASSERT3U(db->db_level, <, dn->dn_nlevels); 314 ASSERT(db->db_blkid == DB_BONUS_BLKID || 315 list_head(&dn->dn_dbufs)); 316 } 317 if (db->db_blkid == DB_BONUS_BLKID) { 318 ASSERT(dn != NULL); 319 ASSERT3U(db->db.db_size, ==, dn->dn_bonuslen); 320 ASSERT3U(db->db.db_offset, ==, DB_BONUS_BLKID); 321 } else { 322 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 323 } 324 325 if (db->db_level == 0) { 326 /* we can be momentarily larger in dnode_set_blksz() */ 327 if (db->db_blkid != DB_BONUS_BLKID && dn) { 328 ASSERT3U(db->db.db_size, >=, dn->dn_datablksz); 329 } 330 if (db->db.db_object == DMU_META_DNODE_OBJECT) { 331 for (i = 0; i < TXG_SIZE; i++) { 332 /* 333 * it should only be modified in syncing 334 * context, so make sure we only have 335 * one copy of the data. 336 */ 337 ASSERT(db->db_d.db_data_old[i] == NULL || 338 db->db_d.db_data_old[i] == db->db_buf); 339 } 340 } 341 } 342 343 /* verify db->db_blkptr */ 344 if (db->db_blkptr) { 345 if (db->db_parent == dn->dn_dbuf) { 346 /* db is pointed to by the dnode */ 347 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 348 if (db->db.db_object == DMU_META_DNODE_OBJECT) 349 ASSERT(db->db_parent == NULL); 350 else 351 ASSERT(db->db_parent != NULL); 352 ASSERT3P(db->db_blkptr, ==, 353 &dn->dn_phys->dn_blkptr[db->db_blkid]); 354 } else { 355 /* db is pointed to by an indirect block */ 356 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 357 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 358 ASSERT3U(db->db_parent->db.db_object, ==, 359 db->db.db_object); 360 /* 361 * dnode_grow_indblksz() can make this fail if we don't 362 * have the struct_rwlock. XXX indblksz no longer 363 * grows. safe to do this now? 364 */ 365 if (RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)) { 366 ASSERT3P(db->db_blkptr, ==, 367 ((blkptr_t *)db->db_parent->db.db_data + 368 db->db_blkid % epb)); 369 } 370 } 371 } 372 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 373 db->db.db_data && db->db_blkid != DB_BONUS_BLKID && 374 db->db_state != DB_FILL && !dn->dn_free_txg) { 375 /* 376 * If the blkptr isn't set but they have nonzero data, 377 * it had better be dirty, otherwise we'll lose that 378 * data when we evict this buffer. 379 */ 380 if (db->db_dirtycnt == 0) { 381 uint64_t *buf = db->db.db_data; 382 int i; 383 384 for (i = 0; i < db->db.db_size >> 3; i++) { 385 ASSERT(buf[i] == 0); 386 } 387 } 388 } 389 } 390 #endif 391 392 static void 393 dbuf_update_data(dmu_buf_impl_t *db) 394 { 395 ASSERT(MUTEX_HELD(&db->db_mtx)); 396 if (db->db_level == 0 && db->db_d.db_user_data_ptr_ptr) { 397 ASSERT(!refcount_is_zero(&db->db_holds)); 398 *db->db_d.db_user_data_ptr_ptr = db->db.db_data; 399 } 400 } 401 402 static void 403 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 404 { 405 ASSERT(MUTEX_HELD(&db->db_mtx)); 406 ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf)); 407 db->db_buf = buf; 408 if (buf != NULL) { 409 ASSERT(buf->b_data != NULL); 410 db->db.db_data = buf->b_data; 411 if (!arc_released(buf)) 412 arc_set_callback(buf, dbuf_do_evict, db); 413 dbuf_update_data(db); 414 } else { 415 dbuf_evict_user(db); 416 db->db.db_data = NULL; 417 db->db_state = DB_UNCACHED; 418 } 419 } 420 421 uint64_t 422 dbuf_whichblock(dnode_t *dn, uint64_t offset) 423 { 424 if (dn->dn_datablkshift) { 425 return (offset >> dn->dn_datablkshift); 426 } else { 427 ASSERT3U(offset, <, dn->dn_datablksz); 428 return (0); 429 } 430 } 431 432 static void 433 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 434 { 435 dmu_buf_impl_t *db = vdb; 436 437 mutex_enter(&db->db_mtx); 438 ASSERT3U(db->db_state, ==, DB_READ); 439 /* 440 * All reads are synchronous, so we must have a hold on the dbuf 441 */ 442 ASSERT(refcount_count(&db->db_holds) > 0); 443 ASSERT(db->db_buf == NULL); 444 ASSERT(db->db.db_data == NULL); 445 if (db->db_level == 0 && db->db_d.db_freed_in_flight) { 446 /* we were freed in flight; disregard any error */ 447 arc_release(buf, db); 448 bzero(buf->b_data, db->db.db_size); 449 db->db_d.db_freed_in_flight = FALSE; 450 dbuf_set_data(db, buf); 451 db->db_state = DB_CACHED; 452 } else if (zio == NULL || zio->io_error == 0) { 453 dbuf_set_data(db, buf); 454 db->db_state = DB_CACHED; 455 } else { 456 ASSERT(db->db_blkid != DB_BONUS_BLKID); 457 ASSERT3P(db->db_buf, ==, NULL); 458 VERIFY(arc_buf_remove_ref(buf, db) == 1); 459 db->db_state = DB_UNCACHED; 460 } 461 cv_broadcast(&db->db_changed); 462 mutex_exit(&db->db_mtx); 463 dbuf_rele(db, NULL); 464 } 465 466 static void 467 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags) 468 { 469 blkptr_t *bp; 470 zbookmark_t zb; 471 uint32_t aflags = ARC_NOWAIT; 472 473 ASSERT(!refcount_is_zero(&db->db_holds)); 474 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 475 ASSERT(RW_LOCK_HELD(&db->db_dnode->dn_struct_rwlock)); 476 ASSERT(MUTEX_HELD(&db->db_mtx)); 477 ASSERT(db->db_state == DB_UNCACHED); 478 ASSERT(db->db_buf == NULL); 479 480 if (db->db_blkid == DB_BONUS_BLKID) { 481 ASSERT3U(db->db_dnode->dn_bonuslen, ==, db->db.db_size); 482 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 483 if (db->db.db_size < DN_MAX_BONUSLEN) 484 bzero(db->db.db_data, DN_MAX_BONUSLEN); 485 bcopy(DN_BONUS(db->db_dnode->dn_phys), db->db.db_data, 486 db->db.db_size); 487 dbuf_update_data(db); 488 db->db_state = DB_CACHED; 489 mutex_exit(&db->db_mtx); 490 return; 491 } 492 493 if (db->db_level == 0 && dnode_block_freed(db->db_dnode, db->db_blkid)) 494 bp = NULL; 495 else 496 bp = db->db_blkptr; 497 498 if (bp == NULL) 499 dprintf_dbuf(db, "blkptr: %s\n", "NULL"); 500 else 501 dprintf_dbuf_bp(db, bp, "%s", "blkptr:"); 502 503 if (bp == NULL || BP_IS_HOLE(bp)) { 504 ASSERT(bp == NULL || BP_IS_HOLE(bp)); 505 dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa, 506 db->db.db_size, db)); 507 bzero(db->db.db_data, db->db.db_size); 508 db->db_state = DB_CACHED; 509 *flags |= DB_RF_CACHED; 510 mutex_exit(&db->db_mtx); 511 return; 512 } 513 514 db->db_state = DB_READ; 515 mutex_exit(&db->db_mtx); 516 517 zb.zb_objset = db->db_objset->os_dsl_dataset ? 518 db->db_objset->os_dsl_dataset->ds_object : 0; 519 zb.zb_object = db->db.db_object; 520 zb.zb_level = db->db_level; 521 zb.zb_blkid = db->db_blkid; 522 523 dbuf_add_ref(db, NULL); 524 /* ZIO_FLAG_CANFAIL callers have to check the parent zio's error */ 525 (void) arc_read(zio, db->db_dnode->dn_objset->os_spa, bp, 526 db->db_level > 0 ? byteswap_uint64_array : 527 dmu_ot[db->db_dnode->dn_type].ot_byteswap, 528 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 529 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 530 &aflags, &zb); 531 if (aflags & ARC_CACHED) 532 *flags |= DB_RF_CACHED; 533 } 534 535 int 536 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 537 { 538 int err = 0; 539 int havepzio = (zio != NULL); 540 int prefetch; 541 542 /* 543 * We don't have to hold the mutex to check db_state because it 544 * can't be freed while we have a hold on the buffer. 