1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * DVA-based Adjustable Replacement Cache 29 * 30 * While much of the theory of operation used here is 31 * based on the self-tuning, low overhead replacement cache 32 * presented by Megiddo and Modha at FAST 2003, there are some 33 * significant differences: 34 * 35 * 1. The Megiddo and Modha model assumes any page is evictable. 36 * Pages in its cache cannot be "locked" into memory. This makes 37 * the eviction algorithm simple: evict the last page in the list. 38 * This also make the performance characteristics easy to reason 39 * about. Our cache is not so simple. At any given moment, some 40 * subset of the blocks in the cache are un-evictable because we 41 * have handed out a reference to them. Blocks are only evictable 42 * when there are no external references active. This makes 43 * eviction far more problematic: we choose to evict the evictable 44 * blocks that are the "lowest" in the list. 45 * 46 * There are times when it is not possible to evict the requested 47 * space. In these circumstances we are unable to adjust the cache 48 * size. To prevent the cache growing unbounded at these times we 49 * implement a "cache throttle" that slows the flow of new data 50 * into the cache until we can make space available. 51 * 52 * 2. The Megiddo and Modha model assumes a fixed cache size. 53 * Pages are evicted when the cache is full and there is a cache 54 * miss. Our model has a variable sized cache. It grows with 55 * high use, but also tries to react to memory pressure from the 56 * operating system: decreasing its size when system memory is 57 * tight. 58 * 59 * 3. The Megiddo and Modha model assumes a fixed page size. All 60 * elements of the cache are therefor exactly the same size. So 61 * when adjusting the cache size following a cache miss, its simply 62 * a matter of choosing a single page to evict. In our model, we 63 * have variable sized cache blocks (rangeing from 512 bytes to 64 * 128K bytes). We therefor choose a set of blocks to evict to make 65 * space for a cache miss that approximates as closely as possible 66 * the space used by the new block. 67 * 68 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 69 * by N. Megiddo & D. Modha, FAST 2003 70 */ 71 72 /* 73 * The locking model: 74 * 75 * A new reference to a cache buffer can be obtained in two 76 * ways: 1) via a hash table lookup using the DVA as a key, 77 * or 2) via one of the ARC lists. The arc_read() interface 78 * uses method 1, while the internal arc algorithms for 79 * adjusting the cache use method 2. We therefor provide two 80 * types of locks: 1) the hash table lock array, and 2) the 81 * arc list locks. 82 * 83 * Buffers do not have their own mutexs, rather they rely on the 84 * hash table mutexs for the bulk of their protection (i.e. most 85 * fields in the arc_buf_hdr_t are protected by these mutexs). 86 * 87 * buf_hash_find() returns the appropriate mutex (held) when it 88 * locates the requested buffer in the hash table. It returns 89 * NULL for the mutex if the buffer was not in the table. 90 * 91 * buf_hash_remove() expects the appropriate hash mutex to be 92 * already held before it is invoked. 93 * 94 * Each arc state also has a mutex which is used to protect the 95 * buffer list associated with the state. When attempting to 96 * obtain a hash table lock while holding an arc list lock you 97 * must use: mutex_tryenter() to avoid deadlock. Also note that 98 * the active state mutex must be held before the ghost state mutex. 99 * 100 * Arc buffers may have an associated eviction callback function. 101 * This function will be invoked prior to removing the buffer (e.g. 102 * in arc_do_user_evicts()). Note however that the data associated 103 * with the buffer may be evicted prior to the callback. The callback 104 * must be made with *no locks held* (to prevent deadlock). Additionally, 105 * the users of callbacks must ensure that their private data is 106 * protected from simultaneous callbacks from arc_buf_evict() 107 * and arc_do_user_evicts(). 108 * 109 * Note that the majority of the performance stats are manipulated 110 * with atomic operations. 111 * 112 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 113 * 114 * - L2ARC buflist creation 115 * - L2ARC buflist eviction 116 * - L2ARC write completion, which walks L2ARC buflists 117 * - ARC header destruction, as it removes from L2ARC buflists 118 * - ARC header release, as it removes from L2ARC buflists 119 */ 120 121 #include <sys/spa.h> 122 #include <sys/zio.h> 123 #include <sys/zfs_context.h> 124 #include <sys/arc.h> 125 #include <sys/refcount.h> 126 #include <sys/vdev.h> 127 #include <sys/vdev_impl.h> 128 #ifdef _KERNEL 129 #include <sys/vmsystm.h> 130 #include <vm/anon.h> 131 #include <sys/fs/swapnode.h> 132 #include <sys/dnlc.h> 133 #endif 134 #include <sys/callb.h> 135 #include <sys/kstat.h> 136 #include <zfs_fletcher.h> 137 138 static kmutex_t arc_reclaim_thr_lock; 139 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 140 static uint8_t arc_thread_exit; 141 142 extern int zfs_write_limit_shift; 143 extern uint64_t zfs_write_limit_max; 144 extern kmutex_t zfs_write_limit_lock; 145 146 #define ARC_REDUCE_DNLC_PERCENT 3 147 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 148 149 typedef enum arc_reclaim_strategy { 150 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 151 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 152 } arc_reclaim_strategy_t; 153 154 /* number of seconds before growing cache again */ 155 static int arc_grow_retry = 60; 156 157 /* shift of arc_c for calculating both min and max arc_p */ 158 static int arc_p_min_shift = 4; 159 160 /* log2(fraction of arc to reclaim) */ 161 static int arc_shrink_shift = 5; 162 163 /* 164 * minimum lifespan of a prefetch block in clock ticks 165 * (initialized in arc_init()) 166 */ 167 static int arc_min_prefetch_lifespan; 168 169 static int arc_dead; 170 171 /* 172 * The arc has filled available memory and has now warmed up. 173 */ 174 static boolean_t arc_warm; 175 176 /* 177 * These tunables are for performance analysis. 178 */ 179 uint64_t zfs_arc_max; 180 uint64_t zfs_arc_min; 181 uint64_t zfs_arc_meta_limit = 0; 182 int zfs_arc_grow_retry = 0; 183 int zfs_arc_shrink_shift = 0; 184 int zfs_arc_p_min_shift = 0; 185 186 /* 187 * Note that buffers can be in one of 6 states: 188 * ARC_anon - anonymous (discussed below) 189 * ARC_mru - recently used, currently cached 190 * ARC_mru_ghost - recentely used, no longer in cache 191 * ARC_mfu - frequently used, currently cached 192 * ARC_mfu_ghost - frequently used, no longer in cache 193 * ARC_l2c_only - exists in L2ARC but not other states 194 * When there are no active references to the buffer, they are 195 * are linked onto a list in one of these arc states. These are 196 * the only buffers that can be evicted or deleted. Within each 197 * state there are multiple lists, one for meta-data and one for 198 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 199 * etc.) is tracked separately so that it can be managed more 200 * explicitly: favored over data, limited explicitly. 201 * 202 * Anonymous buffers are buffers that are not associated with 203 * a DVA. These are buffers that hold dirty block copies 204 * before they are written to stable storage. By definition, 205 * they are "ref'd" and are considered part of arc_mru 206 * that cannot be freed. Generally, they will aquire a DVA 207 * as they are written and migrate onto the arc_mru list. 208 * 209 * The ARC_l2c_only state is for buffers that are in the second 210 * level ARC but no longer in any of the ARC_m* lists. The second 211 * level ARC itself may also contain buffers that are in any of 212 * the ARC_m* states - meaning that a buffer can exist in two 213 * places. The reason for the ARC_l2c_only state is to keep the 214 * buffer header in the hash table, so that reads that hit the 215 * second level ARC benefit from these fast lookups. 216 */ 217 218 typedef struct arc_state { 219 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 220 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 221 uint64_t arcs_size; /* total amount of data in this state */ 222 kmutex_t arcs_mtx; 223 } arc_state_t; 224 225 /* The 6 states: */ 226 static arc_state_t ARC_anon; 227 static arc_state_t ARC_mru; 228 static arc_state_t ARC_mru_ghost; 229 static arc_state_t ARC_mfu; 230 static arc_state_t ARC_mfu_ghost; 231 static arc_state_t ARC_l2c_only; 232 233 typedef struct arc_stats { 234 kstat_named_t arcstat_hits; 235 kstat_named_t arcstat_misses; 236 kstat_named_t arcstat_demand_data_hits; 237 kstat_named_t arcstat_demand_data_misses; 238 kstat_named_t arcstat_demand_metadata_hits; 239 kstat_named_t arcstat_demand_metadata_misses; 240 kstat_named_t arcstat_prefetch_data_hits; 241 kstat_named_t arcstat_prefetch_data_misses; 242 kstat_named_t arcstat_prefetch_metadata_hits; 243 kstat_named_t arcstat_prefetch_metadata_misses; 244 kstat_named_t arcstat_mru_hits; 245 kstat_named_t arcstat_mru_ghost_hits; 246 kstat_named_t arcstat_mfu_hits; 247 kstat_named_t arcstat_mfu_ghost_hits; 248 kstat_named_t arcstat_deleted; 249 kstat_named_t arcstat_recycle_miss; 250 kstat_named_t arcstat_mutex_miss; 251 kstat_named_t arcstat_evict_skip; 252 kstat_named_t arcstat_evict_l2_cached; 253 kstat_named_t arcstat_evict_l2_eligible; 254 kstat_named_t arcstat_evict_l2_ineligible; 255 kstat_named_t arcstat_hash_elements; 256 kstat_named_t arcstat_hash_elements_max; 257 kstat_named_t arcstat_hash_collisions; 258 kstat_named_t arcstat_hash_chains; 259 kstat_named_t arcstat_hash_chain_max; 260 kstat_named_t arcstat_p; 261 kstat_named_t arcstat_c; 262 kstat_named_t arcstat_c_min; 263 kstat_named_t arcstat_c_max; 264 kstat_named_t arcstat_size; 265 kstat_named_t arcstat_hdr_size; 266 kstat_named_t arcstat_data_size; 267 kstat_named_t arcstat_other_size; 268 kstat_named_t arcstat_l2_hits; 269 kstat_named_t arcstat_l2_misses; 270 kstat_named_t arcstat_l2_feeds; 271 kstat_named_t arcstat_l2_rw_clash; 272 kstat_named_t arcstat_l2_read_bytes; 273 kstat_named_t arcstat_l2_write_bytes; 274 kstat_named_t arcstat_l2_writes_sent; 275 kstat_named_t arcstat_l2_writes_done; 276 kstat_named_t arcstat_l2_writes_error; 277 kstat_named_t arcstat_l2_writes_hdr_miss; 278 kstat_named_t arcstat_l2_evict_lock_retry; 279 kstat_named_t arcstat_l2_evict_reading; 280 kstat_named_t arcstat_l2_free_on_write; 281 kstat_named_t arcstat_l2_abort_lowmem; 282 kstat_named_t arcstat_l2_cksum_bad; 283 kstat_named_t arcstat_l2_io_error; 284 kstat_named_t arcstat_l2_size; 285 kstat_named_t arcstat_l2_hdr_size; 286 kstat_named_t arcstat_memory_throttle_count; 287 } arc_stats_t; 288 289 static arc_stats_t arc_stats = { 290 { "hits", KSTAT_DATA_UINT64 }, 291 { "misses", KSTAT_DATA_UINT64 }, 292 { "demand_data_hits", KSTAT_DATA_UINT64 }, 293 { "demand_data_misses", KSTAT_DATA_UINT64 }, 294 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 295 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 296 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 297 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 298 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 299 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 300 { "mru_hits", KSTAT_DATA_UINT64 }, 301 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 302 { "mfu_hits", KSTAT_DATA_UINT64 }, 303 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 304 { "deleted", KSTAT_DATA_UINT64 }, 305 { "recycle_miss", KSTAT_DATA_UINT64 }, 306 { "mutex_miss", KSTAT_DATA_UINT64 }, 307 { "evict_skip", KSTAT_DATA_UINT64 }, 308 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 309 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 310 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 311 { "hash_elements", KSTAT_DATA_UINT64 }, 312 { "hash_elements_max", KSTAT_DATA_UINT64 }, 313 { "hash_collisions", KSTAT_DATA_UINT64 }, 314 { "hash_chains", KSTAT_DATA_UINT64 }, 315 { "hash_chain_max", KSTAT_DATA_UINT64 }, 316 { "p", KSTAT_DATA_UINT64 }, 317 { "c", KSTAT_DATA_UINT64 }, 318 { "c_min", KSTAT_DATA_UINT64 }, 319 { "c_max", KSTAT_DATA_UINT64 }, 320 { "size", KSTAT_DATA_UINT64 }, 321 { "hdr_size", KSTAT_DATA_UINT64 }, 322 { "data_size", KSTAT_DATA_UINT64 }, 323 { "other_size", KSTAT_DATA_UINT64 }, 324 { "l2_hits", KSTAT_DATA_UINT64 }, 325 { "l2_misses", KSTAT_DATA_UINT64 }, 326 { "l2_feeds", KSTAT_DATA_UINT64 }, 327 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 328 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 329 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 330 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 331 { "l2_writes_done", KSTAT_DATA_UINT64 }, 332 { "l2_writes_error", KSTAT_DATA_UINT64 }, 333 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 334 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 335 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 336 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 337 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 338 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 339 { "l2_io_error", KSTAT_DATA_UINT64 }, 340 { "l2_size", KSTAT_DATA_UINT64 }, 341 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 342 { "memory_throttle_count", KSTAT_DATA_UINT64 } 343 }; 344 345 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 346 347 #define ARCSTAT_INCR(stat, val) \ 348 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 349 350 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 351 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 352 353 #define ARCSTAT_MAX(stat, val) { \ 354 uint64_t m; \ 355 while ((val) > (m = arc_stats.stat.value.ui64) && \ 356 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 357 continue; \ 358 } 359 360 #define ARCSTAT_MAXSTAT(stat) \ 361 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 362 363 /* 364 * We define a macro to allow ARC hits/misses to be easily broken down by 365 * two separate conditions, giving a total of four different subtypes for 366 * each of hits and misses (so eight statistics total). 367 */ 368 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 369 if (cond1) { \ 370 if (cond2) { \ 371 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 372 } else { \ 373 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 374 } \ 375 } else { \ 376 if (cond2) { \ 377 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 378 } else { \ 379 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 380 } \ 381 } 382 383 kstat_t *arc_ksp; 384 static arc_state_t *arc_anon; 385 static arc_state_t *arc_mru; 386 static arc_state_t *arc_mru_ghost; 387 static arc_state_t *arc_mfu; 388 static arc_state_t *arc_mfu_ghost; 389 static arc_state_t *arc_l2c_only; 390 391 /* 392 * There are several ARC variables that are critical to export as kstats -- 393 * but we don't want to have to grovel around in the kstat whenever we wish to 394 * manipulate them. For these variables, we therefore define them to be in 395 * terms of the statistic variable. This assures that we are not introducing 396 * the possibility of inconsistency by having shadow copies of the variables, 397 * while still allowing the code to be readable. 398 */ 399 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 400 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 401 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 402 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 403 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 404 405 static int arc_no_grow; /* Don't try to grow cache size */ 406 static uint64_t arc_tempreserve; 407 static uint64_t arc_loaned_bytes; 408 static uint64_t arc_meta_used; 409 static uint64_t arc_meta_limit; 410 static uint64_t arc_meta_max = 0; 411 412 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 413 414 typedef struct arc_callback arc_callback_t; 415 416 struct arc_callback { 417 void *acb_private; 418 arc_done_func_t *acb_done; 419 arc_buf_t *acb_buf; 420 zio_t *acb_zio_dummy; 421 arc_callback_t *acb_next; 422 }; 423 424 typedef struct arc_write_callback arc_write_callback_t; 425 426 struct arc_write_callback { 427 void *awcb_private; 428 arc_done_func_t *awcb_ready; 429 arc_done_func_t *awcb_done; 430 arc_buf_t *awcb_buf; 431 }; 432 433 struct arc_buf_hdr { 434 /* protected by hash lock */ 435 dva_t b_dva; 436 uint64_t b_birth; 437 uint64_t b_cksum0; 438 439 kmutex_t b_freeze_lock; 440 zio_cksum_t *b_freeze_cksum; 441 void *b_thawed; 442 443 arc_buf_hdr_t *b_hash_next; 444 arc_buf_t *b_buf; 445 uint32_t b_flags; 446 uint32_t b_datacnt; 447 448 arc_callback_t *b_acb; 449 kcondvar_t b_cv; 450 451 /* immutable */ 452 arc_buf_contents_t b_type; 453 uint64_t b_size; 454 uint64_t b_spa; 455 456 /* protected by arc state mutex */ 457 arc_state_t *b_state; 458 list_node_t b_arc_node; 459 460 /* updated atomically */ 461 clock_t b_arc_access; 462 463 /* self protecting */ 464 refcount_t b_refcnt; 465 466 l2arc_buf_hdr_t *b_l2hdr; 467 list_node_t b_l2node; 468 }; 469 470 static arc_buf_t *arc_eviction_list; 471 static kmutex_t arc_eviction_mtx; 472 static arc_buf_hdr_t arc_eviction_hdr; 473 static void arc_get_data_buf(arc_buf_t *buf); 474 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 475 static int arc_evict_needed(arc_buf_contents_t type); 476 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 477 478 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 479 480 #define GHOST_STATE(state) \ 481 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 482 (state) == arc_l2c_only) 483 484 /* 485 * Private ARC flags. These flags are private ARC only flags that will show up 486 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 487 * be passed in as arc_flags in things like arc_read. However, these flags 488 * should never be passed and should only be set by ARC code. When adding new 489 * public flags, make sure not to smash the private ones. 490 */ 491 492 