1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 #include <sys/spa.h> 124 #include <sys/zio.h> 125 #include <sys/zio_compress.h> 126 #include <sys/zfs_context.h> 127 #include <sys/arc.h> 128 #include <sys/refcount.h> 129 #include <sys/vdev.h> 130 #include <sys/vdev_impl.h> 131 #include <sys/dsl_pool.h> 132 #ifdef _KERNEL 133 #include <sys/vmsystm.h> 134 #include <vm/anon.h> 135 #include <sys/fs/swapnode.h> 136 #include <sys/dnlc.h> 137 #endif 138 #include <sys/callb.h> 139 #include <sys/kstat.h> 140 #include <zfs_fletcher.h> 141 142 #ifndef _KERNEL 143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 144 boolean_t arc_watch = B_FALSE; 145 int arc_procfd; 146 #endif 147 148 static kmutex_t arc_reclaim_thr_lock; 149 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 150 static uint8_t arc_thread_exit; 151 152 #define ARC_REDUCE_DNLC_PERCENT 3 153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 154 155 typedef enum arc_reclaim_strategy { 156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 158 } arc_reclaim_strategy_t; 159 160 /* 161 * The number of iterations through arc_evict_*() before we 162 * drop & reacquire the lock. 163 */ 164 int arc_evict_iterations = 100; 165 166 /* number of seconds before growing cache again */ 167 static int arc_grow_retry = 60; 168 169 /* shift of arc_c for calculating both min and max arc_p */ 170 static int arc_p_min_shift = 4; 171 172 /* log2(fraction of arc to reclaim) */ 173 static int arc_shrink_shift = 5; 174 175 /* 176 * minimum lifespan of a prefetch block in clock ticks 177 * (initialized in arc_init()) 178 */ 179 static int arc_min_prefetch_lifespan; 180 181 /* 182 * If this percent of memory is free, don't throttle. 183 */ 184 int arc_lotsfree_percent = 10; 185 186 static int arc_dead; 187 188 /* 189 * The arc has filled available memory and has now warmed up. 190 */ 191 static boolean_t arc_warm; 192 193 /* 194 * These tunables are for performance analysis. 195 */ 196 uint64_t zfs_arc_max; 197 uint64_t zfs_arc_min; 198 uint64_t zfs_arc_meta_limit = 0; 199 int zfs_arc_grow_retry = 0; 200 int zfs_arc_shrink_shift = 0; 201 int zfs_arc_p_min_shift = 0; 202 int zfs_disable_dup_eviction = 0; 203 204 /* 205 * Note that buffers can be in one of 6 states: 206 * ARC_anon - anonymous (discussed below) 207 * ARC_mru - recently used, currently cached 208 * ARC_mru_ghost - recentely used, no longer in cache 209 * ARC_mfu - frequently used, currently cached 210 * ARC_mfu_ghost - frequently used, no longer in cache 211 * ARC_l2c_only - exists in L2ARC but not other states 212 * When there are no active references to the buffer, they are 213 * are linked onto a list in one of these arc states. These are 214 * the only buffers that can be evicted or deleted. Within each 215 * state there are multiple lists, one for meta-data and one for 216 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 217 * etc.) is tracked separately so that it can be managed more 218 * explicitly: favored over data, limited explicitly. 219 * 220 * Anonymous buffers are buffers that are not associated with 221 * a DVA. These are buffers that hold dirty block copies 222 * before they are written to stable storage. By definition, 223 * they are "ref'd" and are considered part of arc_mru 224 * that cannot be freed. Generally, they will aquire a DVA 225 * as they are written and migrate onto the arc_mru list. 226 * 227 * The ARC_l2c_only state is for buffers that are in the second 228 * level ARC but no longer in any of the ARC_m* lists. The second 229 * level ARC itself may also contain buffers that are in any of 230 * the ARC_m* states - meaning that a buffer can exist in two 231 * places. The reason for the ARC_l2c_only state is to keep the 232 * buffer header in the hash table, so that reads that hit the 233 * second level ARC benefit from these fast lookups. 234 */ 235 236 typedef struct arc_state { 237 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 238 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 239 uint64_t arcs_size; /* total amount of data in this state */ 240 kmutex_t arcs_mtx; 241 } arc_state_t; 242 243 /* The 6 states: */ 244 static arc_state_t ARC_anon; 245 static arc_state_t ARC_mru; 246 static arc_state_t ARC_mru_ghost; 247 static arc_state_t ARC_mfu; 248 static arc_state_t ARC_mfu_ghost; 249 static arc_state_t ARC_l2c_only; 250 251 typedef struct arc_stats { 252 kstat_named_t arcstat_hits; 253 kstat_named_t arcstat_misses; 254 kstat_named_t arcstat_demand_data_hits; 255 kstat_named_t arcstat_demand_data_misses; 256 kstat_named_t arcstat_demand_metadata_hits; 257 kstat_named_t arcstat_demand_metadata_misses; 258 kstat_named_t arcstat_prefetch_data_hits; 259 kstat_named_t arcstat_prefetch_data_misses; 260 kstat_named_t arcstat_prefetch_metadata_hits; 261 kstat_named_t arcstat_prefetch_metadata_misses; 262 kstat_named_t arcstat_mru_hits; 263 kstat_named_t arcstat_mru_ghost_hits; 264 kstat_named_t arcstat_mfu_hits; 265 kstat_named_t arcstat_mfu_ghost_hits; 266 kstat_named_t arcstat_deleted; 267 kstat_named_t arcstat_recycle_miss; 268 /* 269 * Number of buffers that could not be evicted because the hash lock 270 * was held by another thread. The lock may not necessarily be held 271 * by something using the same buffer, since hash locks are shared 272 * by multiple buffers. 273 */ 274 kstat_named_t arcstat_mutex_miss; 275 /* 276 * Number of buffers skipped because they have I/O in progress, are 277 * indrect prefetch buffers that have not lived long enough, or are 278 * not from the spa we're trying to evict from. 279 */ 280 kstat_named_t arcstat_evict_skip; 281 kstat_named_t arcstat_evict_l2_cached; 282 kstat_named_t arcstat_evict_l2_eligible; 283 kstat_named_t arcstat_evict_l2_ineligible; 284 kstat_named_t arcstat_hash_elements; 285 kstat_named_t arcstat_hash_elements_max; 286 kstat_named_t arcstat_hash_collisions; 287 kstat_named_t arcstat_hash_chains; 288 kstat_named_t arcstat_hash_chain_max; 289 kstat_named_t arcstat_p; 290 kstat_named_t arcstat_c; 291 kstat_named_t arcstat_c_min; 292 kstat_named_t arcstat_c_max; 293 kstat_named_t arcstat_size; 294 kstat_named_t arcstat_hdr_size; 295 kstat_named_t arcstat_data_size; 296 kstat_named_t arcstat_other_size; 297 kstat_named_t arcstat_l2_hits; 298 kstat_named_t arcstat_l2_misses; 299 kstat_named_t arcstat_l2_feeds; 300 kstat_named_t arcstat_l2_rw_clash; 301 kstat_named_t arcstat_l2_read_bytes; 302 kstat_named_t arcstat_l2_write_bytes; 303 kstat_named_t arcstat_l2_writes_sent; 304 kstat_named_t arcstat_l2_writes_done; 305 kstat_named_t arcstat_l2_writes_error; 306 kstat_named_t arcstat_l2_writes_hdr_miss; 307 kstat_named_t arcstat_l2_evict_lock_retry; 308 kstat_named_t arcstat_l2_evict_reading; 309 kstat_named_t arcstat_l2_free_on_write; 310 kstat_named_t arcstat_l2_abort_lowmem; 311 kstat_named_t arcstat_l2_cksum_bad; 312 kstat_named_t arcstat_l2_io_error; 313 kstat_named_t arcstat_l2_size; 314 kstat_named_t arcstat_l2_asize; 315 kstat_named_t arcstat_l2_hdr_size; 316 kstat_named_t arcstat_l2_compress_successes; 317 kstat_named_t arcstat_l2_compress_zeros; 318 kstat_named_t arcstat_l2_compress_failures; 319 kstat_named_t arcstat_memory_throttle_count; 320 kstat_named_t arcstat_duplicate_buffers; 321 kstat_named_t arcstat_duplicate_buffers_size; 322 kstat_named_t arcstat_duplicate_reads; 323 kstat_named_t arcstat_meta_used; 324 kstat_named_t arcstat_meta_limit; 325 kstat_named_t arcstat_meta_max; 326 } arc_stats_t; 327 328 static arc_stats_t arc_stats = { 329 { "hits", KSTAT_DATA_UINT64 }, 330 { "misses", KSTAT_DATA_UINT64 }, 331 { "demand_data_hits", KSTAT_DATA_UINT64 }, 332 { "demand_data_misses", KSTAT_DATA_UINT64 }, 333 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 334 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 335 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 336 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 337 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 338 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 339 { "mru_hits", KSTAT_DATA_UINT64 }, 340 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 341 { "mfu_hits", KSTAT_DATA_UINT64 }, 342 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 343 { "deleted", KSTAT_DATA_UINT64 }, 344 { "recycle_miss", KSTAT_DATA_UINT64 }, 345 { "mutex_miss", KSTAT_DATA_UINT64 }, 346 { "evict_skip", KSTAT_DATA_UINT64 }, 347 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 348 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 349 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 350 { "hash_elements", KSTAT_DATA_UINT64 }, 351 { "hash_elements_max", KSTAT_DATA_UINT64 }, 352 { "hash_collisions", KSTAT_DATA_UINT64 }, 353 { "hash_chains", KSTAT_DATA_UINT64 }, 354 { "hash_chain_max", KSTAT_DATA_UINT64 }, 355 { "p", KSTAT_DATA_UINT64 }, 356 { "c", KSTAT_DATA_UINT64 }, 357 { "c_min", KSTAT_DATA_UINT64 }, 358 { "c_max", KSTAT_DATA_UINT64 }, 359 { "size", KSTAT_DATA_UINT64 }, 360 { "hdr_size", KSTAT_DATA_UINT64 }, 361 { "data_size", KSTAT_DATA_UINT64 }, 362 { "other_size", KSTAT_DATA_UINT64 }, 363 { "l2_hits", KSTAT_DATA_UINT64 }, 364 { "l2_misses", KSTAT_DATA_UINT64 }, 365 { "l2_feeds", KSTAT_DATA_UINT64 }, 366 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 367 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 368 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 369 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 370 { "l2_writes_done", KSTAT_DATA_UINT64 }, 371 { "l2_writes_error", KSTAT_DATA_UINT64 }, 372 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 373 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 374 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 375 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 376 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 377 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 378 { "l2_io_error", KSTAT_DATA_UINT64 }, 379 { "l2_size", KSTAT_DATA_UINT64 }, 380 { "l2_asize", KSTAT_DATA_UINT64 }, 381 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 382 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 383 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 384 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 385 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 386 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 387 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 388 { "duplicate_reads", KSTAT_DATA_UINT64 }, 389 { "arc_meta_used", KSTAT_DATA_UINT64 }, 390 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 391 { "arc_meta_max", KSTAT_DATA_UINT64 } 392 }; 393 394 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 395 396 #define ARCSTAT_INCR(stat, val) \ 397 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 398 399 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 400 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 401 402 #define ARCSTAT_MAX(stat, val) { \ 403 uint64_t m; \ 404 while ((val) > (m = arc_stats.stat.value.ui64) && \ 405 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 406 continue; \ 407 } 408 409 #define ARCSTAT_MAXSTAT(stat) \ 410 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 411 412 /* 413 * We define a macro to allow ARC hits/misses to be easily broken down by 414 * two separate conditions, giving a total of four different subtypes for 415 * each of hits and misses (so eight statistics total). 416 */ 417 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 418 if (cond1) { \ 419 if (cond2) { \ 420 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 421 } else { \ 422 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 423 } \ 424 } else { \ 425 if (cond2) { \ 426 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 427 } else { \ 428 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 429 } \ 430 } 431 432 kstat_t *arc_ksp; 433 static arc_state_t *arc_anon; 434 static arc_state_t *arc_mru; 435 static arc_state_t *arc_mru_ghost; 436 static arc_state_t *arc_mfu; 437 static arc_state_t *arc_mfu_ghost; 438 static arc_state_t *arc_l2c_only; 439 440 /* 441 * There are several ARC variables that are critical to export as kstats -- 442 * but we don't want to have to grovel around in the kstat whenever we wish to 443 * manipulate them. For these variables, we therefore define them to be in 444 * terms of the statistic variable. This assures that we are not introducing 445 * the possibility of inconsistency by having shadow copies of the variables, 446 * while still allowing the code to be readable. 447 */ 448 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 449 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 450 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 451 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 452 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 453 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 454 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 455 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 456 457 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 458 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 459 460 static int arc_no_grow; /* Don't try to grow cache size */ 461 static uint64_t arc_tempreserve; 462 static uint64_t arc_loaned_bytes; 463 464 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 465 466 typedef struct arc_callback arc_callback_t; 467 468 struct arc_callback { 469 void *acb_private; 470 arc_done_func_t *acb_done; 471 arc_buf_t *acb_buf; 472 zio_t *acb_zio_dummy; 473 arc_callback_t *acb_next; 474 }; 475 476 typedef struct arc_write_callback arc_write_callback_t; 477 478 struct arc_write_callback { 479 void *awcb_private; 480 arc_done_func_t *awcb_ready; 481 arc_done_func_t *awcb_physdone; 482 arc_done_func_t *awcb_done; 483 arc_buf_t *awcb_buf; 484 }; 485 486 struct arc_buf_hdr { 487 /* protected by hash lock */ 488 dva_t b_dva; 489 uint64_t b_birth; 490 uint64_t b_cksum0; 491 492 kmutex_t b_freeze_lock; 493 zio_cksum_t *b_freeze_cksum; 494 void *b_thawed; 495 496 arc_buf_hdr_t *b_hash_next; 497 arc_buf_t *b_buf; 498 uint32_t b_flags; 499 uint32_t b_datacnt; 500 501 arc_callback_t *b_acb; 502 kcondvar_t b_cv; 503 504 /* immutable */ 505 arc_buf_contents_t b_type; 506 uint64_t b_size; 507 uint64_t b_spa; 508 509 /* protected by arc state mutex */ 510 arc_state_t *b_state; 511 list_node_t b_arc_node; 512 513 /* updated atomically */ 514 clock_t b_arc_access; 515 516 /* self protecting */ 517 refcount_t b_refcnt; 518 519 l2arc_buf_hdr_t *b_l2hdr; 520 list_node_t b_l2node; 521 }; 522 523 static arc_buf_t *arc_eviction_list; 524 static kmutex_t arc_eviction_mtx; 525 static arc_buf_hdr_t arc_eviction_hdr; 526 static void arc_get_data_buf(arc_buf_t *buf); 527 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 528 static int arc_evict_needed(arc_buf_contents_t type); 529 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 530 static void arc_buf_watch(arc_buf_t *buf); 531 532 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 533 534 #define GHOST_STATE(state) \ 535 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 536 (state) == arc_l2c_only) 537 538 /* 539 * Private ARC flags. These flags are private ARC only flags that will show up 540 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 541 * be passed in as arc_flags in things like arc_read. However, these flags 542 * should never be passed and should only be set by ARC code. When adding new 543 * public flags, make sure not to smash the private ones. 544 */ 545 546 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 547 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 548 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 549 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 550 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 551 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 552 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 553 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 554 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 555 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 556 557 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 558 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 559 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 560 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 561 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 562 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 563 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 564 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 565 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 566 (hdr)->b_l2hdr != NULL) 567 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 568 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 569 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 570 571 /* 572 * Other sizes 573 */ 574 575 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 576 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 577 578 /* 579 * Hash table routines 580 */ 581 582 #define HT_LOCK_PAD 64 583 584 struct ht_lock { 585 kmutex_t ht_lock; 586 #ifdef _KERNEL 587 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 588 #endif 589 }; 590 591 #define BUF_LOCKS 256 592 typedef struct buf_hash_table { 593 uint64_t ht_mask; 594 arc_buf_hdr_t **ht_table; 595 struct ht_lock ht_locks[BUF_LOCKS]; 596 } buf_hash_table_t; 597 598 static buf_hash_table_t buf_hash_table; 599 600 #define BUF_HASH_INDEX(spa, dva, birth) \ 601 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 602 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 603 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 604 #define HDR_LOCK(hdr) \ 605 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 606 607 uint64_t zfs_crc64_table[256]; 608 609 /* 610 * Level 2 ARC 611 */ 612 613 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 614 #define L2ARC_HEADROOM 2 /* num of writes */ 615 /* 616 * If we discover during ARC scan any buffers to be compressed, we boost 617 * our headroom for the next scanning cycle by this percentage multiple. 