545 */ 546 ASSERT(!refcount_is_zero(&db->db_holds)); 547 548 if ((flags & DB_RF_HAVESTRUCT) == 0) 549 rw_enter(&db->db_dnode->dn_struct_rwlock, RW_READER); 550 551 prefetch = db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID && 552 (flags & DB_RF_NOPREFETCH) == 0 && db->db_dnode != NULL; 553 554 mutex_enter(&db->db_mtx); 555 if (db->db_state == DB_CACHED) { 556 mutex_exit(&db->db_mtx); 557 if (prefetch) 558 dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset, 559 db->db.db_size, TRUE); 560 if ((flags & DB_RF_HAVESTRUCT) == 0) 561 rw_exit(&db->db_dnode->dn_struct_rwlock); 562 } else if (db->db_state == DB_UNCACHED) { 563 if (zio == NULL) { 564 zio = zio_root(db->db_dnode->dn_objset->os_spa, 565 NULL, NULL, ZIO_FLAG_CANFAIL); 566 } 567 dbuf_read_impl(db, zio, &flags); 568 569 /* dbuf_read_impl has dropped db_mtx for us */ 570 571 if (prefetch) 572 dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset, 573 db->db.db_size, flags & DB_RF_CACHED); 574 575 if ((flags & DB_RF_HAVESTRUCT) == 0) 576 rw_exit(&db->db_dnode->dn_struct_rwlock); 577 578 if (!havepzio) 579 err = zio_wait(zio); 580 } else { 581 mutex_exit(&db->db_mtx); 582 if (prefetch) 583 dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset, 584 db->db.db_size, TRUE); 585 if ((flags & DB_RF_HAVESTRUCT) == 0) 586 rw_exit(&db->db_dnode->dn_struct_rwlock); 587 588 mutex_enter(&db->db_mtx); 589 if ((flags & DB_RF_NEVERWAIT) == 0) { 590 while (db->db_state == DB_READ || 591 db->db_state == DB_FILL) { 592 ASSERT(db->db_state == DB_READ || 593 (flags & DB_RF_HAVESTRUCT) == 0); 594 cv_wait(&db->db_changed, &db->db_mtx); 595 } 596 if (db->db_state == DB_UNCACHED) 597 err = EIO; 598 } 599 mutex_exit(&db->db_mtx); 600 } 601 602 ASSERT(err || havepzio || db->db_state == DB_CACHED); 603 return (err); 604 } 605 606 static void 607 dbuf_noread(dmu_buf_impl_t *db) 608 { 609 ASSERT(!refcount_is_zero(&db->db_holds)); 610 ASSERT(db->db_blkid != DB_BONUS_BLKID); 611 mutex_enter(&db->db_mtx); 612 while (db->db_state == DB_READ || db->db_state == DB_FILL) 613 cv_wait(&db->db_changed, &db->db_mtx); 614 if (db->db_state == DB_UNCACHED) { 615 ASSERT(db->db_buf == NULL); 616 ASSERT(db->db.db_data == NULL); 617 dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa, 618 db->db.db_size, db)); 619 db->db_state = DB_FILL; 620 } else { 621 ASSERT3U(db->db_state, ==, DB_CACHED); 622 } 623 mutex_exit(&db->db_mtx); 624 } 625 626 /* 627 * This is our just-in-time copy function. It makes a copy of 628 * buffers, that have been modified in a previous transaction 629 * group, before we modify them in the current active group. 630 * 631 * This function is used in two places: when we are dirtying a 632 * buffer for the first time in a txg, and when we are freeing 633 * a range in a dnode that includes this buffer. 634 * 635 * Note that when we are called from dbuf_free_range() we do 636 * not put a hold on the buffer, we just traverse the active 637 * dbuf list for the dnode. 638 */ 639 static void 640 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 641 { 642 arc_buf_t **quiescing, **syncing; 643 644 ASSERT(MUTEX_HELD(&db->db_mtx)); 645 ASSERT(db->db.db_data != NULL); 646 ASSERT(db->db_blkid != DB_BONUS_BLKID); 647 648 quiescing = (arc_buf_t **)&db->db_d.db_data_old[(txg-1)&TXG_MASK]; 649 syncing = (arc_buf_t **)&db->db_d.db_data_old[(txg-2)&TXG_MASK]; 650 651 /* 652 * If this buffer is referenced from the current quiescing 653 * transaction group: either make a copy and reset the reference 654 * to point to the copy, or (if there a no active holders) just 655 * null out the current db_data pointer. 656 */ 657 if (*quiescing == db->db_buf) { 658 /* 659 * If the quiescing txg is "dirty", then we better not 660 * be referencing the same buffer from the syncing txg. 661 */ 662 ASSERT(*syncing != db->db_buf); 663 if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 664 int size = db->db.db_size; 665 *quiescing = arc_buf_alloc( 666 db->db_dnode->dn_objset->os_spa, size, db); 667 bcopy(db->db.db_data, (*quiescing)->b_data, size); 668 } else { 669 dbuf_set_data(db, NULL); 670 } 671 return; 672 } 673 674 /* 675 * If this buffer is referenced from the current syncing 676 * transaction group: either 677 * 1 - make a copy and reset the reference, or 678 * 2 - if there are no holders, just null the current db_data. 679 */ 680 if (*syncing == db->db_buf) { 681 ASSERT3P(*quiescing, ==, NULL); 682 ASSERT3U(db->db_dirtycnt, ==, 1); 683 if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 684 int size = db->db.db_size; 685 /* we can't copy if we have already started a write */ 686 ASSERT(*syncing != db->db_data_pending); 687 *syncing = arc_buf_alloc( 688 db->db_dnode->dn_objset->os_spa, size, db); 689 bcopy(db->db.db_data, (*syncing)->b_data, size); 690 } else { 691 dbuf_set_data(db, NULL); 692 } 693 } 694 } 695 696 /* 697 * This is the "bonus buffer" version of the above routine 698 */ 699 static void 700 dbuf_fix_old_bonus_data(dmu_buf_impl_t *db, uint64_t txg) 701 { 702 void **quiescing, **syncing; 703 704 ASSERT(MUTEX_HELD(&db->db_mtx)); 705 ASSERT(db->db.db_data != NULL); 706 ASSERT(db->db_blkid == DB_BONUS_BLKID); 707 708 quiescing = &db->db_d.db_data_old[(txg-1)&TXG_MASK]; 709 syncing = &db->db_d.db_data_old[(txg-2)&TXG_MASK]; 710 711 if (*quiescing == db->db.db_data) { 712 ASSERT(*syncing != db->db.db_data); 713 *quiescing = zio_buf_alloc(DN_MAX_BONUSLEN); 714 bcopy(db->db.db_data, *quiescing, DN_MAX_BONUSLEN); 715 } else if (*syncing == db->db.db_data) { 716 ASSERT3P(*quiescing, ==, NULL); 717 ASSERT3U(db->db_dirtycnt, ==, 1); 718 *syncing = zio_buf_alloc(DN_MAX_BONUSLEN); 719 bcopy(db->db.db_data, *syncing, DN_MAX_BONUSLEN); 720 } 721 } 722 723 void 724 dbuf_unoverride(dmu_buf_impl_t *db, uint64_t txg) 725 { 726 ASSERT(db->db_blkid != DB_BONUS_BLKID); 727 ASSERT(MUTEX_HELD(&db->db_mtx)); 728 ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK] != IN_DMU_SYNC); 729 730 if (db->db_d.db_overridden_by[txg&TXG_MASK] != NULL) { 731 /* free this block */ 732 ASSERT(list_link_active(&db->db_dirty_node[txg&TXG_MASK]) || 733 db->db_dnode->dn_free_txg == txg); 734 if (!BP_IS_HOLE(db->db_d.db_overridden_by[txg&TXG_MASK])) { 735 /* XXX can get silent EIO here */ 736 (void) arc_free(NULL, db->db_dnode->dn_objset->os_spa, 737 txg, db->db_d.db_overridden_by[txg&TXG_MASK], 738 NULL, NULL, ARC_WAIT); 739 } 740 kmem_free(db->db_d.db_overridden_by[txg&TXG_MASK], 741 sizeof (blkptr_t)); 742 db->db_d.db_overridden_by[txg&TXG_MASK] = NULL; 743 /* release the already-written buffer */ 744 arc_release(db->db_d.db_data_old[txg&TXG_MASK], db); 745 } 746 } 747 748 void 749 dbuf_free_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx) 750 { 751 dmu_buf_impl_t *db, *db_next; 752 uint64_t txg = tx->tx_txg; 753 754 dprintf_dnode(dn, "blkid=%llu nblks=%llu\n", blkid, nblks); 755 mutex_enter(&dn->dn_dbufs_mtx); 756 for (db = list_head(&dn->dn_dbufs); db; db = db_next) { 757 db_next = list_next(&dn->dn_dbufs, db); 758 ASSERT(db->db_blkid != DB_BONUS_BLKID); 759 if (db->db_level != 0) 760 continue; 761 dprintf_dbuf(db, "found buf %s\n", ""); 762 if (db->db_blkid < blkid || 763 db->db_blkid >= blkid+nblks) 764 continue; 765 766 /* found a level 0 buffer in the range */ 767 if (dbuf_undirty(db, tx)) 768 continue; 769 770 mutex_enter(&db->db_mtx); 771 if (db->db_state == DB_UNCACHED || 772 db->db_state == DB_EVICTING) { 773 ASSERT(db->db.db_data == NULL); 774 mutex_exit(&db->db_mtx); 775 continue; 776 } 777 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 778 /* will be handled in dbuf_read_done or dbuf_rele */ 779 db->db_d.db_freed_in_flight = TRUE; 780 mutex_exit(&db->db_mtx); 781 continue; 782 } 783 if (refcount_count(&db->db_holds) == 0) { 784 ASSERT(db->db_buf); 785 dbuf_clear(db); 786 continue; 787 } 788 /* The dbuf is CACHED and referenced */ 789 790 if (!list_link_active(&db->db_dirty_node[txg & TXG_MASK])) { 791 /* 792 * This dbuf is not currently dirty. We will either 793 * uncache it (if its not referenced in the open 794 * context) or reset its contents to empty. 