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 493 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 494 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 495 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 496 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 497 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 498 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 499 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 500 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 501 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 502 503 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 504 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 505 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 506 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 507 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 508 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 509 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 510 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 511 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 512 (hdr)->b_l2hdr != NULL) 513 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 514 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 515 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 516 517 /* 518 * Other sizes 519 */ 520 521 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 522 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 523 524 /* 525 * Hash table routines 526 */ 527 528 #define HT_LOCK_PAD 64 529 530 struct ht_lock { 531 kmutex_t ht_lock; 532 #ifdef _KERNEL 533 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 534 #endif 535 }; 536 537 #define BUF_LOCKS 256 538 typedef struct buf_hash_table { 539 uint64_t ht_mask; 540 arc_buf_hdr_t **ht_table; 541 struct ht_lock ht_locks[BUF_LOCKS]; 542 } buf_hash_table_t; 543 544 static buf_hash_table_t buf_hash_table; 545 546 #define BUF_HASH_INDEX(spa, dva, birth) \ 547 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 548 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 549 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 550 #define HDR_LOCK(hdr) \ 551 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 552 553 uint64_t zfs_crc64_table[256]; 554 555 /* 556 * Level 2 ARC 557 */ 558 559 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 560 #define L2ARC_HEADROOM 2 /* num of writes */ 561 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 562 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 563 564 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 565 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 566 567 /* 568 * L2ARC Performance Tunables 569 */ 570 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 571 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 572 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 573 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 574 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 575 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 576 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 577 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 578 579 /* 580 * L2ARC Internals 581 */ 582 typedef struct l2arc_dev { 583 vdev_t *l2ad_vdev; /* vdev */ 584 spa_t *l2ad_spa; /* spa */ 585 uint64_t l2ad_hand; /* next write location */ 586 uint64_t l2ad_write; /* desired write size, bytes */ 587 uint64_t l2ad_boost; /* warmup write boost, bytes */ 588 uint64_t l2ad_start; /* first addr on device */ 589 uint64_t l2ad_end; /* last addr on device */ 590 uint64_t l2ad_evict; /* last addr eviction reached */ 591 boolean_t l2ad_first; /* first sweep through */ 592 boolean_t l2ad_writing; /* currently writing */ 593 list_t *l2ad_buflist; /* buffer list */ 594 list_node_t l2ad_node; /* device list node */ 595 } l2arc_dev_t; 596 597 static list_t L2ARC_dev_list; /* device list */ 598 static list_t *l2arc_dev_list; /* device list pointer */ 599 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 600 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 601 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 602 static list_t L2ARC_free_on_write; /* free after write buf list */ 603 static list_t *l2arc_free_on_write; /* free after write list ptr */ 604 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 605 static uint64_t l2arc_ndev; /* number of devices */ 606 607 typedef struct l2arc_read_callback { 608 arc_buf_t *l2rcb_buf; /* read buffer */ 609 spa_t *l2rcb_spa; /* spa */ 610 blkptr_t l2rcb_bp; /* original blkptr */ 611 zbookmark_t l2rcb_zb; /* original bookmark */ 612 int l2rcb_flags; /* original flags */ 613 } l2arc_read_callback_t; 614 615 typedef struct l2arc_write_callback { 616 l2arc_dev_t *l2wcb_dev; /* device info */ 617 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 618 } l2arc_write_callback_t; 619 620 struct l2arc_buf_hdr { 621 /* protected by arc_buf_hdr mutex */ 622 l2arc_dev_t *b_dev; /* L2ARC device */ 623 uint64_t b_daddr; /* disk address, offset byte */ 624 }; 625 626 typedef struct l2arc_data_free { 627 /* protected by l2arc_free_on_write_mtx */ 628 void *l2df_data; 629 size_t l2df_size; 630 void (*l2df_func)(void *, size_t); 631 list_node_t l2df_list_node; 632 } l2arc_data_free_t; 633 634 static kmutex_t l2arc_feed_thr_lock; 635 static kcondvar_t l2arc_feed_thr_cv; 636 static uint8_t l2arc_thread_exit; 637 638 static void l2arc_read_done(zio_t *zio); 639 static void l2arc_hdr_stat_add(void); 640 static void l2arc_hdr_stat_remove(void); 641 642 static uint64_t 643 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 644 { 645 uint8_t *vdva = (uint8_t *)dva; 646 uint64_t crc = -1ULL; 647 int i; 648 649 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 650 651 for (i = 0; i < sizeof (dva_t); i++) 652 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 653 654 crc ^= (spa>>8) ^ birth; 655 656 return (crc); 657 } 658 659 #define BUF_EMPTY(buf) \ 660 ((buf)->b_dva.dva_word[0] == 0 && \ 661 (buf)->b_dva.dva_word[1] == 0 && \ 662 (buf)->b_birth == 0) 663 664 #define BUF_EQUAL(spa, dva, birth, buf) \ 665 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 666 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 667 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 668 669 static void 670 buf_discard_identity(arc_buf_hdr_t *hdr) 671 { 672 hdr->b_dva.dva_word[0] = 0; 673 hdr->b_dva.dva_word[1] = 0; 674 hdr->b_birth = 0; 675 hdr->b_cksum0 = 0; 676 } 677 678 static arc_buf_hdr_t * 679 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 680 { 681 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 682 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 683 arc_buf_hdr_t *buf; 684 685 mutex_enter(hash_lock); 686 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 687 buf = buf->b_hash_next) { 688 if (BUF_EQUAL(spa, dva, birth, buf)) { 689 *lockp = hash_lock; 690 return (buf); 691 } 692 } 693 mutex_exit(hash_lock); 694 *lockp = NULL; 695 return (NULL); 696 } 697 698 /* 699 * Insert an entry into the hash table. If there is already an element 700 * equal to elem in the hash table, then the already existing element 701 * will be returned and the new element will not be inserted. 702 * Otherwise returns NULL. 703 */ 704 static arc_buf_hdr_t * 705 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 706 { 707 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 708 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 709 arc_buf_hdr_t *fbuf; 710 uint32_t i; 711 712 ASSERT(!HDR_IN_HASH_TABLE(buf)); 713 *lockp = hash_lock; 714 mutex_enter(hash_lock); 715 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 716 fbuf = fbuf->b_hash_next, i++) { 717 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 718 return (fbuf); 719 } 720 721 buf->b_hash_next = buf_hash_table.ht_table[idx]; 722 buf_hash_table.ht_table[idx] = buf; 723 buf->b_flags |= ARC_IN_HASH_TABLE; 724 725 /* collect some hash table performance data */ 726 if (i > 0) { 727 ARCSTAT_BUMP(arcstat_hash_collisions); 728 if (i == 1) 729 ARCSTAT_BUMP(arcstat_hash_chains); 730 731 ARCSTAT_MAX(arcstat_hash_chain_max, i); 732 } 733 734 ARCSTAT_BUMP(arcstat_hash_elements); 735 ARCSTAT_MAXSTAT(arcstat_hash_elements); 736 737 return (NULL); 738 } 739 740 static void 741 buf_hash_remove(arc_buf_hdr_t *buf) 742 { 743 arc_buf_hdr_t *fbuf, **bufp; 744 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 745 746 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 747 ASSERT(HDR_IN_HASH_TABLE(buf)); 748 749 bufp = &buf_hash_table.ht_table[idx]; 750 while ((fbuf = *bufp) != buf) { 751 ASSERT(fbuf != NULL); 752 bufp = &fbuf->b_hash_next; 753 } 754 *bufp = buf->b_hash_next; 755 buf->b_hash_next = NULL; 756 buf->b_flags &= ~ARC_IN_HASH_TABLE; 757 758 /* collect some hash table performance data */ 759 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 760 761 if (buf_hash_table.ht_table[idx] && 762 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 763 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 764 } 765 766 /* 767 * Global data structures and functions for the buf kmem cache. 768 */ 769 static kmem_cache_t *hdr_cache; 770 static kmem_cache_t *buf_cache; 771 772 static void 773 buf_fini(void) 774 { 775 int i; 776 777 kmem_free(buf_hash_table.ht_table, 778 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 779 for (i = 0; i < BUF_LOCKS; i++) 780 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 781 kmem_cache_destroy(hdr_cache); 782 kmem_cache_destroy(buf_cache); 783 } 784 785 /* 786 * Constructor callback - called when the cache is empty 787 * and a new buf is requested. 788 */ 789 /* ARGSUSED */ 790 static int 791 hdr_cons(void *vbuf, void *unused, int kmflag) 792 { 793 arc_buf_hdr_t *buf = vbuf; 794 795 bzero(buf, sizeof (arc_buf_hdr_t)); 796 refcount_create(&buf->b_refcnt); 797 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 798 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 799 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 800 801 return (0); 802 } 803 804 /* ARGSUSED */ 805 static int 806 buf_cons(void *vbuf, void *unused, int kmflag) 807 { 808 arc_buf_t *buf = vbuf; 809 810 bzero(buf, sizeof (arc_buf_t)); 811 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 812 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL); 813 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 814 815 return (0); 816 } 817 818 /* 819 * Destructor callback - called when a cached buf is 820 * no longer required. 821 */ 822 /* ARGSUSED */ 823 static void 824 hdr_dest(void *vbuf, void *unused) 825 { 826 arc_buf_hdr_t *buf = vbuf; 827 828 ASSERT(BUF_EMPTY(buf)); 829 refcount_destroy(&buf->b_refcnt); 830 cv_destroy(&buf->b_cv); 831 mutex_destroy(&buf->b_freeze_lock); 832 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 833 } 834 835 /* ARGSUSED */ 836 static void 837 buf_dest(void *vbuf, void *unused) 838 { 839 arc_buf_t *buf = vbuf; 840 841 mutex_destroy(&buf->b_evict_lock); 842 rw_destroy(&buf->b_data_lock); 843 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 844 } 845 846 /* 847 * Reclaim callback -- invoked when memory is low. 848 */ 849 /* ARGSUSED */ 850 static void 851 hdr_recl(void *unused) 852 { 853 dprintf("hdr_recl called\n"); 854 /* 855 * umem calls the reclaim func when we destroy the buf cache, 856 * which is after we do arc_fini(). 857 */ 858 if (!arc_dead) 859 cv_signal(&arc_reclaim_thr_cv); 860 } 861 862 static void 863 buf_init(void) 864 { 865 uint64_t *ct; 866 uint64_t hsize = 1ULL << 12; 867 int i, j; 868 869 /* 870 * The hash table is big enough to fill all of physical memory 871 * with an average 64K block size. The table will take up 872 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 873 */ 874 while (hsize * 65536 < physmem * PAGESIZE) 875 hsize <<= 1; 876 retry: 877 buf_hash_table.ht_mask = hsize - 1; 878 buf_hash_table.ht_table = 879 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 880 if (buf_hash_table.ht_table == NULL) { 881 ASSERT(hsize > (1ULL << 8)); 882 hsize >>= 1; 883 goto retry; 884 } 885 886 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 887 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 888 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 889 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 890 891 for (i = 0; i < 256; i++) 892 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 893 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 894 895 for (i = 0; i < BUF_LOCKS; i++) { 896 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 897 NULL, MUTEX_DEFAULT, NULL); 898 } 899 } 900 901 #define ARC_MINTIME (hz>>4) /* 62 ms */ 902 903 static void 904 arc_cksum_verify(arc_buf_t *buf) 905 { 906 zio_cksum_t zc; 907 908 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 909 return; 910 911 mutex_enter(&buf->b_hdr->b_freeze_lock); 912 if (buf->b_hdr->b_freeze_cksum == NULL || 913 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 914 mutex_exit(&buf->b_hdr->b_freeze_lock); 915 return; 916 } 917 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 918 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 919 panic("buffer modified while frozen!"); 920 mutex_exit(&buf->b_hdr->b_freeze_lock); 921 } 922 923 static int 924 arc_cksum_equal(arc_buf_t *buf) 925 { 926 zio_cksum_t zc; 927 int equal; 928 929 mutex_enter(&buf->b_hdr->b_freeze_lock); 930 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 931 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 932 mutex_exit(&buf->b_hdr->b_freeze_lock); 933 934 return (equal); 935 } 936 937 static void 938 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 939 { 940 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 941 return; 942 943 mutex_enter(&buf->b_hdr->b_freeze_lock); 944 if (buf->b_hdr->b_freeze_cksum != NULL) { 945 mutex_exit(&buf->b_hdr->b_freeze_lock); 946 return; 947 } 948 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 949 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 950 buf->b_hdr->b_freeze_cksum); 951 mutex_exit(&buf->b_hdr->b_freeze_lock); 952 } 953 954 void 955 arc_buf_thaw(arc_buf_t *buf) 956 { 957 if (zfs_flags & ZFS_DEBUG_MODIFY) { 958 if (buf->b_hdr->b_state != arc_anon) 959 panic("modifying non-anon buffer!"); 960 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 961 panic("modifying buffer while i/o in progress!"); 962 arc_cksum_verify(buf); 963 } 964 965 mutex_enter(&buf->b_hdr->b_freeze_lock); 966 if (buf->b_hdr->b_freeze_cksum != NULL) { 967 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 968 buf->b_hdr->b_freeze_cksum = NULL; 969 } 970 971 if (zfs_flags & ZFS_DEBUG_MODIFY) { 972 if (buf->b_hdr->b_thawed) 973 kmem_free(buf->b_hdr->b_thawed, 1); 974 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 975 } 976 977 mutex_exit(&buf->b_hdr->b_freeze_lock); 978 } 979 980 void 981 arc_buf_freeze(arc_buf_t *buf) 982 { 983 kmutex_t *hash_lock; 984 985 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 986 return; 987 988 hash_lock = HDR_LOCK(buf->b_hdr); 989 mutex_enter(hash_lock); 990 991 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 992 buf->b_hdr->b_state == arc_anon); 993 arc_cksum_compute(buf, B_FALSE); 994 mutex_exit(hash_lock); 995 } 996 997 static void 998 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 999 { 1000 ASSERT(MUTEX_HELD(hash_lock)); 1001 1002 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1003 (ab->b_state != arc_anon)) { 1004 uint64_t delta = ab->b_size * ab->b_datacnt; 1005 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1006 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1007 1008 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1009 mutex_enter(&ab->b_state->arcs_mtx); 1010 ASSERT(list_link_active(&ab->b_arc_node)); 1011 list_remove(list, ab); 1012 if (GHOST_STATE(ab->b_state)) { 1013 ASSERT3U(ab->b_datacnt, ==, 0); 1014 ASSERT3P(ab->b_buf, ==, NULL); 1015 delta = ab->b_size; 1016 } 1017 ASSERT(delta > 0); 1018 ASSERT3U(*size, >=, delta); 1019 atomic_add_64(size, -delta); 1020 mutex_exit(&ab->b_state->arcs_mtx); 1021 /* remove the prefetch flag if we get a reference */ 1022 if (ab->b_flags & ARC_PREFETCH) 1023 ab->b_flags &= ~ARC_PREFETCH; 1024 } 1025 } 1026 1027 static int 1028 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1029 { 1030 int cnt; 1031 arc_state_t *state = ab->b_state; 1032 1033 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1034 ASSERT(!GHOST_STATE(state)); 1035 1036 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1037 (state != arc_anon)) { 1038 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1039 1040 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1041 mutex_enter(&state->arcs_mtx); 1042 ASSERT(!list_link_active(&ab->b_arc_node)); 1043 list_insert_head(&state->arcs_list[ab->b_type], ab); 1044 ASSERT(ab->b_datacnt > 0); 1045 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1046 mutex_exit(&state->arcs_mtx); 1047 } 1048 return (cnt); 1049 } 1050 1051 /* 1052 * Move the supplied buffer to the indicated state. The mutex 1053 * for the buffer must be held by the caller. 1054 */ 1055 static void 1056 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1057 { 1058 arc_state_t *old_state = ab->b_state; 1059 int64_t refcnt = refcount_count(&ab->b_refcnt); 1060 uint64_t from_delta, to_delta; 1061 1062 ASSERT(MUTEX_HELD(hash_lock)); 1063 ASSERT(new_state != old_state); 1064 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1065 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1066 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1067 1068 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1069 1070 /* 1071 * If this buffer is evictable, transfer it from the 1072 * old state list to the new state list. 1073 */ 1074 if (refcnt == 0) { 1075 if (old_state != arc_anon) { 1076 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1077 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1078 1079 if (use_mutex) 1080 mutex_enter(&old_state->arcs_mtx); 1081 1082 ASSERT(list_link_active(&ab->b_arc_node)); 1083 list_remove(&old_state->arcs_list[ab->b_type], ab); 1084 1085 /* 1086 * If prefetching out of the ghost cache, 1087 * we will have a non-zero datacnt. 