618 */ 619 #define L2ARC_HEADROOM_BOOST 200 620 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 621 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 622 623 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 624 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 625 626 /* L2ARC Performance Tunables */ 627 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 628 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 629 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 630 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 631 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 632 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 633 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 634 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 635 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 636 637 /* 638 * L2ARC Internals 639 */ 640 typedef struct l2arc_dev { 641 vdev_t *l2ad_vdev; /* vdev */ 642 spa_t *l2ad_spa; /* spa */ 643 uint64_t l2ad_hand; /* next write location */ 644 uint64_t l2ad_start; /* first addr on device */ 645 uint64_t l2ad_end; /* last addr on device */ 646 uint64_t l2ad_evict; /* last addr eviction reached */ 647 boolean_t l2ad_first; /* first sweep through */ 648 boolean_t l2ad_writing; /* currently writing */ 649 list_t *l2ad_buflist; /* buffer list */ 650 list_node_t l2ad_node; /* device list node */ 651 } l2arc_dev_t; 652 653 static list_t L2ARC_dev_list; /* device list */ 654 static list_t *l2arc_dev_list; /* device list pointer */ 655 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 656 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 657 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 658 static list_t L2ARC_free_on_write; /* free after write buf list */ 659 static list_t *l2arc_free_on_write; /* free after write list ptr */ 660 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 661 static uint64_t l2arc_ndev; /* number of devices */ 662 663 typedef struct l2arc_read_callback { 664 arc_buf_t *l2rcb_buf; /* read buffer */ 665 spa_t *l2rcb_spa; /* spa */ 666 blkptr_t l2rcb_bp; /* original blkptr */ 667 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 668 int l2rcb_flags; /* original flags */ 669 enum zio_compress l2rcb_compress; /* applied compress */ 670 } l2arc_read_callback_t; 671 672 typedef struct l2arc_write_callback { 673 l2arc_dev_t *l2wcb_dev; /* device info */ 674 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 675 } l2arc_write_callback_t; 676 677 struct l2arc_buf_hdr { 678 /* protected by arc_buf_hdr mutex */ 679 l2arc_dev_t *b_dev; /* L2ARC device */ 680 uint64_t b_daddr; /* disk address, offset byte */ 681 /* compression applied to buffer data */ 682 enum zio_compress b_compress; 683 /* real alloc'd buffer size depending on b_compress applied */ 684 int b_asize; 685 /* temporary buffer holder for in-flight compressed data */ 686 void *b_tmp_cdata; 687 }; 688 689 typedef struct l2arc_data_free { 690 /* protected by l2arc_free_on_write_mtx */ 691 void *l2df_data; 692 size_t l2df_size; 693 void (*l2df_func)(void *, size_t); 694 list_node_t l2df_list_node; 695 } l2arc_data_free_t; 696 697 static kmutex_t l2arc_feed_thr_lock; 698 static kcondvar_t l2arc_feed_thr_cv; 699 static uint8_t l2arc_thread_exit; 700 701 static void l2arc_read_done(zio_t *zio); 702 static void l2arc_hdr_stat_add(void); 703 static void l2arc_hdr_stat_remove(void); 704 705 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr); 706 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, 707 enum zio_compress c); 708 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab); 709 710 static uint64_t 711 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 712 { 713 uint8_t *vdva = (uint8_t *)dva; 714 uint64_t crc = -1ULL; 715 int i; 716 717 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 718 719 for (i = 0; i < sizeof (dva_t); i++) 720 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 721 722 crc ^= (spa>>8) ^ birth; 723 724 return (crc); 725 } 726 727 #define BUF_EMPTY(buf) \ 728 ((buf)->b_dva.dva_word[0] == 0 && \ 729 (buf)->b_dva.dva_word[1] == 0 && \ 730 (buf)->b_cksum0 == 0) 731 732 #define BUF_EQUAL(spa, dva, birth, buf) \ 733 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 734 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 735 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 736 737 static void 738 buf_discard_identity(arc_buf_hdr_t *hdr) 739 { 740 hdr->b_dva.dva_word[0] = 0; 741 hdr->b_dva.dva_word[1] = 0; 742 hdr->b_birth = 0; 743 hdr->b_cksum0 = 0; 744 } 745 746 static arc_buf_hdr_t * 747 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 748 { 749 const dva_t *dva = BP_IDENTITY(bp); 750 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 751 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 752 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 753 arc_buf_hdr_t *buf; 754 755 mutex_enter(hash_lock); 756 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 757 buf = buf->b_hash_next) { 758 if (BUF_EQUAL(spa, dva, birth, buf)) { 759 *lockp = hash_lock; 760 return (buf); 761 } 762 } 763 mutex_exit(hash_lock); 764 *lockp = NULL; 765 return (NULL); 766 } 767 768 /* 769 * Insert an entry into the hash table. If there is already an element 770 * equal to elem in the hash table, then the already existing element 771 * will be returned and the new element will not be inserted. 772 * Otherwise returns NULL. 773 */ 774 static arc_buf_hdr_t * 775 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 776 { 777 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 778 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 779 arc_buf_hdr_t *fbuf; 780 uint32_t i; 781 782 ASSERT(!DVA_IS_EMPTY(&buf->b_dva)); 783 ASSERT(buf->b_birth != 0); 784 ASSERT(!HDR_IN_HASH_TABLE(buf)); 785 *lockp = hash_lock; 786 mutex_enter(hash_lock); 787 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 788 fbuf = fbuf->b_hash_next, i++) { 789 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 790 return (fbuf); 791 } 792 793 buf->b_hash_next = buf_hash_table.ht_table[idx]; 794 buf_hash_table.ht_table[idx] = buf; 795 buf->b_flags |= ARC_IN_HASH_TABLE; 796 797 /* collect some hash table performance data */ 798 if (i > 0) { 799 ARCSTAT_BUMP(arcstat_hash_collisions); 800 if (i == 1) 801 ARCSTAT_BUMP(arcstat_hash_chains); 802 803 ARCSTAT_MAX(arcstat_hash_chain_max, i); 804 } 805 806 ARCSTAT_BUMP(arcstat_hash_elements); 807 ARCSTAT_MAXSTAT(arcstat_hash_elements); 808 809 return (NULL); 810 } 811 812 static void 813 buf_hash_remove(arc_buf_hdr_t *buf) 814 { 815 arc_buf_hdr_t *fbuf, **bufp; 816 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 817 818 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 819 ASSERT(HDR_IN_HASH_TABLE(buf)); 820 821 bufp = &buf_hash_table.ht_table[idx]; 822 while ((fbuf = *bufp) != buf) { 823 ASSERT(fbuf != NULL); 824 bufp = &fbuf->b_hash_next; 825 } 826 *bufp = buf->b_hash_next; 827 buf->b_hash_next = NULL; 828 buf->b_flags &= ~ARC_IN_HASH_TABLE; 829 830 /* collect some hash table performance data */ 831 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 832 833 if (buf_hash_table.ht_table[idx] && 834 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 835 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 836 } 837 838 /* 839 * Global data structures and functions for the buf kmem cache. 840 */ 841 static kmem_cache_t *hdr_cache; 842 static kmem_cache_t *buf_cache; 843 844 static void 845 buf_fini(void) 846 { 847 int i; 848 849 kmem_free(buf_hash_table.ht_table, 850 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 851 for (i = 0; i < BUF_LOCKS; i++) 852 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 853 kmem_cache_destroy(hdr_cache); 854 kmem_cache_destroy(buf_cache); 855 } 856 857 /* 858 * Constructor callback - called when the cache is empty 859 * and a new buf is requested. 860 */ 861 /* ARGSUSED */ 862 static int 863 hdr_cons(void *vbuf, void *unused, int kmflag) 864 { 865 arc_buf_hdr_t *buf = vbuf; 866 867 bzero(buf, sizeof (arc_buf_hdr_t)); 868 refcount_create(&buf->b_refcnt); 869 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 870 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 871 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 872 873 return (0); 874 } 875 876 /* ARGSUSED */ 877 static int 878 buf_cons(void *vbuf, void *unused, int kmflag) 879 { 880 arc_buf_t *buf = vbuf; 881 882 bzero(buf, sizeof (arc_buf_t)); 883 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 884 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 885 886 return (0); 887 } 888 889 /* 890 * Destructor callback - called when a cached buf is 891 * no longer required. 892 */ 893 /* ARGSUSED */ 894 static void 895 hdr_dest(void *vbuf, void *unused) 896 { 897 arc_buf_hdr_t *buf = vbuf; 898 899 ASSERT(BUF_EMPTY(buf)); 900 refcount_destroy(&buf->b_refcnt); 901 cv_destroy(&buf->b_cv); 902 mutex_destroy(&buf->b_freeze_lock); 903 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 904 } 905 906 /* ARGSUSED */ 907 static void 908 buf_dest(void *vbuf, void *unused) 909 { 910 arc_buf_t *buf = vbuf; 911 912 mutex_destroy(&buf->b_evict_lock); 913 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 914 } 915 916 /* 917 * Reclaim callback -- invoked when memory is low. 918 */ 919 /* ARGSUSED */ 920 static void 921 hdr_recl(void *unused) 922 { 923 dprintf("hdr_recl called\n"); 924 /* 925 * umem calls the reclaim func when we destroy the buf cache, 926 * which is after we do arc_fini(). 927 */ 928 if (!arc_dead) 929 cv_signal(&arc_reclaim_thr_cv); 930 } 931 932 static void 933 buf_init(void) 934 { 935 uint64_t *ct; 936 uint64_t hsize = 1ULL << 12; 937 int i, j; 938 939 /* 940 * The hash table is big enough to fill all of physical memory 941 * with an average 64K block size. The table will take up 942 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 943 */ 944 while (hsize * 65536 < physmem * PAGESIZE) 945 hsize <<= 1; 946 retry: 947 buf_hash_table.ht_mask = hsize - 1; 948 buf_hash_table.ht_table = 949 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 950 if (buf_hash_table.ht_table == NULL) { 951 ASSERT(hsize > (1ULL << 8)); 952 hsize >>= 1; 953 goto retry; 954 } 955 956 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 957 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 958 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 959 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 960 961 for (i = 0; i < 256; i++) 962 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 963 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 964 965 for (i = 0; i < BUF_LOCKS; i++) { 966 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 967 NULL, MUTEX_DEFAULT, NULL); 968 } 969 } 970 971 #define ARC_MINTIME (hz>>4) /* 62 ms */ 972 973 static void 974 arc_cksum_verify(arc_buf_t *buf) 975 { 976 zio_cksum_t zc; 977 978 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 979 return; 980 981 mutex_enter(&buf->b_hdr->b_freeze_lock); 982 if (buf->b_hdr->b_freeze_cksum == NULL || 983 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 984 mutex_exit(&buf->b_hdr->b_freeze_lock); 985 return; 986 } 987 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 988 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 989 panic("buffer modified while frozen!"); 990 mutex_exit(&buf->b_hdr->b_freeze_lock); 991 } 992 993 static int 994 arc_cksum_equal(arc_buf_t *buf) 995 { 996 zio_cksum_t zc; 997 int equal; 998 999 mutex_enter(&buf->b_hdr->b_freeze_lock); 1000 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 1001 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 1002 mutex_exit(&buf->b_hdr->b_freeze_lock); 1003 1004 return (equal); 1005 } 1006 1007 static void 1008 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 1009 { 1010 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 1011 return; 1012 1013 mutex_enter(&buf->b_hdr->b_freeze_lock); 1014 if (buf->b_hdr->b_freeze_cksum != NULL) { 1015 mutex_exit(&buf->b_hdr->b_freeze_lock); 1016 return; 1017 } 1018 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1019 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1020 buf->b_hdr->b_freeze_cksum); 1021 mutex_exit(&buf->b_hdr->b_freeze_lock); 1022 arc_buf_watch(buf); 1023 } 1024 1025 #ifndef _KERNEL 1026 typedef struct procctl { 1027 long cmd; 1028 prwatch_t prwatch; 1029 } procctl_t; 1030 #endif 1031 1032 /* ARGSUSED */ 1033 static void 1034 arc_buf_unwatch(arc_buf_t *buf) 1035 { 1036 #ifndef _KERNEL 1037 if (arc_watch) { 1038 int result; 1039 procctl_t ctl; 1040 ctl.cmd = PCWATCH; 1041 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1042 ctl.prwatch.pr_size = 0; 1043 ctl.prwatch.pr_wflags = 0; 1044 result = write(arc_procfd, &ctl, sizeof (ctl)); 1045 ASSERT3U(result, ==, sizeof (ctl)); 1046 } 1047 #endif 1048 } 1049 1050 /* ARGSUSED */ 1051 static void 1052 arc_buf_watch(arc_buf_t *buf) 1053 { 1054 #ifndef _KERNEL 1055 if (arc_watch) { 1056 int result; 1057 procctl_t ctl; 1058 ctl.cmd = PCWATCH; 1059 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1060 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1061 ctl.prwatch.pr_wflags = WA_WRITE; 1062 result = write(arc_procfd, &ctl, sizeof (ctl)); 1063 ASSERT3U(result, ==, sizeof (ctl)); 1064 } 1065 #endif 1066 } 1067 1068 void 1069 arc_buf_thaw(arc_buf_t *buf) 1070 { 1071 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1072 if (buf->b_hdr->b_state != arc_anon) 1073 panic("modifying non-anon buffer!"); 1074 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 1075 panic("modifying buffer while i/o in progress!"); 1076 arc_cksum_verify(buf); 1077 } 1078 1079 mutex_enter(&buf->b_hdr->b_freeze_lock); 1080 if (buf->b_hdr->b_freeze_cksum != NULL) { 1081 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1082 buf->b_hdr->b_freeze_cksum = NULL; 1083 } 1084 1085 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1086 if (buf->b_hdr->b_thawed) 1087 kmem_free(buf->b_hdr->b_thawed, 1); 1088 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1089 } 1090 1091 mutex_exit(&buf->b_hdr->b_freeze_lock); 1092 1093 arc_buf_unwatch(buf); 1094 } 1095 1096 void 1097 arc_buf_freeze(arc_buf_t *buf) 1098 { 1099 kmutex_t *hash_lock; 1100 1101 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1102 return; 1103 1104 hash_lock = HDR_LOCK(buf->b_hdr); 1105 mutex_enter(hash_lock); 1106 1107 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1108 buf->b_hdr->b_state == arc_anon); 1109 arc_cksum_compute(buf, B_FALSE); 1110 mutex_exit(hash_lock); 1111 1112 } 1113 1114 static void 1115 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1116 { 1117 ASSERT(MUTEX_HELD(hash_lock)); 1118 1119 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1120 (ab->b_state != arc_anon)) { 1121 uint64_t delta = ab->b_size * ab->b_datacnt; 1122 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1123 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1124 1125 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1126 mutex_enter(&ab->b_state->arcs_mtx); 1127 ASSERT(list_link_active(&ab->b_arc_node)); 1128 list_remove(list, ab); 1129 if (GHOST_STATE(ab->b_state)) { 1130 ASSERT0(ab->b_datacnt); 1131 ASSERT3P(ab->b_buf, ==, NULL); 1132 delta = ab->b_size; 1133 } 1134 ASSERT(delta > 0); 1135 ASSERT3U(*size, >=, delta); 1136 atomic_add_64(size, -delta); 1137 mutex_exit(&ab->b_state->arcs_mtx); 1138 /* remove the prefetch flag if we get a reference */ 1139 if (ab->b_flags & ARC_PREFETCH) 1140 ab->b_flags &= ~ARC_PREFETCH; 1141 } 1142 } 1143 1144 static int 1145 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1146 { 1147 int cnt; 1148 arc_state_t *state = ab->b_state; 1149 1150 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1151 ASSERT(!GHOST_STATE(state)); 1152 1153 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1154 (state != arc_anon)) { 1155 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1156 1157 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1158 mutex_enter(&state->arcs_mtx); 1159 ASSERT(!list_link_active(&ab->b_arc_node)); 1160 list_insert_head(&state->arcs_list[ab->b_type], ab); 1161 ASSERT(ab->b_datacnt > 0); 1162 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1163 mutex_exit(&state->arcs_mtx); 1164 } 1165 return (cnt); 1166 } 1167 1168 /* 1169 * Move the supplied buffer to the indicated state. The mutex 1170 * for the buffer must be held by the caller. 1171 */ 1172 static void 1173 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1174 { 1175 arc_state_t *old_state = ab->b_state; 1176 int64_t refcnt = refcount_count(&ab->b_refcnt); 1177 uint64_t from_delta, to_delta; 1178 1179 ASSERT(MUTEX_HELD(hash_lock)); 1180 ASSERT3P(new_state, !=, old_state); 1181 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1182 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1183 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1184 1185 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1186 1187 /* 1188 * If this buffer is evictable, transfer it from the 1189 * old state list to the new state list. 1190 */ 1191 if (refcnt == 0) { 1192 if (old_state != arc_anon) { 1193 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1194 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1195 1196 if (use_mutex) 1197 mutex_enter(&old_state->arcs_mtx); 1198 1199 ASSERT(list_link_active(&ab->b_arc_node)); 1200 list_remove(&old_state->arcs_list[ab->b_type], ab); 1201 1202 /* 1203 * If prefetching out of the ghost cache, 1204 * we will have a non-zero datacnt. 1205 */ 1206 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1207 /* ghost elements have a ghost size */ 1208 ASSERT(ab->b_buf == NULL); 1209 from_delta = ab->b_size; 1210 } 1211 ASSERT3U(*size, >=, from_delta); 1212 atomic_add_64(size, -from_delta); 1213 1214 if (use_mutex) 1215 mutex_exit(&old_state->arcs_mtx); 1216 } 1217 if (new_state != arc_anon) { 1218 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1219 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1220 1221 if (use_mutex) 1222 mutex_enter(&new_state->arcs_mtx); 1223 1224 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1225 1226 /* ghost elements have a ghost size */ 1227 if (GHOST_STATE(new_state)) { 1228 ASSERT(ab->b_datacnt == 0); 1229 ASSERT(ab->b_buf == NULL); 1230 to_delta = ab->b_size; 1231 } 1232 atomic_add_64(size, to_delta); 1233 1234 if (use_mutex) 1235 mutex_exit(&new_state->arcs_mtx); 1236 } 1237 } 1238 1239 ASSERT(!BUF_EMPTY(ab)); 1240 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1241 buf_hash_remove(ab); 1242 1243 /* adjust state sizes */ 1244 if (to_delta) 1245 atomic_add_64(&new_state->arcs_size, to_delta); 1246 if (from_delta) { 1247 ASSERT3U(old_state->arcs_size, >=, from_delta); 1248 atomic_add_64(&old_state->arcs_size, -from_delta); 1249 } 1250 ab->b_state = new_state; 1251 1252 /* adjust l2arc hdr stats */ 1253 if (new_state == arc_l2c_only) 1254 l2arc_hdr_stat_add(); 1255 else if (old_state == arc_l2c_only) 1256 l2arc_hdr_stat_remove(); 1257 } 1258 1259 void 1260 arc_space_consume(uint64_t space, arc_space_type_t type) 1261 { 1262 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1263 1264 switch (type) { 1265 case ARC_SPACE_DATA: 1266 ARCSTAT_INCR(arcstat_data_size, space); 1267 break; 1268 case ARC_SPACE_OTHER: 1269 ARCSTAT_INCR(arcstat_other_size, space); 1270 break; 1271 case ARC_SPACE_HDRS: 1272 ARCSTAT_INCR(arcstat_hdr_size, space); 1273 break; 1274 case ARC_SPACE_L2HDRS: 1275 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1276 break; 1277 } 1278 1279 ARCSTAT_INCR(arcstat_meta_used, space); 1280 atomic_add_64(&arc_size, space); 1281 } 1282 1283 void 1284 arc_space_return(uint64_t space, arc_space_type_t type) 1285 { 1286 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1287 1288 switch (type) { 1289 case ARC_SPACE_DATA: 1290 ARCSTAT_INCR(arcstat_data_size, -space); 1291 break; 1292 case ARC_SPACE_OTHER: 1293 ARCSTAT_INCR(arcstat_other_size, -space); 1294 break; 1295 case ARC_SPACE_HDRS: 1296 ARCSTAT_INCR(arcstat_hdr_size, -space); 1297 break; 1298 case ARC_SPACE_L2HDRS: 1299 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1300 break; 1301 } 1302 1303 ASSERT(arc_meta_used >= space); 1304 if (arc_meta_max < arc_meta_used) 1305 arc_meta_max = arc_meta_used; 1306 ARCSTAT_INCR(arcstat_meta_used, -space); 1307 ASSERT(arc_size >= space); 1308 atomic_add_64(&arc_size, -space); 1309 } 1310 1311 void * 1312 arc_data_buf_alloc(uint64_t size) 1313 { 1314 if (arc_evict_needed(ARC_BUFC_DATA)) 1315 cv_signal(&arc_reclaim_thr_cv); 1316 atomic_add_64(&arc_size, size); 1317 return (zio_data_buf_alloc(size)); 1318 } 1319 1320 void 1321 arc_data_buf_free(void *buf, uint64_t size) 1322 { 1323 zio_data_buf_free(buf, size); 1324 ASSERT(arc_size >= size); 1325 atomic_add_64(&arc_size, -size); 1326 } 1327 1328 arc_buf_t * 1329 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1330 { 1331 arc_buf_hdr_t *hdr; 1332 arc_buf_t *buf; 1333 1334 ASSERT3U(size, >, 0); 1335 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1336 ASSERT(BUF_EMPTY(hdr)); 1337 hdr->b_size = size; 1338 hdr->b_type = type; 1339 hdr->b_spa = spa_load_guid(spa); 1340 hdr->b_state = arc_anon; 1341 hdr->b_arc_access = 0; 1342 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1343 buf->b_hdr = hdr; 1344 buf->b_data = NULL; 1345 buf->b_efunc = NULL; 1346 buf->b_private = NULL; 1347 buf->b_next = NULL; 1348 hdr->b_buf = buf; 1349 arc_get_data_buf(buf); 1350 hdr->b_datacnt = 1; 1351 hdr->b_flags = 0; 1352 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1353 (void) refcount_add(&hdr->b_refcnt, tag); 1354 1355 return (buf); 1356 } 1357 1358 static char *arc_onloan_tag = "onloan"; 1359 1360 /* 1361 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1362 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1363 * buffers must be returned to the arc before they can be used by the DMU or 1364 * freed. 