795 */ 796 dbuf_fix_old_data(db, txg); 797 } else if (db->db_d.db_overridden_by[txg & TXG_MASK] != NULL) { 798 /* 799 * This dbuf is overridden. Clear that state. 800 */ 801 dbuf_unoverride(db, txg); 802 } 803 /* fill in with appropriate data */ 804 if (db->db_state == DB_CACHED) { 805 ASSERT(db->db.db_data != NULL); 806 arc_release(db->db_buf, db); 807 bzero(db->db.db_data, db->db.db_size); 808 } 809 810 mutex_exit(&db->db_mtx); 811 } 812 mutex_exit(&dn->dn_dbufs_mtx); 813 } 814 815 static int 816 dbuf_new_block(dmu_buf_impl_t *db) 817 { 818 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 819 uint64_t birth_txg = 0; 820 821 /* Don't count meta-objects */ 822 if (ds == NULL) 823 return (FALSE); 824 825 /* 826 * We don't need any locking to protect db_blkptr: 827 * If it's syncing, then db_dirtied will be set so we'll 828 * ignore db_blkptr. 829 */ 830 ASSERT(MUTEX_HELD(&db->db_mtx)); /* XXX strictly necessary? */ 831 /* If we have been dirtied since the last snapshot, its not new */ 832 if (db->db_dirtied) 833 birth_txg = db->db_dirtied; 834 else if (db->db_blkptr) 835 birth_txg = db->db_blkptr->blk_birth; 836 837 if (birth_txg) 838 return (!dsl_dataset_block_freeable(ds, birth_txg)); 839 else 840 return (TRUE); 841 } 842 843 void 844 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 845 { 846 arc_buf_t *buf, *obuf; 847 int osize = db->db.db_size; 848 849 ASSERT(db->db_blkid != DB_BONUS_BLKID); 850 851 /* XXX does *this* func really need the lock? */ 852 ASSERT(RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)); 853 854 /* 855 * This call to dbuf_will_dirty() with the dn_struct_rwlock held 856 * is OK, because there can be no other references to the db 857 * when we are changing its size, so no concurrent DB_FILL can 858 * be happening. 859 */ 860 /* 861 * XXX we should be doing a dbuf_read, checking the return 862 * value and returning that up to our callers 863 */ 864 dbuf_will_dirty(db, tx); 865 866 /* create the data buffer for the new block */ 867 buf = arc_buf_alloc(db->db_dnode->dn_objset->os_spa, size, db); 868 869 /* copy old block data to the new block */ 870 obuf = db->db_buf; 871 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 872 /* zero the remainder */ 873 if (size > osize) 874 bzero((uint8_t *)buf->b_data + osize, size - osize); 875 876 mutex_enter(&db->db_mtx); 877 dbuf_set_data(db, buf); 878 VERIFY(arc_buf_remove_ref(obuf, db) == 1); 879 db->db.db_size = size; 880 881 if (db->db_level == 0) 882 db->db_d.db_data_old[tx->tx_txg&TXG_MASK] = buf; 883 mutex_exit(&db->db_mtx); 884 885 dnode_willuse_space(db->db_dnode, size-osize, tx); 886 } 887 888 void 889 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 890 { 891 dnode_t *dn = db->db_dnode; 892 objset_impl_t *os = dn->dn_objset; 893 int drop_struct_lock = FALSE; 894 int txgoff = tx->tx_txg & TXG_MASK; 895 896 ASSERT(tx->tx_txg != 0); 897 ASSERT(!refcount_is_zero(&db->db_holds)); 898 DMU_TX_DIRTY_BUF(tx, db); 899 900 /* 901 * Shouldn't dirty a regular buffer in syncing context. Private 902 * objects may be dirtied in syncing context, but only if they 903 * were already pre-dirtied in open context. 904 * XXX We may want to prohibit dirtying in syncing context even 905 * if they did pre-dirty. 906 */ 907 ASSERT(!(dmu_tx_is_syncing(tx) && 908 !BP_IS_HOLE(&dn->dn_objset->os_rootbp) && 909 dn->dn_object != DMU_META_DNODE_OBJECT && 910 dn->dn_objset->os_dsl_dataset != NULL && 911 !dsl_dir_is_private( 912 dn->dn_objset->os_dsl_dataset->ds_dir))); 913 914 /* 915 * We make this assert for private objects as well, but after we 916 * check if we're already dirty. They are allowed to re-dirty 917 * in syncing context. 918 */ 919 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 920 dn->dn_dirtyctx == DN_UNDIRTIED || 921 dn->dn_dirtyctx == 922 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 923 924 mutex_enter(&db->db_mtx); 925 /* XXX make this true for indirects too? */ 926 ASSERT(db->db_level != 0 || db->db_state == DB_CACHED || 927 db->db_state == DB_FILL); 928 929 /* 930 * If this buffer is currently part of an "overridden" region, 931 * we now need to remove it from that region. 932 */ 933 if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID && 934 db->db_d.db_overridden_by[txgoff] != NULL) { 935 dbuf_unoverride(db, tx->tx_txg); 936 } 937 938 mutex_enter(&dn->dn_mtx); 939 /* 940 * Don't set dirtyctx to SYNC if we're just modifying this as we 941 * initialize the objset. 942 */ 943 if (dn->dn_dirtyctx == DN_UNDIRTIED && 944 !BP_IS_HOLE(&dn->dn_objset->os_rootbp)) { 945 dn->dn_dirtyctx = 946 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 947 ASSERT(dn->dn_dirtyctx_firstset == NULL); 948 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 949 } 950 mutex_exit(&dn->dn_mtx); 951 952 /* 953 * If this buffer is already dirty, we're done. 954 */ 955 if (list_link_active(&db->db_dirty_node[txgoff])) { 956 mutex_exit(&db->db_mtx); 957 return; 958 } 959 960 /* 961 * Only valid if not already dirty. 962 */ 963 ASSERT(dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 964 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 965 966 ASSERT3U(dn->dn_nlevels, >, db->db_level); 967 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 968 dn->dn_phys->dn_nlevels > db->db_level || 969 dn->dn_next_nlevels[txgoff] > db->db_level || 970 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 971 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 972 973 /* 974 * We should only be dirtying in syncing context if it's the 975 * mos, a spa os, or we're initializing the os. However, we are 976 * allowed to dirty in syncing context provided we already 977 * dirtied it in open context. Hence we must make this 978 * assertion only if we're not already dirty. 979 */ 980 ASSERT(!dmu_tx_is_syncing(tx) || 981 os->os_dsl_dataset == NULL || 982 !dsl_dir_is_private(os->os_dsl_dataset->ds_dir) || 983 !BP_IS_HOLE(&os->os_rootbp)); 984 ASSERT(db->db.db_size != 0); 985 986 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 987 988 /* 989 * If this buffer is dirty in an old transaction group we need 990 * to make a copy of it so that the changes we make in this 991 * transaction group won't leak out when we sync the older txg. 992 */ 993 if (db->db_blkid == DB_BONUS_BLKID) { 994 ASSERT(db->db.db_data != NULL); 995 ASSERT(db->db_d.db_data_old[txgoff] == NULL); 996 dbuf_fix_old_bonus_data(db, tx->tx_txg); 997 db->db_d.db_data_old[txgoff] = db->db.db_data; 998 } else if (db->db_level == 0) { 999 /* 1000 * Release the data buffer from the cache so that we 1001 * can modify it without impacting possible other users 1002 * of this cached data block. Note that indirect blocks 1003 * and private objects are not released until the syncing 1004 * state (since they are only modified then). 