1088 */ 1089 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1090 /* ghost elements have a ghost size */ 1091 ASSERT(ab->b_buf == NULL); 1092 from_delta = ab->b_size; 1093 } 1094 ASSERT3U(*size, >=, from_delta); 1095 atomic_add_64(size, -from_delta); 1096 1097 if (use_mutex) 1098 mutex_exit(&old_state->arcs_mtx); 1099 } 1100 if (new_state != arc_anon) { 1101 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1102 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1103 1104 if (use_mutex) 1105 mutex_enter(&new_state->arcs_mtx); 1106 1107 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1108 1109 /* ghost elements have a ghost size */ 1110 if (GHOST_STATE(new_state)) { 1111 ASSERT(ab->b_datacnt == 0); 1112 ASSERT(ab->b_buf == NULL); 1113 to_delta = ab->b_size; 1114 } 1115 atomic_add_64(size, to_delta); 1116 1117 if (use_mutex) 1118 mutex_exit(&new_state->arcs_mtx); 1119 } 1120 } 1121 1122 ASSERT(!BUF_EMPTY(ab)); 1123 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1124 buf_hash_remove(ab); 1125 1126 /* adjust state sizes */ 1127 if (to_delta) 1128 atomic_add_64(&new_state->arcs_size, to_delta); 1129 if (from_delta) { 1130 ASSERT3U(old_state->arcs_size, >=, from_delta); 1131 atomic_add_64(&old_state->arcs_size, -from_delta); 1132 } 1133 ab->b_state = new_state; 1134 1135 /* adjust l2arc hdr stats */ 1136 if (new_state == arc_l2c_only) 1137 l2arc_hdr_stat_add(); 1138 else if (old_state == arc_l2c_only) 1139 l2arc_hdr_stat_remove(); 1140 } 1141 1142 void 1143 arc_space_consume(uint64_t space, arc_space_type_t type) 1144 { 1145 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1146 1147 switch (type) { 1148 case ARC_SPACE_DATA: 1149 ARCSTAT_INCR(arcstat_data_size, space); 1150 break; 1151 case ARC_SPACE_OTHER: 1152 ARCSTAT_INCR(arcstat_other_size, space); 1153 break; 1154 case ARC_SPACE_HDRS: 1155 ARCSTAT_INCR(arcstat_hdr_size, space); 1156 break; 1157 case ARC_SPACE_L2HDRS: 1158 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1159 break; 1160 } 1161 1162 atomic_add_64(&arc_meta_used, space); 1163 atomic_add_64(&arc_size, space); 1164 } 1165 1166 void 1167 arc_space_return(uint64_t space, arc_space_type_t type) 1168 { 1169 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1170 1171 switch (type) { 1172 case ARC_SPACE_DATA: 1173 ARCSTAT_INCR(arcstat_data_size, -space); 1174 break; 1175 case ARC_SPACE_OTHER: 1176 ARCSTAT_INCR(arcstat_other_size, -space); 1177 break; 1178 case ARC_SPACE_HDRS: 1179 ARCSTAT_INCR(arcstat_hdr_size, -space); 1180 break; 1181 case ARC_SPACE_L2HDRS: 1182 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1183 break; 1184 } 1185 1186 ASSERT(arc_meta_used >= space); 1187 if (arc_meta_max < arc_meta_used) 1188 arc_meta_max = arc_meta_used; 1189 atomic_add_64(&arc_meta_used, -space); 1190 ASSERT(arc_size >= space); 1191 atomic_add_64(&arc_size, -space); 1192 } 1193 1194 void * 1195 arc_data_buf_alloc(uint64_t size) 1196 { 1197 if (arc_evict_needed(ARC_BUFC_DATA)) 1198 cv_signal(&arc_reclaim_thr_cv); 1199 atomic_add_64(&arc_size, size); 1200 return (zio_data_buf_alloc(size)); 1201 } 1202 1203 void 1204 arc_data_buf_free(void *buf, uint64_t size) 1205 { 1206 zio_data_buf_free(buf, size); 1207 ASSERT(arc_size >= size); 1208 atomic_add_64(&arc_size, -size); 1209 } 1210 1211 arc_buf_t * 1212 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1213 { 1214 arc_buf_hdr_t *hdr; 1215 arc_buf_t *buf; 1216 1217 ASSERT3U(size, >, 0); 1218 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1219 ASSERT(BUF_EMPTY(hdr)); 1220 hdr->b_size = size; 1221 hdr->b_type = type; 1222 hdr->b_spa = spa_load_guid(spa); 1223 hdr->b_state = arc_anon; 1224 hdr->b_arc_access = 0; 1225 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1226 buf->b_hdr = hdr; 1227 buf->b_data = NULL; 1228 buf->b_efunc = NULL; 1229 buf->b_private = NULL; 1230 buf->b_next = NULL; 1231 hdr->b_buf = buf; 1232 arc_get_data_buf(buf); 1233 hdr->b_datacnt = 1; 1234 hdr->b_flags = 0; 1235 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1236 (void) refcount_add(&hdr->b_refcnt, tag); 1237 1238 return (buf); 1239 } 1240 1241 static char *arc_onloan_tag = "onloan"; 1242 1243 /* 1244 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1245 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1246 * buffers must be returned to the arc before they can be used by the DMU or 1247 * freed. 1248 */ 1249 arc_buf_t * 1250 arc_loan_buf(spa_t *spa, int size) 1251 { 1252 arc_buf_t *buf; 1253 1254 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1255 1256 atomic_add_64(&arc_loaned_bytes, size); 1257 return (buf); 1258 } 1259 1260 /* 1261 * Return a loaned arc buffer to the arc. 1262 */ 1263 void 1264 arc_return_buf(arc_buf_t *buf, void *tag) 1265 { 1266 arc_buf_hdr_t *hdr = buf->b_hdr; 1267 1268 ASSERT(buf->b_data != NULL); 1269 (void) refcount_add(&hdr->b_refcnt, tag); 1270 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1271 1272 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1273 } 1274 1275 /* Detach an arc_buf from a dbuf (tag) */ 1276 void 1277 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1278 { 1279 arc_buf_hdr_t *hdr; 1280 1281 ASSERT(buf->b_data != NULL); 1282 hdr = buf->b_hdr; 1283 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1284 (void) refcount_remove(&hdr->b_refcnt, tag); 1285 buf->b_efunc = NULL; 1286 buf->b_private = NULL; 1287 1288 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1289 } 1290 1291 static arc_buf_t * 1292 arc_buf_clone(arc_buf_t *from) 1293 { 1294 arc_buf_t *buf; 1295 arc_buf_hdr_t *hdr = from->b_hdr; 1296 uint64_t size = hdr->b_size; 1297 1298 ASSERT(hdr->b_state != arc_anon); 1299 1300 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1301 buf->b_hdr = hdr; 1302 buf->b_data = NULL; 1303 buf->b_efunc = NULL; 1304 buf->b_private = NULL; 1305 buf->b_next = hdr->b_buf; 1306 hdr->b_buf = buf; 1307 arc_get_data_buf(buf); 1308 bcopy(from->b_data, buf->b_data, size); 1309 hdr->b_datacnt += 1; 1310 return (buf); 1311 } 1312 1313 void 1314 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1315 { 1316 arc_buf_hdr_t *hdr; 1317 kmutex_t *hash_lock; 1318 1319 /* 1320 * Check to see if this buffer is evicted. Callers 1321 * must verify b_data != NULL to know if the add_ref 1322 * was successful. 1323 */ 1324 mutex_enter(&buf->b_evict_lock); 1325 if (buf->b_data == NULL) { 1326 mutex_exit(&buf->b_evict_lock); 1327 return; 1328 } 1329 hash_lock = HDR_LOCK(buf->b_hdr); 1330 mutex_enter(hash_lock); 1331 hdr = buf->b_hdr; 1332 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1333 mutex_exit(&buf->b_evict_lock); 1334 1335 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1336 add_reference(hdr, hash_lock, tag); 1337 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1338 arc_access(hdr, hash_lock); 1339 mutex_exit(hash_lock); 1340 ARCSTAT_BUMP(arcstat_hits); 1341 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1342 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1343 data, metadata, hits); 1344 } 1345 1346 /* 1347 * Free the arc data buffer. If it is an l2arc write in progress, 1348 * the buffer is placed on l2arc_free_on_write to be freed later. 1349 */ 1350 static void 1351 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1352 void *data, size_t size) 1353 { 1354 if (HDR_L2_WRITING(hdr)) { 1355 l2arc_data_free_t *df; 1356 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1357 df->l2df_data = data; 1358 df->l2df_size = size; 1359 df->l2df_func = free_func; 1360 mutex_enter(&l2arc_free_on_write_mtx); 1361 list_insert_head(l2arc_free_on_write, df); 1362 mutex_exit(&l2arc_free_on_write_mtx); 1363 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1364 } else { 1365 free_func(data, size); 1366 } 1367 } 1368 1369 static void 1370 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1371 { 1372 arc_buf_t **bufp; 1373 1374 /* free up data associated with the buf */ 1375 if (buf->b_data) { 1376 arc_state_t *state = buf->b_hdr->b_state; 1377 uint64_t size = buf->b_hdr->b_size; 1378 arc_buf_contents_t type = buf->b_hdr->b_type; 1379 1380 arc_cksum_verify(buf); 1381 1382 if (!recycle) { 1383 if (type == ARC_BUFC_METADATA) { 1384 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1385 buf->b_data, size); 1386 arc_space_return(size, ARC_SPACE_DATA); 1387 } else { 1388 ASSERT(type == ARC_BUFC_DATA); 1389 arc_buf_data_free(buf->b_hdr, 1390 zio_data_buf_free, buf->b_data, size); 1391 ARCSTAT_INCR(arcstat_data_size, -size); 1392 atomic_add_64(&arc_size, -size); 1393 } 1394 } 1395 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1396 uint64_t *cnt = &state->arcs_lsize[type]; 1397 1398 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1399 ASSERT(state != arc_anon); 1400 1401 ASSERT3U(*cnt, >=, size); 1402 atomic_add_64(cnt, -size); 1403 } 1404 ASSERT3U(state->arcs_size, >=, size); 1405 atomic_add_64(&state->arcs_size, -size); 1406 buf->b_data = NULL; 1407 ASSERT(buf->b_hdr->b_datacnt > 0); 1408 buf->b_hdr->b_datacnt -= 1; 1409 } 1410 1411 /* only remove the buf if requested */ 1412 if (!all) 1413 return; 1414 1415 /* remove the buf from the hdr list */ 1416 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1417 continue; 1418 *bufp = buf->b_next; 1419 buf->b_next = NULL; 1420 1421 ASSERT(buf->b_efunc == NULL); 1422 1423 /* clean up the buf */ 1424 buf->b_hdr = NULL; 1425 kmem_cache_free(buf_cache, buf); 1426 } 1427 1428 static void 1429 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1430 { 1431 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1432 ASSERT3P(hdr->b_state, ==, arc_anon); 1433 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1434 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1435 1436 if (l2hdr != NULL) { 1437 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1438 /* 1439 * To prevent arc_free() and l2arc_evict() from 1440 * attempting to free the same buffer at the same time, 1441 * a FREE_IN_PROGRESS flag is given to arc_free() to 1442 * give it priority. l2arc_evict() can't destroy this 1443 * header while we are waiting on l2arc_buflist_mtx. 1444 * 1445 * The hdr may be removed from l2ad_buflist before we 1446 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1447 */ 1448 if (!buflist_held) { 1449 mutex_enter(&l2arc_buflist_mtx); 1450 l2hdr = hdr->b_l2hdr; 1451 } 1452 1453 if (l2hdr != NULL) { 1454 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1455 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1456 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1457 if (hdr->b_state == arc_l2c_only) 1458 l2arc_hdr_stat_remove(); 1459 hdr->b_l2hdr = NULL; 1460 } 1461 1462 if (!buflist_held) 1463 mutex_exit(&l2arc_buflist_mtx); 1464 } 1465 1466 if (!BUF_EMPTY(hdr)) { 1467 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1468 buf_discard_identity(hdr); 1469 } 1470 while (hdr->b_buf) { 1471 arc_buf_t *buf = hdr->b_buf; 1472 1473 if (buf->b_efunc) { 1474 mutex_enter(&arc_eviction_mtx); 1475 mutex_enter(&buf->b_evict_lock); 1476 ASSERT(buf->b_hdr != NULL); 1477 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1478 hdr->b_buf = buf->b_next; 1479 buf->b_hdr = &arc_eviction_hdr; 1480 buf->b_next = arc_eviction_list; 1481 arc_eviction_list = buf; 1482 mutex_exit(&buf->b_evict_lock); 1483 mutex_exit(&arc_eviction_mtx); 1484 } else { 1485 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1486 } 1487 } 1488 if (hdr->b_freeze_cksum != NULL) { 1489 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1490 hdr->b_freeze_cksum = NULL; 1491 } 1492 if (hdr->b_thawed) { 1493 kmem_free(hdr->b_thawed, 1); 1494 hdr->b_thawed = NULL; 1495 } 1496 1497 ASSERT(!list_link_active(&hdr->b_arc_node)); 1498 ASSERT3P(hdr->b_hash_next, ==, NULL); 1499 ASSERT3P(hdr->b_acb, ==, NULL); 1500 kmem_cache_free(hdr_cache, hdr); 1501 } 1502 1503 void 1504 arc_buf_free(arc_buf_t *buf, void *tag) 1505 { 1506 arc_buf_hdr_t *hdr = buf->b_hdr; 1507 int hashed = hdr->b_state != arc_anon; 1508 1509 ASSERT(buf->b_efunc == NULL); 1510 ASSERT(buf->b_data != NULL); 1511 1512 if (hashed) { 1513 kmutex_t *hash_lock = HDR_LOCK(hdr); 1514 1515 mutex_enter(hash_lock); 1516 hdr = buf->b_hdr; 1517 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1518 1519 (void) remove_reference(hdr, hash_lock, tag); 1520 if (hdr->b_datacnt > 1) { 1521 arc_buf_destroy(buf, FALSE, TRUE); 1522 } else { 1523 ASSERT(buf == hdr->b_buf); 1524 ASSERT(buf->b_efunc == NULL); 1525 hdr->b_flags |= ARC_BUF_AVAILABLE; 1526 } 1527 mutex_exit(hash_lock); 1528 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1529 int destroy_hdr; 1530 /* 1531 * We are in the middle of an async write. Don't destroy 1532 * this buffer unless the write completes before we finish 1533 * decrementing the reference count. 1534 */ 1535 mutex_enter(&arc_eviction_mtx); 1536 (void) remove_reference(hdr, NULL, tag); 1537 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1538 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1539 mutex_exit(&arc_eviction_mtx); 1540 if (destroy_hdr) 1541 arc_hdr_destroy(hdr); 1542 } else { 1543 if (remove_reference(hdr, NULL, tag) > 0) 1544 arc_buf_destroy(buf, FALSE, TRUE); 1545 else 1546 arc_hdr_destroy(hdr); 1547 } 1548 } 1549 1550 int 1551 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1552 { 1553 arc_buf_hdr_t *hdr = buf->b_hdr; 1554 kmutex_t *hash_lock = HDR_LOCK(hdr); 1555 int no_callback = (buf->b_efunc == NULL); 1556 1557 if (hdr->b_state == arc_anon) { 1558 ASSERT(hdr->b_datacnt == 1); 1559 arc_buf_free(buf, tag); 1560 return (no_callback); 1561 } 1562 1563 mutex_enter(hash_lock); 1564 hdr = buf->b_hdr; 1565 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1566 ASSERT(hdr->b_state != arc_anon); 1567 ASSERT(buf->b_data != NULL); 1568 1569 (void) remove_reference(hdr, hash_lock, tag); 1570 if (hdr->b_datacnt > 1) { 1571 if (no_callback) 1572 arc_buf_destroy(buf, FALSE, TRUE); 1573 } else if (no_callback) { 1574 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1575 ASSERT(buf->b_efunc == NULL); 1576 hdr->b_flags |= ARC_BUF_AVAILABLE; 1577 } 1578 ASSERT(no_callback || hdr->b_datacnt > 1 || 1579 refcount_is_zero(&hdr->b_refcnt)); 1580 mutex_exit(hash_lock); 1581 return (no_callback); 1582 } 1583 1584 int 1585 arc_buf_size(arc_buf_t *buf) 1586 { 1587 return (buf->b_hdr->b_size); 1588 } 1589 1590 /* 1591 * Evict buffers from list until we've removed the specified number of 1592 * bytes. Move the removed buffers to the appropriate evict state. 1593 * If the recycle flag is set, then attempt to "recycle" a buffer: 1594 * - look for a buffer to evict that is `bytes' long. 1595 * - return the data block from this buffer rather than freeing it. 1596 * This flag is used by callers that are trying to make space for a 1597 * new buffer in a full arc cache. 1598 * 1599 * This function makes a "best effort". It skips over any buffers 1600 * it can't get a hash_lock on, and so may not catch all candidates. 1601 * It may also return without evicting as much space as requested. 1602 */ 1603 static void * 1604 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1605 arc_buf_contents_t type) 1606 { 1607 arc_state_t *evicted_state; 1608 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1609 arc_buf_hdr_t *ab, *ab_prev = NULL; 1610 list_t *list = &state->arcs_list[type]; 1611 kmutex_t *hash_lock; 1612 boolean_t have_lock; 1613 void *stolen = NULL; 1614 1615 ASSERT(state == arc_mru || state == arc_mfu); 1616 1617 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1618 1619 mutex_enter(&state->arcs_mtx); 1620 mutex_enter(&evicted_state->arcs_mtx); 1621 1622 for (ab = list_tail(list); ab; ab = ab_prev) { 1623 ab_prev = list_prev(list, ab); 1624 /* prefetch buffers have a minimum lifespan */ 1625 if (HDR_IO_IN_PROGRESS(ab) || 1626 (spa && ab->b_spa != spa) || 1627 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1628 ddi_get_lbolt() - ab->b_arc_access < 1629 arc_min_prefetch_lifespan)) { 1630 skipped++; 1631 continue; 1632 } 1633 /* "lookahead" for better eviction candidate */ 1634 if (recycle && ab->b_size != bytes && 1635 ab_prev && ab_prev->b_size == bytes) 1636 continue; 1637 hash_lock = HDR_LOCK(ab); 1638 have_lock = MUTEX_HELD(hash_lock); 1639 if (have_lock || mutex_tryenter(hash_lock)) { 1640 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1641 ASSERT(ab->b_datacnt > 0); 1642 while (ab->b_buf) { 1643 arc_buf_t *buf = ab->b_buf; 1644 if (!mutex_tryenter(&buf->b_evict_lock)) { 1645 missed += 1; 1646 break; 1647 } 1648 if (buf->b_data) { 1649 bytes_evicted += ab->b_size; 1650 if (recycle && ab->b_type == type && 1651 ab->b_size == bytes && 1652 !HDR_L2_WRITING(ab)) { 1653 stolen = buf->b_data; 1654 recycle = FALSE; 1655 } 1656 } 1657 if (buf->b_efunc) { 1658 mutex_enter(&arc_eviction_mtx); 1659 arc_buf_destroy(buf, 1660 buf->b_data == stolen, FALSE); 1661 ab->b_buf = buf->b_next; 1662 buf->b_hdr = &arc_eviction_hdr; 1663 buf->b_next = arc_eviction_list; 1664 arc_eviction_list = buf; 1665 mutex_exit(&arc_eviction_mtx); 1666 mutex_exit(&buf->b_evict_lock); 1667 } else { 1668 mutex_exit(&buf->b_evict_lock); 1669 arc_buf_destroy(buf, 1670 buf->b_data == stolen, TRUE); 1671 } 1672 } 1673 1674 if (ab->b_l2hdr) { 1675 ARCSTAT_INCR(arcstat_evict_l2_cached, 1676 ab->b_size); 1677 } else { 1678 if (l2arc_write_eligible(ab->b_spa, ab)) { 1679 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1680 ab->b_size); 1681 } else { 1682 ARCSTAT_INCR( 1683 arcstat_evict_l2_ineligible, 1684 ab->b_size); 1685 } 1686 } 1687 1688 if (ab->b_datacnt == 0) { 1689 arc_change_state(evicted_state, ab, hash_lock); 1690 ASSERT(HDR_IN_HASH_TABLE(ab)); 1691 ab->b_flags |= ARC_IN_HASH_TABLE; 1692 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1693 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1694 } 1695 if (!have_lock) 1696 mutex_exit(hash_lock); 1697 if (bytes >= 0 && bytes_evicted >= bytes) 1698 break; 1699 } else { 1700 missed += 1; 1701 } 1702 } 1703 1704 mutex_exit(&evicted_state->arcs_mtx); 1705 mutex_exit(&state->arcs_mtx); 1706 1707 if (bytes_evicted < bytes) 1708 dprintf("only evicted %lld bytes from %x", 1709 (longlong_t)bytes_evicted, state); 1710 1711 if (skipped) 1712 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1713 1714 if (missed) 1715 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1716 1717 /* 1718 * We have just evicted some date into the ghost state, make 1719 * sure we also adjust the ghost state size if necessary. 