1365 */ 1366 arc_buf_t * 1367 arc_loan_buf(spa_t *spa, int size) 1368 { 1369 arc_buf_t *buf; 1370 1371 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1372 1373 atomic_add_64(&arc_loaned_bytes, size); 1374 return (buf); 1375 } 1376 1377 /* 1378 * Return a loaned arc buffer to the arc. 1379 */ 1380 void 1381 arc_return_buf(arc_buf_t *buf, void *tag) 1382 { 1383 arc_buf_hdr_t *hdr = buf->b_hdr; 1384 1385 ASSERT(buf->b_data != NULL); 1386 (void) refcount_add(&hdr->b_refcnt, tag); 1387 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1388 1389 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1390 } 1391 1392 /* Detach an arc_buf from a dbuf (tag) */ 1393 void 1394 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1395 { 1396 arc_buf_hdr_t *hdr; 1397 1398 ASSERT(buf->b_data != NULL); 1399 hdr = buf->b_hdr; 1400 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1401 (void) refcount_remove(&hdr->b_refcnt, tag); 1402 buf->b_efunc = NULL; 1403 buf->b_private = NULL; 1404 1405 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1406 } 1407 1408 static arc_buf_t * 1409 arc_buf_clone(arc_buf_t *from) 1410 { 1411 arc_buf_t *buf; 1412 arc_buf_hdr_t *hdr = from->b_hdr; 1413 uint64_t size = hdr->b_size; 1414 1415 ASSERT(hdr->b_state != arc_anon); 1416 1417 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1418 buf->b_hdr = hdr; 1419 buf->b_data = NULL; 1420 buf->b_efunc = NULL; 1421 buf->b_private = NULL; 1422 buf->b_next = hdr->b_buf; 1423 hdr->b_buf = buf; 1424 arc_get_data_buf(buf); 1425 bcopy(from->b_data, buf->b_data, size); 1426 1427 /* 1428 * This buffer already exists in the arc so create a duplicate 1429 * copy for the caller. If the buffer is associated with user data 1430 * then track the size and number of duplicates. These stats will be 1431 * updated as duplicate buffers are created and destroyed. 1432 */ 1433 if (hdr->b_type == ARC_BUFC_DATA) { 1434 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1435 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1436 } 1437 hdr->b_datacnt += 1; 1438 return (buf); 1439 } 1440 1441 void 1442 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1443 { 1444 arc_buf_hdr_t *hdr; 1445 kmutex_t *hash_lock; 1446 1447 /* 1448 * Check to see if this buffer is evicted. Callers 1449 * must verify b_data != NULL to know if the add_ref 1450 * was successful. 1451 */ 1452 mutex_enter(&buf->b_evict_lock); 1453 if (buf->b_data == NULL) { 1454 mutex_exit(&buf->b_evict_lock); 1455 return; 1456 } 1457 hash_lock = HDR_LOCK(buf->b_hdr); 1458 mutex_enter(hash_lock); 1459 hdr = buf->b_hdr; 1460 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1461 mutex_exit(&buf->b_evict_lock); 1462 1463 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1464 add_reference(hdr, hash_lock, tag); 1465 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1466 arc_access(hdr, hash_lock); 1467 mutex_exit(hash_lock); 1468 ARCSTAT_BUMP(arcstat_hits); 1469 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1470 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1471 data, metadata, hits); 1472 } 1473 1474 /* 1475 * Free the arc data buffer. If it is an l2arc write in progress, 1476 * the buffer is placed on l2arc_free_on_write to be freed later. 1477 */ 1478 static void 1479 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1480 { 1481 arc_buf_hdr_t *hdr = buf->b_hdr; 1482 1483 if (HDR_L2_WRITING(hdr)) { 1484 l2arc_data_free_t *df; 1485 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1486 df->l2df_data = buf->b_data; 1487 df->l2df_size = hdr->b_size; 1488 df->l2df_func = free_func; 1489 mutex_enter(&l2arc_free_on_write_mtx); 1490 list_insert_head(l2arc_free_on_write, df); 1491 mutex_exit(&l2arc_free_on_write_mtx); 1492 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1493 } else { 1494 free_func(buf->b_data, hdr->b_size); 1495 } 1496 } 1497 1498 /* 1499 * Free up buf->b_data and if 'remove' is set, then pull the 1500 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 1501 */ 1502 static void 1503 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove) 1504 { 1505 arc_buf_t **bufp; 1506 1507 /* free up data associated with the buf */ 1508 if (buf->b_data) { 1509 arc_state_t *state = buf->b_hdr->b_state; 1510 uint64_t size = buf->b_hdr->b_size; 1511 arc_buf_contents_t type = buf->b_hdr->b_type; 1512 1513 arc_cksum_verify(buf); 1514 arc_buf_unwatch(buf); 1515 1516 if (!recycle) { 1517 if (type == ARC_BUFC_METADATA) { 1518 arc_buf_data_free(buf, zio_buf_free); 1519 arc_space_return(size, ARC_SPACE_DATA); 1520 } else { 1521 ASSERT(type == ARC_BUFC_DATA); 1522 arc_buf_data_free(buf, zio_data_buf_free); 1523 ARCSTAT_INCR(arcstat_data_size, -size); 1524 atomic_add_64(&arc_size, -size); 1525 } 1526 } 1527 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1528 uint64_t *cnt = &state->arcs_lsize[type]; 1529 1530 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1531 ASSERT(state != arc_anon); 1532 1533 ASSERT3U(*cnt, >=, size); 1534 atomic_add_64(cnt, -size); 1535 } 1536 ASSERT3U(state->arcs_size, >=, size); 1537 atomic_add_64(&state->arcs_size, -size); 1538 buf->b_data = NULL; 1539 1540 /* 1541 * If we're destroying a duplicate buffer make sure 1542 * that the appropriate statistics are updated. 1543 */ 1544 if (buf->b_hdr->b_datacnt > 1 && 1545 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1546 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1547 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1548 } 1549 ASSERT(buf->b_hdr->b_datacnt > 0); 1550 buf->b_hdr->b_datacnt -= 1; 1551 } 1552 1553 /* only remove the buf if requested */ 1554 if (!remove) 1555 return; 1556 1557 /* remove the buf from the hdr list */ 1558 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1559 continue; 1560 *bufp = buf->b_next; 1561 buf->b_next = NULL; 1562 1563 ASSERT(buf->b_efunc == NULL); 1564 1565 /* clean up the buf */ 1566 buf->b_hdr = NULL; 1567 kmem_cache_free(buf_cache, buf); 1568 } 1569 1570 static void 1571 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1572 { 1573 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1574 ASSERT3P(hdr->b_state, ==, arc_anon); 1575 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1576 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1577 1578 if (l2hdr != NULL) { 1579 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1580 /* 1581 * To prevent arc_free() and l2arc_evict() from 1582 * attempting to free the same buffer at the same time, 1583 * a FREE_IN_PROGRESS flag is given to arc_free() to 1584 * give it priority. l2arc_evict() can't destroy this 1585 * header while we are waiting on l2arc_buflist_mtx. 1586 * 1587 * The hdr may be removed from l2ad_buflist before we 1588 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1589 */ 1590 if (!buflist_held) { 1591 mutex_enter(&l2arc_buflist_mtx); 1592 l2hdr = hdr->b_l2hdr; 1593 } 1594 1595 if (l2hdr != NULL) { 1596 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1597 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1598 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 1599 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 1600 -l2hdr->b_asize, 0, 0); 1601 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1602 if (hdr->b_state == arc_l2c_only) 1603 l2arc_hdr_stat_remove(); 1604 hdr->b_l2hdr = NULL; 1605 } 1606 1607 if (!buflist_held) 1608 mutex_exit(&l2arc_buflist_mtx); 1609 } 1610 1611 if (!BUF_EMPTY(hdr)) { 1612 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1613 buf_discard_identity(hdr); 1614 } 1615 while (hdr->b_buf) { 1616 arc_buf_t *buf = hdr->b_buf; 1617 1618 if (buf->b_efunc) { 1619 mutex_enter(&arc_eviction_mtx); 1620 mutex_enter(&buf->b_evict_lock); 1621 ASSERT(buf->b_hdr != NULL); 1622 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1623 hdr->b_buf = buf->b_next; 1624 buf->b_hdr = &arc_eviction_hdr; 1625 buf->b_next = arc_eviction_list; 1626 arc_eviction_list = buf; 1627 mutex_exit(&buf->b_evict_lock); 1628 mutex_exit(&arc_eviction_mtx); 1629 } else { 1630 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1631 } 1632 } 1633 if (hdr->b_freeze_cksum != NULL) { 1634 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1635 hdr->b_freeze_cksum = NULL; 1636 } 1637 if (hdr->b_thawed) { 1638 kmem_free(hdr->b_thawed, 1); 1639 hdr->b_thawed = NULL; 1640 } 1641 1642 ASSERT(!list_link_active(&hdr->b_arc_node)); 1643 ASSERT3P(hdr->b_hash_next, ==, NULL); 1644 ASSERT3P(hdr->b_acb, ==, NULL); 1645 kmem_cache_free(hdr_cache, hdr); 1646 } 1647 1648 void 1649 arc_buf_free(arc_buf_t *buf, void *tag) 1650 { 1651 arc_buf_hdr_t *hdr = buf->b_hdr; 1652 int hashed = hdr->b_state != arc_anon; 1653 1654 ASSERT(buf->b_efunc == NULL); 1655 ASSERT(buf->b_data != NULL); 1656 1657 if (hashed) { 1658 kmutex_t *hash_lock = HDR_LOCK(hdr); 1659 1660 mutex_enter(hash_lock); 1661 hdr = buf->b_hdr; 1662 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1663 1664 (void) remove_reference(hdr, hash_lock, tag); 1665 if (hdr->b_datacnt > 1) { 1666 arc_buf_destroy(buf, FALSE, TRUE); 1667 } else { 1668 ASSERT(buf == hdr->b_buf); 1669 ASSERT(buf->b_efunc == NULL); 1670 hdr->b_flags |= ARC_BUF_AVAILABLE; 1671 } 1672 mutex_exit(hash_lock); 1673 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1674 int destroy_hdr; 1675 /* 1676 * We are in the middle of an async write. Don't destroy 1677 * this buffer unless the write completes before we finish 1678 * decrementing the reference count. 1679 */ 1680 mutex_enter(&arc_eviction_mtx); 1681 (void) remove_reference(hdr, NULL, tag); 1682 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1683 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1684 mutex_exit(&arc_eviction_mtx); 1685 if (destroy_hdr) 1686 arc_hdr_destroy(hdr); 1687 } else { 1688 if (remove_reference(hdr, NULL, tag) > 0) 1689 arc_buf_destroy(buf, FALSE, TRUE); 1690 else 1691 arc_hdr_destroy(hdr); 1692 } 1693 } 1694 1695 boolean_t 1696 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1697 { 1698 arc_buf_hdr_t *hdr = buf->b_hdr; 1699 kmutex_t *hash_lock = HDR_LOCK(hdr); 1700 boolean_t no_callback = (buf->b_efunc == NULL); 1701 1702 if (hdr->b_state == arc_anon) { 1703 ASSERT(hdr->b_datacnt == 1); 1704 arc_buf_free(buf, tag); 1705 return (no_callback); 1706 } 1707 1708 mutex_enter(hash_lock); 1709 hdr = buf->b_hdr; 1710 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1711 ASSERT(hdr->b_state != arc_anon); 1712 ASSERT(buf->b_data != NULL); 1713 1714 (void) remove_reference(hdr, hash_lock, tag); 1715 if (hdr->b_datacnt > 1) { 1716 if (no_callback) 1717 arc_buf_destroy(buf, FALSE, TRUE); 1718 } else if (no_callback) { 1719 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1720 ASSERT(buf->b_efunc == NULL); 1721 hdr->b_flags |= ARC_BUF_AVAILABLE; 1722 } 1723 ASSERT(no_callback || hdr->b_datacnt > 1 || 1724 refcount_is_zero(&hdr->b_refcnt)); 1725 mutex_exit(hash_lock); 1726 return (no_callback); 1727 } 1728 1729 int 1730 arc_buf_size(arc_buf_t *buf) 1731 { 1732 return (buf->b_hdr->b_size); 1733 } 1734 1735 /* 1736 * Called from the DMU to determine if the current buffer should be 1737 * evicted. In order to ensure proper locking, the eviction must be initiated 1738 * from the DMU. Return true if the buffer is associated with user data and 1739 * duplicate buffers still exist. 1740 */ 1741 boolean_t 1742 arc_buf_eviction_needed(arc_buf_t *buf) 1743 { 1744 arc_buf_hdr_t *hdr; 1745 boolean_t evict_needed = B_FALSE; 1746 1747 if (zfs_disable_dup_eviction) 1748 return (B_FALSE); 1749 1750 mutex_enter(&buf->b_evict_lock); 1751 hdr = buf->b_hdr; 1752 if (hdr == NULL) { 1753 /* 1754 * We are in arc_do_user_evicts(); let that function 1755 * perform the eviction. 1756 */ 1757 ASSERT(buf->b_data == NULL); 1758 mutex_exit(&buf->b_evict_lock); 1759 return (B_FALSE); 1760 } else if (buf->b_data == NULL) { 1761 /* 1762 * We have already been added to the arc eviction list; 1763 * recommend eviction. 1764 */ 1765 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1766 mutex_exit(&buf->b_evict_lock); 1767 return (B_TRUE); 1768 } 1769 1770 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1771 evict_needed = B_TRUE; 1772 1773 mutex_exit(&buf->b_evict_lock); 1774 return (evict_needed); 1775 } 1776 1777 /* 1778 * Evict buffers from list until we've removed the specified number of 1779 * bytes. Move the removed buffers to the appropriate evict state. 1780 * If the recycle flag is set, then attempt to "recycle" a buffer: 1781 * - look for a buffer to evict that is `bytes' long. 1782 * - return the data block from this buffer rather than freeing it. 1783 * This flag is used by callers that are trying to make space for a 1784 * new buffer in a full arc cache. 1785 * 1786 * This function makes a "best effort". It skips over any buffers 1787 * it can't get a hash_lock on, and so may not catch all candidates. 1788 * It may also return without evicting as much space as requested. 1789 */ 1790 static void * 1791 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1792 arc_buf_contents_t type) 1793 { 1794 arc_state_t *evicted_state; 1795 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1796 arc_buf_hdr_t *ab, *ab_prev = NULL; 1797 list_t *list = &state->arcs_list[type]; 1798 kmutex_t *hash_lock; 1799 boolean_t have_lock; 1800 void *stolen = NULL; 1801 arc_buf_hdr_t marker = { 0 }; 1802 int count = 0; 1803 1804 ASSERT(state == arc_mru || state == arc_mfu); 1805 1806 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1807 1808 mutex_enter(&state->arcs_mtx); 1809 mutex_enter(&evicted_state->arcs_mtx); 1810 1811 for (ab = list_tail(list); ab; ab = ab_prev) { 1812 ab_prev = list_prev(list, ab); 1813 /* prefetch buffers have a minimum lifespan */ 1814 if (HDR_IO_IN_PROGRESS(ab) || 1815 (spa && ab->b_spa != spa) || 1816 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1817 ddi_get_lbolt() - ab->b_arc_access < 1818 arc_min_prefetch_lifespan)) { 1819 skipped++; 1820 continue; 1821 } 1822 /* "lookahead" for better eviction candidate */ 1823 if (recycle && ab->b_size != bytes && 1824 ab_prev && ab_prev->b_size == bytes) 1825 continue; 1826 1827 /* ignore markers */ 1828 if (ab->b_spa == 0) 1829 continue; 1830 1831 /* 1832 * It may take a long time to evict all the bufs requested. 1833 * To avoid blocking all arc activity, periodically drop 1834 * the arcs_mtx and give other threads a chance to run 1835 * before reacquiring the lock. 1836 * 1837 * If we are looking for a buffer to recycle, we are in 1838 * the hot code path, so don't sleep. 1839 */ 1840 if (!recycle && count++ > arc_evict_iterations) { 1841 list_insert_after(list, ab, &marker); 1842 mutex_exit(&evicted_state->arcs_mtx); 1843 mutex_exit(&state->arcs_mtx); 1844 kpreempt(KPREEMPT_SYNC); 1845 mutex_enter(&state->arcs_mtx); 1846 mutex_enter(&evicted_state->arcs_mtx); 1847 ab_prev = list_prev(list, &marker); 1848 list_remove(list, &marker); 1849 count = 0; 1850 continue; 1851 } 1852 1853 hash_lock = HDR_LOCK(ab); 1854 have_lock = MUTEX_HELD(hash_lock); 1855 if (have_lock || mutex_tryenter(hash_lock)) { 1856 ASSERT0(refcount_count(&ab->b_refcnt)); 1857 ASSERT(ab->b_datacnt > 0); 1858 while (ab->b_buf) { 1859 arc_buf_t *buf = ab->b_buf; 1860 if (!mutex_tryenter(&buf->b_evict_lock)) { 1861 missed += 1; 1862 break; 1863 } 1864 if (buf->b_data) { 1865 bytes_evicted += ab->b_size; 1866 if (recycle && ab->b_type == type && 1867 ab->b_size == bytes && 1868 !HDR_L2_WRITING(ab)) { 1869 stolen = buf->b_data; 1870 recycle = FALSE; 1871 } 1872 } 1873 if (buf->b_efunc) { 1874 mutex_enter(&arc_eviction_mtx); 1875 arc_buf_destroy(buf, 1876 buf->b_data == stolen, FALSE); 1877 ab->b_buf = buf->b_next; 1878 buf->b_hdr = &arc_eviction_hdr; 1879 buf->b_next = arc_eviction_list; 1880 arc_eviction_list = buf; 1881 mutex_exit(&arc_eviction_mtx); 1882 mutex_exit(&buf->b_evict_lock); 1883 } else { 1884 mutex_exit(&buf->b_evict_lock); 1885 arc_buf_destroy(buf, 1886 buf->b_data == stolen, TRUE); 1887 } 1888 } 1889 1890 if (ab->b_l2hdr) { 1891 ARCSTAT_INCR(arcstat_evict_l2_cached, 1892 ab->b_size); 1893 } else { 1894 if (l2arc_write_eligible(ab->b_spa, ab)) { 1895 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1896 ab->b_size); 1897 } else { 1898 ARCSTAT_INCR( 1899 arcstat_evict_l2_ineligible, 1900 ab->b_size); 1901 } 1902 } 1903 1904 if (ab->b_datacnt == 0) { 1905 arc_change_state(evicted_state, ab, hash_lock); 1906 ASSERT(HDR_IN_HASH_TABLE(ab)); 1907 ab->b_flags |= ARC_IN_HASH_TABLE; 1908 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1909 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1910 } 1911 if (!have_lock) 1912 mutex_exit(hash_lock); 1913 if (bytes >= 0 && bytes_evicted >= bytes) 1914 break; 1915 } else { 1916 missed += 1; 1917 } 1918 } 1919 1920 mutex_exit(&evicted_state->arcs_mtx); 1921 mutex_exit(&state->arcs_mtx); 1922 1923 if (bytes_evicted < bytes) 1924 dprintf("only evicted %lld bytes from %x", 1925 (longlong_t)bytes_evicted, state); 1926 1927 if (skipped) 1928 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1929 1930 if (missed) 1931 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1932 1933 /* 1934 * Note: we have just evicted some data into the ghost state, 1935 * potentially putting the ghost size over the desired size. Rather 1936 * that evicting from the ghost list in this hot code path, leave 1937 * this chore to the arc_reclaim_thread(). 1938 */ 1939 1940 return (stolen); 1941 } 1942 1943 /* 1944 * Remove buffers from list until we've removed the specified number of 1945 * bytes. Destroy the buffers that are removed. 1946 */ 1947 static void 1948 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1949 { 1950 arc_buf_hdr_t *ab, *ab_prev; 1951 arc_buf_hdr_t marker = { 0 }; 1952 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1953 kmutex_t *hash_lock; 1954 uint64_t bytes_deleted = 0; 1955 uint64_t bufs_skipped = 0; 1956 int count = 0; 1957 1958 ASSERT(GHOST_STATE(state)); 1959 top: 1960 mutex_enter(&state->arcs_mtx); 1961 for (ab = list_tail(list); ab; ab = ab_prev) { 1962 ab_prev = list_prev(list, ab); 1963 if (ab->b_type > ARC_BUFC_NUMTYPES) 1964 panic("invalid ab=%p", (void *)ab); 1965 if (spa && ab->b_spa != spa) 1966 continue; 1967 1968 /* ignore markers */ 1969 if (ab->b_spa == 0) 1970 continue; 1971 1972 hash_lock = HDR_LOCK(ab); 1973 /* caller may be trying to modify this buffer, skip it */ 1974 if (MUTEX_HELD(hash_lock)) 1975 continue; 1976 1977 /* 1978 * It may take a long time to evict all the bufs requested. 1979 * To avoid blocking all arc activity, periodically drop 1980 * the arcs_mtx and give other threads a chance to run 1981 * before reacquiring the lock. 1982 */ 1983 if (count++ > arc_evict_iterations) { 1984 list_insert_after(list, ab, &marker); 1985 mutex_exit(&state->arcs_mtx); 1986 kpreempt(KPREEMPT_SYNC); 1987 mutex_enter(&state->arcs_mtx); 1988 ab_prev = list_prev(list, &marker); 1989 list_remove(list, &marker); 1990 count = 0; 1991 continue; 1992 } 1993 if (mutex_tryenter(hash_lock)) { 1994 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1995 ASSERT(ab->b_buf == NULL); 1996 ARCSTAT_BUMP(arcstat_deleted); 1997 bytes_deleted += ab->b_size; 1998 1999 if (ab->b_l2hdr != NULL) { 2000 /* 2001 * This buffer is cached on the 2nd Level ARC; 2002 * don't destroy the header. 