1005 */ 1006 ASSERT(db->db_buf != NULL); 1007 ASSERT(db->db_d.db_data_old[txgoff] == NULL); 1008 if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1009 arc_release(db->db_buf, db); 1010 dbuf_fix_old_data(db, tx->tx_txg); 1011 ASSERT(db->db_buf != NULL); 1012 } 1013 db->db_d.db_data_old[txgoff] = db->db_buf; 1014 } 1015 1016 mutex_enter(&dn->dn_mtx); 1017 /* 1018 * We could have been freed_in_flight between the dbuf_noread 1019 * and dbuf_dirty. We win, as though the dbuf_noread() had 1020 * happened after the free. 1021 */ 1022 if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID) { 1023 dnode_clear_range(dn, db->db_blkid, 1, tx); 1024 db->db_d.db_freed_in_flight = FALSE; 1025 } 1026 1027 db->db_dirtied = tx->tx_txg; 1028 list_insert_tail(&dn->dn_dirty_dbufs[txgoff], db); 1029 mutex_exit(&dn->dn_mtx); 1030 1031 if (db->db_blkid != DB_BONUS_BLKID) { 1032 /* 1033 * Update the accounting. 1034 */ 1035 if (!dbuf_new_block(db) && db->db_blkptr) { 1036 /* 1037 * This is only a guess -- if the dbuf is dirty 1038 * in a previous txg, we don't know how much 1039 * space it will use on disk yet. We should 1040 * really have the struct_rwlock to access 1041 * db_blkptr, but since this is just a guess, 1042 * it's OK if we get an odd answer. 1043 */ 1044 dnode_willuse_space(dn, 1045 -bp_get_dasize(os->os_spa, db->db_blkptr), tx); 1046 } 1047 dnode_willuse_space(dn, db->db.db_size, tx); 1048 } 1049 1050 /* 1051 * This buffer is now part of this txg 1052 */ 1053 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1054 db->db_dirtycnt += 1; 1055 ASSERT3U(db->db_dirtycnt, <=, 3); 1056 1057 mutex_exit(&db->db_mtx); 1058 1059 if (db->db_blkid == DB_BONUS_BLKID) { 1060 dnode_setdirty(dn, tx); 1061 return; 1062 } 1063 1064 if (db->db_level == 0) 1065 dnode_new_blkid(dn, db->db_blkid, tx); 1066 1067 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1068 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1069 drop_struct_lock = TRUE; 1070 } 1071 1072 if (db->db_level < dn->dn_nlevels-1) { 1073 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1074 dmu_buf_impl_t *parent; 1075 parent = dbuf_hold_level(dn, db->db_level+1, 1076 db->db_blkid >> epbs, FTAG); 1077 if (drop_struct_lock) 1078 rw_exit(&dn->dn_struct_rwlock); 1079 dbuf_dirty(parent, tx); 1080 dbuf_rele(parent, FTAG); 1081 } else { 1082 if (drop_struct_lock) 1083 rw_exit(&dn->dn_struct_rwlock); 1084 } 1085 1086 dnode_setdirty(dn, tx); 1087 } 1088 1089 static int 1090 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1091 { 1092 dnode_t *dn = db->db_dnode; 1093 int txgoff = tx->tx_txg & TXG_MASK; 1094 int64_t holds; 1095 1096 ASSERT(tx->tx_txg != 0); 1097 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1098 1099 mutex_enter(&db->db_mtx); 1100 1101 /* 1102 * If this buffer is not dirty, we're done. 1103 */ 1104 if (!list_link_active(&db->db_dirty_node[txgoff])) { 1105 mutex_exit(&db->db_mtx); 1106 return (0); 1107 } 1108 1109 /* 1110 * If this buffer is currently held, we cannot undirty 1111 * it, since one of the current holders may be in the 1112 * middle of an update. Note that users of dbuf_undirty() 1113 * should not place a hold on the dbuf before the call. 1114 * XXX - this check assumes we are being called from 1115 * dbuf_free_range(), perhaps we should move it there? 1116 */ 1117 if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1118 mutex_exit(&db->db_mtx); 1119 mutex_enter(&dn->dn_mtx); 1120 dnode_clear_range(dn, db->db_blkid, 1, tx); 1121 mutex_exit(&dn->dn_mtx); 1122 return (0); 1123 } 1124 1125 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1126 1127 dbuf_unoverride(db, tx->tx_txg); 1128 1129 ASSERT(db->db.db_size != 0); 1130 if (db->db_level == 0) { 1131 ASSERT(db->db_buf != NULL); 1132 ASSERT(db->db_d.db_data_old[txgoff] != NULL); 1133 if (db->db_d.db_data_old[txgoff] != db->db_buf) 1134 VERIFY(arc_buf_remove_ref( 1135 db->db_d.db_data_old[txgoff], db) == 1); 1136 db->db_d.db_data_old[txgoff] = NULL; 1137 } 1138 1139 /* XXX would be nice to fix up dn_towrite_space[] */ 1140 /* XXX undo db_dirtied? but how? */ 1141 /* db->db_dirtied = tx->tx_txg; */ 1142 1143 mutex_enter(&dn->dn_mtx); 1144 list_remove(&dn->dn_dirty_dbufs[txgoff], db); 1145 mutex_exit(&dn->dn_mtx); 1146 1147 ASSERT(db->db_dirtycnt > 0); 1148 db->db_dirtycnt -= 1; 1149 1150 if ((holds = refcount_remove(&db->db_holds, 1151 (void *)(uintptr_t)tx->tx_txg)) == 0) { 1152 arc_buf_t *buf = db->db_buf; 1153 1154 ASSERT(arc_released(buf)); 1155 dbuf_set_data(db, NULL); 1156 VERIFY(arc_buf_remove_ref(buf, db) == 1); 1157 dbuf_evict(db); 1158 return (1); 1159 } 1160 ASSERT(holds > 0); 1161 1162 mutex_exit(&db->db_mtx); 1163 return (0); 1164 } 1165 1166 #pragma weak dmu_buf_will_dirty = dbuf_will_dirty 1167 void 1168 dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1169 { 1170 int rf = DB_RF_MUST_SUCCEED; 1171 1172 ASSERT(tx->tx_txg != 0); 1173 ASSERT(!refcount_is_zero(&db->db_holds)); 1174 1175 if (RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)) 1176 rf |= DB_RF_HAVESTRUCT; 1177 (void) dbuf_read(db, NULL, rf); 1178 dbuf_dirty(db, tx); 1179 } 1180 1181 void 1182 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1183 { 1184 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1185 1186 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1187 ASSERT(tx->tx_txg != 0); 1188 ASSERT(db->db_level == 0); 1189 ASSERT(!refcount_is_zero(&db->db_holds)); 1190 1191 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1192 dmu_tx_private_ok(tx)); 1193 1194 dbuf_noread(db); 1195 dbuf_dirty(db, tx); 1196 } 1197 1198 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1199 /* ARGSUSED */ 1200 void 1201 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1202 { 1203 mutex_enter(&db->db_mtx); 1204 DBUF_VERIFY(db); 1205 1206 if (db->db_state == DB_FILL) { 1207 if (db->db_level == 0 && db->db_d.db_freed_in_flight) { 1208 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1209 /* we were freed while filling */ 1210 /* XXX dbuf_undirty? */ 1211 bzero(db->db.db_data, db->db.db_size); 1212 db->db_d.db_freed_in_flight = FALSE; 1213 } 1214 db->db_state = DB_CACHED; 1215 cv_broadcast(&db->db_changed); 1216 } 1217 mutex_exit(&db->db_mtx); 1218 } 1219 1220 /* 1221 * "Clear" the contents of this dbuf. This will mark the dbuf 1222 * EVICTING and clear *most* of its references. Unfortunetely, 1223 * when we are not holding the dn_dbufs_mtx, we can't clear the 1224 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1225 * in this case. For callers from the DMU we will usually see: 1226 * dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy() 1227 * For the arc callback, we will usually see: 1228 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1229 * Sometimes, though, we will get a mix of these two: 1230 * DMU: dbuf_clear()->arc_buf_evict() 1231 * ARC: dbuf_do_evict()->dbuf_destroy() 1232 */ 1233 void 1234 dbuf_clear(dmu_buf_impl_t *db) 1235 { 1236 dnode_t *dn = db->db_dnode; 1237 dmu_buf_impl_t *parent = db->db_parent; 1238 dmu_buf_impl_t *dndb = dn->dn_dbuf; 1239 int dbuf_gone = FALSE; 1240 1241 ASSERT(MUTEX_HELD(&db->db_mtx)); 1242 