1720 */ 1721 if (arc_no_grow && 1722 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1723 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1724 arc_mru_ghost->arcs_size - arc_c; 1725 1726 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1727 int64_t todelete = 1728 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1729 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1730 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1731 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1732 arc_mru_ghost->arcs_size + 1733 arc_mfu_ghost->arcs_size - arc_c); 1734 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1735 } 1736 } 1737 1738 return (stolen); 1739 } 1740 1741 /* 1742 * Remove buffers from list until we've removed the specified number of 1743 * bytes. Destroy the buffers that are removed. 1744 */ 1745 static void 1746 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1747 { 1748 arc_buf_hdr_t *ab, *ab_prev; 1749 arc_buf_hdr_t marker = { 0 }; 1750 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1751 kmutex_t *hash_lock; 1752 uint64_t bytes_deleted = 0; 1753 uint64_t bufs_skipped = 0; 1754 1755 ASSERT(GHOST_STATE(state)); 1756 top: 1757 mutex_enter(&state->arcs_mtx); 1758 for (ab = list_tail(list); ab; ab = ab_prev) { 1759 ab_prev = list_prev(list, ab); 1760 if (spa && ab->b_spa != spa) 1761 continue; 1762 1763 /* ignore markers */ 1764 if (ab->b_spa == 0) 1765 continue; 1766 1767 hash_lock = HDR_LOCK(ab); 1768 /* caller may be trying to modify this buffer, skip it */ 1769 if (MUTEX_HELD(hash_lock)) 1770 continue; 1771 if (mutex_tryenter(hash_lock)) { 1772 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1773 ASSERT(ab->b_buf == NULL); 1774 ARCSTAT_BUMP(arcstat_deleted); 1775 bytes_deleted += ab->b_size; 1776 1777 if (ab->b_l2hdr != NULL) { 1778 /* 1779 * This buffer is cached on the 2nd Level ARC; 1780 * don't destroy the header. 1781 */ 1782 arc_change_state(arc_l2c_only, ab, hash_lock); 1783 mutex_exit(hash_lock); 1784 } else { 1785 arc_change_state(arc_anon, ab, hash_lock); 1786 mutex_exit(hash_lock); 1787 arc_hdr_destroy(ab); 1788 } 1789 1790 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1791 if (bytes >= 0 && bytes_deleted >= bytes) 1792 break; 1793 } else if (bytes < 0) { 1794 /* 1795 * Insert a list marker and then wait for the 1796 * hash lock to become available. Once its 1797 * available, restart from where we left off. 1798 */ 1799 list_insert_after(list, ab, &marker); 1800 mutex_exit(&state->arcs_mtx); 1801 mutex_enter(hash_lock); 1802 mutex_exit(hash_lock); 1803 mutex_enter(&state->arcs_mtx); 1804 ab_prev = list_prev(list, &marker); 1805 list_remove(list, &marker); 1806 } else 1807 bufs_skipped += 1; 1808 } 1809 mutex_exit(&state->arcs_mtx); 1810 1811 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1812 (bytes < 0 || bytes_deleted < bytes)) { 1813 list = &state->arcs_list[ARC_BUFC_METADATA]; 1814 goto top; 1815 } 1816 1817 if (bufs_skipped) { 1818 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1819 ASSERT(bytes >= 0); 1820 } 1821 1822 if (bytes_deleted < bytes) 1823 dprintf("only deleted %lld bytes from %p", 1824 (longlong_t)bytes_deleted, state); 1825 } 1826 1827 static void 1828 arc_adjust(void) 1829 { 1830 int64_t adjustment, delta; 1831 1832 /* 1833 * Adjust MRU size 1834 */ 1835 1836 adjustment = MIN((int64_t)(arc_size - arc_c), 1837 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 1838 arc_p)); 1839 1840 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1841 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1842 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1843 adjustment -= delta; 1844 } 1845 1846 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1847 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1848 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1849 ARC_BUFC_METADATA); 1850 } 1851 1852 /* 1853 * Adjust MFU size 1854 */ 1855 1856 adjustment = arc_size - arc_c; 1857 1858 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1859 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1860 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 1861 adjustment -= delta; 1862 } 1863 1864 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1865 int64_t delta = MIN(adjustment, 1866 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1867 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 1868 ARC_BUFC_METADATA); 1869 } 1870 1871 /* 1872 * Adjust ghost lists 1873 */ 1874 1875 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 1876 1877 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 1878 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 1879 arc_evict_ghost(arc_mru_ghost, NULL, delta); 1880 } 1881 1882 adjustment = 1883 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 1884 1885 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 1886 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 1887 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 1888 } 1889 } 1890 1891 static void 1892 arc_do_user_evicts(void) 1893 { 1894 mutex_enter(&arc_eviction_mtx); 1895 while (arc_eviction_list != NULL) { 1896 arc_buf_t *buf = arc_eviction_list; 1897 arc_eviction_list = buf->b_next; 1898 mutex_enter(&buf->b_evict_lock); 1899 buf->b_hdr = NULL; 1900 mutex_exit(&buf->b_evict_lock); 1901 mutex_exit(&arc_eviction_mtx); 1902 1903 if (buf->b_efunc != NULL) 1904 VERIFY(buf->b_efunc(buf) == 0); 1905 1906 buf->b_efunc = NULL; 1907 buf->b_private = NULL; 1908 kmem_cache_free(buf_cache, buf); 1909 mutex_enter(&arc_eviction_mtx); 1910 } 1911 mutex_exit(&arc_eviction_mtx); 1912 } 1913 1914 /* 1915 * Flush all *evictable* data from the cache for the given spa. 1916 * NOTE: this will not touch "active" (i.e. referenced) data. 1917 */ 1918 void 1919 arc_flush(spa_t *spa) 1920 { 1921 uint64_t guid = 0; 1922 1923 if (spa) 1924 guid = spa_load_guid(spa); 1925 1926 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1927 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 1928 if (spa) 1929 break; 1930 } 1931 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1932 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 1933 if (spa) 1934 break; 1935 } 1936 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1937 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 1938 if (spa) 1939 break; 1940 } 1941 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1942 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 1943 if (spa) 1944 break; 1945 } 1946 1947 arc_evict_ghost(arc_mru_ghost, guid, -1); 1948 arc_evict_ghost(arc_mfu_ghost, guid, -1); 1949 1950 mutex_enter(&arc_reclaim_thr_lock); 1951 arc_do_user_evicts(); 1952 mutex_exit(&arc_reclaim_thr_lock); 1953 ASSERT(spa || arc_eviction_list == NULL); 1954 } 1955 1956 void 1957 arc_shrink(void) 1958 { 1959 if (arc_c > arc_c_min) { 1960 uint64_t to_free; 1961 1962 #ifdef _KERNEL 1963 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1964 #else 1965 to_free = arc_c >> arc_shrink_shift; 1966 #endif 1967 if (arc_c > arc_c_min + to_free) 1968 atomic_add_64(&arc_c, -to_free); 1969 else 1970 arc_c = arc_c_min; 1971 1972 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1973 if (arc_c > arc_size) 1974 arc_c = MAX(arc_size, arc_c_min); 1975 if (arc_p > arc_c) 1976 arc_p = (arc_c >> 1); 1977 ASSERT(arc_c >= arc_c_min); 1978 ASSERT((int64_t)arc_p >= 0); 1979 } 1980 1981 if (arc_size > arc_c) 1982 arc_adjust(); 1983 } 1984 1985 /* 1986 * Determine if the system is under memory pressure and is asking 1987 * to reclaim memory. A return value of 1 indicates that the system 1988 * is under memory pressure and that the arc should adjust accordingly. 1989 */ 1990 static int 1991 arc_reclaim_needed(void) 1992 { 1993 uint64_t extra; 1994 1995 #ifdef _KERNEL 1996 1997 if (needfree) 1998 return (1); 1999 2000 /* 2001 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2002 */ 2003 extra = desfree; 2004 2005 /* 2006 * check that we're out of range of the pageout scanner. It starts to 2007 * schedule paging if freemem is less than lotsfree and needfree. 2008 * lotsfree is the high-water mark for pageout, and needfree is the 2009 * number of needed free pages. We add extra pages here to make sure 2010 * the scanner doesn't start up while we're freeing memory. 2011 */ 2012 if (freemem < lotsfree + needfree + extra) 2013 return (1); 2014 2015 /* 2016 * check to make sure that swapfs has enough space so that anon 2017 * reservations can still succeed. anon_resvmem() checks that the 2018 * availrmem is greater than swapfs_minfree, and the number of reserved 2019 * swap pages. We also add a bit of extra here just to prevent 2020 * circumstances from getting really dire. 2021 */ 2022 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2023 return (1); 2024 2025 #if defined(__i386) 2026 /* 2027 * If we're on an i386 platform, it's possible that we'll exhaust the 2028 * kernel heap space before we ever run out of available physical 2029 * memory. Most checks of the size of the heap_area compare against 2030 * tune.t_minarmem, which is the minimum available real memory that we 2031 * can have in the system. However, this is generally fixed at 25 pages 2032 * which is so low that it's useless. In this comparison, we seek to 2033 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2034 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2035 * free) 2036 */ 2037 if (vmem_size(heap_arena, VMEM_FREE) < 2038 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2039 return (1); 2040 #endif 2041 2042 /* 2043 * If zio data pages are being allocated out of a separate heap segment, 2044 * then enforce that the size of available vmem for this arena remains 2045 * above about 1/16th free. 2046 * 2047 * Note: The 1/16th arena free requirement was put in place 2048 * to aggressively evict memory from the arc in order to avoid 2049 * memory fragmentation issues. 2050 */ 2051 if (zio_arena != NULL && 2052 vmem_size(zio_arena, VMEM_FREE) < 2053 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2054 return (1); 2055 #else 2056 if (spa_get_random(100) == 0) 2057 return (1); 2058 #endif 2059 return (0); 2060 } 2061 2062 static void 2063 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2064 { 2065 size_t i; 2066 kmem_cache_t *prev_cache = NULL; 2067 kmem_cache_t *prev_data_cache = NULL; 2068 extern kmem_cache_t *zio_buf_cache[]; 2069 extern kmem_cache_t *zio_data_buf_cache[]; 2070 2071 #ifdef _KERNEL 2072 if (arc_meta_used >= arc_meta_limit) { 2073 /* 2074 * We are exceeding our meta-data cache limit. 2075 * Purge some DNLC entries to release holds on meta-data. 2076 */ 2077 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2078 } 2079 #if defined(__i386) 2080 /* 2081 * Reclaim unused memory from all kmem caches. 2082 */ 2083 kmem_reap(); 2084 #endif 2085 #endif 2086 2087 /* 2088 * An aggressive reclamation will shrink the cache size as well as 2089 * reap free buffers from the arc kmem caches. 2090 */ 2091 if (strat == ARC_RECLAIM_AGGR) 2092 arc_shrink(); 2093 2094 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2095 if (zio_buf_cache[i] != prev_cache) { 2096 prev_cache = zio_buf_cache[i]; 2097 kmem_cache_reap_now(zio_buf_cache[i]); 2098 } 2099 if (zio_data_buf_cache[i] != prev_data_cache) { 2100 prev_data_cache = zio_data_buf_cache[i]; 2101 kmem_cache_reap_now(zio_data_buf_cache[i]); 2102 } 2103 } 2104 kmem_cache_reap_now(buf_cache); 2105 kmem_cache_reap_now(hdr_cache); 2106 2107 /* 2108 * Ask the vmem areana to reclaim unused memory from its 2109 * quantum caches. 2110 */ 2111 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2112 vmem_qcache_reap(zio_arena); 2113 } 2114 2115 static void 2116 arc_reclaim_thread(void) 2117 { 2118 clock_t growtime = 0; 2119 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2120 callb_cpr_t cpr; 2121 2122 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2123 2124 mutex_enter(&arc_reclaim_thr_lock); 2125 while (arc_thread_exit == 0) { 2126 if (arc_reclaim_needed()) { 2127 2128 if (arc_no_grow) { 2129 if (last_reclaim == ARC_RECLAIM_CONS) { 2130 last_reclaim = ARC_RECLAIM_AGGR; 2131 } else { 2132 last_reclaim = ARC_RECLAIM_CONS; 2133 } 2134 } else { 2135 arc_no_grow = TRUE; 2136 last_reclaim = ARC_RECLAIM_AGGR; 2137 membar_producer(); 2138 } 2139 2140 /* reset the growth delay for every reclaim */ 2141 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2142 2143 arc_kmem_reap_now(last_reclaim); 2144 arc_warm = B_TRUE; 2145 2146 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2147 arc_no_grow = FALSE; 2148 } 2149 2150 arc_adjust(); 2151 2152 if (arc_eviction_list != NULL) 2153 arc_do_user_evicts(); 2154 2155 /* block until needed, or one second, whichever is shorter */ 2156 CALLB_CPR_SAFE_BEGIN(&cpr); 2157 (void) cv_timedwait(&arc_reclaim_thr_cv, 2158 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2159 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2160 } 2161 2162 arc_thread_exit = 0; 2163 cv_broadcast(&arc_reclaim_thr_cv); 2164 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2165 thread_exit(); 2166 } 2167 2168 /* 2169 * Adapt arc info given the number of bytes we are trying to add and 2170 * the state that we are comming from. This function is only called 2171 * when we are adding new content to the cache. 2172 */ 2173 static void 2174 arc_adapt(int bytes, arc_state_t *state) 2175 { 2176 int mult; 2177 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2178 2179 if (state == arc_l2c_only) 2180 return; 2181 2182 ASSERT(bytes > 0); 2183 /* 2184 * Adapt the target size of the MRU list: 2185 * - if we just hit in the MRU ghost list, then increase 2186 * the target size of the MRU list. 2187 * - if we just hit in the MFU ghost list, then increase 2188 * the target size of the MFU list by decreasing the 2189 * target size of the MRU list. 2190 */ 2191 if (state == arc_mru_ghost) { 2192 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2193 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2194 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2195 2196 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2197 } else if (state == arc_mfu_ghost) { 2198 uint64_t delta; 2199 2200 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2201 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2202 mult = MIN(mult, 10); 2203 2204 delta = MIN(bytes * mult, arc_p); 2205 arc_p = MAX(arc_p_min, arc_p - delta); 2206 } 2207 ASSERT((int64_t)arc_p >= 0); 2208 2209 if (arc_reclaim_needed()) { 2210 cv_signal(&arc_reclaim_thr_cv); 2211 return; 2212 } 2213 2214 if (arc_no_grow) 2215 return; 2216 2217 if (arc_c >= arc_c_max) 2218 return; 2219 2220 /* 2221 * If we're within (2 * maxblocksize) bytes of the target 2222 * cache size, increment the target cache size 2223 */ 2224 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2225 atomic_add_64(&arc_c, (int64_t)bytes); 2226 if (arc_c > arc_c_max) 2227 arc_c = arc_c_max; 2228 else if (state == arc_anon) 2229 atomic_add_64(&arc_p, (int64_t)bytes); 2230 if (arc_p > arc_c) 2231 arc_p = arc_c; 2232 } 2233 ASSERT((int64_t)arc_p >= 0); 2234 } 2235 2236 /* 2237 * Check if the cache has reached its limits and eviction is required 2238 * prior to insert. 2239 */ 2240 static int 2241 arc_evict_needed(arc_buf_contents_t type) 2242 { 2243 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2244 return (1); 2245 2246 if (arc_reclaim_needed()) 2247 return (1); 2248 2249 return (arc_size > arc_c); 2250 } 2251 2252 /* 2253 * The buffer, supplied as the first argument, needs a data block. 2254 * So, if we are at cache max, determine which cache should be victimized. 2255 * We have the following cases: 2256 * 2257 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2258 * In this situation if we're out of space, but the resident size of the MFU is 2259 * under the limit, victimize the MFU cache to satisfy this insertion request. 2260 * 2261 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2262 * Here, we've used up all of the available space for the MRU, so we need to 2263 * evict from our own cache instead. Evict from the set of resident MRU 2264 * entries. 2265 * 2266 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2267 * c minus p represents the MFU space in the cache, since p is the size of the 2268 * cache that is dedicated to the MRU. In this situation there's still space on 2269 * the MFU side, so the MRU side needs to be victimized. 2270 * 2271 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2272 * MFU's resident set is consuming more space than it has been allotted. In 2273 * this situation, we must victimize our own cache, the MFU, for this insertion. 2274 */ 2275 static void 2276 arc_get_data_buf(arc_buf_t *buf) 2277 { 2278 arc_state_t *state = buf->b_hdr->b_state; 2279 uint64_t size = buf->b_hdr->b_size; 2280 arc_buf_contents_t type = buf->b_hdr->b_type; 2281 2282 arc_adapt(size, state); 2283 2284 /* 2285 * We have not yet reached cache maximum size, 2286 * just allocate a new buffer. 2287 */ 2288 if (!arc_evict_needed(type)) { 2289 if (type == ARC_BUFC_METADATA) { 2290 buf->b_data = zio_buf_alloc(size); 2291 arc_space_consume(size, ARC_SPACE_DATA); 2292 } else { 2293 ASSERT(type == ARC_BUFC_DATA); 2294 buf->b_data = zio_data_buf_alloc(size); 2295 ARCSTAT_INCR(arcstat_data_size, size); 2296 atomic_add_64(&arc_size, size); 2297 } 2298 goto out; 2299 } 2300 2301 /* 2302 * If we are prefetching from the mfu ghost list, this buffer 2303 * will end up on the mru list; so steal space from there. 