2003 */ 2004 arc_change_state(arc_l2c_only, ab, hash_lock); 2005 mutex_exit(hash_lock); 2006 } else { 2007 arc_change_state(arc_anon, ab, hash_lock); 2008 mutex_exit(hash_lock); 2009 arc_hdr_destroy(ab); 2010 } 2011 2012 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 2013 if (bytes >= 0 && bytes_deleted >= bytes) 2014 break; 2015 } else if (bytes < 0) { 2016 /* 2017 * Insert a list marker and then wait for the 2018 * hash lock to become available. Once its 2019 * available, restart from where we left off. 2020 */ 2021 list_insert_after(list, ab, &marker); 2022 mutex_exit(&state->arcs_mtx); 2023 mutex_enter(hash_lock); 2024 mutex_exit(hash_lock); 2025 mutex_enter(&state->arcs_mtx); 2026 ab_prev = list_prev(list, &marker); 2027 list_remove(list, &marker); 2028 } else { 2029 bufs_skipped += 1; 2030 } 2031 2032 } 2033 mutex_exit(&state->arcs_mtx); 2034 2035 if (list == &state->arcs_list[ARC_BUFC_DATA] && 2036 (bytes < 0 || bytes_deleted < bytes)) { 2037 list = &state->arcs_list[ARC_BUFC_METADATA]; 2038 goto top; 2039 } 2040 2041 if (bufs_skipped) { 2042 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 2043 ASSERT(bytes >= 0); 2044 } 2045 2046 if (bytes_deleted < bytes) 2047 dprintf("only deleted %lld bytes from %p", 2048 (longlong_t)bytes_deleted, state); 2049 } 2050 2051 static void 2052 arc_adjust(void) 2053 { 2054 int64_t adjustment, delta; 2055 2056 /* 2057 * Adjust MRU size 2058 */ 2059 2060 adjustment = MIN((int64_t)(arc_size - arc_c), 2061 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 2062 arc_p)); 2063 2064 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 2065 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 2066 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 2067 adjustment -= delta; 2068 } 2069 2070 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2071 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 2072 (void) arc_evict(arc_mru, NULL, delta, FALSE, 2073 ARC_BUFC_METADATA); 2074 } 2075 2076 /* 2077 * Adjust MFU size 2078 */ 2079 2080 adjustment = arc_size - arc_c; 2081 2082 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 2083 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 2084 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 2085 adjustment -= delta; 2086 } 2087 2088 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2089 int64_t delta = MIN(adjustment, 2090 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 2091 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 2092 ARC_BUFC_METADATA); 2093 } 2094 2095 /* 2096 * Adjust ghost lists 2097 */ 2098 2099 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2100 2101 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2102 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2103 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2104 } 2105 2106 adjustment = 2107 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2108 2109 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2110 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2111 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2112 } 2113 } 2114 2115 static void 2116 arc_do_user_evicts(void) 2117 { 2118 mutex_enter(&arc_eviction_mtx); 2119 while (arc_eviction_list != NULL) { 2120 arc_buf_t *buf = arc_eviction_list; 2121 arc_eviction_list = buf->b_next; 2122 mutex_enter(&buf->b_evict_lock); 2123 buf->b_hdr = NULL; 2124 mutex_exit(&buf->b_evict_lock); 2125 mutex_exit(&arc_eviction_mtx); 2126 2127 if (buf->b_efunc != NULL) 2128 VERIFY0(buf->b_efunc(buf->b_private)); 2129 2130 buf->b_efunc = NULL; 2131 buf->b_private = NULL; 2132 kmem_cache_free(buf_cache, buf); 2133 mutex_enter(&arc_eviction_mtx); 2134 } 2135 mutex_exit(&arc_eviction_mtx); 2136 } 2137 2138 /* 2139 * Flush all *evictable* data from the cache for the given spa. 2140 * NOTE: this will not touch "active" (i.e. referenced) data. 2141 */ 2142 void 2143 arc_flush(spa_t *spa) 2144 { 2145 uint64_t guid = 0; 2146 2147 if (spa) 2148 guid = spa_load_guid(spa); 2149 2150 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2151 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2152 if (spa) 2153 break; 2154 } 2155 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2156 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2157 if (spa) 2158 break; 2159 } 2160 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2161 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2162 if (spa) 2163 break; 2164 } 2165 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2166 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2167 if (spa) 2168 break; 2169 } 2170 2171 arc_evict_ghost(arc_mru_ghost, guid, -1); 2172 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2173 2174 mutex_enter(&arc_reclaim_thr_lock); 2175 arc_do_user_evicts(); 2176 mutex_exit(&arc_reclaim_thr_lock); 2177 ASSERT(spa || arc_eviction_list == NULL); 2178 } 2179 2180 void 2181 arc_shrink(void) 2182 { 2183 if (arc_c > arc_c_min) { 2184 uint64_t to_free; 2185 2186 #ifdef _KERNEL 2187 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2188 #else 2189 to_free = arc_c >> arc_shrink_shift; 2190 #endif 2191 if (arc_c > arc_c_min + to_free) 2192 atomic_add_64(&arc_c, -to_free); 2193 else 2194 arc_c = arc_c_min; 2195 2196 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2197 if (arc_c > arc_size) 2198 arc_c = MAX(arc_size, arc_c_min); 2199 if (arc_p > arc_c) 2200 arc_p = (arc_c >> 1); 2201 ASSERT(arc_c >= arc_c_min); 2202 ASSERT((int64_t)arc_p >= 0); 2203 } 2204 2205 if (arc_size > arc_c) 2206 arc_adjust(); 2207 } 2208 2209 /* 2210 * Determine if the system is under memory pressure and is asking 2211 * to reclaim memory. A return value of 1 indicates that the system 2212 * is under memory pressure and that the arc should adjust accordingly. 2213 */ 2214 static int 2215 arc_reclaim_needed(void) 2216 { 2217 uint64_t extra; 2218 2219 #ifdef _KERNEL 2220 2221 if (needfree) 2222 return (1); 2223 2224 /* 2225 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2226 */ 2227 extra = desfree; 2228 2229 /* 2230 * check that we're out of range of the pageout scanner. It starts to 2231 * schedule paging if freemem is less than lotsfree and needfree. 2232 * lotsfree is the high-water mark for pageout, and needfree is the 2233 * number of needed free pages. We add extra pages here to make sure 2234 * the scanner doesn't start up while we're freeing memory. 2235 */ 2236 if (freemem < lotsfree + needfree + extra) 2237 return (1); 2238 2239 /* 2240 * check to make sure that swapfs has enough space so that anon 2241 * reservations can still succeed. anon_resvmem() checks that the 2242 * availrmem is greater than swapfs_minfree, and the number of reserved 2243 * swap pages. We also add a bit of extra here just to prevent 2244 * circumstances from getting really dire. 2245 */ 2246 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2247 return (1); 2248 2249 /* 2250 * Check that we have enough availrmem that memory locking (e.g., via 2251 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 2252 * stores the number of pages that cannot be locked; when availrmem 2253 * drops below pages_pp_maximum, page locking mechanisms such as 2254 * page_pp_lock() will fail.) 2255 */ 2256 if (availrmem <= pages_pp_maximum) 2257 return (1); 2258 2259 #if defined(__i386) 2260 /* 2261 * If we're on an i386 platform, it's possible that we'll exhaust the 2262 * kernel heap space before we ever run out of available physical 2263 * memory. Most checks of the size of the heap_area compare against 2264 * tune.t_minarmem, which is the minimum available real memory that we 2265 * can have in the system. However, this is generally fixed at 25 pages 2266 * which is so low that it's useless. In this comparison, we seek to 2267 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2268 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2269 * free) 2270 */ 2271 if (vmem_size(heap_arena, VMEM_FREE) < 2272 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2273 return (1); 2274 #endif 2275 2276 /* 2277 * If zio data pages are being allocated out of a separate heap segment, 2278 * then enforce that the size of available vmem for this arena remains 2279 * above about 1/16th free. 2280 * 2281 * Note: The 1/16th arena free requirement was put in place 2282 * to aggressively evict memory from the arc in order to avoid 2283 * memory fragmentation issues. 2284 */ 2285 if (zio_arena != NULL && 2286 vmem_size(zio_arena, VMEM_FREE) < 2287 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2288 return (1); 2289 #else 2290 if (spa_get_random(100) == 0) 2291 return (1); 2292 #endif 2293 return (0); 2294 } 2295 2296 static void 2297 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2298 { 2299 size_t i; 2300 kmem_cache_t *prev_cache = NULL; 2301 kmem_cache_t *prev_data_cache = NULL; 2302 extern kmem_cache_t *zio_buf_cache[]; 2303 extern kmem_cache_t *zio_data_buf_cache[]; 2304 2305 #ifdef _KERNEL 2306 if (arc_meta_used >= arc_meta_limit) { 2307 /* 2308 * We are exceeding our meta-data cache limit. 2309 * Purge some DNLC entries to release holds on meta-data. 2310 */ 2311 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2312 } 2313 #if defined(__i386) 2314 /* 2315 * Reclaim unused memory from all kmem caches. 2316 */ 2317 kmem_reap(); 2318 #endif 2319 #endif 2320 2321 /* 2322 * An aggressive reclamation will shrink the cache size as well as 2323 * reap free buffers from the arc kmem caches. 2324 */ 2325 if (strat == ARC_RECLAIM_AGGR) 2326 arc_shrink(); 2327 2328 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2329 if (zio_buf_cache[i] != prev_cache) { 2330 prev_cache = zio_buf_cache[i]; 2331 kmem_cache_reap_now(zio_buf_cache[i]); 2332 } 2333 if (zio_data_buf_cache[i] != prev_data_cache) { 2334 prev_data_cache = zio_data_buf_cache[i]; 2335 kmem_cache_reap_now(zio_data_buf_cache[i]); 2336 } 2337 } 2338 kmem_cache_reap_now(buf_cache); 2339 kmem_cache_reap_now(hdr_cache); 2340 2341 /* 2342 * Ask the vmem areana to reclaim unused memory from its 2343 * quantum caches. 2344 */ 2345 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2346 vmem_qcache_reap(zio_arena); 2347 } 2348 2349 static void 2350 arc_reclaim_thread(void) 2351 { 2352 clock_t growtime = 0; 2353 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2354 callb_cpr_t cpr; 2355 2356 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2357 2358 mutex_enter(&arc_reclaim_thr_lock); 2359 while (arc_thread_exit == 0) { 2360 if (arc_reclaim_needed()) { 2361 2362 if (arc_no_grow) { 2363 if (last_reclaim == ARC_RECLAIM_CONS) { 2364 last_reclaim = ARC_RECLAIM_AGGR; 2365 } else { 2366 last_reclaim = ARC_RECLAIM_CONS; 2367 } 2368 } else { 2369 arc_no_grow = TRUE; 2370 last_reclaim = ARC_RECLAIM_AGGR; 2371 membar_producer(); 2372 } 2373 2374 /* reset the growth delay for every reclaim */ 2375 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2376 2377 arc_kmem_reap_now(last_reclaim); 2378 arc_warm = B_TRUE; 2379 2380 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2381 arc_no_grow = FALSE; 2382 } 2383 2384 arc_adjust(); 2385 2386 if (arc_eviction_list != NULL) 2387 arc_do_user_evicts(); 2388 2389 /* block until needed, or one second, whichever is shorter */ 2390 CALLB_CPR_SAFE_BEGIN(&cpr); 2391 (void) cv_timedwait(&arc_reclaim_thr_cv, 2392 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2393 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2394 } 2395 2396 arc_thread_exit = 0; 2397 cv_broadcast(&arc_reclaim_thr_cv); 2398 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2399 thread_exit(); 2400 } 2401 2402 /* 2403 * Adapt arc info given the number of bytes we are trying to add and 2404 * the state that we are comming from. This function is only called 2405 * when we are adding new content to the cache. 2406 */ 2407 static void 2408 arc_adapt(int bytes, arc_state_t *state) 2409 { 2410 int mult; 2411 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2412 2413 if (state == arc_l2c_only) 2414 return; 2415 2416 ASSERT(bytes > 0); 2417 /* 2418 * Adapt the target size of the MRU list: 2419 * - if we just hit in the MRU ghost list, then increase 2420 * the target size of the MRU list. 2421 * - if we just hit in the MFU ghost list, then increase 2422 * the target size of the MFU list by decreasing the 2423 * target size of the MRU list. 2424 */ 2425 if (state == arc_mru_ghost) { 2426 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2427 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2428 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2429 2430 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2431 } else if (state == arc_mfu_ghost) { 2432 uint64_t delta; 2433 2434 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2435 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2436 mult = MIN(mult, 10); 2437 2438 delta = MIN(bytes * mult, arc_p); 2439 arc_p = MAX(arc_p_min, arc_p - delta); 2440 } 2441 ASSERT((int64_t)arc_p >= 0); 2442 2443 if (arc_reclaim_needed()) { 2444 cv_signal(&arc_reclaim_thr_cv); 2445 return; 2446 } 2447 2448 if (arc_no_grow) 2449 return; 2450 2451 if (arc_c >= arc_c_max) 2452 return; 2453 2454 /* 2455 * If we're within (2 * maxblocksize) bytes of the target 2456 * cache size, increment the target cache size 2457 */ 2458 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2459 atomic_add_64(&arc_c, (int64_t)bytes); 2460 if (arc_c > arc_c_max) 2461 arc_c = arc_c_max; 2462 else if (state == arc_anon) 2463 atomic_add_64(&arc_p, (int64_t)bytes); 2464 if (arc_p > arc_c) 2465 arc_p = arc_c; 2466 } 2467 ASSERT((int64_t)arc_p >= 0); 2468 } 2469 2470 /* 2471 * Check if the cache has reached its limits and eviction is required 2472 * prior to insert. 2473 */ 2474 static int 2475 arc_evict_needed(arc_buf_contents_t type) 2476 { 2477 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2478 return (1); 2479 2480 if (arc_reclaim_needed()) 2481 return (1); 2482 2483 return (arc_size > arc_c); 2484 } 2485 2486 /* 2487 * The buffer, supplied as the first argument, needs a data block. 2488 * So, if we are at cache max, determine which cache should be victimized. 2489 * We have the following cases: 2490 * 2491 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2492 * In this situation if we're out of space, but the resident size of the MFU is 2493 * under the limit, victimize the MFU cache to satisfy this insertion request. 2494 * 2495 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2496 * Here, we've used up all of the available space for the MRU, so we need to 2497 * evict from our own cache instead. Evict from the set of resident MRU 2498 * entries. 2499 * 2500 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2501 * c minus p represents the MFU space in the cache, since p is the size of the 2502 * cache that is dedicated to the MRU. In this situation there's still space on 2503 * the MFU side, so the MRU side needs to be victimized. 2504 * 2505 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2506 * MFU's resident set is consuming more space than it has been allotted. In 2507 * this situation, we must victimize our own cache, the MFU, for this insertion. 2508 */ 2509 static void 2510 arc_get_data_buf(arc_buf_t *buf) 2511 { 2512 arc_state_t *state = buf->b_hdr->b_state; 2513 uint64_t size = buf->b_hdr->b_size; 2514 arc_buf_contents_t type = buf->b_hdr->b_type; 2515 2516 arc_adapt(size, state); 2517 2518 /* 2519 * We have not yet reached cache maximum size, 2520 * just allocate a new buffer. 2521 */ 2522 if (!arc_evict_needed(type)) { 2523 if (type == ARC_BUFC_METADATA) { 2524 buf->b_data = zio_buf_alloc(size); 2525 arc_space_consume(size, ARC_SPACE_DATA); 2526 } else { 2527 ASSERT(type == ARC_BUFC_DATA); 2528 buf->b_data = zio_data_buf_alloc(size); 2529 ARCSTAT_INCR(arcstat_data_size, size); 2530 atomic_add_64(&arc_size, size); 2531 } 2532 goto out; 2533 } 2534 2535 /* 2536 * If we are prefetching from the mfu ghost list, this buffer 2537 * will end up on the mru list; so steal space from there. 2538 */ 2539 if (state == arc_mfu_ghost) 2540 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2541 else if (state == arc_mru_ghost) 2542 state = arc_mru; 2543 2544 if (state == arc_mru || state == arc_anon) { 2545 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2546 state = (arc_mfu->arcs_lsize[type] >= size && 2547 arc_p > mru_used) ? arc_mfu : arc_mru; 2548 } else { 2549 /* MFU cases */ 2550 uint64_t mfu_space = arc_c - arc_p; 2551 state = (arc_mru->arcs_lsize[type] >= size && 2552 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2553 } 2554 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2555 if (type == ARC_BUFC_METADATA) { 2556 buf->b_data = zio_buf_alloc(size); 2557 arc_space_consume(size, ARC_SPACE_DATA); 2558 } else { 2559 ASSERT(type == ARC_BUFC_DATA); 2560 buf->b_data = zio_data_buf_alloc(size); 2561 ARCSTAT_INCR(arcstat_data_size, size); 2562 atomic_add_64(&arc_size, size); 2563 } 2564 ARCSTAT_BUMP(arcstat_recycle_miss); 2565 } 2566 ASSERT(buf->b_data != NULL); 2567 out: 2568 /* 2569 * Update the state size. Note that ghost states have a 2570 * "ghost size" and so don't need to be updated. 2571 */ 2572 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2573 arc_buf_hdr_t *hdr = buf->b_hdr; 2574 2575 atomic_add_64(&hdr->b_state->arcs_size, size); 2576 if (list_link_active(&hdr->b_arc_node)) { 2577 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2578 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2579 } 2580 /* 2581 * If we are growing the cache, and we are adding anonymous 2582 * data, and we have outgrown arc_p, update arc_p 2583 */ 2584 if (arc_size < arc_c && hdr->b_state == arc_anon && 2585 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2586 arc_p = MIN(arc_c, arc_p + size); 2587 } 2588 } 2589 2590 /* 2591 * This routine is called whenever a buffer is accessed. 2592 * NOTE: the hash lock is dropped in this function. 2593 */ 2594 static void 2595 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2596 { 2597 clock_t now; 2598 2599 ASSERT(MUTEX_HELD(hash_lock)); 2600 2601 if (buf->b_state == arc_anon) { 2602 /* 2603 * This buffer is not in the cache, and does not 2604 * appear in our "ghost" list. Add the new buffer 2605 * to the MRU state. 2606 */ 2607 2608 ASSERT(buf->b_arc_access == 0); 2609 buf->b_arc_access = ddi_get_lbolt(); 2610 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2611 arc_change_state(arc_mru, buf, hash_lock); 2612 2613 } else if (buf->b_state == arc_mru) { 2614 now = ddi_get_lbolt(); 2615 2616 /* 2617 * If this buffer is here because of a prefetch, then either: 2618 * - clear the flag if this is a "referencing" read 2619 * (any subsequent access will bump this into the MFU state). 2620 * or 2621 * - move the buffer to the head of the list if this is 2622 * another prefetch (to make it less likely to be evicted). 2623 */ 2624 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2625 if (refcount_count(&buf->b_refcnt) == 0) { 2626 ASSERT(list_link_active(&buf->b_arc_node)); 2627 } else { 2628 buf->b_flags &= ~ARC_PREFETCH; 2629 ARCSTAT_BUMP(arcstat_mru_hits); 2630 } 2631 buf->b_arc_access = now; 2632 return; 2633 } 2634 2635 /* 2636 * This buffer has been "accessed" only once so far, 2637 * but it is still in the cache. Move it to the MFU 2638 * state. 2639 */ 2640 if (now > buf->b_arc_access + ARC_MINTIME) { 2641 /* 2642 * More than 125ms have passed since we 2643 * instantiated this buffer. Move it to the 2644 * most frequently used state. 2645 */ 2646 buf->b_arc_access = now; 2647 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2648 arc_change_state(arc_mfu, buf, hash_lock); 2649 } 2650 ARCSTAT_BUMP(arcstat_mru_hits); 2651 } else if (buf->b_state == arc_mru_ghost) { 2652 arc_state_t *new_state; 2653 /* 2654 * This buffer has been "accessed" recently, but 2655 * was evicted from the cache. Move it to the 2656 * MFU state. 