ASSERT(refcount_is_zero(&db->db_holds)); 1243 1244 dbuf_evict_user(db); 1245 1246 if (db->db_state == DB_CACHED) { 1247 ASSERT(db->db.db_data != NULL); 1248 if (db->db_blkid == DB_BONUS_BLKID) 1249 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1250 db->db.db_data = NULL; 1251 db->db_state = DB_UNCACHED; 1252 } 1253 1254 ASSERT3U(db->db_state, ==, DB_UNCACHED); 1255 ASSERT(db->db_data_pending == NULL); 1256 1257 db->db_state = DB_EVICTING; 1258 db->db_blkptr = NULL; 1259 1260 if (db->db_blkid != DB_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1261 list_remove(&dn->dn_dbufs, db); 1262 dnode_rele(dn, db); 1263 } 1264 1265 if (db->db_buf) 1266 dbuf_gone = arc_buf_evict(db->db_buf); 1267 1268 if (!dbuf_gone) 1269 mutex_exit(&db->db_mtx); 1270 1271 /* 1272 * If this dbuf is referened from an indirect dbuf, 1273 * decrement the ref count on the indirect dbuf. 1274 */ 1275 if (parent && parent != dndb) 1276 dbuf_rele(parent, db); 1277 } 1278 1279 static int 1280 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1281 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1282 { 1283 int nlevels, epbs; 1284 1285 *parentp = NULL; 1286 *bpp = NULL; 1287 1288 ASSERT(blkid != DB_BONUS_BLKID); 1289 1290 if (dn->dn_phys->dn_nlevels == 0) 1291 nlevels = 1; 1292 else 1293 nlevels = dn->dn_phys->dn_nlevels; 1294 1295 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1296 1297 ASSERT3U(level * epbs, <, 64); 1298 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1299 if (level >= nlevels || 1300 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1301 /* the buffer has no parent yet */ 1302 return (ENOENT); 1303 } else if (level < nlevels-1) { 1304 /* this block is referenced from an indirect block */ 1305 int err = dbuf_hold_impl(dn, level+1, 1306 blkid >> epbs, fail_sparse, NULL, parentp); 1307 if (err) 1308 return (err); 1309 err = dbuf_read(*parentp, NULL, 1310 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1311 if (err) { 1312 dbuf_rele(*parentp, NULL); 1313 *parentp = NULL; 1314 return (err); 1315 } 1316 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1317 (blkid & ((1ULL << epbs) - 1)); 1318 return (0); 1319 } else { 1320 /* the block is referenced from the dnode */ 1321 ASSERT3U(level, ==, nlevels-1); 1322 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1323 blkid < dn->dn_phys->dn_nblkptr); 1324 if (dn->dn_dbuf) { 1325 dbuf_add_ref(dn->dn_dbuf, NULL); 1326 *parentp = dn->dn_dbuf; 1327 } 1328 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1329 return (0); 1330 } 1331 } 1332 1333 static dmu_buf_impl_t * 1334 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1335 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1336 { 1337 objset_impl_t *os = dn->dn_objset; 1338 dmu_buf_impl_t *db, *odb; 1339 1340 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1341 ASSERT(dn->dn_type != DMU_OT_NONE); 1342 1343 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1344 1345 db->db_objset = os; 1346 db->db.db_object = dn->dn_object; 1347 db->db_level = level; 1348 db->db_blkid = blkid; 1349 db->db_dirtied = 0; 1350 db->db_dirtycnt = 0; 1351 db->db_dnode = dn; 1352 db->db_parent = parent; 1353 db->db_blkptr = blkptr; 1354 1355 bzero(&db->db_d, sizeof (db->db_d)); 1356 1357 if (blkid == DB_BONUS_BLKID) { 1358 ASSERT3P(parent, ==, dn->dn_dbuf); 1359 db->db.db_size = dn->dn_bonuslen; 1360 db->db.db_offset = DB_BONUS_BLKID; 1361 db->db_state = DB_UNCACHED; 1362 /* the bonus dbuf is not placed in the hash table */ 1363 return (db); 1364 } else { 1365 int blocksize = 1366 db->db_level ? 1<<dn->dn_indblkshift : dn->dn_datablksz; 1367 db->db.db_size = blocksize; 1368 db->db.db_offset = db->db_blkid * blocksize; 1369 } 1370 1371 /* 1372 * Hold the dn_dbufs_mtx while we get the new dbuf 1373 * in the hash table *and* added to the dbufs list. 1374 * This prevents a possible deadlock with someone 1375 * trying to look up this dbuf before its added to the 1376 * dn_dbufs list. 1377 */ 1378 mutex_enter(&dn->dn_dbufs_mtx); 1379 db->db_state = DB_EVICTING; 1380 if ((odb = dbuf_hash_insert(db)) != NULL) { 1381 /* someone else inserted it first */ 1382 kmem_cache_free(dbuf_cache, db); 1383 mutex_exit(&dn->dn_dbufs_mtx); 1384 return (odb); 1385 } 1386 list_insert_head(&dn->dn_dbufs, db); 1387 db->db_state = DB_UNCACHED; 1388 mutex_exit(&dn->dn_dbufs_mtx); 1389 1390 if (parent && parent != dn->dn_dbuf) 1391 dbuf_add_ref(parent, db); 1392 1393 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1394 refcount_count(&dn->dn_holds) > 0); 1395 (void) refcount_add(&dn->dn_holds, db); 1396 1397 dprintf_dbuf(db, "db=%p\n", db); 1398 1399 return (db); 1400 } 1401 1402 static int 1403 dbuf_do_evict(void *private) 1404 { 1405 arc_buf_t *buf = private; 1406 dmu_buf_impl_t *db = buf->b_private; 1407 1408 if (!MUTEX_HELD(&db->db_mtx)) 1409 mutex_enter(&db->db_mtx); 1410 1411 ASSERT(refcount_is_zero(&db->db_holds)); 1412 1413 if (db->db_state != DB_EVICTING) { 1414 ASSERT(db->db_state == DB_CACHED); 1415 DBUF_VERIFY(db); 1416 db->db_buf = NULL; 1417 dbuf_evict(db); 1418 } else { 1419 mutex_exit(&db->db_mtx); 1420 dbuf_destroy(db); 1421 } 1422 return (0); 1423 } 1424 1425 static void 1426 dbuf_destroy(dmu_buf_impl_t *db) 1427 { 1428 ASSERT(refcount_is_zero(&db->db_holds)); 1429 1430 if (db->db_blkid != DB_BONUS_BLKID) { 1431 dnode_t *dn = db->db_dnode; 1432 1433 /* 1434 * If this dbuf is still on the dn_dbufs list, 1435 * remove it from that list. 1436 */ 1437 if (list_link_active(&db->db_link)) { 1438 mutex_enter(&dn->dn_dbufs_mtx); 1439 list_remove(&dn->dn_dbufs, db); 1440 mutex_exit(&dn->dn_dbufs_mtx); 1441 1442 dnode_rele(dn, db); 1443 } 1444 dbuf_hash_remove(db); 1445 } 1446 db->db_parent = NULL; 1447 db->db_dnode = NULL; 1448 db->db_buf = NULL; 1449 1450 ASSERT(db->db.db_data == NULL); 1451 ASSERT(db->db_hash_next == NULL); 1452 ASSERT(db->db_blkptr == NULL); 1453 ASSERT(db->db_data_pending == NULL); 1454 1455 kmem_cache_free(dbuf_cache, db); 1456 } 1457 1458 void 1459 dbuf_prefetch(dnode_t *dn, uint64_t blkid) 1460 { 1461 dmu_buf_impl_t *db = NULL; 1462 blkptr_t *bp = NULL; 1463 1464 ASSERT(blkid != DB_BONUS_BLKID); 1465 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1466 1467 if (dnode_block_freed(dn, blkid)) 1468 return; 1469 1470 /* dbuf_find() returns with db_mtx held */ 1471 if (db = dbuf_find(dn, 0, blkid)) { 1472 if (refcount_count(&db->db_holds) > 0) { 1473 /* 1474 * This dbuf is active. We assume that it is 1475 * already CACHED, or else about to be either 1476 * read or filled. 1477 */ 1478 mutex_exit(&db->db_mtx); 1479 return; 1480 } 1481 mutex_exit(&db->db_mtx); 1482 db = NULL; 1483 } 1484 1485 if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) { 1486 if (bp && !BP_IS_HOLE(bp)) { 1487 uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH; 1488 zbookmark_t zb; 1489 zb.zb_objset = dn->dn_objset->os_dsl_dataset ? 