2304 */ 2305 if (state == arc_mfu_ghost) 2306 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2307 else if (state == arc_mru_ghost) 2308 state = arc_mru; 2309 2310 if (state == arc_mru || state == arc_anon) { 2311 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2312 state = (arc_mfu->arcs_lsize[type] >= size && 2313 arc_p > mru_used) ? arc_mfu : arc_mru; 2314 } else { 2315 /* MFU cases */ 2316 uint64_t mfu_space = arc_c - arc_p; 2317 state = (arc_mru->arcs_lsize[type] >= size && 2318 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2319 } 2320 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2321 if (type == ARC_BUFC_METADATA) { 2322 buf->b_data = zio_buf_alloc(size); 2323 arc_space_consume(size, ARC_SPACE_DATA); 2324 } else { 2325 ASSERT(type == ARC_BUFC_DATA); 2326 buf->b_data = zio_data_buf_alloc(size); 2327 ARCSTAT_INCR(arcstat_data_size, size); 2328 atomic_add_64(&arc_size, size); 2329 } 2330 ARCSTAT_BUMP(arcstat_recycle_miss); 2331 } 2332 ASSERT(buf->b_data != NULL); 2333 out: 2334 /* 2335 * Update the state size. Note that ghost states have a 2336 * "ghost size" and so don't need to be updated. 2337 */ 2338 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2339 arc_buf_hdr_t *hdr = buf->b_hdr; 2340 2341 atomic_add_64(&hdr->b_state->arcs_size, size); 2342 if (list_link_active(&hdr->b_arc_node)) { 2343 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2344 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2345 } 2346 /* 2347 * If we are growing the cache, and we are adding anonymous 2348 * data, and we have outgrown arc_p, update arc_p 2349 */ 2350 if (arc_size < arc_c && hdr->b_state == arc_anon && 2351 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2352 arc_p = MIN(arc_c, arc_p + size); 2353 } 2354 } 2355 2356 /* 2357 * This routine is called whenever a buffer is accessed. 2358 * NOTE: the hash lock is dropped in this function. 2359 */ 2360 static void 2361 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2362 { 2363 clock_t now; 2364 2365 ASSERT(MUTEX_HELD(hash_lock)); 2366 2367 if (buf->b_state == arc_anon) { 2368 /* 2369 * This buffer is not in the cache, and does not 2370 * appear in our "ghost" list. Add the new buffer 2371 * to the MRU state. 2372 */ 2373 2374 ASSERT(buf->b_arc_access == 0); 2375 buf->b_arc_access = ddi_get_lbolt(); 2376 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2377 arc_change_state(arc_mru, buf, hash_lock); 2378 2379 } else if (buf->b_state == arc_mru) { 2380 now = ddi_get_lbolt(); 2381 2382 /* 2383 * If this buffer is here because of a prefetch, then either: 2384 * - clear the flag if this is a "referencing" read 2385 * (any subsequent access will bump this into the MFU state). 2386 * or 2387 * - move the buffer to the head of the list if this is 2388 * another prefetch (to make it less likely to be evicted). 2389 */ 2390 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2391 if (refcount_count(&buf->b_refcnt) == 0) { 2392 ASSERT(list_link_active(&buf->b_arc_node)); 2393 } else { 2394 buf->b_flags &= ~ARC_PREFETCH; 2395 ARCSTAT_BUMP(arcstat_mru_hits); 2396 } 2397 buf->b_arc_access = now; 2398 return; 2399 } 2400 2401 /* 2402 * This buffer has been "accessed" only once so far, 2403 * but it is still in the cache. Move it to the MFU 2404 * state. 2405 */ 2406 if (now > buf->b_arc_access + ARC_MINTIME) { 2407 /* 2408 * More than 125ms have passed since we 2409 * instantiated this buffer. Move it to the 2410 * most frequently used state. 2411 */ 2412 buf->b_arc_access = now; 2413 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2414 arc_change_state(arc_mfu, buf, hash_lock); 2415 } 2416 ARCSTAT_BUMP(arcstat_mru_hits); 2417 } else if (buf->b_state == arc_mru_ghost) { 2418 arc_state_t *new_state; 2419 /* 2420 * This buffer has been "accessed" recently, but 2421 * was evicted from the cache. Move it to the 2422 * MFU state. 2423 */ 2424 2425 if (buf->b_flags & ARC_PREFETCH) { 2426 new_state = arc_mru; 2427 if (refcount_count(&buf->b_refcnt) > 0) 2428 buf->b_flags &= ~ARC_PREFETCH; 2429 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2430 } else { 2431 new_state = arc_mfu; 2432 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2433 } 2434 2435 buf->b_arc_access = ddi_get_lbolt(); 2436 arc_change_state(new_state, buf, hash_lock); 2437 2438 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2439 } else if (buf->b_state == arc_mfu) { 2440 /* 2441 * This buffer has been accessed more than once and is 2442 * still in the cache. Keep it in the MFU state. 2443 * 2444 * NOTE: an add_reference() that occurred when we did 2445 * the arc_read() will have kicked this off the list. 2446 * If it was a prefetch, we will explicitly move it to 2447 * the head of the list now. 2448 */ 2449 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2450 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2451 ASSERT(list_link_active(&buf->b_arc_node)); 2452 } 2453 ARCSTAT_BUMP(arcstat_mfu_hits); 2454 buf->b_arc_access = ddi_get_lbolt(); 2455 } else if (buf->b_state == arc_mfu_ghost) { 2456 arc_state_t *new_state = arc_mfu; 2457 /* 2458 * This buffer has been accessed more than once but has 2459 * been evicted from the cache. Move it back to the 2460 * MFU state. 2461 */ 2462 2463 if (buf->b_flags & ARC_PREFETCH) { 2464 /* 2465 * This is a prefetch access... 2466 * move this block back to the MRU state. 2467 */ 2468 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2469 new_state = arc_mru; 2470 } 2471 2472 buf->b_arc_access = ddi_get_lbolt(); 2473 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2474 arc_change_state(new_state, buf, hash_lock); 2475 2476 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2477 } else if (buf->b_state == arc_l2c_only) { 2478 /* 2479 * This buffer is on the 2nd Level ARC. 2480 */ 2481 2482 buf->b_arc_access = ddi_get_lbolt(); 2483 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2484 arc_change_state(arc_mfu, buf, hash_lock); 2485 } else { 2486 ASSERT(!"invalid arc state"); 2487 } 2488 } 2489 2490 /* a generic arc_done_func_t which you can use */ 2491 /* ARGSUSED */ 2492 void 2493 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2494 { 2495 if (zio == NULL || zio->io_error == 0) 2496 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2497 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2498 } 2499 2500 /* a generic arc_done_func_t */ 2501 void 2502 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2503 { 2504 arc_buf_t **bufp = arg; 2505 if (zio && zio->io_error) { 2506 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2507 *bufp = NULL; 2508 } else { 2509 *bufp = buf; 2510 ASSERT(buf->b_data); 2511 } 2512 } 2513 2514 static void 2515 arc_read_done(zio_t *zio) 2516 { 2517 arc_buf_hdr_t *hdr, *found; 2518 arc_buf_t *buf; 2519 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2520 kmutex_t *hash_lock; 2521 arc_callback_t *callback_list, *acb; 2522 int freeable = FALSE; 2523 2524 buf = zio->io_private; 2525 hdr = buf->b_hdr; 2526 2527 /* 2528 * The hdr was inserted into hash-table and removed from lists 2529 * prior to starting I/O. We should find this header, since 2530 * it's in the hash table, and it should be legit since it's 2531 * not possible to evict it during the I/O. The only possible 2532 * reason for it not to be found is if we were freed during the 2533 * read. 2534 */ 2535 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2536 &hash_lock); 2537 2538 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2539 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2540 (found == hdr && HDR_L2_READING(hdr))); 2541 2542 hdr->b_flags &= ~ARC_L2_EVICTED; 2543 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2544 hdr->b_flags &= ~ARC_L2CACHE; 2545 2546 /* byteswap if necessary */ 2547 callback_list = hdr->b_acb; 2548 ASSERT(callback_list != NULL); 2549 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2550 dmu_object_byteswap_t bswap = 2551 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2552 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2553 byteswap_uint64_array : 2554 dmu_ot_byteswap[bswap].ob_func; 2555 func(buf->b_data, hdr->b_size); 2556 } 2557 2558 arc_cksum_compute(buf, B_FALSE); 2559 2560 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2561 /* 2562 * Only call arc_access on anonymous buffers. This is because 2563 * if we've issued an I/O for an evicted buffer, we've already 2564 * called arc_access (to prevent any simultaneous readers from 2565 * getting confused). 2566 */ 2567 arc_access(hdr, hash_lock); 2568 } 2569 2570 /* create copies of the data buffer for the callers */ 2571 abuf = buf; 2572 for (acb = callback_list; acb; acb = acb->acb_next) { 2573 if (acb->acb_done) { 2574 if (abuf == NULL) 2575 abuf = arc_buf_clone(buf); 2576 acb->acb_buf = abuf; 2577 abuf = NULL; 2578 } 2579 } 2580 hdr->b_acb = NULL; 2581 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2582 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2583 if (abuf == buf) { 2584 ASSERT(buf->b_efunc == NULL); 2585 ASSERT(hdr->b_datacnt == 1); 2586 hdr->b_flags |= ARC_BUF_AVAILABLE; 2587 } 2588 2589 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2590 2591 if (zio->io_error != 0) { 2592 hdr->b_flags |= ARC_IO_ERROR; 2593 if (hdr->b_state != arc_anon) 2594 arc_change_state(arc_anon, hdr, hash_lock); 2595 if (HDR_IN_HASH_TABLE(hdr)) 2596 buf_hash_remove(hdr); 2597 freeable = refcount_is_zero(&hdr->b_refcnt); 2598 } 2599 2600 /* 2601 * Broadcast before we drop the hash_lock to avoid the possibility 2602 * that the hdr (and hence the cv) might be freed before we get to 2603 * the cv_broadcast(). 2604 */ 2605 cv_broadcast(&hdr->b_cv); 2606 2607 if (hash_lock) { 2608 mutex_exit(hash_lock); 2609 } else { 2610 /* 2611 * This block was freed while we waited for the read to 2612 * complete. It has been removed from the hash table and 2613 * moved to the anonymous state (so that it won't show up 2614 * in the cache). 2615 */ 2616 ASSERT3P(hdr->b_state, ==, arc_anon); 2617 freeable = refcount_is_zero(&hdr->b_refcnt); 2618 } 2619 2620 /* execute each callback and free its structure */ 2621 while ((acb = callback_list) != NULL) { 2622 if (acb->acb_done) 2623 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2624 2625 if (acb->acb_zio_dummy != NULL) { 2626 acb->acb_zio_dummy->io_error = zio->io_error; 2627 zio_nowait(acb->acb_zio_dummy); 2628 } 2629 2630 callback_list = acb->acb_next; 2631 kmem_free(acb, sizeof (arc_callback_t)); 2632 } 2633 2634 if (freeable) 2635 arc_hdr_destroy(hdr); 2636 } 2637 2638 /* 2639 * "Read" the block block at the specified DVA (in bp) via the 2640 * cache. If the block is found in the cache, invoke the provided 2641 * callback immediately and return. Note that the `zio' parameter 2642 * in the callback will be NULL in this case, since no IO was 2643 * required. If the block is not in the cache pass the read request 2644 * on to the spa with a substitute callback function, so that the 2645 * requested block will be added to the cache. 2646 * 2647 * If a read request arrives for a block that has a read in-progress, 2648 * either wait for the in-progress read to complete (and return the 2649 * results); or, if this is a read with a "done" func, add a record 2650 * to the read to invoke the "done" func when the read completes, 2651 * and return; or just return. 2652 * 2653 * arc_read_done() will invoke all the requested "done" functions 2654 * for readers of this block. 2655 * 2656 * Normal callers should use arc_read and pass the arc buffer and offset 2657 * for the bp. But if you know you don't need locking, you can use 2658 * arc_read_bp. 2659 */ 2660 int 2661 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf, 2662 arc_done_func_t *done, void *private, int priority, int zio_flags, 2663 uint32_t *arc_flags, const zbookmark_t *zb) 2664 { 2665 int err; 2666 2667 if (pbuf == NULL) { 2668 /* 2669 * XXX This happens from traverse callback funcs, for 2670 * the objset_phys_t block. 2671 */ 2672 return (arc_read_nolock(pio, spa, bp, done, private, priority, 2673 zio_flags, arc_flags, zb)); 2674 } 2675 2676 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2677 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2678 rw_enter(&pbuf->b_data_lock, RW_READER); 2679 2680 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2681 zio_flags, arc_flags, zb); 2682 rw_exit(&pbuf->b_data_lock); 2683 2684 return (err); 2685 } 2686 2687 int 2688 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp, 2689 arc_done_func_t *done, void *private, int priority, int zio_flags, 2690 uint32_t *arc_flags, const zbookmark_t *zb) 2691 { 2692 arc_buf_hdr_t *hdr; 2693 arc_buf_t *buf; 2694 kmutex_t *hash_lock; 2695 zio_t *rzio; 2696 uint64_t guid = spa_load_guid(spa); 2697 2698 top: 2699 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 2700 &hash_lock); 2701 if (hdr && hdr->b_datacnt > 0) { 2702 2703 *arc_flags |= ARC_CACHED; 2704 2705 if (HDR_IO_IN_PROGRESS(hdr)) { 2706 2707 if (*arc_flags & ARC_WAIT) { 2708 cv_wait(&hdr->b_cv, hash_lock); 2709 mutex_exit(hash_lock); 2710 goto top; 2711 } 2712 ASSERT(*arc_flags & ARC_NOWAIT); 2713 2714 if (done) { 2715 arc_callback_t *acb = NULL; 2716 2717 acb = kmem_zalloc(sizeof (arc_callback_t), 2718 KM_SLEEP); 2719 acb->acb_done = done; 2720 acb->acb_private = private; 2721 if (pio != NULL) 2722 acb->acb_zio_dummy = zio_null(pio, 2723 spa, NULL, NULL, NULL, zio_flags); 2724 2725 ASSERT(acb->acb_done != NULL); 2726 acb->acb_next = hdr->b_acb; 2727 hdr->b_acb = acb; 2728 add_reference(hdr, hash_lock, private); 2729 mutex_exit(hash_lock); 2730 return (0); 2731 } 2732 mutex_exit(hash_lock); 2733 return (0); 2734 } 2735 2736 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2737 2738 if (done) { 2739 add_reference(hdr, hash_lock, private); 2740 /* 2741 * If this block is already in use, create a new 2742 * copy of the data so that we will be guaranteed 2743 * that arc_release() will always succeed. 2744 */ 2745 buf = hdr->b_buf; 2746 ASSERT(buf); 2747 ASSERT(buf->b_data); 2748 if (HDR_BUF_AVAILABLE(hdr)) { 2749 ASSERT(buf->b_efunc == NULL); 2750 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2751 } else { 2752 buf = arc_buf_clone(buf); 2753 } 2754 2755 } else if (*arc_flags & ARC_PREFETCH && 2756 refcount_count(&hdr->b_refcnt) == 0) { 2757 hdr->b_flags |= ARC_PREFETCH; 2758 } 2759 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2760 arc_access(hdr, hash_lock); 2761 if (*arc_flags & ARC_L2CACHE) 2762 hdr->b_flags |= ARC_L2CACHE; 2763 mutex_exit(hash_lock); 2764 ARCSTAT_BUMP(arcstat_hits); 2765 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2766 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2767 data, metadata, hits); 2768 2769 if (done) 2770 done(NULL, buf, private); 2771 } else { 2772 uint64_t size = BP_GET_LSIZE(bp); 2773 arc_callback_t *acb; 2774 vdev_t *vd = NULL; 2775 uint64_t addr; 2776 boolean_t devw = B_FALSE; 2777 2778 if (hdr == NULL) { 2779 /* this block is not in the cache */ 2780 arc_buf_hdr_t *exists; 2781 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2782 buf = arc_buf_alloc(spa, size, private, type); 2783 hdr = buf->b_hdr; 2784 hdr->b_dva = *BP_IDENTITY(bp); 2785 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 2786 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2787 exists = buf_hash_insert(hdr, &hash_lock); 2788 if (exists) { 2789 /* somebody beat us to the hash insert */ 2790 mutex_exit(hash_lock); 2791 buf_discard_identity(hdr); 2792 (void) arc_buf_remove_ref(buf, private); 2793 goto top; /* restart the IO request */ 2794 } 2795 /* if this is a prefetch, we don't have a reference */ 2796 if (*arc_flags & ARC_PREFETCH) { 2797 (void) remove_reference(hdr, hash_lock, 2798 private); 2799 hdr->b_flags |= ARC_PREFETCH; 2800 } 2801 if (*arc_flags & ARC_L2CACHE) 2802 hdr->b_flags |= ARC_L2CACHE; 2803 if (BP_GET_LEVEL(bp) > 0) 2804 hdr->b_flags |= ARC_INDIRECT; 2805 } else { 2806 /* this block is in the ghost cache */ 2807 ASSERT(GHOST_STATE(hdr->b_state)); 2808 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2809 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2810 ASSERT(hdr->b_buf == NULL); 2811 2812 /* if this is a prefetch, we don't have a reference */ 2813 if (*arc_flags & ARC_PREFETCH) 2814 hdr->b_flags |= ARC_PREFETCH; 2815 else 2816 add_reference(hdr, hash_lock, private); 2817 if (*arc_flags & ARC_L2CACHE) 2818 hdr->b_flags |= ARC_L2CACHE; 2819 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2820 buf->b_hdr = hdr; 2821 buf->b_data = NULL; 2822 buf->b_efunc = NULL; 2823 buf->b_private = NULL; 2824 buf->b_next = NULL; 2825 hdr->b_buf = buf; 2826 ASSERT(hdr->b_datacnt == 0); 2827 hdr->b_datacnt = 1; 2828 arc_get_data_buf(buf); 2829 arc_access(hdr, hash_lock); 2830 } 2831 2832 ASSERT(!GHOST_STATE(hdr->b_state)); 2833 2834 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2835 acb->acb_done = done; 2836 acb->acb_private = private; 2837 2838 ASSERT(hdr->b_acb == NULL); 2839 hdr->b_acb = acb; 2840 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2841 2842 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2843 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2844 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2845 addr = hdr->b_l2hdr->b_daddr; 2846 /* 2847 * Lock out device removal. 2848 */ 2849 if (vdev_is_dead(vd) || 2850 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2851 vd = NULL; 2852 } 2853 2854 mutex_exit(hash_lock); 2855 2856 ASSERT3U(hdr->b_size, ==, size); 2857 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 2858 uint64_t, size, zbookmark_t *, zb); 2859 ARCSTAT_BUMP(arcstat_misses); 2860 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2861 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2862 data, metadata, misses); 2863 2864 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2865 /* 2866 * Read from the L2ARC if the following are true: 2867 * 1. The L2ARC vdev was previously cached. 