2657 */ 2658 2659 if (buf->b_flags & ARC_PREFETCH) { 2660 new_state = arc_mru; 2661 if (refcount_count(&buf->b_refcnt) > 0) 2662 buf->b_flags &= ~ARC_PREFETCH; 2663 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2664 } else { 2665 new_state = arc_mfu; 2666 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2667 } 2668 2669 buf->b_arc_access = ddi_get_lbolt(); 2670 arc_change_state(new_state, buf, hash_lock); 2671 2672 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2673 } else if (buf->b_state == arc_mfu) { 2674 /* 2675 * This buffer has been accessed more than once and is 2676 * still in the cache. Keep it in the MFU state. 2677 * 2678 * NOTE: an add_reference() that occurred when we did 2679 * the arc_read() will have kicked this off the list. 2680 * If it was a prefetch, we will explicitly move it to 2681 * the head of the list now. 2682 */ 2683 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2684 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2685 ASSERT(list_link_active(&buf->b_arc_node)); 2686 } 2687 ARCSTAT_BUMP(arcstat_mfu_hits); 2688 buf->b_arc_access = ddi_get_lbolt(); 2689 } else if (buf->b_state == arc_mfu_ghost) { 2690 arc_state_t *new_state = arc_mfu; 2691 /* 2692 * This buffer has been accessed more than once but has 2693 * been evicted from the cache. Move it back to the 2694 * MFU state. 2695 */ 2696 2697 if (buf->b_flags & ARC_PREFETCH) { 2698 /* 2699 * This is a prefetch access... 2700 * move this block back to the MRU state. 2701 */ 2702 ASSERT0(refcount_count(&buf->b_refcnt)); 2703 new_state = arc_mru; 2704 } 2705 2706 buf->b_arc_access = ddi_get_lbolt(); 2707 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2708 arc_change_state(new_state, buf, hash_lock); 2709 2710 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2711 } else if (buf->b_state == arc_l2c_only) { 2712 /* 2713 * This buffer is on the 2nd Level ARC. 2714 */ 2715 2716 buf->b_arc_access = ddi_get_lbolt(); 2717 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2718 arc_change_state(arc_mfu, buf, hash_lock); 2719 } else { 2720 ASSERT(!"invalid arc state"); 2721 } 2722 } 2723 2724 /* a generic arc_done_func_t which you can use */ 2725 /* ARGSUSED */ 2726 void 2727 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2728 { 2729 if (zio == NULL || zio->io_error == 0) 2730 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2731 VERIFY(arc_buf_remove_ref(buf, arg)); 2732 } 2733 2734 /* a generic arc_done_func_t */ 2735 void 2736 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2737 { 2738 arc_buf_t **bufp = arg; 2739 if (zio && zio->io_error) { 2740 VERIFY(arc_buf_remove_ref(buf, arg)); 2741 *bufp = NULL; 2742 } else { 2743 *bufp = buf; 2744 ASSERT(buf->b_data); 2745 } 2746 } 2747 2748 static void 2749 arc_read_done(zio_t *zio) 2750 { 2751 arc_buf_hdr_t *hdr; 2752 arc_buf_t *buf; 2753 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2754 kmutex_t *hash_lock = NULL; 2755 arc_callback_t *callback_list, *acb; 2756 int freeable = FALSE; 2757 2758 buf = zio->io_private; 2759 hdr = buf->b_hdr; 2760 2761 /* 2762 * The hdr was inserted into hash-table and removed from lists 2763 * prior to starting I/O. We should find this header, since 2764 * it's in the hash table, and it should be legit since it's 2765 * not possible to evict it during the I/O. The only possible 2766 * reason for it not to be found is if we were freed during the 2767 * read. 2768 */ 2769 if (HDR_IN_HASH_TABLE(hdr)) { 2770 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 2771 ASSERT3U(hdr->b_dva.dva_word[0], ==, 2772 BP_IDENTITY(zio->io_bp)->dva_word[0]); 2773 ASSERT3U(hdr->b_dva.dva_word[1], ==, 2774 BP_IDENTITY(zio->io_bp)->dva_word[1]); 2775 2776 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 2777 &hash_lock); 2778 2779 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && 2780 hash_lock == NULL) || 2781 (found == hdr && 2782 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2783 (found == hdr && HDR_L2_READING(hdr))); 2784 } 2785 2786 hdr->b_flags &= ~ARC_L2_EVICTED; 2787 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2788 hdr->b_flags &= ~ARC_L2CACHE; 2789 2790 /* byteswap if necessary */ 2791 callback_list = hdr->b_acb; 2792 ASSERT(callback_list != NULL); 2793 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2794 dmu_object_byteswap_t bswap = 2795 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2796 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2797 byteswap_uint64_array : 2798 dmu_ot_byteswap[bswap].ob_func; 2799 func(buf->b_data, hdr->b_size); 2800 } 2801 2802 arc_cksum_compute(buf, B_FALSE); 2803 arc_buf_watch(buf); 2804 2805 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2806 /* 2807 * Only call arc_access on anonymous buffers. This is because 2808 * if we've issued an I/O for an evicted buffer, we've already 2809 * called arc_access (to prevent any simultaneous readers from 2810 * getting confused). 2811 */ 2812 arc_access(hdr, hash_lock); 2813 } 2814 2815 /* create copies of the data buffer for the callers */ 2816 abuf = buf; 2817 for (acb = callback_list; acb; acb = acb->acb_next) { 2818 if (acb->acb_done) { 2819 if (abuf == NULL) { 2820 ARCSTAT_BUMP(arcstat_duplicate_reads); 2821 abuf = arc_buf_clone(buf); 2822 } 2823 acb->acb_buf = abuf; 2824 abuf = NULL; 2825 } 2826 } 2827 hdr->b_acb = NULL; 2828 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2829 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2830 if (abuf == buf) { 2831 ASSERT(buf->b_efunc == NULL); 2832 ASSERT(hdr->b_datacnt == 1); 2833 hdr->b_flags |= ARC_BUF_AVAILABLE; 2834 } 2835 2836 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2837 2838 if (zio->io_error != 0) { 2839 hdr->b_flags |= ARC_IO_ERROR; 2840 if (hdr->b_state != arc_anon) 2841 arc_change_state(arc_anon, hdr, hash_lock); 2842 if (HDR_IN_HASH_TABLE(hdr)) 2843 buf_hash_remove(hdr); 2844 freeable = refcount_is_zero(&hdr->b_refcnt); 2845 } 2846 2847 /* 2848 * Broadcast before we drop the hash_lock to avoid the possibility 2849 * that the hdr (and hence the cv) might be freed before we get to 2850 * the cv_broadcast(). 2851 */ 2852 cv_broadcast(&hdr->b_cv); 2853 2854 if (hash_lock) { 2855 mutex_exit(hash_lock); 2856 } else { 2857 /* 2858 * This block was freed while we waited for the read to 2859 * complete. It has been removed from the hash table and 2860 * moved to the anonymous state (so that it won't show up 2861 * in the cache). 2862 */ 2863 ASSERT3P(hdr->b_state, ==, arc_anon); 2864 freeable = refcount_is_zero(&hdr->b_refcnt); 2865 } 2866 2867 /* execute each callback and free its structure */ 2868 while ((acb = callback_list) != NULL) { 2869 if (acb->acb_done) 2870 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2871 2872 if (acb->acb_zio_dummy != NULL) { 2873 acb->acb_zio_dummy->io_error = zio->io_error; 2874 zio_nowait(acb->acb_zio_dummy); 2875 } 2876 2877 callback_list = acb->acb_next; 2878 kmem_free(acb, sizeof (arc_callback_t)); 2879 } 2880 2881 if (freeable) 2882 arc_hdr_destroy(hdr); 2883 } 2884 2885 /* 2886 * "Read" the block at the specified DVA (in bp) via the 2887 * cache. If the block is found in the cache, invoke the provided 2888 * callback immediately and return. Note that the `zio' parameter 2889 * in the callback will be NULL in this case, since no IO was 2890 * required. If the block is not in the cache pass the read request 2891 * on to the spa with a substitute callback function, so that the 2892 * requested block will be added to the cache. 2893 * 2894 * If a read request arrives for a block that has a read in-progress, 2895 * either wait for the in-progress read to complete (and return the 2896 * results); or, if this is a read with a "done" func, add a record 2897 * to the read to invoke the "done" func when the read completes, 2898 * and return; or just return. 2899 * 2900 * arc_read_done() will invoke all the requested "done" functions 2901 * for readers of this block. 2902 */ 2903 int 2904 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2905 void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags, 2906 const zbookmark_phys_t *zb) 2907 { 2908 arc_buf_hdr_t *hdr = NULL; 2909 arc_buf_t *buf = NULL; 2910 kmutex_t *hash_lock = NULL; 2911 zio_t *rzio; 2912 uint64_t guid = spa_load_guid(spa); 2913 2914 ASSERT(!BP_IS_EMBEDDED(bp) || 2915 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2916 2917 top: 2918 if (!BP_IS_EMBEDDED(bp)) { 2919 /* 2920 * Embedded BP's have no DVA and require no I/O to "read". 2921 * Create an anonymous arc buf to back it. 2922 */ 2923 hdr = buf_hash_find(guid, bp, &hash_lock); 2924 } 2925 2926 if (hdr != NULL && hdr->b_datacnt > 0) { 2927 2928 *arc_flags |= ARC_CACHED; 2929 2930 if (HDR_IO_IN_PROGRESS(hdr)) { 2931 2932 if (*arc_flags & ARC_WAIT) { 2933 cv_wait(&hdr->b_cv, hash_lock); 2934 mutex_exit(hash_lock); 2935 goto top; 2936 } 2937 ASSERT(*arc_flags & ARC_NOWAIT); 2938 2939 if (done) { 2940 arc_callback_t *acb = NULL; 2941 2942 acb = kmem_zalloc(sizeof (arc_callback_t), 2943 KM_SLEEP); 2944 acb->acb_done = done; 2945 acb->acb_private = private; 2946 if (pio != NULL) 2947 acb->acb_zio_dummy = zio_null(pio, 2948 spa, NULL, NULL, NULL, zio_flags); 2949 2950 ASSERT(acb->acb_done != NULL); 2951 acb->acb_next = hdr->b_acb; 2952 hdr->b_acb = acb; 2953 add_reference(hdr, hash_lock, private); 2954 mutex_exit(hash_lock); 2955 return (0); 2956 } 2957 mutex_exit(hash_lock); 2958 return (0); 2959 } 2960 2961 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2962 2963 if (done) { 2964 add_reference(hdr, hash_lock, private); 2965 /* 2966 * If this block is already in use, create a new 2967 * copy of the data so that we will be guaranteed 2968 * that arc_release() will always succeed. 2969 */ 2970 buf = hdr->b_buf; 2971 ASSERT(buf); 2972 ASSERT(buf->b_data); 2973 if (HDR_BUF_AVAILABLE(hdr)) { 2974 ASSERT(buf->b_efunc == NULL); 2975 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2976 } else { 2977 buf = arc_buf_clone(buf); 2978 } 2979 2980 } else if (*arc_flags & ARC_PREFETCH && 2981 refcount_count(&hdr->b_refcnt) == 0) { 2982 hdr->b_flags |= ARC_PREFETCH; 2983 } 2984 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2985 arc_access(hdr, hash_lock); 2986 if (*arc_flags & ARC_L2CACHE) 2987 hdr->b_flags |= ARC_L2CACHE; 2988 if (*arc_flags & ARC_L2COMPRESS) 2989 hdr->b_flags |= ARC_L2COMPRESS; 2990 mutex_exit(hash_lock); 2991 ARCSTAT_BUMP(arcstat_hits); 2992 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2993 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2994 data, metadata, hits); 2995 2996 if (done) 2997 done(NULL, buf, private); 2998 } else { 2999 uint64_t size = BP_GET_LSIZE(bp); 3000 arc_callback_t *acb; 3001 vdev_t *vd = NULL; 3002 uint64_t addr = 0; 3003 boolean_t devw = B_FALSE; 3004 enum zio_compress b_compress = ZIO_COMPRESS_OFF; 3005 uint64_t b_asize = 0; 3006 3007 if (hdr == NULL) { 3008 /* this block is not in the cache */ 3009 arc_buf_hdr_t *exists = NULL; 3010 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 3011 buf = arc_buf_alloc(spa, size, private, type); 3012 hdr = buf->b_hdr; 3013 if (!BP_IS_EMBEDDED(bp)) { 3014 hdr->b_dva = *BP_IDENTITY(bp); 3015 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 3016 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 3017 exists = buf_hash_insert(hdr, &hash_lock); 3018 } 3019 if (exists != NULL) { 3020 /* somebody beat us to the hash insert */ 3021 mutex_exit(hash_lock); 3022 buf_discard_identity(hdr); 3023 (void) arc_buf_remove_ref(buf, private); 3024 goto top; /* restart the IO request */ 3025 } 3026 /* if this is a prefetch, we don't have a reference */ 3027 if (*arc_flags & ARC_PREFETCH) { 3028 (void) remove_reference(hdr, hash_lock, 3029 private); 3030 hdr->b_flags |= ARC_PREFETCH; 3031 } 3032 if (*arc_flags & ARC_L2CACHE) 3033 hdr->b_flags |= ARC_L2CACHE; 3034 if (*arc_flags & ARC_L2COMPRESS) 3035 hdr->b_flags |= ARC_L2COMPRESS; 3036 if (BP_GET_LEVEL(bp) > 0) 3037 hdr->b_flags |= ARC_INDIRECT; 3038 } else { 3039 /* this block is in the ghost cache */ 3040 ASSERT(GHOST_STATE(hdr->b_state)); 3041 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3042 ASSERT0(refcount_count(&hdr->b_refcnt)); 3043 ASSERT(hdr->b_buf == NULL); 3044 3045 /* if this is a prefetch, we don't have a reference */ 3046 if (*arc_flags & ARC_PREFETCH) 3047 hdr->b_flags |= ARC_PREFETCH; 3048 else 3049 add_reference(hdr, hash_lock, private); 3050 if (*arc_flags & ARC_L2CACHE) 3051 hdr->b_flags |= ARC_L2CACHE; 3052 if (*arc_flags & ARC_L2COMPRESS) 3053 hdr->b_flags |= ARC_L2COMPRESS; 3054 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 3055 buf->b_hdr = hdr; 3056 buf->b_data = NULL; 3057 buf->b_efunc = NULL; 3058 buf->b_private = NULL; 3059 buf->b_next = NULL; 3060 hdr->b_buf = buf; 3061 ASSERT(hdr->b_datacnt == 0); 3062 hdr->b_datacnt = 1; 3063 arc_get_data_buf(buf); 3064 arc_access(hdr, hash_lock); 3065 } 3066 3067 ASSERT(!GHOST_STATE(hdr->b_state)); 3068 3069 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 3070 acb->acb_done = done; 3071 acb->acb_private = private; 3072 3073 ASSERT(hdr->b_acb == NULL); 3074 hdr->b_acb = acb; 3075 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3076 3077 if (hdr->b_l2hdr != NULL && 3078 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 3079 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 3080 addr = hdr->b_l2hdr->b_daddr; 3081 b_compress = hdr->b_l2hdr->b_compress; 3082 b_asize = hdr->b_l2hdr->b_asize; 3083 /* 3084 * Lock out device removal. 3085 */ 3086 if (vdev_is_dead(vd) || 3087 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 3088 vd = NULL; 3089 } 3090 3091 if (hash_lock != NULL) 3092 mutex_exit(hash_lock); 3093 3094 /* 3095 * At this point, we have a level 1 cache miss. Try again in 3096 * L2ARC if possible. 3097 */ 3098 ASSERT3U(hdr->b_size, ==, size); 3099 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 3100 uint64_t, size, zbookmark_phys_t *, zb); 3101 ARCSTAT_BUMP(arcstat_misses); 3102 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 3103 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3104 data, metadata, misses); 3105 3106 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 3107 /* 3108 * Read from the L2ARC if the following are true: 3109 * 1. The L2ARC vdev was previously cached. 3110 * 2. This buffer still has L2ARC metadata. 3111 * 3. This buffer isn't currently writing to the L2ARC. 3112 * 4. The L2ARC entry wasn't evicted, which may 3113 * also have invalidated the vdev. 3114 * 5. This isn't prefetch and l2arc_noprefetch is set. 3115 */ 3116 if (hdr->b_l2hdr != NULL && 3117 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 3118 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 3119 l2arc_read_callback_t *cb; 3120 3121 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 3122 ARCSTAT_BUMP(arcstat_l2_hits); 3123 3124 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 3125 KM_SLEEP); 3126 cb->l2rcb_buf = buf; 3127 cb->l2rcb_spa = spa; 3128 cb->l2rcb_bp = *bp; 3129 cb->l2rcb_zb = *zb; 3130 cb->l2rcb_flags = zio_flags; 3131 cb->l2rcb_compress = b_compress; 3132 3133 ASSERT(addr >= VDEV_LABEL_START_SIZE && 3134 addr + size < vd->vdev_psize - 3135 VDEV_LABEL_END_SIZE); 3136 3137 /* 3138 * l2arc read. The SCL_L2ARC lock will be 3139 * released by l2arc_read_done(). 3140 * Issue a null zio if the underlying buffer 3141 * was squashed to zero size by compression. 3142 */ 3143 if (b_compress == ZIO_COMPRESS_EMPTY) { 3144 rzio = zio_null(pio, spa, vd, 3145 l2arc_read_done, cb, 3146 zio_flags | ZIO_FLAG_DONT_CACHE | 3147 ZIO_FLAG_CANFAIL | 3148 ZIO_FLAG_DONT_PROPAGATE | 3149 ZIO_FLAG_DONT_RETRY); 3150 } else { 3151 rzio = zio_read_phys(pio, vd, addr, 3152 b_asize, buf->b_data, 3153 ZIO_CHECKSUM_OFF, 3154 l2arc_read_done, cb, priority, 3155 zio_flags | ZIO_FLAG_DONT_CACHE | 3156 ZIO_FLAG_CANFAIL | 3157 ZIO_FLAG_DONT_PROPAGATE | 3158 ZIO_FLAG_DONT_RETRY, B_FALSE); 3159 } 3160 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3161 zio_t *, rzio); 3162 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); 3163 3164 if (*arc_flags & ARC_NOWAIT) { 3165 zio_nowait(rzio); 3166 return (0); 3167 } 3168 3169 ASSERT(*arc_flags & ARC_WAIT); 3170 if (zio_wait(rzio) == 0) 3171 return (0); 3172 3173 /* l2arc read error; goto zio_read() */ 3174 } else { 3175 DTRACE_PROBE1(l2arc__miss, 3176 arc_buf_hdr_t *, hdr); 3177 ARCSTAT_BUMP(arcstat_l2_misses); 3178 if (HDR_L2_WRITING(hdr)) 3179 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3180 spa_config_exit(spa, SCL_L2ARC, vd); 3181 } 3182 } else { 3183 if (vd != NULL) 3184 spa_config_exit(spa, SCL_L2ARC, vd); 3185 if (l2arc_ndev != 0) { 3186 DTRACE_PROBE1(l2arc__miss, 3187 arc_buf_hdr_t *, hdr); 3188 ARCSTAT_BUMP(arcstat_l2_misses); 3189 } 3190 } 3191 3192 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3193 arc_read_done, buf, priority, zio_flags, zb); 3194 3195 if (*arc_flags & ARC_WAIT) 3196 return (zio_wait(rzio)); 3197 3198 ASSERT(*arc_flags & ARC_NOWAIT); 3199 zio_nowait(rzio); 3200 } 3201 return (0); 3202 } 3203 3204 void 3205 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 3206 { 3207 ASSERT(buf->b_hdr != NULL); 3208 ASSERT(buf->b_hdr->b_state != arc_anon); 3209 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3210 ASSERT(buf->b_efunc == NULL); 3211 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3212 3213 buf->b_efunc = func; 3214 buf->b_private = private; 3215 } 3216 3217 /* 3218 * Notify the arc that a block was freed, and thus will never be used again. 3219 */ 3220 void 3221 arc_freed(spa_t *spa, const blkptr_t *bp) 3222 { 3223 arc_buf_hdr_t *hdr; 3224 kmutex_t *hash_lock; 3225 uint64_t guid = spa_load_guid(spa); 3226 3227 ASSERT(!BP_IS_EMBEDDED(bp)); 3228 3229 hdr = buf_hash_find(guid, bp, &hash_lock); 3230 if (hdr == NULL) 3231 return; 3232 if (HDR_BUF_AVAILABLE(hdr)) { 3233 arc_buf_t *buf = hdr->b_buf; 3234 add_reference(hdr, hash_lock, FTAG); 3235 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3236 mutex_exit(hash_lock); 3237 3238 arc_release(buf, FTAG); 3239 (void) arc_buf_remove_ref(buf, FTAG); 3240 } else { 3241 mutex_exit(hash_lock); 3242 } 3243 3244 } 3245 3246 /* 3247 * Clear the user eviction callback set by arc_set_callback(), first calling 3248 * it if it exists. Because the presence of a callback keeps an arc_buf cached 3249 * clearing the callback may result in the arc_buf being destroyed. However, 3250 * it will not result in the *last* arc_buf being destroyed, hence the data 3251 * will remain cached in the ARC. We make a copy of the arc buffer here so 3252 * that we can process the callback without holding any locks. 3253 * 3254 * It's possible that the callback is already in the process of being cleared 3255 * by another thread. In this case we can not clear the callback. 3256 * 3257 * Returns B_TRUE if the callback was successfully called and cleared. 3258 */ 3259 boolean_t 3260 arc_clear_callback(arc_buf_t *buf) 3261 { 3262 arc_buf_hdr_t *hdr; 3263 kmutex_t *hash_lock; 3264 arc_evict_func_t *efunc = buf->b_efunc; 3265 void *private = buf->b_private; 3266 3267 mutex_enter(&buf->b_evict_lock); 3268 hdr = buf->b_hdr; 3269 if (hdr == NULL) { 3270 /* 3271 * We are in arc_do_user_evicts(). 3272 */ 3273 ASSERT(buf->b_data == NULL); 3274 mutex_exit(&buf->b_evict_lock); 3275 return (B_FALSE); 3276 } else if (buf->b_data == NULL) { 3277 /* 3278 * We are on the eviction list; process this buffer now 3279 * but let arc_do_user_evicts() do the reaping. 3280 */ 3281 buf->b_efunc = NULL; 3282 mutex_exit(&buf->b_evict_lock); 3283 VERIFY0(efunc(private)); 3284 return (B_TRUE); 3285 } 3286 hash_lock = HDR_LOCK(hdr); 3287 mutex_enter(hash_lock); 3288 hdr = buf->b_hdr; 3289 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3290 3291 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3292 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3293 3294 buf->b_efunc = NULL; 3295 buf->b_private = NULL; 3296 3297 if (hdr->b_datacnt > 1) { 3298 mutex_exit(&buf->b_evict_lock); 3299 arc_buf_destroy(buf, FALSE, TRUE); 3300 } else { 3301 ASSERT(buf == hdr->b_buf); 3302 hdr->b_flags |= ARC_BUF_AVAILABLE; 3303 mutex_exit(&buf->b_evict_lock); 3304 } 3305 3306 mutex_exit(hash_lock); 3307 VERIFY0(efunc(private)); 3308 return (B_TRUE); 3309 } 3310 3311 /* 3312 * Release this buffer from the cache, making it an anonymous buffer. This 3313 * must be done after a read and prior to modifying the buffer contents. 