1490 dn->dn_objset->os_dsl_dataset->ds_object : 0; 1491 zb.zb_object = dn->dn_object; 1492 zb.zb_level = 0; 1493 zb.zb_blkid = blkid; 1494 1495 (void) arc_read(NULL, dn->dn_objset->os_spa, bp, 1496 dmu_ot[dn->dn_type].ot_byteswap, 1497 NULL, NULL, ZIO_PRIORITY_ASYNC_READ, 1498 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1499 &aflags, &zb); 1500 } 1501 if (db) 1502 dbuf_rele(db, NULL); 1503 } 1504 } 1505 1506 /* 1507 * Returns with db_holds incremented, and db_mtx not held. 1508 * Note: dn_struct_rwlock must be held. 1509 */ 1510 int 1511 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, 1512 void *tag, dmu_buf_impl_t **dbp) 1513 { 1514 dmu_buf_impl_t *db, *parent = NULL; 1515 1516 ASSERT(blkid != DB_BONUS_BLKID); 1517 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1518 ASSERT3U(dn->dn_nlevels, >, level); 1519 1520 *dbp = NULL; 1521 top: 1522 /* dbuf_find() returns with db_mtx held */ 1523 db = dbuf_find(dn, level, blkid); 1524 1525 if (db == NULL) { 1526 blkptr_t *bp = NULL; 1527 int err; 1528 1529 ASSERT3P(parent, ==, NULL); 1530 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 1531 if (fail_sparse) { 1532 if (err == 0 && bp && BP_IS_HOLE(bp)) 1533 err = ENOENT; 1534 if (err) { 1535 if (parent) 1536 dbuf_rele(parent, NULL); 1537 return (err); 1538 } 1539 } 1540 if (err && err != ENOENT) 1541 return (err); 1542 db = dbuf_create(dn, level, blkid, parent, bp); 1543 } 1544 1545 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 1546 arc_buf_add_ref(db->db_buf, db); 1547 if (db->db_buf->b_data == NULL) { 1548 dbuf_clear(db); 1549 if (parent) { 1550 dbuf_rele(parent, NULL); 1551 parent = NULL; 1552 } 1553 goto top; 1554 } 1555 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 1556 } 1557 1558 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 1559 1560 /* 1561 * If this buffer is currently syncing out, and we are 1562 * are still referencing it from db_data, we need to make 1563 * a copy of it in case we decide we want to dirty it 1564 * again in this txg. 1565 */ 1566 if (db->db_level == 0 && db->db_state == DB_CACHED && 1567 dn->dn_object != DMU_META_DNODE_OBJECT && 1568 db->db_data_pending == db->db_buf) { 1569 int size = (db->db_blkid == DB_BONUS_BLKID) ? 1570 DN_MAX_BONUSLEN : db->db.db_size; 1571 1572 dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa, 1573 size, db)); 1574 bcopy(db->db_data_pending->b_data, db->db.db_data, 1575 db->db.db_size); 1576 } 1577 1578 (void) refcount_add(&db->db_holds, tag); 1579 dbuf_update_data(db); 1580 DBUF_VERIFY(db); 1581 mutex_exit(&db->db_mtx); 1582 1583 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 1584 if (parent) 1585 dbuf_rele(parent, NULL); 1586 1587 ASSERT3P(db->db_dnode, ==, dn); 1588 ASSERT3U(db->db_blkid, ==, blkid); 1589 ASSERT3U(db->db_level, ==, level); 1590 *dbp = db; 1591 1592 return (0); 1593 } 1594 1595 dmu_buf_impl_t * 1596 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 1597 { 1598 dmu_buf_impl_t *db; 1599 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); 1600 return (err ? NULL : db); 1601 } 1602 1603 dmu_buf_impl_t * 1604 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 1605 { 1606 dmu_buf_impl_t *db; 1607 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); 1608 return (err ? NULL : db); 1609 } 1610 1611 dmu_buf_impl_t * 1612 dbuf_create_bonus(dnode_t *dn) 1613 { 1614 dmu_buf_impl_t *db = dn->dn_bonus; 1615 1616 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1617 1618 ASSERT(dn->dn_bonus == NULL); 1619 db = dbuf_create(dn, 0, DB_BONUS_BLKID, dn->dn_dbuf, NULL); 1620 return (db); 1621 } 1622 1623 #pragma weak dmu_buf_add_ref = dbuf_add_ref 1624 void 1625 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 1626 { 1627 int64_t holds = refcount_add(&db->db_holds, tag); 1628 ASSERT(holds > 1); 1629 } 1630 1631 #pragma weak dmu_buf_rele = dbuf_rele 1632 void 1633 dbuf_rele(dmu_buf_impl_t *db, void *tag) 1634 { 1635 int64_t holds; 1636 1637 mutex_enter(&db->db_mtx); 1638 DBUF_VERIFY(db); 1639 1640 holds = refcount_remove(&db->db_holds, tag); 1641 ASSERT(holds >= 0); 1642 1643 if (holds == db->db_dirtycnt && 1644 db->db_level == 0 && db->db_d.db_immediate_evict) 1645 dbuf_evict_user(db); 1646 1647 if (holds == 0) { 1648 if (db->db_blkid == DB_BONUS_BLKID) { 1649 mutex_exit(&db->db_mtx); 1650 dnode_rele(db->db_dnode, db); 1651 } else if (db->db_buf == NULL) { 1652 /* 1653 * This is a special case: we never associated this 1654 * dbuf with any data allocated from the ARC. 1655 */ 1656 ASSERT3U(db->db_state, ==, DB_UNCACHED); 1657 dbuf_evict(db); 1658 } else if (arc_released(db->db_buf)) { 1659 arc_buf_t *buf = db->db_buf; 1660 /* 1661 * This dbuf has anonymous data associated with it. 1662 */ 1663 dbuf_set_data(db, NULL); 1664 VERIFY(arc_buf_remove_ref(buf, db) == 1); 1665 dbuf_evict(db); 1666 } else { 1667 VERIFY(arc_buf_remove_ref(db->db_buf, db) == 0); 1668 mutex_exit(&db->db_mtx); 1669 } 1670 } else { 1671 mutex_exit(&db->db_mtx); 1672 } 1673 } 1674 1675 #pragma weak dmu_buf_refcount = dbuf_refcount 1676 uint64_t 1677 dbuf_refcount(dmu_buf_impl_t *db) 1678 { 1679 return (refcount_count(&db->db_holds)); 1680 } 1681 1682 void * 1683 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 1684 dmu_buf_evict_func_t *evict_func) 1685 { 1686 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 1687 user_data_ptr_ptr, evict_func)); 1688 } 1689 1690 void * 1691 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 1692 dmu_buf_evict_func_t *evict_func) 1693 { 1694 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1695 1696 db->db_d.db_immediate_evict = TRUE; 1697 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 1698 user_data_ptr_ptr, evict_func)); 1699 } 1700 1701 void * 1702 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, 1703 void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) 1704 { 1705 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1706 ASSERT(db->db_level == 0); 1707 1708 ASSERT((user_ptr == NULL) == (evict_func == NULL)); 1709 1710 mutex_enter(&db->db_mtx); 1711 1712 if (db->db_d.db_user_ptr == old_user_ptr) { 1713 db->db_d.db_user_ptr = user_ptr; 1714 db->db_d.db_user_data_ptr_ptr = user_data_ptr_ptr; 1715 db->db_d.db_evict_func = evict_func; 1716 1717 dbuf_update_data(db); 1718 } else { 1719 old_user_ptr = db->db_d.db_user_ptr; 1720 } 1721 1722 mutex_exit(&db->db_mtx); 1723 return (old_user_ptr); 1724 } 1725 1726 void * 1727 dmu_buf_get_user(dmu_buf_t *db_fake) 1728 { 1729 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1730 ASSERT(!refcount_is_zero(&db->db_holds)); 1731 1732 return (db->db_d.db_user_ptr); 1733 } 1734 1735 void 1736 dbuf_sync(dmu_buf_impl_t *db, zio_t *zio, dmu_tx_t *tx) 1737 { 1738 arc_buf_t **data; 1739 uint64_t txg = tx->tx_txg; 1740 dnode_t *dn = db->db_dnode; 1741 objset_impl_t *os = dn->dn_objset; 1742 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 1743 int checksum, compress; 1744 zbookmark_t zb; 1745 int blksz; 1746 1747 ASSERT(dmu_tx_is_syncing(tx)); 1748 1749 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 1750 1751 mutex_enter(&db->db_mtx); 1752 /* 1753 * To be synced, we must be dirtied. But we 1754 * might have been freed after the dirty. 