2868 * 2. This buffer still has L2ARC metadata. 2869 * 3. This buffer isn't currently writing to the L2ARC. 2870 * 4. The L2ARC entry wasn't evicted, which may 2871 * also have invalidated the vdev. 2872 * 5. This isn't prefetch and l2arc_noprefetch is set. 2873 */ 2874 if (hdr->b_l2hdr != NULL && 2875 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2876 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2877 l2arc_read_callback_t *cb; 2878 2879 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2880 ARCSTAT_BUMP(arcstat_l2_hits); 2881 2882 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2883 KM_SLEEP); 2884 cb->l2rcb_buf = buf; 2885 cb->l2rcb_spa = spa; 2886 cb->l2rcb_bp = *bp; 2887 cb->l2rcb_zb = *zb; 2888 cb->l2rcb_flags = zio_flags; 2889 2890 /* 2891 * l2arc read. The SCL_L2ARC lock will be 2892 * released by l2arc_read_done(). 2893 */ 2894 rzio = zio_read_phys(pio, vd, addr, size, 2895 buf->b_data, ZIO_CHECKSUM_OFF, 2896 l2arc_read_done, cb, priority, zio_flags | 2897 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2898 ZIO_FLAG_DONT_PROPAGATE | 2899 ZIO_FLAG_DONT_RETRY, B_FALSE); 2900 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2901 zio_t *, rzio); 2902 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 2903 2904 if (*arc_flags & ARC_NOWAIT) { 2905 zio_nowait(rzio); 2906 return (0); 2907 } 2908 2909 ASSERT(*arc_flags & ARC_WAIT); 2910 if (zio_wait(rzio) == 0) 2911 return (0); 2912 2913 /* l2arc read error; goto zio_read() */ 2914 } else { 2915 DTRACE_PROBE1(l2arc__miss, 2916 arc_buf_hdr_t *, hdr); 2917 ARCSTAT_BUMP(arcstat_l2_misses); 2918 if (HDR_L2_WRITING(hdr)) 2919 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2920 spa_config_exit(spa, SCL_L2ARC, vd); 2921 } 2922 } else { 2923 if (vd != NULL) 2924 spa_config_exit(spa, SCL_L2ARC, vd); 2925 if (l2arc_ndev != 0) { 2926 DTRACE_PROBE1(l2arc__miss, 2927 arc_buf_hdr_t *, hdr); 2928 ARCSTAT_BUMP(arcstat_l2_misses); 2929 } 2930 } 2931 2932 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2933 arc_read_done, buf, priority, zio_flags, zb); 2934 2935 if (*arc_flags & ARC_WAIT) 2936 return (zio_wait(rzio)); 2937 2938 ASSERT(*arc_flags & ARC_NOWAIT); 2939 zio_nowait(rzio); 2940 } 2941 return (0); 2942 } 2943 2944 void 2945 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2946 { 2947 ASSERT(buf->b_hdr != NULL); 2948 ASSERT(buf->b_hdr->b_state != arc_anon); 2949 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2950 ASSERT(buf->b_efunc == NULL); 2951 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 2952 2953 buf->b_efunc = func; 2954 buf->b_private = private; 2955 } 2956 2957 /* 2958 * This is used by the DMU to let the ARC know that a buffer is 2959 * being evicted, so the ARC should clean up. If this arc buf 2960 * is not yet in the evicted state, it will be put there. 2961 */ 2962 int 2963 arc_buf_evict(arc_buf_t *buf) 2964 { 2965 arc_buf_hdr_t *hdr; 2966 kmutex_t *hash_lock; 2967 arc_buf_t **bufp; 2968 2969 mutex_enter(&buf->b_evict_lock); 2970 hdr = buf->b_hdr; 2971 if (hdr == NULL) { 2972 /* 2973 * We are in arc_do_user_evicts(). 2974 */ 2975 ASSERT(buf->b_data == NULL); 2976 mutex_exit(&buf->b_evict_lock); 2977 return (0); 2978 } else if (buf->b_data == NULL) { 2979 arc_buf_t copy = *buf; /* structure assignment */ 2980 /* 2981 * We are on the eviction list; process this buffer now 2982 * but let arc_do_user_evicts() do the reaping. 2983 */ 2984 buf->b_efunc = NULL; 2985 mutex_exit(&buf->b_evict_lock); 2986 VERIFY(copy.b_efunc(©) == 0); 2987 return (1); 2988 } 2989 hash_lock = HDR_LOCK(hdr); 2990 mutex_enter(hash_lock); 2991 hdr = buf->b_hdr; 2992 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 2993 2994 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2995 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2996 2997 /* 2998 * Pull this buffer off of the hdr 2999 */ 3000 bufp = &hdr->b_buf; 3001 while (*bufp != buf) 3002 bufp = &(*bufp)->b_next; 3003 *bufp = buf->b_next; 3004 3005 ASSERT(buf->b_data != NULL); 3006 arc_buf_destroy(buf, FALSE, FALSE); 3007 3008 if (hdr->b_datacnt == 0) { 3009 arc_state_t *old_state = hdr->b_state; 3010 arc_state_t *evicted_state; 3011 3012 ASSERT(hdr->b_buf == NULL); 3013 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 3014 3015 evicted_state = 3016 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3017 3018 mutex_enter(&old_state->arcs_mtx); 3019 mutex_enter(&evicted_state->arcs_mtx); 3020 3021 arc_change_state(evicted_state, hdr, hash_lock); 3022 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3023 hdr->b_flags |= ARC_IN_HASH_TABLE; 3024 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3025 3026 mutex_exit(&evicted_state->arcs_mtx); 3027 mutex_exit(&old_state->arcs_mtx); 3028 } 3029 mutex_exit(hash_lock); 3030 mutex_exit(&buf->b_evict_lock); 3031 3032 VERIFY(buf->b_efunc(buf) == 0); 3033 buf->b_efunc = NULL; 3034 buf->b_private = NULL; 3035 buf->b_hdr = NULL; 3036 buf->b_next = NULL; 3037 kmem_cache_free(buf_cache, buf); 3038 return (1); 3039 } 3040 3041 /* 3042 * Release this buffer from the cache. This must be done 3043 * after a read and prior to modifying the buffer contents. 3044 * If the buffer has more than one reference, we must make 3045 * a new hdr for the buffer. 3046 */ 3047 void 3048 arc_release(arc_buf_t *buf, void *tag) 3049 { 3050 arc_buf_hdr_t *hdr; 3051 kmutex_t *hash_lock = NULL; 3052 l2arc_buf_hdr_t *l2hdr; 3053 uint64_t buf_size; 3054 3055 /* 3056 * It would be nice to assert that if it's DMU metadata (level > 3057 * 0 || it's the dnode file), then it must be syncing context. 3058 * But we don't know that information at this level. 3059 */ 3060 3061 mutex_enter(&buf->b_evict_lock); 3062 hdr = buf->b_hdr; 3063 3064 /* this buffer is not on any list */ 3065 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3066 3067 if (hdr->b_state == arc_anon) { 3068 /* this buffer is already released */ 3069 ASSERT(buf->b_efunc == NULL); 3070 } else { 3071 hash_lock = HDR_LOCK(hdr); 3072 mutex_enter(hash_lock); 3073 hdr = buf->b_hdr; 3074 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3075 } 3076 3077 l2hdr = hdr->b_l2hdr; 3078 if (l2hdr) { 3079 mutex_enter(&l2arc_buflist_mtx); 3080 hdr->b_l2hdr = NULL; 3081 buf_size = hdr->b_size; 3082 } 3083 3084 /* 3085 * Do we have more than one buf? 3086 */ 3087 if (hdr->b_datacnt > 1) { 3088 arc_buf_hdr_t *nhdr; 3089 arc_buf_t **bufp; 3090 uint64_t blksz = hdr->b_size; 3091 uint64_t spa = hdr->b_spa; 3092 arc_buf_contents_t type = hdr->b_type; 3093 uint32_t flags = hdr->b_flags; 3094 3095 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3096 /* 3097 * Pull the data off of this hdr and attach it to 3098 * a new anonymous hdr. 3099 */ 3100 (void) remove_reference(hdr, hash_lock, tag); 3101 bufp = &hdr->b_buf; 3102 while (*bufp != buf) 3103 bufp = &(*bufp)->b_next; 3104 *bufp = buf->b_next; 3105 buf->b_next = NULL; 3106 3107 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3108 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3109 if (refcount_is_zero(&hdr->b_refcnt)) { 3110 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3111 ASSERT3U(*size, >=, hdr->b_size); 3112 atomic_add_64(size, -hdr->b_size); 3113 } 3114 hdr->b_datacnt -= 1; 3115 arc_cksum_verify(buf); 3116 3117 mutex_exit(hash_lock); 3118 3119 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3120 nhdr->b_size = blksz; 3121 nhdr->b_spa = spa; 3122 nhdr->b_type = type; 3123 nhdr->b_buf = buf; 3124 nhdr->b_state = arc_anon; 3125 nhdr->b_arc_access = 0; 3126 nhdr->b_flags = flags & ARC_L2_WRITING; 3127 nhdr->b_l2hdr = NULL; 3128 nhdr->b_datacnt = 1; 3129 nhdr->b_freeze_cksum = NULL; 3130 (void) refcount_add(&nhdr->b_refcnt, tag); 3131 buf->b_hdr = nhdr; 3132 mutex_exit(&buf->b_evict_lock); 3133 atomic_add_64(&arc_anon->arcs_size, blksz); 3134 } else { 3135 mutex_exit(&buf->b_evict_lock); 3136 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3137 ASSERT(!list_link_active(&hdr->b_arc_node)); 3138 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3139 if (hdr->b_state != arc_anon) 3140 arc_change_state(arc_anon, hdr, hash_lock); 3141 hdr->b_arc_access = 0; 3142 if (hash_lock) 3143 mutex_exit(hash_lock); 3144 3145 buf_discard_identity(hdr); 3146 arc_buf_thaw(buf); 3147 } 3148 buf->b_efunc = NULL; 3149 buf->b_private = NULL; 3150 3151 if (l2hdr) { 3152 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3153 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3154 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3155 mutex_exit(&l2arc_buflist_mtx); 3156 } 3157 } 3158 3159 /* 3160 * Release this buffer. If it does not match the provided BP, fill it 3161 * with that block's contents. 3162 */ 3163 /* ARGSUSED */ 3164 int 3165 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa, 3166 zbookmark_t *zb) 3167 { 3168 arc_release(buf, tag); 3169 return (0); 3170 } 3171 3172 int 3173 arc_released(arc_buf_t *buf) 3174 { 3175 int released; 3176 3177 mutex_enter(&buf->b_evict_lock); 3178 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3179 mutex_exit(&buf->b_evict_lock); 3180 return (released); 3181 } 3182 3183 int 3184 arc_has_callback(arc_buf_t *buf) 3185 { 3186 int callback; 3187 3188 mutex_enter(&buf->b_evict_lock); 3189 callback = (buf->b_efunc != NULL); 3190 mutex_exit(&buf->b_evict_lock); 3191 return (callback); 3192 } 3193 3194 #ifdef ZFS_DEBUG 3195 int 3196 arc_referenced(arc_buf_t *buf) 3197 { 3198 int referenced; 3199 3200 mutex_enter(&buf->b_evict_lock); 3201 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3202 mutex_exit(&buf->b_evict_lock); 3203 return (referenced); 3204 } 3205 #endif 3206 3207 static void 3208 arc_write_ready(zio_t *zio) 3209 { 3210 arc_write_callback_t *callback = zio->io_private; 3211 arc_buf_t *buf = callback->awcb_buf; 3212 arc_buf_hdr_t *hdr = buf->b_hdr; 3213 3214 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3215 callback->awcb_ready(zio, buf, callback->awcb_private); 3216 3217 /* 3218 * If the IO is already in progress, then this is a re-write 3219 * attempt, so we need to thaw and re-compute the cksum. 3220 * It is the responsibility of the callback to handle the 3221 * accounting for any re-write attempt. 3222 */ 3223 if (HDR_IO_IN_PROGRESS(hdr)) { 3224 mutex_enter(&hdr->b_freeze_lock); 3225 if (hdr->b_freeze_cksum != NULL) { 3226 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3227 hdr->b_freeze_cksum = NULL; 3228 } 3229 mutex_exit(&hdr->b_freeze_lock); 3230 } 3231 arc_cksum_compute(buf, B_FALSE); 3232 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3233 } 3234 3235 static void 3236 arc_write_done(zio_t *zio) 3237 { 3238 arc_write_callback_t *callback = zio->io_private; 3239 arc_buf_t *buf = callback->awcb_buf; 3240 arc_buf_hdr_t *hdr = buf->b_hdr; 3241 3242 ASSERT(hdr->b_acb == NULL); 3243 3244 if (zio->io_error == 0) { 3245 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3246 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3247 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3248 } else { 3249 ASSERT(BUF_EMPTY(hdr)); 3250 } 3251 3252 /* 3253 * If the block to be written was all-zero, we may have 3254 * compressed it away. In this case no write was performed 3255 * so there will be no dva/birth/checksum. The buffer must 3256 * therefore remain anonymous (and uncached). 3257 */ 3258 if (!BUF_EMPTY(hdr)) { 3259 arc_buf_hdr_t *exists; 3260 kmutex_t *hash_lock; 3261 3262 ASSERT(zio->io_error == 0); 3263 3264 arc_cksum_verify(buf); 3265 3266 exists = buf_hash_insert(hdr, &hash_lock); 3267 if (exists) { 3268 /* 3269 * This can only happen if we overwrite for 3270 * sync-to-convergence, because we remove 3271 * buffers from the hash table when we arc_free(). 3272 */ 3273 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3274 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3275 panic("bad overwrite, hdr=%p exists=%p", 3276 (void *)hdr, (void *)exists); 3277 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3278 arc_change_state(arc_anon, exists, hash_lock); 3279 mutex_exit(hash_lock); 3280 arc_hdr_destroy(exists); 3281 exists = buf_hash_insert(hdr, &hash_lock); 3282 ASSERT3P(exists, ==, NULL); 3283 } else { 3284 /* Dedup */ 3285 ASSERT(hdr->b_datacnt == 1); 3286 ASSERT(hdr->b_state == arc_anon); 3287 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3288 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3289 } 3290 } 3291 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3292 /* if it's not anon, we are doing a scrub */ 3293 if (!exists && hdr->b_state == arc_anon) 3294 arc_access(hdr, hash_lock); 3295 mutex_exit(hash_lock); 3296 } else { 3297 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3298 } 3299 3300 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3301 callback->awcb_done(zio, buf, callback->awcb_private); 3302 3303 kmem_free(callback, sizeof (arc_write_callback_t)); 3304 } 3305 3306 zio_t * 3307 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3308 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, 3309 arc_done_func_t *ready, arc_done_func_t *done, void *private, 3310 int priority, int zio_flags, const zbookmark_t *zb) 3311 { 3312 arc_buf_hdr_t *hdr = buf->b_hdr; 3313 arc_write_callback_t *callback; 3314 zio_t *zio; 3315 3316 ASSERT(ready != NULL); 3317 ASSERT(done != NULL); 3318 ASSERT(!HDR_IO_ERROR(hdr)); 3319 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3320 ASSERT(hdr->b_acb == NULL); 3321 if (l2arc) 3322 hdr->b_flags |= ARC_L2CACHE; 3323 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3324 callback->awcb_ready = ready; 3325 callback->awcb_done = done; 3326 callback->awcb_private = private; 3327 callback->awcb_buf = buf; 3328 3329 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3330 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3331 3332 return (zio); 3333 } 3334 3335 static int 3336 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3337 { 3338 #ifdef _KERNEL 3339 uint64_t available_memory = ptob(freemem); 3340 static uint64_t page_load = 0; 3341 static uint64_t last_txg = 0; 3342 3343 #if defined(__i386) 3344 available_memory = 3345 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3346 #endif 3347 if (available_memory >= zfs_write_limit_max) 3348 return (0); 3349 3350 if (txg > last_txg) { 3351 last_txg = txg; 3352 page_load = 0; 3353 } 3354 /* 3355 * If we are in pageout, we know that memory is already tight, 3356 * the arc is already going to be evicting, so we just want to 3357 * continue to let page writes occur as quickly as possible. 3358 */ 3359 if (curproc == proc_pageout) { 3360 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3361 return (ERESTART); 3362 /* Note: reserve is inflated, so we deflate */ 3363 page_load += reserve / 8; 3364 return (0); 3365 } else if (page_load > 0 && arc_reclaim_needed()) { 3366 /* memory is low, delay before restarting */ 3367 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3368 return (EAGAIN); 3369 } 3370 page_load = 0; 3371 3372 if (arc_size > arc_c_min) { 3373 uint64_t evictable_memory = 3374 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3375 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3376 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3377 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3378 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3379 } 3380 3381 if (inflight_data > available_memory / 4) { 3382 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3383 return (ERESTART); 3384 } 3385 #endif 3386 return (0); 3387 } 3388 3389 void 3390 arc_tempreserve_clear(uint64_t reserve) 3391 { 3392 atomic_add_64(&arc_tempreserve, -reserve); 3393 ASSERT((int64_t)arc_tempreserve >= 0); 3394 } 3395 3396 int 3397 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3398 { 3399 int error; 3400 uint64_t anon_size; 3401 3402 #ifdef ZFS_DEBUG 3403 /* 3404 * Once in a while, fail for no reason. Everything should cope. 3405 */ 3406 if (spa_get_random(10000) == 0) { 3407 dprintf("forcing random failure\n"); 3408 return (ERESTART); 3409 } 3410 #endif 3411 if (reserve > arc_c/4 && !arc_no_grow) 3412 arc_c = MIN(arc_c_max, reserve * 4); 3413 if (reserve > arc_c) 3414 return (ENOMEM); 3415 3416 /* 3417 * Don't count loaned bufs as in flight dirty data to prevent long 3418 * network delays from blocking transactions that are ready to be 3419 * assigned to a txg. 3420 */ 3421 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3422 3423 /* 3424 * Writes will, almost always, require additional memory allocations 3425 * in order to compress/encrypt/etc the data. We therefor need to 3426 * make sure that there is sufficient available memory for this. 3427 */ 3428 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3429 return (error); 3430 3431 /* 3432 * Throttle writes when the amount of dirty data in the cache 3433 * gets too large. We try to keep the cache less than half full 3434 * of dirty blocks so that our sync times don't grow too large. 