3314 * If the buffer has more than one reference, we must make 3315 * a new hdr for the buffer. 3316 */ 3317 void 3318 arc_release(arc_buf_t *buf, void *tag) 3319 { 3320 arc_buf_hdr_t *hdr; 3321 kmutex_t *hash_lock = NULL; 3322 l2arc_buf_hdr_t *l2hdr; 3323 uint64_t buf_size; 3324 3325 /* 3326 * It would be nice to assert that if it's DMU metadata (level > 3327 * 0 || it's the dnode file), then it must be syncing context. 3328 * But we don't know that information at this level. 3329 */ 3330 3331 mutex_enter(&buf->b_evict_lock); 3332 hdr = buf->b_hdr; 3333 3334 /* this buffer is not on any list */ 3335 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3336 3337 if (hdr->b_state == arc_anon) { 3338 /* this buffer is already released */ 3339 ASSERT(buf->b_efunc == NULL); 3340 } else { 3341 hash_lock = HDR_LOCK(hdr); 3342 mutex_enter(hash_lock); 3343 hdr = buf->b_hdr; 3344 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3345 } 3346 3347 l2hdr = hdr->b_l2hdr; 3348 if (l2hdr) { 3349 mutex_enter(&l2arc_buflist_mtx); 3350 hdr->b_l2hdr = NULL; 3351 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3352 } 3353 buf_size = hdr->b_size; 3354 3355 /* 3356 * Do we have more than one buf? 3357 */ 3358 if (hdr->b_datacnt > 1) { 3359 arc_buf_hdr_t *nhdr; 3360 arc_buf_t **bufp; 3361 uint64_t blksz = hdr->b_size; 3362 uint64_t spa = hdr->b_spa; 3363 arc_buf_contents_t type = hdr->b_type; 3364 uint32_t flags = hdr->b_flags; 3365 3366 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3367 /* 3368 * Pull the data off of this hdr and attach it to 3369 * a new anonymous hdr. 3370 */ 3371 (void) remove_reference(hdr, hash_lock, tag); 3372 bufp = &hdr->b_buf; 3373 while (*bufp != buf) 3374 bufp = &(*bufp)->b_next; 3375 *bufp = buf->b_next; 3376 buf->b_next = NULL; 3377 3378 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3379 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3380 if (refcount_is_zero(&hdr->b_refcnt)) { 3381 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3382 ASSERT3U(*size, >=, hdr->b_size); 3383 atomic_add_64(size, -hdr->b_size); 3384 } 3385 3386 /* 3387 * We're releasing a duplicate user data buffer, update 3388 * our statistics accordingly. 3389 */ 3390 if (hdr->b_type == ARC_BUFC_DATA) { 3391 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3392 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3393 -hdr->b_size); 3394 } 3395 hdr->b_datacnt -= 1; 3396 arc_cksum_verify(buf); 3397 arc_buf_unwatch(buf); 3398 3399 mutex_exit(hash_lock); 3400 3401 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3402 nhdr->b_size = blksz; 3403 nhdr->b_spa = spa; 3404 nhdr->b_type = type; 3405 nhdr->b_buf = buf; 3406 nhdr->b_state = arc_anon; 3407 nhdr->b_arc_access = 0; 3408 nhdr->b_flags = flags & ARC_L2_WRITING; 3409 nhdr->b_l2hdr = NULL; 3410 nhdr->b_datacnt = 1; 3411 nhdr->b_freeze_cksum = NULL; 3412 (void) refcount_add(&nhdr->b_refcnt, tag); 3413 buf->b_hdr = nhdr; 3414 mutex_exit(&buf->b_evict_lock); 3415 atomic_add_64(&arc_anon->arcs_size, blksz); 3416 } else { 3417 mutex_exit(&buf->b_evict_lock); 3418 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3419 ASSERT(!list_link_active(&hdr->b_arc_node)); 3420 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3421 if (hdr->b_state != arc_anon) 3422 arc_change_state(arc_anon, hdr, hash_lock); 3423 hdr->b_arc_access = 0; 3424 if (hash_lock) 3425 mutex_exit(hash_lock); 3426 3427 buf_discard_identity(hdr); 3428 arc_buf_thaw(buf); 3429 } 3430 buf->b_efunc = NULL; 3431 buf->b_private = NULL; 3432 3433 if (l2hdr) { 3434 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 3435 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 3436 -l2hdr->b_asize, 0, 0); 3437 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3438 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3439 mutex_exit(&l2arc_buflist_mtx); 3440 } 3441 } 3442 3443 int 3444 arc_released(arc_buf_t *buf) 3445 { 3446 int released; 3447 3448 mutex_enter(&buf->b_evict_lock); 3449 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3450 mutex_exit(&buf->b_evict_lock); 3451 return (released); 3452 } 3453 3454 #ifdef ZFS_DEBUG 3455 int 3456 arc_referenced(arc_buf_t *buf) 3457 { 3458 int referenced; 3459 3460 mutex_enter(&buf->b_evict_lock); 3461 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3462 mutex_exit(&buf->b_evict_lock); 3463 return (referenced); 3464 } 3465 #endif 3466 3467 static void 3468 arc_write_ready(zio_t *zio) 3469 { 3470 arc_write_callback_t *callback = zio->io_private; 3471 arc_buf_t *buf = callback->awcb_buf; 3472 arc_buf_hdr_t *hdr = buf->b_hdr; 3473 3474 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3475 callback->awcb_ready(zio, buf, callback->awcb_private); 3476 3477 /* 3478 * If the IO is already in progress, then this is a re-write 3479 * attempt, so we need to thaw and re-compute the cksum. 3480 * It is the responsibility of the callback to handle the 3481 * accounting for any re-write attempt. 3482 */ 3483 if (HDR_IO_IN_PROGRESS(hdr)) { 3484 mutex_enter(&hdr->b_freeze_lock); 3485 if (hdr->b_freeze_cksum != NULL) { 3486 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3487 hdr->b_freeze_cksum = NULL; 3488 } 3489 mutex_exit(&hdr->b_freeze_lock); 3490 } 3491 arc_cksum_compute(buf, B_FALSE); 3492 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3493 } 3494 3495 /* 3496 * The SPA calls this callback for each physical write that happens on behalf 3497 * of a logical write. See the comment in dbuf_write_physdone() for details. 3498 */ 3499 static void 3500 arc_write_physdone(zio_t *zio) 3501 { 3502 arc_write_callback_t *cb = zio->io_private; 3503 if (cb->awcb_physdone != NULL) 3504 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 3505 } 3506 3507 static void 3508 arc_write_done(zio_t *zio) 3509 { 3510 arc_write_callback_t *callback = zio->io_private; 3511 arc_buf_t *buf = callback->awcb_buf; 3512 arc_buf_hdr_t *hdr = buf->b_hdr; 3513 3514 ASSERT(hdr->b_acb == NULL); 3515 3516 if (zio->io_error == 0) { 3517 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 3518 buf_discard_identity(hdr); 3519 } else { 3520 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3521 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3522 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3523 } 3524 } else { 3525 ASSERT(BUF_EMPTY(hdr)); 3526 } 3527 3528 /* 3529 * If the block to be written was all-zero or compressed enough to be 3530 * embedded in the BP, no write was performed so there will be no 3531 * dva/birth/checksum. The buffer must therefore remain anonymous 3532 * (and uncached). 3533 */ 3534 if (!BUF_EMPTY(hdr)) { 3535 arc_buf_hdr_t *exists; 3536 kmutex_t *hash_lock; 3537 3538 ASSERT(zio->io_error == 0); 3539 3540 arc_cksum_verify(buf); 3541 3542 exists = buf_hash_insert(hdr, &hash_lock); 3543 if (exists) { 3544 /* 3545 * This can only happen if we overwrite for 3546 * sync-to-convergence, because we remove 3547 * buffers from the hash table when we arc_free(). 3548 */ 3549 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3550 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3551 panic("bad overwrite, hdr=%p exists=%p", 3552 (void *)hdr, (void *)exists); 3553 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3554 arc_change_state(arc_anon, exists, hash_lock); 3555 mutex_exit(hash_lock); 3556 arc_hdr_destroy(exists); 3557 exists = buf_hash_insert(hdr, &hash_lock); 3558 ASSERT3P(exists, ==, NULL); 3559 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3560 /* nopwrite */ 3561 ASSERT(zio->io_prop.zp_nopwrite); 3562 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3563 panic("bad nopwrite, hdr=%p exists=%p", 3564 (void *)hdr, (void *)exists); 3565 } else { 3566 /* Dedup */ 3567 ASSERT(hdr->b_datacnt == 1); 3568 ASSERT(hdr->b_state == arc_anon); 3569 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3570 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3571 } 3572 } 3573 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3574 /* if it's not anon, we are doing a scrub */ 3575 if (!exists && hdr->b_state == arc_anon) 3576 arc_access(hdr, hash_lock); 3577 mutex_exit(hash_lock); 3578 } else { 3579 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3580 } 3581 3582 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3583 callback->awcb_done(zio, buf, callback->awcb_private); 3584 3585 kmem_free(callback, sizeof (arc_write_callback_t)); 3586 } 3587 3588 zio_t * 3589 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3590 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 3591 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, 3592 arc_done_func_t *done, void *private, zio_priority_t priority, 3593 int zio_flags, const zbookmark_phys_t *zb) 3594 { 3595 arc_buf_hdr_t *hdr = buf->b_hdr; 3596 arc_write_callback_t *callback; 3597 zio_t *zio; 3598 3599 ASSERT(ready != NULL); 3600 ASSERT(done != NULL); 3601 ASSERT(!HDR_IO_ERROR(hdr)); 3602 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3603 ASSERT(hdr->b_acb == NULL); 3604 if (l2arc) 3605 hdr->b_flags |= ARC_L2CACHE; 3606 if (l2arc_compress) 3607 hdr->b_flags |= ARC_L2COMPRESS; 3608 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3609 callback->awcb_ready = ready; 3610 callback->awcb_physdone = physdone; 3611 callback->awcb_done = done; 3612 callback->awcb_private = private; 3613 callback->awcb_buf = buf; 3614 3615 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3616 arc_write_ready, arc_write_physdone, arc_write_done, callback, 3617 priority, zio_flags, zb); 3618 3619 return (zio); 3620 } 3621 3622 static int 3623 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3624 { 3625 #ifdef _KERNEL 3626 uint64_t available_memory = ptob(freemem); 3627 static uint64_t page_load = 0; 3628 static uint64_t last_txg = 0; 3629 3630 #if defined(__i386) 3631 available_memory = 3632 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3633 #endif 3634 3635 if (freemem > physmem * arc_lotsfree_percent / 100) 3636 return (0); 3637 3638 if (txg > last_txg) { 3639 last_txg = txg; 3640 page_load = 0; 3641 } 3642 /* 3643 * If we are in pageout, we know that memory is already tight, 3644 * the arc is already going to be evicting, so we just want to 3645 * continue to let page writes occur as quickly as possible. 3646 */ 3647 if (curproc == proc_pageout) { 3648 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3649 return (SET_ERROR(ERESTART)); 3650 /* Note: reserve is inflated, so we deflate */ 3651 page_load += reserve / 8; 3652 return (0); 3653 } else if (page_load > 0 && arc_reclaim_needed()) { 3654 /* memory is low, delay before restarting */ 3655 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3656 return (SET_ERROR(EAGAIN)); 3657 } 3658 page_load = 0; 3659 #endif 3660 return (0); 3661 } 3662 3663 void 3664 arc_tempreserve_clear(uint64_t reserve) 3665 { 3666 atomic_add_64(&arc_tempreserve, -reserve); 3667 ASSERT((int64_t)arc_tempreserve >= 0); 3668 } 3669 3670 int 3671 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3672 { 3673 int error; 3674 uint64_t anon_size; 3675 3676 if (reserve > arc_c/4 && !arc_no_grow) 3677 arc_c = MIN(arc_c_max, reserve * 4); 3678 if (reserve > arc_c) 3679 return (SET_ERROR(ENOMEM)); 3680 3681 /* 3682 * Don't count loaned bufs as in flight dirty data to prevent long 3683 * network delays from blocking transactions that are ready to be 3684 * assigned to a txg. 3685 */ 3686 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3687 3688 /* 3689 * Writes will, almost always, require additional memory allocations 3690 * in order to compress/encrypt/etc the data. We therefore need to 3691 * make sure that there is sufficient available memory for this. 3692 */ 3693 error = arc_memory_throttle(reserve, txg); 3694 if (error != 0) 3695 return (error); 3696 3697 /* 3698 * Throttle writes when the amount of dirty data in the cache 3699 * gets too large. We try to keep the cache less than half full 3700 * of dirty blocks so that our sync times don't grow too large. 3701 * Note: if two requests come in concurrently, we might let them 3702 * both succeed, when one of them should fail. Not a huge deal. 3703 */ 3704 3705 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3706 anon_size > arc_c / 4) { 3707 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3708 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3709 arc_tempreserve>>10, 3710 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3711 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3712 reserve>>10, arc_c>>10); 3713 return (SET_ERROR(ERESTART)); 3714 } 3715 atomic_add_64(&arc_tempreserve, reserve); 3716 return (0); 3717 } 3718 3719 void 3720 arc_init(void) 3721 { 3722 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3723 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3724 3725 /* Convert seconds to clock ticks */ 3726 arc_min_prefetch_lifespan = 1 * hz; 3727 3728 /* Start out with 1/8 of all memory */ 3729 arc_c = physmem * PAGESIZE / 8; 3730 3731 #ifdef _KERNEL 3732 /* 3733 * On architectures where the physical memory can be larger 3734 * than the addressable space (intel in 32-bit mode), we may 3735 * need to limit the cache to 1/8 of VM size. 3736 */ 3737 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3738 #endif 3739 3740 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3741 arc_c_min = MAX(arc_c / 4, 64<<20); 3742 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3743 if (arc_c * 8 >= 1<<30) 3744 arc_c_max = (arc_c * 8) - (1<<30); 3745 else 3746 arc_c_max = arc_c_min; 3747 arc_c_max = MAX(arc_c * 6, arc_c_max); 3748 3749 /* 3750 * Allow the tunables to override our calculations if they are 3751 * reasonable (ie. over 64MB) 3752 */ 3753 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3754 arc_c_max = zfs_arc_max; 3755 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3756 arc_c_min = zfs_arc_min; 3757 3758 arc_c = arc_c_max; 3759 arc_p = (arc_c >> 1); 3760 3761 /* limit meta-data to 1/4 of the arc capacity */ 3762 arc_meta_limit = arc_c_max / 4; 3763 3764 /* Allow the tunable to override if it is reasonable */ 3765 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3766 arc_meta_limit = zfs_arc_meta_limit; 3767 3768 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3769 arc_c_min = arc_meta_limit / 2; 3770 3771 if (zfs_arc_grow_retry > 0) 3772 arc_grow_retry = zfs_arc_grow_retry; 3773 3774 if (zfs_arc_shrink_shift > 0) 3775 arc_shrink_shift = zfs_arc_shrink_shift; 3776 3777 if (zfs_arc_p_min_shift > 0) 3778 arc_p_min_shift = zfs_arc_p_min_shift; 3779 3780 /* if kmem_flags are set, lets try to use less memory */ 3781 if (kmem_debugging()) 3782 arc_c = arc_c / 2; 3783 if (arc_c < arc_c_min) 3784 arc_c = arc_c_min; 3785 3786 arc_anon = &ARC_anon; 3787 arc_mru = &ARC_mru; 3788 arc_mru_ghost = &ARC_mru_ghost; 3789 arc_mfu = &ARC_mfu; 3790 arc_mfu_ghost = &ARC_mfu_ghost; 3791 arc_l2c_only = &ARC_l2c_only; 3792 arc_size = 0; 3793 3794 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3795 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3796 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3797 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3798 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3799 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3800 3801 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3802 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3803 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3804 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3805 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3806 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3807 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3808 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3809 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3810 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3811 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3812 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3813 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3814 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3815 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3816 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3817 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3818 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3819 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3820 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3821 3822 buf_init(); 3823 3824 arc_thread_exit = 0; 3825 arc_eviction_list = NULL; 3826 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3827 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3828 3829 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3830 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3831 3832 if (arc_ksp != NULL) { 3833 arc_ksp->ks_data = &arc_stats; 3834 kstat_install(arc_ksp); 3835 } 3836 3837 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3838 TS_RUN, minclsyspri); 3839 3840 arc_dead = FALSE; 3841 arc_warm = B_FALSE; 3842 3843 /* 3844 * Calculate maximum amount of dirty data per pool. 3845 * 3846 * If it has been set by /etc/system, take that. 3847 * Otherwise, use a percentage of physical memory defined by 3848 * zfs_dirty_data_max_percent (default 10%) with a cap at 3849 * zfs_dirty_data_max_max (default 4GB). 3850 */ 3851 if (zfs_dirty_data_max == 0) { 3852 zfs_dirty_data_max = physmem * PAGESIZE * 3853 zfs_dirty_data_max_percent / 100; 3854 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 3855 zfs_dirty_data_max_max); 3856 } 3857 } 3858 3859 void 3860 arc_fini(void) 3861 { 3862 mutex_enter(&arc_reclaim_thr_lock); 3863 arc_thread_exit = 1; 3864 while (arc_thread_exit != 0) 3865 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3866 mutex_exit(&arc_reclaim_thr_lock); 3867 3868 arc_flush(NULL); 3869 3870 arc_dead = TRUE; 3871 3872 if (arc_ksp != NULL) { 3873 kstat_delete(arc_ksp); 3874 arc_ksp = NULL; 3875 } 3876 3877 mutex_destroy(&arc_eviction_mtx); 3878 mutex_destroy(&arc_reclaim_thr_lock); 3879 cv_destroy(&arc_reclaim_thr_cv); 3880 3881 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3882 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3883 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3884 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3885 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3886 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3887 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3888 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3889 3890 mutex_destroy(&arc_anon->arcs_mtx); 3891 mutex_destroy(&arc_mru->arcs_mtx); 3892 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3893 mutex_destroy(&arc_mfu->arcs_mtx); 3894 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3895 mutex_destroy(&arc_l2c_only->arcs_mtx); 3896 3897 buf_fini(); 3898 3899 ASSERT(arc_loaned_bytes == 0); 3900 } 3901 3902 /* 3903 * Level 2 ARC 3904 * 3905 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3906 * It uses dedicated storage devices to hold cached data, which are populated 3907 * using large infrequent writes. The main role of this cache is to boost 3908 * the performance of random read workloads. The intended L2ARC devices 3909 * include short-stroked disks, solid state disks, and other media with 3910 * substantially faster read latency than disk. 3911 * 3912 * +-----------------------+ 3913 * | ARC | 3914 * +-----------------------+ 3915 * | ^ ^ 3916 * | | | 3917 * l2arc_feed_thread() arc_read() 3918 * | | | 3919 * | l2arc read | 3920 * V | | 3921 * +---------------+ | 3922 * | L2ARC | | 3923 * +---------------+ | 3924 * | ^ | 3925 * l2arc_write() | | 3926 * | | | 3927 * V | | 3928 * +-------+ +-------+ 3929 * | vdev | | vdev | 3930 * | cache | | cache | 3931 * +-------+ +-------+ 3932 * +=========+ .