1755 */ 1756 if (db->db_state == DB_UNCACHED) { 1757 /* This buffer has been freed since it was dirtied */ 1758 ASSERT(db->db.db_data == NULL); 1759 } else if (db->db_state == DB_FILL) { 1760 /* This buffer was freed and is now being re-filled */ 1761 ASSERT(db->db.db_data != db->db_d.db_data_old[txg&TXG_MASK]); 1762 } else { 1763 ASSERT3U(db->db_state, ==, DB_CACHED); 1764 } 1765 DBUF_VERIFY(db); 1766 1767 /* 1768 * Don't need a lock on db_dirty (dn_mtx), because it can't 1769 * be modified yet. 1770 */ 1771 1772 if (db->db_blkid == DB_BONUS_BLKID) { 1773 void **datap = &db->db_d.db_data_old[txg&TXG_MASK]; 1774 /* 1775 * Simply copy the bonus data into the dnode. It will 1776 * be written out when the dnode is synced (and it will 1777 * be synced, since it must have been dirty for dbuf_sync 1778 * to be called). 1779 */ 1780 /* 1781 * Use dn_phys->dn_bonuslen since db.db_size is the length 1782 * of the bonus buffer in the open transaction rather than 1783 * the syncing transaction. 1784 */ 1785 ASSERT(*datap != NULL); 1786 ASSERT3U(db->db_level, ==, 0); 1787 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 1788 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 1789 if (*datap != db->db.db_data) 1790 zio_buf_free(*datap, DN_MAX_BONUSLEN); 1791 db->db_d.db_data_old[txg&TXG_MASK] = NULL; 1792 db->db_data_pending = NULL; 1793 if (db->db_dirtied == txg) 1794 db->db_dirtied = 0; 1795 ASSERT(db->db_dirtycnt > 0); 1796 db->db_dirtycnt -= 1; 1797 mutex_exit(&db->db_mtx); 1798 dbuf_rele(db, (void *)(uintptr_t)txg); 1799 return; 1800 } 1801 1802 if (db->db_level == 0) { 1803 data = (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK]; 1804 blksz = arc_buf_size(*data); 1805 1806 /* 1807 * This buffer is in the middle of an immdiate write. 1808 * Wait for the synchronous IO to complete. 1809 */ 1810 while (db->db_d.db_overridden_by[txg&TXG_MASK] == IN_DMU_SYNC) { 1811 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 1812 cv_wait(&db->db_changed, &db->db_mtx); 1813 ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK]); 1814 } 1815 /* 1816 * If this buffer is currently "in use" (i.e., there are 1817 * active holds and db_data still references it), then make 1818 * a copy before we start the write so that any modifications 1819 * from the open txg will not leak into this write. 1820 * 1821 * NOTE: this copy does not need to be made for objects only 1822 * modified in the syncing context (e.g. DNONE_DNODE blocks) 1823 * or if there is no actual write involved (bonus blocks). 1824 */ 1825 if (dn->dn_object != DMU_META_DNODE_OBJECT && 1826 db->db_d.db_overridden_by[txg&TXG_MASK] == NULL) { 1827 if (refcount_count(&db->db_holds) > 1 && 1828 *data == db->db_buf) { 1829 *data = arc_buf_alloc(os->os_spa, blksz, db); 1830 bcopy(db->db.db_data, (*data)->b_data, blksz); 1831 } 1832 db->db_data_pending = *data; 1833 } else if (dn->dn_object == DMU_META_DNODE_OBJECT) { 1834 /* 1835 * Private object buffers are released here rather 1836 * than in dbuf_dirty() since they are only modified 1837 * in the syncing context and we don't want the 1838 * overhead of making multiple copies of the data. 1839 */ 1840 arc_release(db->db_buf, db); 1841 } 1842 } else { 1843 data = &db->db_buf; 1844 if (*data == NULL) { 1845 /* 1846 * This can happen if we dirty and then free 1847 * the level-0 data blocks in the same txg. So 1848 * this indirect remains unchanged. 1849 */ 1850 if (db->db_dirtied == txg) 1851 db->db_dirtied = 0; 1852 ASSERT(db->db_dirtycnt > 0); 1853 db->db_dirtycnt -= 1; 1854 mutex_exit(&db->db_mtx); 1855 dbuf_rele(db, (void *)(uintptr_t)txg); 1856 return; 1857 } 1858 blksz = db->db.db_size; 1859 ASSERT3U(blksz, ==, 1<<dn->dn_phys->dn_indblkshift); 1860 } 1861 1862 ASSERT(*data != NULL); 1863 1864 if (db->db_level > 0 && !arc_released(db->db_buf)) { 1865 /* 1866 * This indirect buffer was marked dirty, but 1867 * never modified (if it had been modified, then 1868 * we would have released the buffer). There is 1869 * no reason to write anything. 1870 */ 1871 db->db_data_pending = NULL; 1872 if (db->db_dirtied == txg) 1873 db->db_dirtied = 0; 1874 ASSERT(db->db_dirtycnt > 0); 1875 db->db_dirtycnt -= 1; 1876 mutex_exit(&db->db_mtx); 1877 dbuf_rele(db, (void *)(uintptr_t)txg); 1878 return; 1879 } else if (db->db_blkptr == NULL && 1880 db->db_level == dn->dn_phys->dn_nlevels-1 && 1881 db->db_blkid < dn->dn_phys->dn_nblkptr) { 1882 /* 1883 * This buffer was allocated at a time when there was 1884 * no available blkptrs from the dnode, or it was 1885 * inappropriate to hook it in (i.e., nlevels mis-match). 1886 */ 1887 ASSERT(db->db_blkptr == NULL); 1888 ASSERT(db->db_parent == NULL); 1889 db->db_parent = dn->dn_dbuf; 1890 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 1891 DBUF_VERIFY(db); 1892 mutex_exit(&db->db_mtx); 1893 } else if (db->db_blkptr == NULL) { 1894 dmu_buf_impl_t *parent = db->db_parent; 1895 1896 mutex_exit(&db->db_mtx); 1897 ASSERT(dn->dn_phys->dn_nlevels > 1); 1898 if (parent == NULL) { 1899 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1900 (void) dbuf_hold_impl(dn, db->db_level+1, 1901 db->db_blkid >> epbs, FALSE, FTAG, &parent); 1902 rw_exit(&dn->dn_struct_rwlock); 1903 dbuf_add_ref(parent, db); 1904 db->db_parent = parent; 1905 dbuf_rele(parent, FTAG); 1906 } 1907 (void) dbuf_read(parent, NULL, DB_RF_MUST_SUCCEED); 1908 } else { 1909 mutex_exit(&db->db_mtx); 1910 } 1911 1912 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || db->db_parent != NULL); 1913 1914 if (db->db_level > 0 && 1915 db->db_blkid > dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)) { 1916 /* 1917 * Don't write indirect blocks past EOF. 1918 * We get these when we truncate a file *after* dirtying 1919 * blocks in the truncate range (we undirty the level 0 1920 * blocks in dbuf_free_range(), but not the indirects). 1921 */ 1922 #ifdef ZFS_DEBUG 1923 /* 1924 * Verify that this indirect block is empty. 1925 */ 1926 blkptr_t *bplist; 1927 int i; 1928 1929 mutex_enter(&db->db_mtx); 1930 bplist = db->db.db_data; 1931 for (i = 0; i < (1 << epbs); i++) { 1932 if (!BP_IS_HOLE(&bplist[i])) { 1933 panic("data past EOF: " 1934 "db=%p level=%d id=%llu i=%d\n", 1935 db, db->db_level, 1936 (u_longlong_t)db->db_blkid, i); 1937 } 1938 } 1939 mutex_exit(&db->db_mtx); 1940 #endif 1941 ASSERT(db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)); 1942 mutex_enter(&db->db_mtx); 1943 db->db_dirtycnt -= 1; 1944 mutex_exit(&db->db_mtx); 1945 dbuf_rele(db, (void *)(uintptr_t)txg); 1946 return; 1947 } 1948 1949 if (db->db_parent != dn->dn_dbuf) { 1950 dmu_buf_impl_t *parent = db->db_parent; 1951 1952 mutex_enter(&db->db_mtx); 1953 ASSERT(db->db_level == parent->db_level-1); 1954 ASSERT(list_link_active(&parent->db_dirty_node[txg&TXG_MASK])); 1955 /* 1956 * We may have read this indirect block after we dirtied it, 1957 * so never released it from the cache. 1958 */ 1959 arc_release(parent->db_buf, db->db_parent); 1960 1961 db->db_blkptr = (blkptr_t *)parent->db.db_data + 1962 (db->db_blkid & ((1ULL << epbs) - 1)); 1963 DBUF_VERIFY(db); 1964 mutex_exit(&db->db_mtx); 1965 #ifdef ZFS_DEBUG 1966 } else { 1967 /* 1968 * We don't need to dnode_setdirty(dn) because if we got 1969 * here then the parent is already dirty. 