3435 * Note: if two requests come in concurrently, we might let them 3436 * both succeed, when one of them should fail. Not a huge deal. 3437 */ 3438 3439 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3440 anon_size > arc_c / 4) { 3441 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3442 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3443 arc_tempreserve>>10, 3444 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3445 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3446 reserve>>10, arc_c>>10); 3447 return (ERESTART); 3448 } 3449 atomic_add_64(&arc_tempreserve, reserve); 3450 return (0); 3451 } 3452 3453 void 3454 arc_init(void) 3455 { 3456 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3457 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3458 3459 /* Convert seconds to clock ticks */ 3460 arc_min_prefetch_lifespan = 1 * hz; 3461 3462 /* Start out with 1/8 of all memory */ 3463 arc_c = physmem * PAGESIZE / 8; 3464 3465 #ifdef _KERNEL 3466 /* 3467 * On architectures where the physical memory can be larger 3468 * than the addressable space (intel in 32-bit mode), we may 3469 * need to limit the cache to 1/8 of VM size. 3470 */ 3471 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3472 #endif 3473 3474 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3475 arc_c_min = MAX(arc_c / 4, 64<<20); 3476 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3477 if (arc_c * 8 >= 1<<30) 3478 arc_c_max = (arc_c * 8) - (1<<30); 3479 else 3480 arc_c_max = arc_c_min; 3481 arc_c_max = MAX(arc_c * 6, arc_c_max); 3482 3483 /* 3484 * Allow the tunables to override our calculations if they are 3485 * reasonable (ie. over 64MB) 3486 */ 3487 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3488 arc_c_max = zfs_arc_max; 3489 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3490 arc_c_min = zfs_arc_min; 3491 3492 arc_c = arc_c_max; 3493 arc_p = (arc_c >> 1); 3494 3495 /* limit meta-data to 1/4 of the arc capacity */ 3496 arc_meta_limit = arc_c_max / 4; 3497 3498 /* Allow the tunable to override if it is reasonable */ 3499 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3500 arc_meta_limit = zfs_arc_meta_limit; 3501 3502 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3503 arc_c_min = arc_meta_limit / 2; 3504 3505 if (zfs_arc_grow_retry > 0) 3506 arc_grow_retry = zfs_arc_grow_retry; 3507 3508 if (zfs_arc_shrink_shift > 0) 3509 arc_shrink_shift = zfs_arc_shrink_shift; 3510 3511 if (zfs_arc_p_min_shift > 0) 3512 arc_p_min_shift = zfs_arc_p_min_shift; 3513 3514 /* if kmem_flags are set, lets try to use less memory */ 3515 if (kmem_debugging()) 3516 arc_c = arc_c / 2; 3517 if (arc_c < arc_c_min) 3518 arc_c = arc_c_min; 3519 3520 arc_anon = &ARC_anon; 3521 arc_mru = &ARC_mru; 3522 arc_mru_ghost = &ARC_mru_ghost; 3523 arc_mfu = &ARC_mfu; 3524 arc_mfu_ghost = &ARC_mfu_ghost; 3525 arc_l2c_only = &ARC_l2c_only; 3526 arc_size = 0; 3527 3528 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3529 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3530 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3531 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3532 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3533 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3534 3535 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3536 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3537 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3538 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3539 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3540 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3541 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3542 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3543 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3544 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3545 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3546 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3547 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3548 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3549 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3550 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3551 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3552 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3553 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3554 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3555 3556 buf_init(); 3557 3558 arc_thread_exit = 0; 3559 arc_eviction_list = NULL; 3560 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3561 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3562 3563 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3564 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3565 3566 if (arc_ksp != NULL) { 3567 arc_ksp->ks_data = &arc_stats; 3568 kstat_install(arc_ksp); 3569 } 3570 3571 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3572 TS_RUN, minclsyspri); 3573 3574 arc_dead = FALSE; 3575 arc_warm = B_FALSE; 3576 3577 if (zfs_write_limit_max == 0) 3578 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3579 else 3580 zfs_write_limit_shift = 0; 3581 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3582 } 3583 3584 void 3585 arc_fini(void) 3586 { 3587 mutex_enter(&arc_reclaim_thr_lock); 3588 arc_thread_exit = 1; 3589 while (arc_thread_exit != 0) 3590 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3591 mutex_exit(&arc_reclaim_thr_lock); 3592 3593 arc_flush(NULL); 3594 3595 arc_dead = TRUE; 3596 3597 if (arc_ksp != NULL) { 3598 kstat_delete(arc_ksp); 3599 arc_ksp = NULL; 3600 } 3601 3602 mutex_destroy(&arc_eviction_mtx); 3603 mutex_destroy(&arc_reclaim_thr_lock); 3604 cv_destroy(&arc_reclaim_thr_cv); 3605 3606 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3607 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3608 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3609 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3610 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3611 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3612 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3613 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3614 3615 mutex_destroy(&arc_anon->arcs_mtx); 3616 mutex_destroy(&arc_mru->arcs_mtx); 3617 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3618 mutex_destroy(&arc_mfu->arcs_mtx); 3619 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3620 mutex_destroy(&arc_l2c_only->arcs_mtx); 3621 3622 mutex_destroy(&zfs_write_limit_lock); 3623 3624 buf_fini(); 3625 3626 ASSERT(arc_loaned_bytes == 0); 3627 } 3628 3629 /* 3630 * Level 2 ARC 3631 * 3632 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3633 * It uses dedicated storage devices to hold cached data, which are populated 3634 * using large infrequent writes. The main role of this cache is to boost 3635 * the performance of random read workloads. The intended L2ARC devices 3636 * include short-stroked disks, solid state disks, and other media with 3637 * substantially faster read latency than disk. 3638 * 3639 * +-----------------------+ 3640 * | ARC | 3641 * +-----------------------+ 3642 * | ^ ^ 3643 * | | | 3644 * l2arc_feed_thread() arc_read() 3645 * | | | 3646 * | l2arc read | 3647 * V | | 3648 * +---------------+ | 3649 * | L2ARC | | 3650 * +---------------+ | 3651 * | ^ | 3652 * l2arc_write() | | 3653 * | | | 3654 * V | | 3655 * +-------+ +-------+ 3656 * | vdev | | vdev | 3657 * | cache | | cache | 3658 * +-------+ +-------+ 3659 * +=========+ .-----. 3660 * : L2ARC : |-_____-| 3661 * : devices : | Disks | 3662 * +=========+ `-_____-' 3663 * 3664 * Read requests are satisfied from the following sources, in order: 3665 * 3666 * 1) ARC 3667 * 2) vdev cache of L2ARC devices 3668 * 3) L2ARC devices 3669 * 4) vdev cache of disks 3670 * 5) disks 3671 * 3672 * Some L2ARC device types exhibit extremely slow write performance. 3673 * To accommodate for this there are some significant differences between 3674 * the L2ARC and traditional cache design: 3675 * 3676 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3677 * the ARC behave as usual, freeing buffers and placing headers on ghost 3678 * lists. The ARC does not send buffers to the L2ARC during eviction as 3679 * this would add inflated write latencies for all ARC memory pressure. 3680 * 3681 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3682 * It does this by periodically scanning buffers from the eviction-end of 3683 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3684 * not already there. It scans until a headroom of buffers is satisfied, 3685 * which itself is a buffer for ARC eviction. The thread that does this is 3686 * l2arc_feed_thread(), illustrated below; example sizes are included to 3687 * provide a better sense of ratio than this diagram: 3688 * 3689 * head --> tail 3690 * +---------------------+----------+ 3691 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3692 * +---------------------+----------+ | o L2ARC eligible 3693 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3694 * +---------------------+----------+ | 3695 * 15.9 Gbytes ^ 32 Mbytes | 3696 * headroom | 3697 * l2arc_feed_thread() 3698 * | 3699 * l2arc write hand <--[oooo]--' 3700 * | 8 Mbyte 3701 * | write max 3702 * V 3703 * +==============================+ 3704 * L2ARC dev |####|#|###|###| |####| ... | 3705 * +==============================+ 3706 * 32 Gbytes 3707 * 3708 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3709 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3710 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3711 * safe to say that this is an uncommon case, since buffers at the end of 3712 * the ARC lists have moved there due to inactivity. 3713 * 3714 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3715 * then the L2ARC simply misses copying some buffers. This serves as a 3716 * pressure valve to prevent heavy read workloads from both stalling the ARC 3717 * with waits and clogging the L2ARC with writes. This also helps prevent 3718 * the potential for the L2ARC to churn if it attempts to cache content too 3719 * quickly, such as during backups of the entire pool. 3720 * 3721 * 5. After system boot and before the ARC has filled main memory, there are 3722 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3723 * lists can remain mostly static. Instead of searching from tail of these 3724 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3725 * for eligible buffers, greatly increasing its chance of finding them. 3726 * 3727 * The L2ARC device write speed is also boosted during this time so that 3728 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3729 * there are no L2ARC reads, and no fear of degrading read performance 3730 * through increased writes. 3731 * 3732 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3733 * the vdev queue can aggregate them into larger and fewer writes. Each 3734 * device is written to in a rotor fashion, sweeping writes through 3735 * available space then repeating. 3736 * 3737 * 7. The L2ARC does not store dirty content. It never needs to flush 3738 * write buffers back to disk based storage. 3739 * 3740 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3741 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3742 * 3743 * The performance of the L2ARC can be tweaked by a number of tunables, which 3744 * may be necessary for different workloads: 3745 * 3746 * l2arc_write_max max write bytes per interval 3747 * l2arc_write_boost extra write bytes during device warmup 3748 * l2arc_noprefetch skip caching prefetched buffers 3749 * l2arc_headroom number of max device writes to precache 3750 * l2arc_feed_secs seconds between L2ARC writing 3751 * 3752 * Tunables may be removed or added as future performance improvements are 3753 * integrated, and also may become zpool properties. 3754 * 3755 * There are three key functions that control how the L2ARC warms up: 3756 * 3757 * l2arc_write_eligible() check if a buffer is eligible to cache 3758 * l2arc_write_size() calculate how much to write 3759 * l2arc_write_interval() calculate sleep delay between writes 3760 * 3761 * These three functions determine what to write, how much, and how quickly 3762 * to send writes. 3763 */ 3764 3765 static boolean_t 3766 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3767 { 3768 /* 3769 * A buffer is *not* eligible for the L2ARC if it: 3770 * 1. belongs to a different spa. 3771 * 2. is already cached on the L2ARC. 3772 * 3. has an I/O in progress (it may be an incomplete read). 3773 * 4. is flagged not eligible (zfs property). 3774 */ 3775 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 3776 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3777 return (B_FALSE); 3778 3779 return (B_TRUE); 3780 } 3781 3782 static uint64_t 3783 l2arc_write_size(l2arc_dev_t *dev) 3784 { 3785 uint64_t size; 3786 3787 size = dev->l2ad_write; 3788 3789 if (arc_warm == B_FALSE) 3790 size += dev->l2ad_boost; 3791 3792 return (size); 3793 3794 } 3795 3796 static clock_t 3797 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3798 { 3799 clock_t interval, next, now; 3800 3801 /* 3802 * If the ARC lists are busy, increase our write rate; if the 3803 * lists are stale, idle back. This is achieved by checking 3804 * how much we previously wrote - if it was more than half of 3805 * what we wanted, schedule the next write much sooner. 3806 */ 3807 if (l2arc_feed_again && wrote > (wanted / 2)) 3808 interval = (hz * l2arc_feed_min_ms) / 1000; 3809 else 3810 interval = hz * l2arc_feed_secs; 3811 3812 now = ddi_get_lbolt(); 3813 next = MAX(now, MIN(now + interval, began + interval)); 3814 3815 return (next); 3816 } 3817 3818 static void 3819 l2arc_hdr_stat_add(void) 3820 { 3821 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3822 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3823 } 3824 3825 static void 3826 l2arc_hdr_stat_remove(void) 3827 { 3828 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3829 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3830 } 3831 3832 /* 3833 * Cycle through L2ARC devices. This is how L2ARC load balances. 3834 * If a device is returned, this also returns holding the spa config lock. 3835 */ 3836 static l2arc_dev_t * 3837 l2arc_dev_get_next(void) 3838 { 3839 l2arc_dev_t *first, *next = NULL; 3840 3841 /* 3842 * Lock out the removal of spas (spa_namespace_lock), then removal 3843 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3844 * both locks will be dropped and a spa config lock held instead. 3845 */ 3846 mutex_enter(&spa_namespace_lock); 3847 mutex_enter(&l2arc_dev_mtx); 3848 3849 /* if there are no vdevs, there is nothing to do */ 3850 if (l2arc_ndev == 0) 3851 goto out; 3852 3853 first = NULL; 3854 next = l2arc_dev_last; 3855 do { 3856 /* loop around the list looking for a non-faulted vdev */ 3857 if (next == NULL) { 3858 next = list_head(l2arc_dev_list); 3859 } else { 3860 next = list_next(l2arc_dev_list, next); 3861 if (next == NULL) 3862 next = list_head(l2arc_dev_list); 3863 } 3864 3865 /* if we have come back to the start, bail out */ 3866 if (first == NULL) 3867 first = next; 3868 else if (next == first) 3869 break; 3870 3871 } while (vdev_is_dead(next->l2ad_vdev)); 3872 3873 /* if we were unable to find any usable vdevs, return NULL */ 3874 if (vdev_is_dead(next->l2ad_vdev)) 3875 next = NULL; 3876 3877 l2arc_dev_last = next; 3878 3879 out: 3880 mutex_exit(&l2arc_dev_mtx); 3881 3882 /* 3883 * Grab the config lock to prevent the 'next' device from being 3884 * removed while we are writing to it. 3885 */ 3886 if (next != NULL) 3887 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3888 mutex_exit(&spa_namespace_lock); 3889 3890 return (next); 3891 } 3892 3893 /* 3894 * Free buffers that were tagged for destruction. 3895 */ 3896 static void 3897 l2arc_do_free_on_write() 3898 { 3899 list_t *buflist; 3900 l2arc_data_free_t *df, *df_prev; 3901 3902 mutex_enter(&l2arc_free_on_write_mtx); 3903 buflist = l2arc_free_on_write; 3904 3905 for (df = list_tail(buflist); df; df = df_prev) { 3906 df_prev = list_prev(buflist, df); 3907 ASSERT(df->l2df_data != NULL); 3908 ASSERT(df->l2df_func != NULL); 3909 df->l2df_func(df->l2df_data, df->l2df_size); 3910 list_remove(buflist, df); 3911 kmem_free(df, sizeof (l2arc_data_free_t)); 3912 } 3913 3914 mutex_exit(&l2arc_free_on_write_mtx); 3915 } 3916 3917 /* 3918 * A write to a cache device has completed. Update all headers to allow 3919 * reads from these buffers to begin. 3920 */ 3921 static void 3922 l2arc_write_done(zio_t *zio) 3923 { 3924 l2arc_write_callback_t *cb; 3925 l2arc_dev_t *dev; 3926 list_t *buflist; 3927 arc_buf_hdr_t *head, *ab, *ab_prev; 3928 l2arc_buf_hdr_t *abl2; 3929 kmutex_t *hash_lock; 3930 3931 cb = zio->io_private; 3932 ASSERT(cb != NULL); 3933 dev = cb->l2wcb_dev; 3934 ASSERT(dev != NULL); 3935 head = cb->l2wcb_head; 3936 ASSERT(head != NULL); 3937 buflist = dev->l2ad_buflist; 3938 ASSERT(buflist != NULL); 3939 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3940 l2arc_write_callback_t *, cb); 3941 3942 if (zio->io_error != 0) 3943 ARCSTAT_BUMP(arcstat_l2_writes_error); 3944 3945 mutex_enter(&l2arc_buflist_mtx); 3946 3947 /* 3948 * All writes completed, or an error was hit. 3949 */ 3950 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3951 ab_prev = list_prev(buflist, ab); 3952 3953 hash_lock = HDR_LOCK(ab); 3954 if (!mutex_tryenter(hash_lock)) { 3955 /* 3956 * This buffer misses out. It may be in a stage 3957 * of eviction. Its ARC_L2_WRITING flag will be 3958 * left set, denying reads to this buffer. 3959 */ 3960 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3961 continue; 3962 } 3963 3964 if (zio->io_error != 0) { 3965 /* 3966 * Error - drop L2ARC entry. 3967 */ 3968 list_remove(buflist, ab); 3969 abl2 = ab->b_l2hdr; 3970 ab->b_l2hdr = NULL; 3971 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3972 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3973 } 3974 3975 /* 3976 * Allow ARC to begin reads to this L2ARC entry. 3977 */ 3978 ab->b_flags &= ~ARC_L2_WRITING; 3979 3980 mutex_exit(hash_lock); 3981 } 3982 3983 atomic_inc_64(&l2arc_writes_done); 3984 list_remove(buflist, head); 3985 kmem_cache_free(hdr_cache, head); 3986 mutex_exit(&l2arc_buflist_mtx); 3987 3988 l2arc_do_free_on_write(); 3989 3990 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3991 } 3992 3993 /* 3994 * A read to a cache device completed. Validate buffer contents before 3995 * handing over to the regular ARC routines. 3996 */ 3997 static void 3998 l2arc_read_done(zio_t *zio) 3999 { 4000 l2arc_read_callback_t *cb; 4001 arc_buf_hdr_t *hdr; 4002 arc_buf_t *buf; 4003 kmutex_t *hash_lock; 4004 int equal; 4005 4006 ASSERT(zio->io_vd != NULL); 4007 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4008 4009 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4010 4011 cb = zio->io_private; 4012 ASSERT(cb != NULL); 4013 buf = cb->l2rcb_buf; 4014 ASSERT(buf != NULL); 4015 4016 hash_lock = HDR_LOCK(buf->b_hdr); 4017 mutex_enter(hash_lock); 4018 hdr = buf->b_hdr; 4019 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4020 4021 /* 4022 * Check this survived the L2ARC journey. 