-----. 3933 * : L2ARC : |-_____-| 3934 * : devices : | Disks | 3935 * +=========+ `-_____-' 3936 * 3937 * Read requests are satisfied from the following sources, in order: 3938 * 3939 * 1) ARC 3940 * 2) vdev cache of L2ARC devices 3941 * 3) L2ARC devices 3942 * 4) vdev cache of disks 3943 * 5) disks 3944 * 3945 * Some L2ARC device types exhibit extremely slow write performance. 3946 * To accommodate for this there are some significant differences between 3947 * the L2ARC and traditional cache design: 3948 * 3949 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3950 * the ARC behave as usual, freeing buffers and placing headers on ghost 3951 * lists. The ARC does not send buffers to the L2ARC during eviction as 3952 * this would add inflated write latencies for all ARC memory pressure. 3953 * 3954 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3955 * It does this by periodically scanning buffers from the eviction-end of 3956 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3957 * not already there. It scans until a headroom of buffers is satisfied, 3958 * which itself is a buffer for ARC eviction. If a compressible buffer is 3959 * found during scanning and selected for writing to an L2ARC device, we 3960 * temporarily boost scanning headroom during the next scan cycle to make 3961 * sure we adapt to compression effects (which might significantly reduce 3962 * the data volume we write to L2ARC). The thread that does this is 3963 * l2arc_feed_thread(), illustrated below; example sizes are included to 3964 * provide a better sense of ratio than this diagram: 3965 * 3966 * head --> tail 3967 * +---------------------+----------+ 3968 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3969 * +---------------------+----------+ | o L2ARC eligible 3970 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3971 * +---------------------+----------+ | 3972 * 15.9 Gbytes ^ 32 Mbytes | 3973 * headroom | 3974 * l2arc_feed_thread() 3975 * | 3976 * l2arc write hand <--[oooo]--' 3977 * | 8 Mbyte 3978 * | write max 3979 * V 3980 * +==============================+ 3981 * L2ARC dev |####|#|###|###| |####| ... | 3982 * +==============================+ 3983 * 32 Gbytes 3984 * 3985 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3986 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3987 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3988 * safe to say that this is an uncommon case, since buffers at the end of 3989 * the ARC lists have moved there due to inactivity. 3990 * 3991 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3992 * then the L2ARC simply misses copying some buffers. This serves as a 3993 * pressure valve to prevent heavy read workloads from both stalling the ARC 3994 * with waits and clogging the L2ARC with writes. This also helps prevent 3995 * the potential for the L2ARC to churn if it attempts to cache content too 3996 * quickly, such as during backups of the entire pool. 3997 * 3998 * 5. After system boot and before the ARC has filled main memory, there are 3999 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 4000 * lists can remain mostly static. Instead of searching from tail of these 4001 * lists as pictured, the l2arc_feed_thread() will search from the list heads 4002 * for eligible buffers, greatly increasing its chance of finding them. 4003 * 4004 * The L2ARC device write speed is also boosted during this time so that 4005 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 4006 * there are no L2ARC reads, and no fear of degrading read performance 4007 * through increased writes. 4008 * 4009 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 4010 * the vdev queue can aggregate them into larger and fewer writes. Each 4011 * device is written to in a rotor fashion, sweeping writes through 4012 * available space then repeating. 4013 * 4014 * 7. The L2ARC does not store dirty content. It never needs to flush 4015 * write buffers back to disk based storage. 4016 * 4017 * 8. If an ARC buffer is written (and dirtied) which also exists in the 4018 * L2ARC, the now stale L2ARC buffer is immediately dropped. 4019 * 4020 * The performance of the L2ARC can be tweaked by a number of tunables, which 4021 * may be necessary for different workloads: 4022 * 4023 * l2arc_write_max max write bytes per interval 4024 * l2arc_write_boost extra write bytes during device warmup 4025 * l2arc_noprefetch skip caching prefetched buffers 4026 * l2arc_headroom number of max device writes to precache 4027 * l2arc_headroom_boost when we find compressed buffers during ARC 4028 * scanning, we multiply headroom by this 4029 * percentage factor for the next scan cycle, 4030 * since more compressed buffers are likely to 4031 * be present 4032 * l2arc_feed_secs seconds between L2ARC writing 4033 * 4034 * Tunables may be removed or added as future performance improvements are 4035 * integrated, and also may become zpool properties. 4036 * 4037 * There are three key functions that control how the L2ARC warms up: 4038 * 4039 * l2arc_write_eligible() check if a buffer is eligible to cache 4040 * l2arc_write_size() calculate how much to write 4041 * l2arc_write_interval() calculate sleep delay between writes 4042 * 4043 * These three functions determine what to write, how much, and how quickly 4044 * to send writes. 4045 */ 4046 4047 static boolean_t 4048 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 4049 { 4050 /* 4051 * A buffer is *not* eligible for the L2ARC if it: 4052 * 1. belongs to a different spa. 4053 * 2. is already cached on the L2ARC. 4054 * 3. has an I/O in progress (it may be an incomplete read). 4055 * 4. is flagged not eligible (zfs property). 4056 */ 4057 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 4058 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 4059 return (B_FALSE); 4060 4061 return (B_TRUE); 4062 } 4063 4064 static uint64_t 4065 l2arc_write_size(void) 4066 { 4067 uint64_t size; 4068 4069 /* 4070 * Make sure our globals have meaningful values in case the user 4071 * altered them. 4072 */ 4073 size = l2arc_write_max; 4074 if (size == 0) { 4075 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 4076 "be greater than zero, resetting it to the default (%d)", 4077 L2ARC_WRITE_SIZE); 4078 size = l2arc_write_max = L2ARC_WRITE_SIZE; 4079 } 4080 4081 if (arc_warm == B_FALSE) 4082 size += l2arc_write_boost; 4083 4084 return (size); 4085 4086 } 4087 4088 static clock_t 4089 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 4090 { 4091 clock_t interval, next, now; 4092 4093 /* 4094 * If the ARC lists are busy, increase our write rate; if the 4095 * lists are stale, idle back. This is achieved by checking 4096 * how much we previously wrote - if it was more than half of 4097 * what we wanted, schedule the next write much sooner. 4098 */ 4099 if (l2arc_feed_again && wrote > (wanted / 2)) 4100 interval = (hz * l2arc_feed_min_ms) / 1000; 4101 else 4102 interval = hz * l2arc_feed_secs; 4103 4104 now = ddi_get_lbolt(); 4105 next = MAX(now, MIN(now + interval, began + interval)); 4106 4107 return (next); 4108 } 4109 4110 static void 4111 l2arc_hdr_stat_add(void) 4112 { 4113 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 4114 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 4115 } 4116 4117 static void 4118 l2arc_hdr_stat_remove(void) 4119 { 4120 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 4121 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 4122 } 4123 4124 /* 4125 * Cycle through L2ARC devices. This is how L2ARC load balances. 4126 * If a device is returned, this also returns holding the spa config lock. 4127 */ 4128 static l2arc_dev_t * 4129 l2arc_dev_get_next(void) 4130 { 4131 l2arc_dev_t *first, *next = NULL; 4132 4133 /* 4134 * Lock out the removal of spas (spa_namespace_lock), then removal 4135 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 4136 * both locks will be dropped and a spa config lock held instead. 4137 */ 4138 mutex_enter(&spa_namespace_lock); 4139 mutex_enter(&l2arc_dev_mtx); 4140 4141 /* if there are no vdevs, there is nothing to do */ 4142 if (l2arc_ndev == 0) 4143 goto out; 4144 4145 first = NULL; 4146 next = l2arc_dev_last; 4147 do { 4148 /* loop around the list looking for a non-faulted vdev */ 4149 if (next == NULL) { 4150 next = list_head(l2arc_dev_list); 4151 } else { 4152 next = list_next(l2arc_dev_list, next); 4153 if (next == NULL) 4154 next = list_head(l2arc_dev_list); 4155 } 4156 4157 /* if we have come back to the start, bail out */ 4158 if (first == NULL) 4159 first = next; 4160 else if (next == first) 4161 break; 4162 4163 } while (vdev_is_dead(next->l2ad_vdev)); 4164 4165 /* if we were unable to find any usable vdevs, return NULL */ 4166 if (vdev_is_dead(next->l2ad_vdev)) 4167 next = NULL; 4168 4169 l2arc_dev_last = next; 4170 4171 out: 4172 mutex_exit(&l2arc_dev_mtx); 4173 4174 /* 4175 * Grab the config lock to prevent the 'next' device from being 4176 * removed while we are writing to it. 4177 */ 4178 if (next != NULL) 4179 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 4180 mutex_exit(&spa_namespace_lock); 4181 4182 return (next); 4183 } 4184 4185 /* 4186 * Free buffers that were tagged for destruction. 4187 */ 4188 static void 4189 l2arc_do_free_on_write() 4190 { 4191 list_t *buflist; 4192 l2arc_data_free_t *df, *df_prev; 4193 4194 mutex_enter(&l2arc_free_on_write_mtx); 4195 buflist = l2arc_free_on_write; 4196 4197 for (df = list_tail(buflist); df; df = df_prev) { 4198 df_prev = list_prev(buflist, df); 4199 ASSERT(df->l2df_data != NULL); 4200 ASSERT(df->l2df_func != NULL); 4201 df->l2df_func(df->l2df_data, df->l2df_size); 4202 list_remove(buflist, df); 4203 kmem_free(df, sizeof (l2arc_data_free_t)); 4204 } 4205 4206 mutex_exit(&l2arc_free_on_write_mtx); 4207 } 4208 4209 /* 4210 * A write to a cache device has completed. Update all headers to allow 4211 * reads from these buffers to begin. 4212 */ 4213 static void 4214 l2arc_write_done(zio_t *zio) 4215 { 4216 l2arc_write_callback_t *cb; 4217 l2arc_dev_t *dev; 4218 list_t *buflist; 4219 arc_buf_hdr_t *head, *ab, *ab_prev; 4220 l2arc_buf_hdr_t *abl2; 4221 kmutex_t *hash_lock; 4222 int64_t bytes_dropped = 0; 4223 4224 cb = zio->io_private; 4225 ASSERT(cb != NULL); 4226 dev = cb->l2wcb_dev; 4227 ASSERT(dev != NULL); 4228 head = cb->l2wcb_head; 4229 ASSERT(head != NULL); 4230 buflist = dev->l2ad_buflist; 4231 ASSERT(buflist != NULL); 4232 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4233 l2arc_write_callback_t *, cb); 4234 4235 if (zio->io_error != 0) 4236 ARCSTAT_BUMP(arcstat_l2_writes_error); 4237 4238 mutex_enter(&l2arc_buflist_mtx); 4239 4240 /* 4241 * All writes completed, or an error was hit. 4242 */ 4243 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 4244 ab_prev = list_prev(buflist, ab); 4245 abl2 = ab->b_l2hdr; 4246 4247 /* 4248 * Release the temporary compressed buffer as soon as possible. 4249 */ 4250 if (abl2->b_compress != ZIO_COMPRESS_OFF) 4251 l2arc_release_cdata_buf(ab); 4252 4253 hash_lock = HDR_LOCK(ab); 4254 if (!mutex_tryenter(hash_lock)) { 4255 /* 4256 * This buffer misses out. It may be in a stage 4257 * of eviction. Its ARC_L2_WRITING flag will be 4258 * left set, denying reads to this buffer. 4259 */ 4260 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4261 continue; 4262 } 4263 4264 if (zio->io_error != 0) { 4265 /* 4266 * Error - drop L2ARC entry. 4267 */ 4268 list_remove(buflist, ab); 4269 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4270 bytes_dropped += abl2->b_asize; 4271 ab->b_l2hdr = NULL; 4272 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4273 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4274 } 4275 4276 /* 4277 * Allow ARC to begin reads to this L2ARC entry. 4278 */ 4279 ab->b_flags &= ~ARC_L2_WRITING; 4280 4281 mutex_exit(hash_lock); 4282 } 4283 4284 atomic_inc_64(&l2arc_writes_done); 4285 list_remove(buflist, head); 4286 kmem_cache_free(hdr_cache, head); 4287 mutex_exit(&l2arc_buflist_mtx); 4288 4289 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 4290 4291 l2arc_do_free_on_write(); 4292 4293 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4294 } 4295 4296 /* 4297 * A read to a cache device completed. Validate buffer contents before 4298 * handing over to the regular ARC routines. 4299 */ 4300 static void 4301 l2arc_read_done(zio_t *zio) 4302 { 4303 l2arc_read_callback_t *cb; 4304 arc_buf_hdr_t *hdr; 4305 arc_buf_t *buf; 4306 kmutex_t *hash_lock; 4307 int equal; 4308 4309 ASSERT(zio->io_vd != NULL); 4310 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4311 4312 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4313 4314 cb = zio->io_private; 4315 ASSERT(cb != NULL); 4316 buf = cb->l2rcb_buf; 4317 ASSERT(buf != NULL); 4318 4319 hash_lock = HDR_LOCK(buf->b_hdr); 4320 mutex_enter(hash_lock); 4321 hdr = buf->b_hdr; 4322 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4323 4324 /* 4325 * If the buffer was compressed, decompress it first. 4326 */ 4327 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 4328 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 4329 ASSERT(zio->io_data != NULL); 4330 4331 /* 4332 * Check this survived the L2ARC journey. 4333 */ 4334 equal = arc_cksum_equal(buf); 4335 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4336 mutex_exit(hash_lock); 4337 zio->io_private = buf; 4338 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4339 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4340 arc_read_done(zio); 4341 } else { 4342 mutex_exit(hash_lock); 4343 /* 4344 * Buffer didn't survive caching. Increment stats and 4345 * reissue to the original storage device. 4346 */ 4347 if (zio->io_error != 0) { 4348 ARCSTAT_BUMP(arcstat_l2_io_error); 4349 } else { 4350 zio->io_error = SET_ERROR(EIO); 4351 } 4352 if (!equal) 4353 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4354 4355 /* 4356 * If there's no waiter, issue an async i/o to the primary 4357 * storage now. If there *is* a waiter, the caller must 4358 * issue the i/o in a context where it's OK to block. 4359 */ 4360 if (zio->io_waiter == NULL) { 4361 zio_t *pio = zio_unique_parent(zio); 4362 4363 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4364 4365 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4366 buf->b_data, zio->io_size, arc_read_done, buf, 4367 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4368 } 4369 } 4370 4371 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4372 } 4373 4374 /* 4375 * This is the list priority from which the L2ARC will search for pages to 4376 * cache. This is used within loops (0..3) to cycle through lists in the 4377 * desired order. This order can have a significant effect on cache 4378 * performance. 4379 * 4380 * Currently the metadata lists are hit first, MFU then MRU, followed by 4381 * the data lists. This function returns a locked list, and also returns 4382 * the lock pointer. 4383 */ 4384 static list_t * 4385 l2arc_list_locked(int list_num, kmutex_t **lock) 4386 { 4387 list_t *list = NULL; 4388 4389 ASSERT(list_num >= 0 && list_num <= 3); 4390 4391 switch (list_num) { 4392 case 0: 4393 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4394 *lock = &arc_mfu->arcs_mtx; 4395 break; 4396 case 1: 4397 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4398 *lock = &arc_mru->arcs_mtx; 4399 break; 4400 case 2: 4401 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4402 *lock = &arc_mfu->arcs_mtx; 4403 break; 4404 case 3: 4405 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4406 *lock = &arc_mru->arcs_mtx; 4407 break; 4408 } 4409 4410 ASSERT(!(MUTEX_HELD(*lock))); 4411 mutex_enter(*lock); 4412 return (list); 4413 } 4414 4415 /* 4416 * Evict buffers from the device write hand to the distance specified in 4417 * bytes. This distance may span populated buffers, it may span nothing. 4418 * This is clearing a region on the L2ARC device ready for writing. 4419 * If the 'all' boolean is set, every buffer is evicted. 4420 */ 4421 static void 4422 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4423 { 4424 list_t *buflist; 4425 l2arc_buf_hdr_t *abl2; 4426 arc_buf_hdr_t *ab, *ab_prev; 4427 kmutex_t *hash_lock; 4428 uint64_t taddr; 4429 int64_t bytes_evicted = 0; 4430 4431 buflist = dev->l2ad_buflist; 4432 4433 if (buflist == NULL) 4434 return; 4435 4436 if (!all && dev->l2ad_first) { 4437 /* 4438 * This is the first sweep through the device. There is 4439 * nothing to evict. 4440 */ 4441 return; 4442 } 4443 4444 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4445 /* 4446 * When nearing the end of the device, evict to the end 4447 * before the device write hand jumps to the start. 4448 */ 4449 taddr = dev->l2ad_end; 4450 } else { 4451 taddr = dev->l2ad_hand + distance; 4452 } 4453 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4454 uint64_t, taddr, boolean_t, all); 4455 4456 top: 4457 mutex_enter(&l2arc_buflist_mtx); 4458 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4459 ab_prev = list_prev(buflist, ab); 4460 4461 hash_lock = HDR_LOCK(ab); 4462 if (!mutex_tryenter(hash_lock)) { 4463 /* 4464 * Missed the hash lock. Retry. 4465 */ 4466 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4467 mutex_exit(&l2arc_buflist_mtx); 4468 mutex_enter(hash_lock); 4469 mutex_exit(hash_lock); 4470 goto top; 4471 } 4472 4473 if (HDR_L2_WRITE_HEAD(ab)) { 4474 /* 4475 * We hit a write head node. Leave it for 4476 * l2arc_write_done(). 4477 */ 4478 list_remove(buflist, ab); 4479 mutex_exit(hash_lock); 4480 continue; 4481 } 4482 4483 if (!all && ab->b_l2hdr != NULL && 4484 (ab->b_l2hdr->b_daddr > taddr || 4485 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4486 /* 4487 * We've evicted to the target address, 4488 * or the end of the device. 4489 */ 4490 mutex_exit(hash_lock); 4491 break; 4492 } 4493 4494 if (HDR_FREE_IN_PROGRESS(ab)) { 4495 /* 4496 * Already on the path to destruction. 4497 */ 4498 mutex_exit(hash_lock); 4499 continue; 4500 } 4501 4502 if (ab->b_state == arc_l2c_only) { 4503 ASSERT(!HDR_L2_READING(ab)); 4504 /* 4505 * This doesn't exist in the ARC. Destroy. 4506 * arc_hdr_destroy() will call list_remove() 4507 * and decrement arcstat_l2_size. 4508 */ 4509 arc_change_state(arc_anon, ab, hash_lock); 4510 arc_hdr_destroy(ab); 4511 } else { 4512 /* 4513 * Invalidate issued or about to be issued 4514 * reads, since we may be about to write 4515 * over this location. 4516 */ 4517 if (HDR_L2_READING(ab)) { 4518 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4519 ab->b_flags |= ARC_L2_EVICTED; 4520 } 4521 4522 /* 4523 * Tell ARC this no longer exists in L2ARC. 4524 */ 4525 if (ab->b_l2hdr != NULL) { 4526 abl2 = ab->b_l2hdr; 4527 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4528 bytes_evicted += abl2->b_asize; 4529 ab->b_l2hdr = NULL; 4530 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4531 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4532 } 4533 list_remove(buflist, ab); 4534 4535 /* 4536 * This may have been leftover after a 4537 * failed write. 4538 */ 4539 ab->b_flags &= ~ARC_L2_WRITING; 4540 } 4541 mutex_exit(hash_lock); 4542 } 4543 mutex_exit(&l2arc_buflist_mtx); 4544 4545 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0); 4546 dev->l2ad_evict = taddr; 4547 } 4548 4549 /* 4550 * Find and write ARC buffers to the L2ARC device. 4551 * 4552 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4553 * for reading until they have completed writing. 