1970 */ 1971 ASSERT(db->db_level == dn->dn_phys->dn_nlevels-1); 1972 ASSERT3P(db->db_blkptr, ==, 1973 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1974 #endif 1975 } 1976 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1977 1978 if (db->db_level == 0 && 1979 db->db_d.db_overridden_by[txg&TXG_MASK] != NULL) { 1980 arc_buf_t **old = 1981 (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK]; 1982 blkptr_t **bpp = &db->db_d.db_overridden_by[txg&TXG_MASK]; 1983 int old_size = bp_get_dasize(os->os_spa, db->db_blkptr); 1984 int new_size = bp_get_dasize(os->os_spa, *bpp); 1985 1986 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1987 1988 dnode_diduse_space(dn, new_size-old_size); 1989 mutex_enter(&dn->dn_mtx); 1990 if (db->db_blkid > dn->dn_phys->dn_maxblkid) 1991 dn->dn_phys->dn_maxblkid = db->db_blkid; 1992 mutex_exit(&dn->dn_mtx); 1993 1994 dsl_dataset_block_born(os->os_dsl_dataset, *bpp, tx); 1995 if (!BP_IS_HOLE(db->db_blkptr)) 1996 dsl_dataset_block_kill(os->os_dsl_dataset, 1997 db->db_blkptr, os->os_synctx); 1998 1999 mutex_enter(&db->db_mtx); 2000 *db->db_blkptr = **bpp; 2001 kmem_free(*bpp, sizeof (blkptr_t)); 2002 *bpp = NULL; 2003 2004 if (*old != db->db_buf) 2005 VERIFY(arc_buf_remove_ref(*old, db) == 1); 2006 else if (!BP_IS_HOLE(db->db_blkptr)) 2007 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2008 else 2009 ASSERT(arc_released(db->db_buf)); 2010 *old = NULL; 2011 db->db_data_pending = NULL; 2012 2013 cv_broadcast(&db->db_changed); 2014 2015 ASSERT(db->db_dirtycnt > 0); 2016 db->db_dirtycnt -= 1; 2017 mutex_exit(&db->db_mtx); 2018 dbuf_rele(db, (void *)(uintptr_t)txg); 2019 return; 2020 } 2021 2022 if (db->db_level > 0) { 2023 /* 2024 * XXX -- we should design a compression algorithm 2025 * that specializes in arrays of bps. 2026 */ 2027 checksum = ZIO_CHECKSUM_FLETCHER_4; 2028 compress = ZIO_COMPRESS_LZJB; 2029 } else { 2030 /* 2031 * Allow dnode settings to override objset settings, 2032 * except for metadata checksums. 2033 */ 2034 if (dmu_ot[dn->dn_type].ot_metadata) { 2035 checksum = os->os_md_checksum; 2036 compress = zio_compress_select(dn->dn_compress, 2037 os->os_md_compress); 2038 } else { 2039 checksum = zio_checksum_select(dn->dn_checksum, 2040 os->os_checksum); 2041 compress = zio_compress_select(dn->dn_compress, 2042 os->os_compress); 2043 } 2044 } 2045 #ifdef ZFS_DEBUG 2046 if (db->db_parent) { 2047 ASSERT(list_link_active( 2048 &db->db_parent->db_dirty_node[txg&TXG_MASK])); 2049 ASSERT(db->db_parent == dn->dn_dbuf || 2050 db->db_parent->db_level > 0); 2051 if (dn->dn_object == DMU_META_DNODE_OBJECT || db->db_level > 0) 2052 ASSERT(*data == db->db_buf); 2053 } 2054 #endif 2055 ASSERT3U(db->db_blkptr->blk_birth, <=, tx->tx_txg); 2056 zb.zb_objset = os->os_dsl_dataset ? os->os_dsl_dataset->ds_object : 0; 2057 zb.zb_object = db->db.db_object; 2058 zb.zb_level = db->db_level; 2059 zb.zb_blkid = db->db_blkid; 2060 2061 (void) arc_write(zio, os->os_spa, checksum, compress, 2062 dmu_get_replication_level(os->os_spa, &zb, dn->dn_type), txg, 2063 db->db_blkptr, *data, dbuf_write_done, db, 2064 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, ARC_NOWAIT, &zb); 2065 /* 2066 * We can't access db after arc_write, since it could finish 2067 * and be freed, and we have no locks on it. 2068 */ 2069 } 2070 2071 struct dbuf_arg { 2072 objset_impl_t *os; 2073 blkptr_t bp; 2074 }; 2075 2076 static void 2077 dbuf_do_born(void *arg) 2078 { 2079 struct dbuf_arg *da = arg; 2080 dsl_dataset_block_born(da->os->os_dsl_dataset, 2081 &da->bp, da->os->os_synctx); 2082 kmem_free(da, sizeof (struct dbuf_arg)); 2083 } 2084 2085 static void 2086 dbuf_do_kill(void *arg) 2087 { 2088 struct dbuf_arg *da = arg; 2089 dsl_dataset_block_kill(da->os->os_dsl_dataset, 2090 &da->bp, da->os->os_synctx); 2091 kmem_free(da, sizeof (struct dbuf_arg)); 2092 } 2093 2094 /* ARGSUSED */ 2095 static void 2096 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2097 { 2098 dmu_buf_impl_t *db = vdb; 2099 dnode_t *dn = db->db_dnode; 2100 objset_impl_t *os = dn->dn_objset; 2101 uint64_t txg = zio->io_txg; 2102 uint64_t fill = 0; 2103 int i; 2104 int old_size, new_size; 2105 2106 ASSERT3U(zio->io_error, ==, 0); 2107 2108 dprintf_dbuf_bp(db, &zio->io_bp_orig, "bp_orig: %s", ""); 2109 2110 old_size = bp_get_dasize(os->os_spa, &zio->io_bp_orig); 2111 new_size = bp_get_dasize(os->os_spa, zio->io_bp); 2112 2113 dnode_diduse_space(dn, new_size-old_size); 2114 2115 mutex_enter(&db->db_mtx); 2116 2117 ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK] == NULL); 2118 2119 if (db->db_dirtied == txg) 2120 db->db_dirtied = 0; 2121 2122 if (db->db_level == 0) { 2123 arc_buf_t **old = 2124 (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK]; 2125 2126 ASSERT(db->db_blkid != DB_BONUS_BLKID); 2127 2128 if (*old != db->db_buf) 2129 VERIFY(arc_buf_remove_ref(*old, db) == 1); 2130 else if (!BP_IS_HOLE(db->db_blkptr)) 2131 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2132 else 2133 ASSERT(arc_released(db->db_buf)); 2134 *old = NULL; 2135 db->db_data_pending = NULL; 2136 2137 mutex_enter(&dn->dn_mtx); 2138 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2139 !BP_IS_HOLE(db->db_blkptr)) 2140 dn->dn_phys->dn_maxblkid = db->db_blkid; 2141 mutex_exit(&dn->dn_mtx); 2142 2143 if (dn->dn_type == DMU_OT_DNODE) { 2144 dnode_phys_t *dnp = db->db.db_data; 2145 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2146 i--, dnp++) { 2147 if (dnp->dn_type != DMU_OT_NONE) 2148 fill++; 2149 } 2150 } else { 2151 if (!BP_IS_HOLE(db->db_blkptr)) 2152 fill = 1; 2153 } 2154 } else { 2155 blkptr_t *bp = db->db.db_data; 2156 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2157 if (!BP_IS_HOLE(db->db_blkptr)) { 2158 int epbs = 2159 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2160 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, db->db.db_size); 2161 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 2162 db->db.db_size); 2163 ASSERT3U(dn->dn_phys->dn_maxblkid 2164 >> (db->db_level * epbs), >=, db->db_blkid); 2165 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2166 } 2167 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, bp++) { 2168 if (BP_IS_HOLE(bp)) 2169 continue; 2170 ASSERT3U(BP_GET_LSIZE(bp), ==, 2171 db->db_level == 1 ? dn->dn_datablksz : 2172 (1<<dn->dn_phys->dn_indblkshift)); 2173 fill += bp->blk_fill; 2174 } 2175 } 2176 2177 if (!BP_IS_HOLE(db->db_blkptr)) { 2178 db->db_blkptr->blk_fill = fill; 2179 BP_SET_TYPE(db->db_blkptr, dn->dn_type); 2180 BP_SET_LEVEL(db->db_blkptr, db->db_level); 2181 } else { 2182 ASSERT3U(fill, ==, 0); 2183 ASSERT3U(db->db_blkptr->blk_fill, ==, 0); 2184 } 2185 2186 dprintf_dbuf_bp(db, db->db_blkptr, 2187 "wrote %llu bytes to blkptr:", zio->io_size); 2188 2189 ASSERT(db->db_parent == NULL || 2190 list_link_active(&db->db_parent->db_dirty_node[txg&TXG_MASK])); 2191 cv_broadcast(&db->db_changed); 2192 ASSERT(db->db_dirtycnt > 0); 2193 db->db_dirtycnt -= 1; 2194 mutex_exit(&db->db_mtx); 2195 2196 /* We must do this after we've set the bp's type and level */ 2197 if (!DVA_EQUAL(BP_IDENTITY(zio->io_bp), 2198 BP_IDENTITY(&zio->io_bp_orig))) { 2199 struct dbuf_arg *da; 2200 da = kmem_alloc(sizeof (struct dbuf_arg), KM_SLEEP); 2201 da->os = os; 2202 da->bp = *zio->io_bp; 2203 (void) taskq_dispatch(dbuf_tq, dbuf_do_born, da, 0); 2204 if (!BP_IS_HOLE(&zio->io_bp_orig)) { 2205 da = kmem_alloc(sizeof (struct dbuf_arg), KM_SLEEP); 2206 da->os = os; 2207 da->bp = zio->io_bp_orig; 2208 (void) taskq_dispatch(dbuf_tq, dbuf_do_kill, da, 0); 2209 } 2210 } 2211 2212 dbuf_rele(db, (void *)(uintptr_t)txg); 2213 } 2214