4023 */ 4024 equal = arc_cksum_equal(buf); 4025 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4026 mutex_exit(hash_lock); 4027 zio->io_private = buf; 4028 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4029 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4030 arc_read_done(zio); 4031 } else { 4032 mutex_exit(hash_lock); 4033 /* 4034 * Buffer didn't survive caching. Increment stats and 4035 * reissue to the original storage device. 4036 */ 4037 if (zio->io_error != 0) { 4038 ARCSTAT_BUMP(arcstat_l2_io_error); 4039 } else { 4040 zio->io_error = EIO; 4041 } 4042 if (!equal) 4043 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4044 4045 /* 4046 * If there's no waiter, issue an async i/o to the primary 4047 * storage now. If there *is* a waiter, the caller must 4048 * issue the i/o in a context where it's OK to block. 4049 */ 4050 if (zio->io_waiter == NULL) { 4051 zio_t *pio = zio_unique_parent(zio); 4052 4053 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4054 4055 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4056 buf->b_data, zio->io_size, arc_read_done, buf, 4057 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4058 } 4059 } 4060 4061 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4062 } 4063 4064 /* 4065 * This is the list priority from which the L2ARC will search for pages to 4066 * cache. This is used within loops (0..3) to cycle through lists in the 4067 * desired order. This order can have a significant effect on cache 4068 * performance. 4069 * 4070 * Currently the metadata lists are hit first, MFU then MRU, followed by 4071 * the data lists. This function returns a locked list, and also returns 4072 * the lock pointer. 4073 */ 4074 static list_t * 4075 l2arc_list_locked(int list_num, kmutex_t **lock) 4076 { 4077 list_t *list; 4078 4079 ASSERT(list_num >= 0 && list_num <= 3); 4080 4081 switch (list_num) { 4082 case 0: 4083 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4084 *lock = &arc_mfu->arcs_mtx; 4085 break; 4086 case 1: 4087 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4088 *lock = &arc_mru->arcs_mtx; 4089 break; 4090 case 2: 4091 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4092 *lock = &arc_mfu->arcs_mtx; 4093 break; 4094 case 3: 4095 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4096 *lock = &arc_mru->arcs_mtx; 4097 break; 4098 } 4099 4100 ASSERT(!(MUTEX_HELD(*lock))); 4101 mutex_enter(*lock); 4102 return (list); 4103 } 4104 4105 /* 4106 * Evict buffers from the device write hand to the distance specified in 4107 * bytes. This distance may span populated buffers, it may span nothing. 4108 * This is clearing a region on the L2ARC device ready for writing. 4109 * If the 'all' boolean is set, every buffer is evicted. 4110 */ 4111 static void 4112 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4113 { 4114 list_t *buflist; 4115 l2arc_buf_hdr_t *abl2; 4116 arc_buf_hdr_t *ab, *ab_prev; 4117 kmutex_t *hash_lock; 4118 uint64_t taddr; 4119 4120 buflist = dev->l2ad_buflist; 4121 4122 if (buflist == NULL) 4123 return; 4124 4125 if (!all && dev->l2ad_first) { 4126 /* 4127 * This is the first sweep through the device. There is 4128 * nothing to evict. 4129 */ 4130 return; 4131 } 4132 4133 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4134 /* 4135 * When nearing the end of the device, evict to the end 4136 * before the device write hand jumps to the start. 4137 */ 4138 taddr = dev->l2ad_end; 4139 } else { 4140 taddr = dev->l2ad_hand + distance; 4141 } 4142 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4143 uint64_t, taddr, boolean_t, all); 4144 4145 top: 4146 mutex_enter(&l2arc_buflist_mtx); 4147 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4148 ab_prev = list_prev(buflist, ab); 4149 4150 hash_lock = HDR_LOCK(ab); 4151 if (!mutex_tryenter(hash_lock)) { 4152 /* 4153 * Missed the hash lock. Retry. 4154 */ 4155 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4156 mutex_exit(&l2arc_buflist_mtx); 4157 mutex_enter(hash_lock); 4158 mutex_exit(hash_lock); 4159 goto top; 4160 } 4161 4162 if (HDR_L2_WRITE_HEAD(ab)) { 4163 /* 4164 * We hit a write head node. Leave it for 4165 * l2arc_write_done(). 4166 */ 4167 list_remove(buflist, ab); 4168 mutex_exit(hash_lock); 4169 continue; 4170 } 4171 4172 if (!all && ab->b_l2hdr != NULL && 4173 (ab->b_l2hdr->b_daddr > taddr || 4174 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4175 /* 4176 * We've evicted to the target address, 4177 * or the end of the device. 4178 */ 4179 mutex_exit(hash_lock); 4180 break; 4181 } 4182 4183 if (HDR_FREE_IN_PROGRESS(ab)) { 4184 /* 4185 * Already on the path to destruction. 4186 */ 4187 mutex_exit(hash_lock); 4188 continue; 4189 } 4190 4191 if (ab->b_state == arc_l2c_only) { 4192 ASSERT(!HDR_L2_READING(ab)); 4193 /* 4194 * This doesn't exist in the ARC. Destroy. 4195 * arc_hdr_destroy() will call list_remove() 4196 * and decrement arcstat_l2_size. 4197 */ 4198 arc_change_state(arc_anon, ab, hash_lock); 4199 arc_hdr_destroy(ab); 4200 } else { 4201 /* 4202 * Invalidate issued or about to be issued 4203 * reads, since we may be about to write 4204 * over this location. 4205 */ 4206 if (HDR_L2_READING(ab)) { 4207 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4208 ab->b_flags |= ARC_L2_EVICTED; 4209 } 4210 4211 /* 4212 * Tell ARC this no longer exists in L2ARC. 4213 */ 4214 if (ab->b_l2hdr != NULL) { 4215 abl2 = ab->b_l2hdr; 4216 ab->b_l2hdr = NULL; 4217 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4218 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4219 } 4220 list_remove(buflist, ab); 4221 4222 /* 4223 * This may have been leftover after a 4224 * failed write. 4225 */ 4226 ab->b_flags &= ~ARC_L2_WRITING; 4227 } 4228 mutex_exit(hash_lock); 4229 } 4230 mutex_exit(&l2arc_buflist_mtx); 4231 4232 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); 4233 dev->l2ad_evict = taddr; 4234 } 4235 4236 /* 4237 * Find and write ARC buffers to the L2ARC device. 4238 * 4239 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4240 * for reading until they have completed writing. 4241 */ 4242 static uint64_t 4243 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4244 { 4245 arc_buf_hdr_t *ab, *ab_prev, *head; 4246 l2arc_buf_hdr_t *hdrl2; 4247 list_t *list; 4248 uint64_t passed_sz, write_sz, buf_sz, headroom; 4249 void *buf_data; 4250 kmutex_t *hash_lock, *list_lock; 4251 boolean_t have_lock, full; 4252 l2arc_write_callback_t *cb; 4253 zio_t *pio, *wzio; 4254 uint64_t guid = spa_load_guid(spa); 4255 4256 ASSERT(dev->l2ad_vdev != NULL); 4257 4258 pio = NULL; 4259 write_sz = 0; 4260 full = B_FALSE; 4261 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4262 head->b_flags |= ARC_L2_WRITE_HEAD; 4263 4264 /* 4265 * Copy buffers for L2ARC writing. 4266 */ 4267 mutex_enter(&l2arc_buflist_mtx); 4268 for (int try = 0; try <= 3; try++) { 4269 list = l2arc_list_locked(try, &list_lock); 4270 passed_sz = 0; 4271 4272 /* 4273 * L2ARC fast warmup. 4274 * 4275 * Until the ARC is warm and starts to evict, read from the 4276 * head of the ARC lists rather than the tail. 4277 */ 4278 headroom = target_sz * l2arc_headroom; 4279 if (arc_warm == B_FALSE) 4280 ab = list_head(list); 4281 else 4282 ab = list_tail(list); 4283 4284 for (; ab; ab = ab_prev) { 4285 if (arc_warm == B_FALSE) 4286 ab_prev = list_next(list, ab); 4287 else 4288 ab_prev = list_prev(list, ab); 4289 4290 hash_lock = HDR_LOCK(ab); 4291 have_lock = MUTEX_HELD(hash_lock); 4292 if (!have_lock && !mutex_tryenter(hash_lock)) { 4293 /* 4294 * Skip this buffer rather than waiting. 4295 */ 4296 continue; 4297 } 4298 4299 passed_sz += ab->b_size; 4300 if (passed_sz > headroom) { 4301 /* 4302 * Searched too far. 4303 */ 4304 mutex_exit(hash_lock); 4305 break; 4306 } 4307 4308 if (!l2arc_write_eligible(guid, ab)) { 4309 mutex_exit(hash_lock); 4310 continue; 4311 } 4312 4313 if ((write_sz + ab->b_size) > target_sz) { 4314 full = B_TRUE; 4315 mutex_exit(hash_lock); 4316 break; 4317 } 4318 4319 if (pio == NULL) { 4320 /* 4321 * Insert a dummy header on the buflist so 4322 * l2arc_write_done() can find where the 4323 * write buffers begin without searching. 4324 */ 4325 list_insert_head(dev->l2ad_buflist, head); 4326 4327 cb = kmem_alloc( 4328 sizeof (l2arc_write_callback_t), KM_SLEEP); 4329 cb->l2wcb_dev = dev; 4330 cb->l2wcb_head = head; 4331 pio = zio_root(spa, l2arc_write_done, cb, 4332 ZIO_FLAG_CANFAIL); 4333 } 4334 4335 /* 4336 * Create and add a new L2ARC header. 4337 */ 4338 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4339 hdrl2->b_dev = dev; 4340 hdrl2->b_daddr = dev->l2ad_hand; 4341 4342 ab->b_flags |= ARC_L2_WRITING; 4343 ab->b_l2hdr = hdrl2; 4344 list_insert_head(dev->l2ad_buflist, ab); 4345 buf_data = ab->b_buf->b_data; 4346 buf_sz = ab->b_size; 4347 4348 /* 4349 * Compute and store the buffer cksum before 4350 * writing. On debug the cksum is verified first. 4351 */ 4352 arc_cksum_verify(ab->b_buf); 4353 arc_cksum_compute(ab->b_buf, B_TRUE); 4354 4355 mutex_exit(hash_lock); 4356 4357 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4358 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4359 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4360 ZIO_FLAG_CANFAIL, B_FALSE); 4361 4362 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4363 zio_t *, wzio); 4364 (void) zio_nowait(wzio); 4365 4366 /* 4367 * Keep the clock hand suitably device-aligned. 4368 */ 4369 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4370 4371 write_sz += buf_sz; 4372 dev->l2ad_hand += buf_sz; 4373 } 4374 4375 mutex_exit(list_lock); 4376 4377 if (full == B_TRUE) 4378 break; 4379 } 4380 mutex_exit(&l2arc_buflist_mtx); 4381 4382 if (pio == NULL) { 4383 ASSERT3U(write_sz, ==, 0); 4384 kmem_cache_free(hdr_cache, head); 4385 return (0); 4386 } 4387 4388 ASSERT3U(write_sz, <=, target_sz); 4389 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4390 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4391 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4392 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0); 4393 4394 /* 4395 * Bump device hand to the device start if it is approaching the end. 4396 * l2arc_evict() will already have evicted ahead for this case. 4397 */ 4398 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4399 vdev_space_update(dev->l2ad_vdev, 4400 dev->l2ad_end - dev->l2ad_hand, 0, 0); 4401 dev->l2ad_hand = dev->l2ad_start; 4402 dev->l2ad_evict = dev->l2ad_start; 4403 dev->l2ad_first = B_FALSE; 4404 } 4405 4406 dev->l2ad_writing = B_TRUE; 4407 (void) zio_wait(pio); 4408 dev->l2ad_writing = B_FALSE; 4409 4410 return (write_sz); 4411 } 4412 4413 /* 4414 * This thread feeds the L2ARC at regular intervals. This is the beating 4415 * heart of the L2ARC. 4416 */ 4417 static void 4418 l2arc_feed_thread(void) 4419 { 4420 callb_cpr_t cpr; 4421 l2arc_dev_t *dev; 4422 spa_t *spa; 4423 uint64_t size, wrote; 4424 clock_t begin, next = ddi_get_lbolt(); 4425 4426 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4427 4428 mutex_enter(&l2arc_feed_thr_lock); 4429 4430 while (l2arc_thread_exit == 0) { 4431 CALLB_CPR_SAFE_BEGIN(&cpr); 4432 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4433 next); 4434 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4435 next = ddi_get_lbolt() + hz; 4436 4437 /* 4438 * Quick check for L2ARC devices. 4439 */ 4440 mutex_enter(&l2arc_dev_mtx); 4441 if (l2arc_ndev == 0) { 4442 mutex_exit(&l2arc_dev_mtx); 4443 continue; 4444 } 4445 mutex_exit(&l2arc_dev_mtx); 4446 begin = ddi_get_lbolt(); 4447 4448 /* 4449 * This selects the next l2arc device to write to, and in 4450 * doing so the next spa to feed from: dev->l2ad_spa. This 4451 * will return NULL if there are now no l2arc devices or if 4452 * they are all faulted. 4453 * 4454 * If a device is returned, its spa's config lock is also 4455 * held to prevent device removal. l2arc_dev_get_next() 4456 * will grab and release l2arc_dev_mtx. 4457 */ 4458 if ((dev = l2arc_dev_get_next()) == NULL) 4459 continue; 4460 4461 spa = dev->l2ad_spa; 4462 ASSERT(spa != NULL); 4463 4464 /* 4465 * If the pool is read-only then force the feed thread to 4466 * sleep a little longer. 4467 */ 4468 if (!spa_writeable(spa)) { 4469 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 4470 spa_config_exit(spa, SCL_L2ARC, dev); 4471 continue; 4472 } 4473 4474 /* 4475 * Avoid contributing to memory pressure. 4476 */ 4477 if (arc_reclaim_needed()) { 4478 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4479 spa_config_exit(spa, SCL_L2ARC, dev); 4480 continue; 4481 } 4482 4483 ARCSTAT_BUMP(arcstat_l2_feeds); 4484 4485 size = l2arc_write_size(dev); 4486 4487 /* 4488 * Evict L2ARC buffers that will be overwritten. 4489 */ 4490 l2arc_evict(dev, size, B_FALSE); 4491 4492 /* 4493 * Write ARC buffers. 4494 */ 4495 wrote = l2arc_write_buffers(spa, dev, size); 4496 4497 /* 4498 * Calculate interval between writes. 4499 */ 4500 next = l2arc_write_interval(begin, size, wrote); 4501 spa_config_exit(spa, SCL_L2ARC, dev); 4502 } 4503 4504 l2arc_thread_exit = 0; 4505 cv_broadcast(&l2arc_feed_thr_cv); 4506 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4507 thread_exit(); 4508 } 4509 4510 boolean_t 4511 l2arc_vdev_present(vdev_t *vd) 4512 { 4513 l2arc_dev_t *dev; 4514 4515 mutex_enter(&l2arc_dev_mtx); 4516 for (dev = list_head(l2arc_dev_list); dev != NULL; 4517 dev = list_next(l2arc_dev_list, dev)) { 4518 if (dev->l2ad_vdev == vd) 4519 break; 4520 } 4521 mutex_exit(&l2arc_dev_mtx); 4522 4523 return (dev != NULL); 4524 } 4525 4526 /* 4527 * Add a vdev for use by the L2ARC. By this point the spa has already 4528 * validated the vdev and opened it. 4529 */ 4530 void 4531 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 4532 { 4533 l2arc_dev_t *adddev; 4534 4535 ASSERT(!l2arc_vdev_present(vd)); 4536 4537 /* 4538 * Create a new l2arc device entry. 4539 */ 4540 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4541 adddev->l2ad_spa = spa; 4542 adddev->l2ad_vdev = vd; 4543 adddev->l2ad_write = l2arc_write_max; 4544 adddev->l2ad_boost = l2arc_write_boost; 4545 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 4546 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 4547 adddev->l2ad_hand = adddev->l2ad_start; 4548 adddev->l2ad_evict = adddev->l2ad_start; 4549 adddev->l2ad_first = B_TRUE; 4550 adddev->l2ad_writing = B_FALSE; 4551 ASSERT3U(adddev->l2ad_write, >, 0); 4552 4553 /* 4554 * This is a list of all ARC buffers that are still valid on the 4555 * device. 4556 */ 4557 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4558 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4559 offsetof(arc_buf_hdr_t, b_l2node)); 4560 4561 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 4562 4563 /* 4564 * Add device to global list 4565 */ 4566 mutex_enter(&l2arc_dev_mtx); 4567 list_insert_head(l2arc_dev_list, adddev); 4568 atomic_inc_64(&l2arc_ndev); 4569 mutex_exit(&l2arc_dev_mtx); 4570 } 4571 4572 /* 4573 * Remove a vdev from the L2ARC. 4574 */ 4575 void 4576 l2arc_remove_vdev(vdev_t *vd) 4577 { 4578 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4579 4580 /* 4581 * Find the device by vdev 4582 */ 4583 mutex_enter(&l2arc_dev_mtx); 4584 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4585 nextdev = list_next(l2arc_dev_list, dev); 4586 if (vd == dev->l2ad_vdev) { 4587 remdev = dev; 4588 break; 4589 } 4590 } 4591 ASSERT(remdev != NULL); 4592 4593 /* 4594 * Remove device from global list 4595 */ 4596 list_remove(l2arc_dev_list, remdev); 4597 l2arc_dev_last = NULL; /* may have been invalidated */ 4598 atomic_dec_64(&l2arc_ndev); 4599 mutex_exit(&l2arc_dev_mtx); 4600 4601 /* 4602 * Clear all buflists and ARC references. L2ARC device flush. 4603 */ 4604 l2arc_evict(remdev, 0, B_TRUE); 4605 list_destroy(remdev->l2ad_buflist); 4606 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4607 kmem_free(remdev, sizeof (l2arc_dev_t)); 4608 } 4609 4610 void 4611 l2arc_init(void) 4612 { 4613 l2arc_thread_exit = 0; 4614 l2arc_ndev = 0; 4615 l2arc_writes_sent = 0; 4616 l2arc_writes_done = 0; 4617 4618 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4619 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4620 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4621 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4622 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4623 4624 l2arc_dev_list = &L2ARC_dev_list; 4625 l2arc_free_on_write = &L2ARC_free_on_write; 4626 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4627 offsetof(l2arc_dev_t, l2ad_node)); 4628 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4629 offsetof(l2arc_data_free_t, l2df_list_node)); 4630 } 4631 4632 void 4633 l2arc_fini(void) 4634 { 4635 /* 4636 * This is called from dmu_fini(), which is called from spa_fini(); 4637 * Because of this, we can assume that all l2arc devices have 4638 * already been removed when the pools themselves were removed. 4639 */ 4640 4641 l2arc_do_free_on_write(); 4642 4643 mutex_destroy(&l2arc_feed_thr_lock); 4644 cv_destroy(&l2arc_feed_thr_cv); 4645 mutex_destroy(&l2arc_dev_mtx); 4646 mutex_destroy(&l2arc_buflist_mtx); 4647 mutex_destroy(&l2arc_free_on_write_mtx); 4648 4649 list_destroy(l2arc_dev_list); 4650 list_destroy(l2arc_free_on_write); 4651 } 4652 4653 void 4654 l2arc_start(void) 4655 { 4656 if (!(spa_mode_global & FWRITE)) 4657 return; 4658 4659 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4660 TS_RUN, minclsyspri); 4661 } 4662 4663 void 4664 l2arc_stop(void) 4665 { 4666 if (!(spa_mode_global & FWRITE)) 4667 return; 4668 4669 mutex_enter(&l2arc_feed_thr_lock); 4670 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4671 l2arc_thread_exit = 1; 4672 while (l2arc_thread_exit != 0) 4673 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4674 mutex_exit(&l2arc_feed_thr_lock); 4675 } 4676