4554 * The headroom_boost is an in-out parameter used to maintain headroom boost 4555 * state between calls to this function. 4556 * 4557 * Returns the number of bytes actually written (which may be smaller than 4558 * the delta by which the device hand has changed due to alignment). 4559 */ 4560 static uint64_t 4561 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 4562 boolean_t *headroom_boost) 4563 { 4564 arc_buf_hdr_t *ab, *ab_prev, *head; 4565 list_t *list; 4566 uint64_t write_asize, write_psize, write_sz, headroom, 4567 buf_compress_minsz; 4568 void *buf_data; 4569 kmutex_t *list_lock; 4570 boolean_t full; 4571 l2arc_write_callback_t *cb; 4572 zio_t *pio, *wzio; 4573 uint64_t guid = spa_load_guid(spa); 4574 const boolean_t do_headroom_boost = *headroom_boost; 4575 4576 ASSERT(dev->l2ad_vdev != NULL); 4577 4578 /* Lower the flag now, we might want to raise it again later. */ 4579 *headroom_boost = B_FALSE; 4580 4581 pio = NULL; 4582 write_sz = write_asize = write_psize = 0; 4583 full = B_FALSE; 4584 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4585 head->b_flags |= ARC_L2_WRITE_HEAD; 4586 4587 /* 4588 * We will want to try to compress buffers that are at least 2x the 4589 * device sector size. 4590 */ 4591 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 4592 4593 /* 4594 * Copy buffers for L2ARC writing. 4595 */ 4596 mutex_enter(&l2arc_buflist_mtx); 4597 for (int try = 0; try <= 3; try++) { 4598 uint64_t passed_sz = 0; 4599 4600 list = l2arc_list_locked(try, &list_lock); 4601 4602 /* 4603 * L2ARC fast warmup. 4604 * 4605 * Until the ARC is warm and starts to evict, read from the 4606 * head of the ARC lists rather than the tail. 4607 */ 4608 if (arc_warm == B_FALSE) 4609 ab = list_head(list); 4610 else 4611 ab = list_tail(list); 4612 4613 headroom = target_sz * l2arc_headroom; 4614 if (do_headroom_boost) 4615 headroom = (headroom * l2arc_headroom_boost) / 100; 4616 4617 for (; ab; ab = ab_prev) { 4618 l2arc_buf_hdr_t *l2hdr; 4619 kmutex_t *hash_lock; 4620 uint64_t buf_sz; 4621 4622 if (arc_warm == B_FALSE) 4623 ab_prev = list_next(list, ab); 4624 else 4625 ab_prev = list_prev(list, ab); 4626 4627 hash_lock = HDR_LOCK(ab); 4628 if (!mutex_tryenter(hash_lock)) { 4629 /* 4630 * Skip this buffer rather than waiting. 4631 */ 4632 continue; 4633 } 4634 4635 passed_sz += ab->b_size; 4636 if (passed_sz > headroom) { 4637 /* 4638 * Searched too far. 4639 */ 4640 mutex_exit(hash_lock); 4641 break; 4642 } 4643 4644 if (!l2arc_write_eligible(guid, ab)) { 4645 mutex_exit(hash_lock); 4646 continue; 4647 } 4648 4649 if ((write_sz + ab->b_size) > target_sz) { 4650 full = B_TRUE; 4651 mutex_exit(hash_lock); 4652 break; 4653 } 4654 4655 if (pio == NULL) { 4656 /* 4657 * Insert a dummy header on the buflist so 4658 * l2arc_write_done() can find where the 4659 * write buffers begin without searching. 4660 */ 4661 list_insert_head(dev->l2ad_buflist, head); 4662 4663 cb = kmem_alloc( 4664 sizeof (l2arc_write_callback_t), KM_SLEEP); 4665 cb->l2wcb_dev = dev; 4666 cb->l2wcb_head = head; 4667 pio = zio_root(spa, l2arc_write_done, cb, 4668 ZIO_FLAG_CANFAIL); 4669 } 4670 4671 /* 4672 * Create and add a new L2ARC header. 4673 */ 4674 l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4675 l2hdr->b_dev = dev; 4676 ab->b_flags |= ARC_L2_WRITING; 4677 4678 /* 4679 * Temporarily stash the data buffer in b_tmp_cdata. 4680 * The subsequent write step will pick it up from 4681 * there. This is because can't access ab->b_buf 4682 * without holding the hash_lock, which we in turn 4683 * can't access without holding the ARC list locks 4684 * (which we want to avoid during compression/writing). 4685 */ 4686 l2hdr->b_compress = ZIO_COMPRESS_OFF; 4687 l2hdr->b_asize = ab->b_size; 4688 l2hdr->b_tmp_cdata = ab->b_buf->b_data; 4689 4690 buf_sz = ab->b_size; 4691 ab->b_l2hdr = l2hdr; 4692 4693 list_insert_head(dev->l2ad_buflist, ab); 4694 4695 /* 4696 * Compute and store the buffer cksum before 4697 * writing. On debug the cksum is verified first. 4698 */ 4699 arc_cksum_verify(ab->b_buf); 4700 arc_cksum_compute(ab->b_buf, B_TRUE); 4701 4702 mutex_exit(hash_lock); 4703 4704 write_sz += buf_sz; 4705 } 4706 4707 mutex_exit(list_lock); 4708 4709 if (full == B_TRUE) 4710 break; 4711 } 4712 4713 /* No buffers selected for writing? */ 4714 if (pio == NULL) { 4715 ASSERT0(write_sz); 4716 mutex_exit(&l2arc_buflist_mtx); 4717 kmem_cache_free(hdr_cache, head); 4718 return (0); 4719 } 4720 4721 /* 4722 * Now start writing the buffers. We're starting at the write head 4723 * and work backwards, retracing the course of the buffer selector 4724 * loop above. 4725 */ 4726 for (ab = list_prev(dev->l2ad_buflist, head); ab; 4727 ab = list_prev(dev->l2ad_buflist, ab)) { 4728 l2arc_buf_hdr_t *l2hdr; 4729 uint64_t buf_sz; 4730 4731 /* 4732 * We shouldn't need to lock the buffer here, since we flagged 4733 * it as ARC_L2_WRITING in the previous step, but we must take 4734 * care to only access its L2 cache parameters. In particular, 4735 * ab->b_buf may be invalid by now due to ARC eviction. 4736 */ 4737 l2hdr = ab->b_l2hdr; 4738 l2hdr->b_daddr = dev->l2ad_hand; 4739 4740 if ((ab->b_flags & ARC_L2COMPRESS) && 4741 l2hdr->b_asize >= buf_compress_minsz) { 4742 if (l2arc_compress_buf(l2hdr)) { 4743 /* 4744 * If compression succeeded, enable headroom 4745 * boost on the next scan cycle. 4746 */ 4747 *headroom_boost = B_TRUE; 4748 } 4749 } 4750 4751 /* 4752 * Pick up the buffer data we had previously stashed away 4753 * (and now potentially also compressed). 4754 */ 4755 buf_data = l2hdr->b_tmp_cdata; 4756 buf_sz = l2hdr->b_asize; 4757 4758 /* Compression may have squashed the buffer to zero length. */ 4759 if (buf_sz != 0) { 4760 uint64_t buf_p_sz; 4761 4762 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4763 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4764 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4765 ZIO_FLAG_CANFAIL, B_FALSE); 4766 4767 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4768 zio_t *, wzio); 4769 (void) zio_nowait(wzio); 4770 4771 write_asize += buf_sz; 4772 /* 4773 * Keep the clock hand suitably device-aligned. 4774 */ 4775 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4776 write_psize += buf_p_sz; 4777 dev->l2ad_hand += buf_p_sz; 4778 } 4779 } 4780 4781 mutex_exit(&l2arc_buflist_mtx); 4782 4783 ASSERT3U(write_asize, <=, target_sz); 4784 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4785 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 4786 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4787 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 4788 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 4789 4790 /* 4791 * Bump device hand to the device start if it is approaching the end. 4792 * l2arc_evict() will already have evicted ahead for this case. 4793 */ 4794 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4795 dev->l2ad_hand = dev->l2ad_start; 4796 dev->l2ad_evict = dev->l2ad_start; 4797 dev->l2ad_first = B_FALSE; 4798 } 4799 4800 dev->l2ad_writing = B_TRUE; 4801 (void) zio_wait(pio); 4802 dev->l2ad_writing = B_FALSE; 4803 4804 return (write_asize); 4805 } 4806 4807 /* 4808 * Compresses an L2ARC buffer. 4809 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its 4810 * size in l2hdr->b_asize. This routine tries to compress the data and 4811 * depending on the compression result there are three possible outcomes: 4812 * *) The buffer was incompressible. The original l2hdr contents were left 4813 * untouched and are ready for writing to an L2 device. 4814 * *) The buffer was all-zeros, so there is no need to write it to an L2 4815 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is 4816 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. 4817 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary 4818 * data buffer which holds the compressed data to be written, and b_asize 4819 * tells us how much data there is. b_compress is set to the appropriate 4820 * compression algorithm. Once writing is done, invoke 4821 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. 4822 * 4823 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the 4824 * buffer was incompressible). 4825 */ 4826 static boolean_t 4827 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr) 4828 { 4829 void *cdata; 4830 size_t csize, len, rounded; 4831 4832 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); 4833 ASSERT(l2hdr->b_tmp_cdata != NULL); 4834 4835 len = l2hdr->b_asize; 4836 cdata = zio_data_buf_alloc(len); 4837 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata, 4838 cdata, l2hdr->b_asize); 4839 4840 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); 4841 if (rounded > csize) { 4842 bzero((char *)cdata + csize, rounded - csize); 4843 csize = rounded; 4844 } 4845 4846 if (csize == 0) { 4847 /* zero block, indicate that there's nothing to write */ 4848 zio_data_buf_free(cdata, len); 4849 l2hdr->b_compress = ZIO_COMPRESS_EMPTY; 4850 l2hdr->b_asize = 0; 4851 l2hdr->b_tmp_cdata = NULL; 4852 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 4853 return (B_TRUE); 4854 } else if (csize > 0 && csize < len) { 4855 /* 4856 * Compression succeeded, we'll keep the cdata around for 4857 * writing and release it afterwards. 4858 */ 4859 l2hdr->b_compress = ZIO_COMPRESS_LZ4; 4860 l2hdr->b_asize = csize; 4861 l2hdr->b_tmp_cdata = cdata; 4862 ARCSTAT_BUMP(arcstat_l2_compress_successes); 4863 return (B_TRUE); 4864 } else { 4865 /* 4866 * Compression failed, release the compressed buffer. 4867 * l2hdr will be left unmodified. 4868 */ 4869 zio_data_buf_free(cdata, len); 4870 ARCSTAT_BUMP(arcstat_l2_compress_failures); 4871 return (B_FALSE); 4872 } 4873 } 4874 4875 /* 4876 * Decompresses a zio read back from an l2arc device. On success, the 4877 * underlying zio's io_data buffer is overwritten by the uncompressed 4878 * version. On decompression error (corrupt compressed stream), the 4879 * zio->io_error value is set to signal an I/O error. 4880 * 4881 * Please note that the compressed data stream is not checksummed, so 4882 * if the underlying device is experiencing data corruption, we may feed 4883 * corrupt data to the decompressor, so the decompressor needs to be 4884 * able to handle this situation (LZ4 does). 4885 */ 4886 static void 4887 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 4888 { 4889 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 4890 4891 if (zio->io_error != 0) { 4892 /* 4893 * An io error has occured, just restore the original io 4894 * size in preparation for a main pool read. 4895 */ 4896 zio->io_orig_size = zio->io_size = hdr->b_size; 4897 return; 4898 } 4899 4900 if (c == ZIO_COMPRESS_EMPTY) { 4901 /* 4902 * An empty buffer results in a null zio, which means we 4903 * need to fill its io_data after we're done restoring the 4904 * buffer's contents. 4905 */ 4906 ASSERT(hdr->b_buf != NULL); 4907 bzero(hdr->b_buf->b_data, hdr->b_size); 4908 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data; 4909 } else { 4910 ASSERT(zio->io_data != NULL); 4911 /* 4912 * We copy the compressed data from the start of the arc buffer 4913 * (the zio_read will have pulled in only what we need, the 4914 * rest is garbage which we will overwrite at decompression) 4915 * and then decompress back to the ARC data buffer. This way we 4916 * can minimize copying by simply decompressing back over the 4917 * original compressed data (rather than decompressing to an 4918 * aux buffer and then copying back the uncompressed buffer, 4919 * which is likely to be much larger). 4920 */ 4921 uint64_t csize; 4922 void *cdata; 4923 4924 csize = zio->io_size; 4925 cdata = zio_data_buf_alloc(csize); 4926 bcopy(zio->io_data, cdata, csize); 4927 if (zio_decompress_data(c, cdata, zio->io_data, csize, 4928 hdr->b_size) != 0) 4929 zio->io_error = EIO; 4930 zio_data_buf_free(cdata, csize); 4931 } 4932 4933 /* Restore the expected uncompressed IO size. */ 4934 zio->io_orig_size = zio->io_size = hdr->b_size; 4935 } 4936 4937 /* 4938 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. 4939 * This buffer serves as a temporary holder of compressed data while 4940 * the buffer entry is being written to an l2arc device. Once that is 4941 * done, we can dispose of it. 4942 */ 4943 static void 4944 l2arc_release_cdata_buf(arc_buf_hdr_t *ab) 4945 { 4946 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr; 4947 4948 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) { 4949 /* 4950 * If the data was compressed, then we've allocated a 4951 * temporary buffer for it, so now we need to release it. 4952 */ 4953 ASSERT(l2hdr->b_tmp_cdata != NULL); 4954 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size); 4955 } 4956 l2hdr->b_tmp_cdata = NULL; 4957 } 4958 4959 /* 4960 * This thread feeds the L2ARC at regular intervals. This is the beating 4961 * heart of the L2ARC. 4962 */ 4963 static void 4964 l2arc_feed_thread(void) 4965 { 4966 callb_cpr_t cpr; 4967 l2arc_dev_t *dev; 4968 spa_t *spa; 4969 uint64_t size, wrote; 4970 clock_t begin, next = ddi_get_lbolt(); 4971 boolean_t headroom_boost = B_FALSE; 4972 4973 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4974 4975 mutex_enter(&l2arc_feed_thr_lock); 4976 4977 while (l2arc_thread_exit == 0) { 4978 CALLB_CPR_SAFE_BEGIN(&cpr); 4979 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4980 next); 4981 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4982 next = ddi_get_lbolt() + hz; 4983 4984 /* 4985 * Quick check for L2ARC devices. 4986 */ 4987 mutex_enter(&l2arc_dev_mtx); 4988 if (l2arc_ndev == 0) { 4989 mutex_exit(&l2arc_dev_mtx); 4990 continue; 4991 } 4992 mutex_exit(&l2arc_dev_mtx); 4993 begin = ddi_get_lbolt(); 4994 4995 /* 4996 * This selects the next l2arc device to write to, and in 4997 * doing so the next spa to feed from: dev->l2ad_spa. This 4998 * will return NULL if there are now no l2arc devices or if 4999 * they are all faulted. 5000 * 5001 * If a device is returned, its spa's config lock is also 5002 * held to prevent device removal. l2arc_dev_get_next() 5003 * will grab and release l2arc_dev_mtx. 5004 */ 5005 if ((dev = l2arc_dev_get_next()) == NULL) 5006 continue; 5007 5008 spa = dev->l2ad_spa; 5009 ASSERT(spa != NULL); 5010 5011 /* 5012 * If the pool is read-only then force the feed thread to 5013 * sleep a little longer. 5014 */ 5015 if (!spa_writeable(spa)) { 5016 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 5017 spa_config_exit(spa, SCL_L2ARC, dev); 5018 continue; 5019 } 5020 5021 /* 5022 * Avoid contributing to memory pressure. 5023 */ 5024 if (arc_reclaim_needed()) { 5025 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 5026 spa_config_exit(spa, SCL_L2ARC, dev); 5027 continue; 5028 } 5029 5030 ARCSTAT_BUMP(arcstat_l2_feeds); 5031 5032 size = l2arc_write_size(); 5033 5034 /* 5035 * Evict L2ARC buffers that will be overwritten. 5036 */ 5037 l2arc_evict(dev, size, B_FALSE); 5038 5039 /* 5040 * Write ARC buffers. 5041 */ 5042 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 5043 5044 /* 5045 * Calculate interval between writes. 5046 */ 5047 next = l2arc_write_interval(begin, size, wrote); 5048 spa_config_exit(spa, SCL_L2ARC, dev); 5049 } 5050 5051 l2arc_thread_exit = 0; 5052 cv_broadcast(&l2arc_feed_thr_cv); 5053 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 5054 thread_exit(); 5055 } 5056 5057 boolean_t 5058 l2arc_vdev_present(vdev_t *vd) 5059 { 5060 l2arc_dev_t *dev; 5061 5062 mutex_enter(&l2arc_dev_mtx); 5063 for (dev = list_head(l2arc_dev_list); dev != NULL; 5064 dev = list_next(l2arc_dev_list, dev)) { 5065 if (dev->l2ad_vdev == vd) 5066 break; 5067 } 5068 mutex_exit(&l2arc_dev_mtx); 5069 5070 return (dev != NULL); 5071 } 5072 5073 /* 5074 * Add a vdev for use by the L2ARC. By this point the spa has already 5075 * validated the vdev and opened it. 5076 */ 5077 void 5078 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 5079 { 5080 l2arc_dev_t *adddev; 5081 5082 ASSERT(!l2arc_vdev_present(vd)); 5083 5084 /* 5085 * Create a new l2arc device entry. 5086 */ 5087 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 5088 adddev->l2ad_spa = spa; 5089 adddev->l2ad_vdev = vd; 5090 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 5091 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 5092 adddev->l2ad_hand = adddev->l2ad_start; 5093 adddev->l2ad_evict = adddev->l2ad_start; 5094 adddev->l2ad_first = B_TRUE; 5095 adddev->l2ad_writing = B_FALSE; 5096 5097 /* 5098 * This is a list of all ARC buffers that are still valid on the 5099 * device. 5100 */ 5101 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 5102 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 5103 offsetof(arc_buf_hdr_t, b_l2node)); 5104 5105 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 5106 5107 /* 5108 * Add device to global list 5109 */ 5110 mutex_enter(&l2arc_dev_mtx); 5111 list_insert_head(l2arc_dev_list, adddev); 5112 atomic_inc_64(&l2arc_ndev); 5113 mutex_exit(&l2arc_dev_mtx); 5114 } 5115 5116 /* 5117 * Remove a vdev from the L2ARC. 5118 */ 5119 void 5120 l2arc_remove_vdev(vdev_t *vd) 5121 { 5122 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 5123 5124 /* 5125 * Find the device by vdev 5126 */ 5127 mutex_enter(&l2arc_dev_mtx); 5128 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 5129 nextdev = list_next(l2arc_dev_list, dev); 5130 if (vd == dev->l2ad_vdev) { 5131 remdev = dev; 5132 break; 5133 } 5134 } 5135 ASSERT(remdev != NULL); 5136 5137 /* 5138 * Remove device from global list 5139 */ 5140 list_remove(l2arc_dev_list, remdev); 5141 l2arc_dev_last = NULL; /* may have been invalidated */ 5142 atomic_dec_64(&l2arc_ndev); 5143 mutex_exit(&l2arc_dev_mtx); 5144 5145 /* 5146 * Clear all buflists and ARC references. L2ARC device flush. 5147 */ 5148 l2arc_evict(remdev, 0, B_TRUE); 5149 list_destroy(remdev->l2ad_buflist); 5150 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 5151 kmem_free(remdev, sizeof (l2arc_dev_t)); 5152 } 5153 5154 void 5155 l2arc_init(void) 5156 { 5157 l2arc_thread_exit = 0; 5158 l2arc_ndev = 0; 5159 l2arc_writes_sent = 0; 5160 l2arc_writes_done = 0; 5161 5162 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 5163 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 5164 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 5165 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 5166 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 5167 5168 l2arc_dev_list = &L2ARC_dev_list; 5169 l2arc_free_on_write = &L2ARC_free_on_write; 5170 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 5171 offsetof(l2arc_dev_t, l2ad_node)); 5172 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 5173 offsetof(l2arc_data_free_t, l2df_list_node)); 5174 } 5175 5176 void 5177 l2arc_fini(void) 5178 { 5179 /* 5180 * This is called from dmu_fini(), which is called from spa_fini(); 5181 * Because of this, we can assume that all l2arc devices have 5182 * already been removed when the pools themselves were removed. 5183 */ 5184 5185 l2arc_do_free_on_write(); 5186 5187 mutex_destroy(&l2arc_feed_thr_lock); 5188 cv_destroy(&l2arc_feed_thr_cv); 5189 mutex_destroy(&l2arc_dev_mtx); 5190 mutex_destroy(&l2arc_buflist_mtx); 5191 mutex_destroy(&l2arc_free_on_write_mtx); 5192 5193 list_destroy(l2arc_dev_list); 5194 list_destroy(l2arc_free_on_write); 5195 } 5196 5197 void 5198 l2arc_start(void) 5199 { 5200 if (!(spa_mode_global & FWRITE)) 5201 return; 5202 5203 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 5204 TS_RUN, minclsyspri); 5205 } 5206 5207 void 5208 l2arc_stop(void) 5209 { 5210 if (!(spa_mode_global & FWRITE)) 5211 return; 5212 5213 mutex_enter(&l2arc_feed_thr_lock); 5214 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 5215 l2arc_thread_exit = 1; 5216 while (l2arc_thread_exit != 0) 5217 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 5218 mutex_exit(&l2arc_feed_thr_lock); 5219 } 5220